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Abstract 3

In the presence of an external magnetic field, we prove existence of a ground state within the Hartree–Fock theory of atoms 4

and molecules. The ground state exists provided the magnetic field decreases at infinity and the total charge Z of K nuclei exceeds 5

N − 1, where N is the number of electrons. In the opposite direction, no ground state exists if N > 2Z + K . 6

c© 2007 Published by Elsevier Ltd 7
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Keywords: Magnetic Hartree–Fock equations; Ground state; Variational method; Spectral bound
8

1. Introduction 9

In this paper, the existence of a solution in the form of a minimizer is established for the nonlinear coupled 10

Hartree–Fock equations of Quantum Chemistry in the presence of an external magnetic field. 11

Within the Born–Oppenheimer approximation, the nonrelativistic quantum energy of N electrons interacting 12

with K static nuclei with charges Z = (Z1, . . . , Z K ), Zk > 0, and an external magnetic field B = ∇ × A, 13

A = (A1, A2, A3) : R3
→ R3 being the vector potential, is given by 14

EQM
N (Ψe) = 〈Ψe, HN ,Z,AΨe〉L2(R3N ) 15

=

N∑
n=1

∫
R3N

(
|∇A,xn Ψe(x)|

2
+ Ven(xn)|Ψe(x)|

2
)

dx +

∑
1≤m<n≤N

∫
R3N

Vee(xm − xn)|Ψe(x)|
2dx, (1.1) 16

where x = (x1, . . . , xN ) ∈ R3N , xn = (x (1)n , x (2)n , x (3)n ) ∈ R3 being the position of the nth electron, the components of 17

the magnetic gradient ∇A,xn = (P(1)xn , P(2)xn , P(3)xn ) are P(m)xn = P(m)A,xn
= ∂

x (m)n
+ iAm(xn), Ven is the Coulomb potential

Q1

18

Ven(y) = −

K∑
k=1

Zk

|y − Rk |
19
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with Rk ∈ R3 being the position of the kth nucleus, Vee(x) = 1/|x |, and HN ,Z,A is the N -particle electronic1

Schrödinger operator2

HN ,Z,A =

N∑
n=1

(
−1A,xn + Ven(xn)

)
+

∑
1≤m<n≤N

Vee(xm − xn)3

with 1A,xn =
∑3

m=1(P
(m)
xn )2 being the magnetic Laplacian. The interpretation of this Hamiltonian1 is as follows: the4

first term corresponds to the kinetic energy of the electrons, the second term is the one-particle attractive interaction5

between the electrons and the nuclei, and the third term is the standard two-particle repulsive interaction between the6

electrons.7

The wave function Ψe in (1.1) belongs to He :=
∧N H1

A(R
3
; C2), i.e., the N -particle Hilbert space consisting of8

antisymmetric functions (expressing the Pauli exclusion principle)9

Ψe(x1, . . . , xN ) = sign(σ )Ψe(xσ(1), . . . , xσ(N )) a.e. , ∀σ ∈ SN ,10

where SN is the group of permutations of {1, . . . , N }, with the signature of a permutation σ being denoted by sign(σ ).11

The space H1
A(R

3) is the “magnetic” analogue of the standard Sobolev space H1(R3); see Section 2 for its definition.12

Poincaré’s Lemma (see, e.g., [10]) asserts that the magnetic field strength B is described by a 2-form13

B(x) =

3∑
l,m=1,l<m

Flm(x)dxl ∧ dxm (1.2)14

satisfying dB = 0 (exterior derivative) and, consequently, B = dA, or15

Flm(x) =
∂Al(x)

∂xm
−
∂Am(x)

∂xl
(1.3)16

with the magnetic vector potential (1-form) A(x) =
∑3

m=1 Amdxm . Since the vector potential is not directly17

observable, we should impose conditions on the field strengths.18

We choose the Poincaré gauge, x ·A(x) = A(x) · x = 0. It is well-known that19

Am(x) :=

3∑
l=1

∫ 1

0
ξFlm(ξ x)dξ xl , m = 1, 2, 3, (1.4)20

defines a vector potential which satisfies the Poincaré gauge. For this choice, divA =
∑3

m=1 ∂m Am(x) is a physical21

quantity and we shall impose the following conditions on it; in a different context, rather similar requirements are22

imposed in [5,2].23

Assumption 1.1. (i) divA ∈ L2
loc(R

3).24

(ii) divA is −1-bounded with relative bound less than one.25

(See, e.g., [4, Definition III.7.1].)26

(iii) Smallness at infinity:27 ∥∥∥divA(−1+ 1)−1χ̃(|x | > R)
∥∥∥
B(L2)

∈ L1(R+, dR).28

(See Section 2 for the meaning of χ̃ .)29

(iv) A is homogeneous of degree −1.30

The hypotheses on the field strength Flm and
∑3

l=1 Flm(x) xm are summarized in the following, where we set31

Flm = Fb
lm + F s

lm , with Fb
lm , resp., F s

lm being associated with a bounded, resp. singular, part of Flm .32

1 Expressed in Rydberg units.

Please cite this article in press as: M. Enstedt, M. Melgaard, Existence of a solution to Hartree–Fock equations with decreasing magnetic fields,
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Assumption 1.2. (i) Let Fb
lm ∈ L∞(R3) such that, for some ν ∈ (0, 1), 1

|Fb
lm(x)| ≤ c(1 + |x |)−(1+ν). 2

(ii) Let F s
lm ∈ L4

loc(R
3) such that, for some positive R and µ ∈ (2,∞), 3∫

B(0,R)

∣∣∣∣∣ 3∑
l=1

F s
lm(x)xl

∣∣∣∣∣
4

dx ≤ cRµ. 4

(iii) For some positive r0, let 5

suppF s
lm ⊂ B(0, r0). 6

(iv) For ν ∈ (0, 1) and κ > max{3/(1 − ν), 6}, let 7

F s
lm ∈ Lκloc(R

3). 8

The N -particle quantum mechanical ground state energy is the minimum of the spectrum of HN ,Z,A or, 9

equivalently, 10

EQM(N ,Z,A) = inf{EQM
N (Ψe) : Ψe ∈ He, ‖Ψe‖L2(R3N ) = 1}. (1.5) 11

In general, EQM(N ,Z,A) is inaccessible to direct calculation, due to the excessive dimension of the underlying 12

Euclidean space R3N on which wave functions are defined. For this reason, quantum chemists have introduced ab 13

initio approximations which provide a simplified, but still quantum mechanical description of the electronic structure 14

about the nuclei. Here we focus on one such approximation, namely the Hartree–Fock approximation [37,13,28]. 15

Therein the main idea is to replace the Hilbert space He by a smaller space while maintaining the form of the 16

energy EQM
N (Ψe); see (1.1). Specifically, the Hartree–Fock approximation, introduced by Hartree [12] and improved by 17

Fock [8] and Slater [35] in the late 1920s, consists in restricting in the minimization problem (1.5) the spaceHe to that 18

of functions of the variables (x1, . . . , xN ) ∈ R3N that can be written as a single determinant (i.e. an antisymmetrized 19

product) of N functions defined on R3. Bear in mind that, in its full generality, an arbitrary vector of He is only a 20

converging infinite sum of such determinants [27]. The magnetic Hartree–Fock approximation is therefore defined as 21

inf{〈Ψe, HN ,Z,AΨe〉 : Ψe ∈ SN }, (1.6) 22

where 23

SN =

{
Ψe ∈ He : ∃Φ = {φn}1≤n≤N ∈ CN ,Ψe =

1
√

N !
det (φn(xm))

}
24

with 25

CN = {Φ = {φn}1≤n≤N , φn ∈ H1
A(R

3), 〈φm, φn〉L2 = δmn, 1 ≤ m, n ≤ N }. (1.7) 26

This form of the wave function becomes more explicit if we write it out, viz. 27

Ψe(x1, . . . , xN ) =
1

√
N !

det(φn(xm)) =
1

√
N !

∣∣∣∣∣∣∣∣∣
φ1(x1) · · · φ1(xN )

· ·

· ·

· ·

φN (x1) · · · φN (xN )

∣∣∣∣∣∣∣∣∣ . (1.8) 28

In the language of Quantum Chemistry, a function of the form (1.8) is called a Slater determinant, and the φn are 29

called molecular orbitals. 30

In fact, if Ψe ∈ SN then, by simple algebraic calculations, 〈Ψe, HN ,Z,AΨe〉 = EMHF(Ψe), where the magnetic 31

Hartree–Fock functional EMHF
N (·) is given by 32

Please cite this article in press as: M. Enstedt, M. Melgaard, Existence of a solution to Hartree–Fock equations with decreasing magnetic fields,
Nonlinear Analysis (2007), doi:10.1016/j.na.2007.07.050
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EMHF(φ1, . . . , φN ) = EMHF
N (Ψe) = 〈Ψe, HN ,Z,AΨe〉1

=

N∑
n=1

∫
R3

|∇Aφn(x)|
2dx +

∫
R3

Ven(x)ρ(x)dx +
1
2

∫
R3

∫
R3

ρ(x) ρ(x ′)

|x − x ′|
dxdx ′

2

−
1
2

∫
R3

∫
R3

|τ(x, x ′)|2

|x − x ′|
dxdx ′. (1.9)3

Here τ(x, x ′) =
∑N

n=1 φn(x) φn(x ′) is the density matrix, and the density associated to the state Ψe is ρ(x) =
∑N

n=14

|φn(x)|2; ζ ∗ refers to the conjugate of the complex number ζ .5

Definition 1.3 (The Hartree–Fock Ground State). Let Z = (Z1, . . . , Z K ), Zk > 0, k = 1, . . . , K , and let N be a6

nonnegative integer. The magnetic Hartree–Fock ground state energy is7

EMHF
≡ EMHF(N ,Z,A) := inf{EMHF(Ψe) : Ψe ∈ SN }. (1.10)8

If a minimizer exists, i.e., there exists some Ψe such that9

EMHF(Ψe) = EMHF, (1.11)10

then it is said that the atom has a magnetic Hartree–Fock ground state described by Ψe.11

When no magnetic field is present, the Hartree–Fock minimization problem was studied by Lieb and Simon in [23]12

(see also [22,19]). Under the condition that the total charge Z =
∑K

k=1 Zk of the molecular system fulfills Z +1 > N ,13

they proved the existence of at least one minimizer, i.e., a Hartree–Fock ground state. The mathematical requirement14

Z + 1 > N expresses that the total charge of the nuclei should be sufficiently positive to ensure that the N electrons15

are localized in their vicinity. Prior to [23], the Hartree–Fock equations were studied by more direct approaches16

[29,11,9,36,38,30], yielding less general results.17

The proof in [23] relies on variational methods applied to the Hartree–Fock energy functional and, in particular,18

the weak lower semicontinuity of the functional in the Sobolev space H1(R3)N . One property is instrumental in the19

proof: The infimum in (1.10) is unchanged if CN is replaced by20

C≤

N = {Φ = {φn}1≤n≤N , φn ∈ H1(R3), 〈φm, φn〉L2 ≤ δmn, 1 ≤ m, n ≤ N }, (1.12)21

with the analogue of SN , denoted S≤

N , being defined via C≤

N . That is, if the orthonormality constraint in (1.7) is22

substituted by
∫
R3 φmφndx ≤ δmn ; henceforth called the relaxed constraint. The property enables one to, first, prove23

the existence of a minimizer to the relaxed Hartree–Fock problem and, second, one proves that the latter minimizer24

does, indeed, satisfy the original orthonormality constraint.25

The novelty of the present paper is to establish the existence of a Hartree–Fock ground state for a wide class of26

magnetic fields. The main theorem, valid for neutral molecules and positive ions, is:27

Theorem 1.4. Let Assumptions 1.1 and 1.2 hold. If the total nuclear charge Z =
∑K

k=1 Zk satisfies Z + 1 > N, then28

there exists a minimizer ϕ of EMHF(·) on the admissible set SN .29

The components of ϕ = (ϕ1, . . . , ϕN ) satisfy the magnetic Hartree–Fock equations30 {
H F
Aϕn = εnϕn,

〈ϕm, ϕn〉L2 = δmn,
(1.13)31

where H F
A is the magnetic Fock operator, defined in Proposition 5.1. Moreover, the numbers εn are the N lowest32

eigenvalues of the operator H F
A .33

IfA is homogeneous of degree −1, bounded and tends to zero at infinity, then Assumptions 1.1 and 1.2 are satisfied.34

Assumptions 1.1 and 1.2 ensure that the (quantum) energy is monotonically decreasing in the numbers of electrons35

N which is crucial for the strategy of the proof. In particular, the proof will not apply to a constant magnetic field36

because if we add a particle at spatial infinity then it costs at least an energy of size |B|.37

In the opposite direction, the following result on nonexistence holds under the same assumptions.38

Please cite this article in press as: M. Enstedt, M. Melgaard, Existence of a solution to Hartree–Fock equations with decreasing magnetic fields,
Nonlinear Analysis (2007), doi:10.1016/j.na.2007.07.050
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Theorem 1.5. Let Assumptions 1.1 and 1.2 hold. If N is a positive integer such that N > 2Z + K (Z being the total 1

nuclear charge), there are no minimizers for the magnetic Hartree–Fock problem. 2

For bounded vector potentials which tends to zero at infinity, the latter result was proven by Lieb [20]. The proof 3

of Theorem 1.5 will appear elsewhere [6]. 4

In the case of a constant magnetic field a result similar to Theorem 1.4 was established by Esteban and Lions [7] by 5

a completely different approach, originally invented by Lions for the nonmagnetic case, based upon the construction 6

of minimizing sequences which satisfy the “second minimality condition”; we refer to [26] for details. 7

2. Preliminaries 8

Let T be a self-adjoint operator on a Hilbert space H with domain D(T ). The spectrum and resolvent set are 9

denoted by σ(T ) and ρ(T ), respectively. We use standard terminology for the various parts of the spectrum; see, 10

e.g., [4,17]. The resolvent is R(ζ ) = (T − ζ )−1. The spectral family associated to T is denoted by ET (λ), λ ∈ R. For 11

a lower semi-bounded self-adjoint operator T , the counting function is defined by 12

Coun(λ; T ) = dim Ran ET ((−∞, λ)). 13

Let R3 be the three-dimensional Euclidean space, wherein points are denoted by x = (x (1), x (2), x (3)), and let 14

|x | = (
∑3

m=1(x
(m))2)1/2. We set 15

BR = {x ∈ R3
: |x | < R}, B(x, R) = {y ∈ R3

: |x − y| < R}. 16

For any set Ω ⊂ R3 we denote by χ̃(x ∈ Ω) the operator of multiplication by the characteristic function of Ω . In the 17

case Ω = {x : |x | ≤ R} we write χ̃(|x | ≤ R) and the operator 1 − χ̃(|x | ≤ R) will be designated χ̃(|x | > R). For 18

a self-adjoint operator T , we let χ̃(|T | ≤ E) be the spectral projection onto the subspace where |T | ≤ E , defined by 19

the functional calculus, and let χ̃(|T | > E) = 1 − χ̃(|T | ≤ E). 20

For 1 ≤ p ≤ ∞, let L p(R3) be the space of (equivalence classes of) complex-valued functions φ which are 21

measurable and satisfy
∫
R3 |φ(x)|pdx < ∞ if p < ∞ and ‖φ‖L∞(R3) = ess sup |φ| < ∞ if p = ∞. The measure dx 22

is the Lebesgue measure. For any p the L p(R3) space is a Banach space with norm ‖ · ‖L p(R3) = (
∫
R3 | · |

pdx)1/p. 23

In the case p = 2, L2(R3) is a complex and separable Hilbert space with scalar product 〈φ,ψ〉L2(R3) =
∫
R3 φψ

∗dx 24

and corresponding norm ‖φ‖L2(R3) = 〈φ, φ〉
1/2
L2(R3)

. Similarly, L2(R3)N , the N -fold Cartesian product of L2(R3), is 25

equipped with the scalar product 〈φ,ψ〉 =
∑N

n=1〈φn, ψn〉L2(R3) and the norm ‖φ‖ = 〈φ, φ〉
1/2. 26

The space of infinitely differentiable complex-valued functions with compact support will be denoted C∞

0 (R
3) 27

or D(R3), the space of test functions. The Schwarz space of rapidly decreasing functions and its adjoint space if 28

tempered distributions are denoted by S (R3) and S ′(R3), respectively. 29

Let p denote the momentum operator −i∇ and let 〈p〉 = (1 + p2)1/2. For any t ∈ R the standard Sobolev space 30

Ht (R3) is given by 31

Ht (R3) = {φ ∈ S ′(R3) : ‖φ‖Ht (R3) = ‖〈p〉
tφ‖L2(R3) < ∞}. (2.1) 32

2.1. The Sobolev space H1
A(R

3) 33

Define 34

H1
A ≡ H1

A(R
3) :=

{
φ ∈ L2(R3) : ∇Aφ ∈ L2(R3)

}
35

for ∇A := ∇ + iA, in which ∇φ is taken in the distributional sense, endowed with norm 36

‖φ‖H1
A

:=

(
‖φ‖

2
L2 + ‖∇Aφ‖

2
L2

)1/2
. 37

We do not suppose that ∇φ orAφ are separately in L2(R3). Consequently, in general, there is no relationship between 38

the spaces H1
A(R

3) and H1(R3) on the whole of R3; more precisely, H1
A(R

3) 6⊆ H1(R3) and H1(R3) 6⊆ H1
A(R

3). 39

Please cite this article in press as: M. Enstedt, M. Melgaard, Existence of a solution to Hartree–Fock equations with decreasing magnetic fields,
Nonlinear Analysis (2007), doi:10.1016/j.na.2007.07.050



U
N

C
O

R
R

EC
TE

D
PR

O
O

F

NA: 6153

ARTICLE  IN  PRESS
6 M. Enstedt, M. Melgaard / Nonlinear Analysis xx (xxxx) xxx–xxx

If A ∈ L2
loc(R

3)3, then D(R3) is dense in H1
A(R

3) (see [16,34,18]), and the following well-known diamagnetic1

inequality is valid.2

Theorem 2.1. Let A ∈ L2
loc(R

3)3. If φ ∈ H1
A(R

3), then |φ| ∈ H1(R3) and3

|∇|φ|| ≤ |∇Aφ| for a.e. x ∈ R3 and ∀φ ∈ H1
A(R

3). (2.2)4

Proof. We sketch the argument; for more details we refer to [21]. Since A is real-valued, the relation (see, e.g., [14])5

|∇|φ|(x)| =

∣∣∣∣Re
(

∇φ
φ∗

|φ|

)∣∣∣∣ =

∣∣∣∣Re
(
(∇φ + iAφ)

φ∗

|φ|

)∣∣∣∣6

holds a.e., whence (2.2) follows for all φ ∈ D(R3) and thus for all φ ∈ H1
A(R

3) because D(R3) is dense in H1
A(R

3).Q27

As a consequence of Theorem 2.1 we have that φ 7→ |φ| maps H1
A(R

3) continuously into the Sobolev space8

H1(R3), which implies the existence of a continuous embedding9

H1
A(R

3) ↪→ Lq(R3), q ∈ [2, 6], (2.3)10

(see, e.g., [4, Theorem 3.7]). For the ball BR centred at the origin with radius R, it follows from Rellich’s embedding11

theorem [1, Theorem 3.8] that the embedding H1
A(R

3) ↪→ L2(BR) is compact, i.e.,12

H1
A(R

3) ↪→↪→ L2(BR). (2.4)13

2.2. Bound on kinetic energy of electrons14

The following inequality was established by Lieb and Thirring [24,25] for the nonmagnetic case but it immediately15

carries over to our setting.16

Theorem 2.2. Let A ∈ L2
loc(R

3)3 and let ρ =
∑N

n=1 |φn|
2 be the density associated to a vector in SN . Then there17

exists a positive constant c such that18 ∫
R3
ρ(x)5/3dx ≤ c

N∑
n=1

‖∇Aφn‖
2
L2(R3)

. (2.5)19

2.3. Invariance under unitary transformations20

The following property is fundamental:21

Lemma 2.3. The functional EMHF(·) is invariant under unitary transformations, i.e., if U = {Umn} is an unitary22

N × N matrix and ψm =
∑

n Umnφn , then EMHF(Ψ) = EMHF(Φ), where Ψ = (ψ1, . . . , ψN ).23

Proof. Recall that the set of admissible data is the Slater determinants, i.e. functions having the representation24

Ψe(x1, . . . , xN ) =
1

√
N !

det{φm(xn)}m,n25

with φm ∈ H1
A(R

3) and 〈φm, φn〉L2 = δmn . Let U be a unitary transformation and set26

(φ′

1, . . . , φ
′

N ) := U (φ1, . . . ,UφN ),27

then28

det{φ′
m(xn)}m,n = det U {φm(xn)}m,n = det{φm(xn)}m,n29

and hence (φ′

1, . . . , φ
′

N ) and (φ1, . . . , φN ) represent the same Ψe. Then clearly EMHF is invariant under unitary30

transformations (If it was not invariant our original functional 〈Ψe, HN ,Z,AΨe〉 would not be well-defined since it31

could attain different values for the same Ψe and this is, of course, a contradiction). �32

Please cite this article in press as: M. Enstedt, M. Melgaard, Existence of a solution to Hartree–Fock equations with decreasing magnetic fields,
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2.4. Kato’s space of potentials 1

To treat basic properties of the functional EMHF(·) we may consider potentials 2

V ∈ K3 := L
3
2 (R3)+ L∞

ε (R
3), (2.6) 3

i.e., the standard Kato space consisting of real-valued functions on R3 belonging to the set 4

{V : ∀ε > 0 ∃V1 ∈ L
3
2 , V2 ∈ L∞, ‖V2‖L∞ < ε such that V = V1 + V2} 5

which is the closure of D(R3) in L
3
2 (R3) + L∞(R3). Equipped with the norm ‖V ‖L3/2+L∞ = infV =V1+V2(‖V1‖L3/2 6

+‖V2‖L∞), the space K3 has Banach structure and its dual space is L1
∩ L3; it emerges in a natural way as the largest 7

L p
+ Lq space with the property that

∫
V (x)|φ(x)|2dx is well-defined for all φ ∈ H1(R3). 8

3. Existence of minimizer for relaxed Hartree–Fock problem 9

In this section we establish the following result with EMHF
≤ being defined analogously to EMHF in (1.10) with SN 10

replaced by S≤

N therein. 11

Theorem 3.1. Assume A ∈ L2
loc(R

3)3. For any integer N > 0 there exists a minimizer (not necessarily unique) Ψe 12

for the relaxed magnetic Hartree–Fock problem, i.e. ∃ϕ ∈ C≤

N such that the corresponding Ψe ∈ S≤

N satisfies 13

EMHF(Ψe) = EMHF
≤ . 14

Moreover, the components of ϕ = (ϕ1, . . . , ϕN ) satisfy 15

〈ϕm, ϕn〉 = γmδmn (3.1) 16

for some γm ∈ [0, 1]. 17

To make the exposition more pedagogical we divide the proof of this result into a few lemmas. 18

Lemma 3.2. Assume that A ∈ L2
loc(R

3)3. Then the functional EMHF(·) is well-defined on S≤

N and, furthermore, there 19

exists a minimizing sequence in S≤

N . 20

Proof. We first show that EMHF(·) is bounded from below on S≤

N , i.e., 21

inf{EMHF(φ1, . . . , φN ) : ‖φn‖L2 ≤ 1, φn ∈ H1
A(R

3)} > −∞. (3.2) 22

The Cauchy–Schwarz inequality yields, for x, y ∈ R3, 23

|τ(x, y)|2 =

∣∣∣∣∣ N∑
n=1

φn(x)φn(y)
∗

∣∣∣∣∣
2

24

≤

(
N∑

n=1

|φn(x)|
2

)(
N∑

n=1

|φn(y)
∗
|
2

)
= ρ(x)ρ(y). (3.3) 25

Hölder’s inequality gives 26∫
R3

1
|x − y|

|φ(x)|2dx ≤ 2
(∫
R3

1
4

1

|x − y|2
|φ(x)|2dx

) 1
2
(∫
R3

|φ(x)|2dx

) 1
2

. 27

An application of Hardy’ inequality, i.e., 28

1
4

∫
R3

1

|x |2
|φ(x)|2dx ≤

∫
R3

|∇φ(x)|2dx, ∀φ ∈ C∞

0 (R
3), (3.4) 29
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and the diamagnetic inequality (2.2) give us the Coulomb uncertainty principle expressed by the inequality1 ∫
R3

1
|x − y|

|φ(x)|2dx ≤ 2‖φ‖L2(R3)‖∇Aφ‖L2(R3), ∀φ ∈ C∞

0 (R
3). (3.5)2

Since C∞

0 (R
3) is dense in H1

A(R
3), (3.5) holds for any φ ∈ H1

A(R
3).3

To verify (3.2), we consider the terms in EMHF(·). Since, by hypothesis, φn ∈ H1
A(R

3), we have that the first term4

is finite, i.e.,5

N∑
n=1

∫
R3

|∇Aφn(x)|
2dx < ∞.6

In view of (3.5), the second term is finite. The inequality (3.3) implies that the sum of the last two terms is nonnegative,7

i.e.,8

1
2

∫
R3

∫
R3

ρ(x) ρ(x ′)

|x − x ′|
dxdx ′

−
1
2

∫
R3

∫
R3

|τ(x, x ′)|2

|x − x ′|
dxdx ′

≥ 0. (3.6)9

Hence EMHF(·) is bounded from below on S≤

N . By the Sobolev inequality and the diamagnetic inequality Theorem 2.1 Q310

it is a well-known fact that the sum of the first two terms in EMHF(·) is bounded from below independently of11

φ = (φ1, . . . , φN ) ∈ S≤

N and, consequently, there exists a minimizing sequence in S≤

N .12

Next we want to show that the magnetic Hartree–Fock functional is weakly lower semicontinuous on H1
A(R

3)N .13

We first consider the second term in EMHF(·) because it turns out to be weakly continuous.14

Lemma 3.3. Assume that A ∈ L2
loc(R

3)3, and that V ∈ K3, where K3 is the Kato space defined in (2.6). Then the15

functional V : H1
A(R

3) → R defined by16

ψ 7→

∫
R3

V (x)|ψ(x)|2dx,17

is weakly continuous on H1
A(R

3).18

Proof. Let ψ j ⇀ ψ in H1
A(R

3). Evidently the functional is well-defined on H1
A(R

3); indeed the Hölder inequality,19

the Hardy inequality (3.4), and the diamagnetic inequality (2.2) imply that20 ∫
R3

|ψ |
2

|x |
dx ≤ c‖ψ‖L2‖∇Aψ‖L221

for some positive constant c. The continuous embedding (2.3) implies that22

sup
j

‖ψ j‖L6 < +∞23

and, since weak convergence implies strong convergence locally, we have that24

ψ j → ψ in L2
loc(R

3).25

Hence, after perhaps going to a subsequence, we have that26

ψ j → ψ a.e. on B,27

where B is an open ball with some fix radius in R3 and by repeating this argument (every point in R3 belong to some28

open ball also contained in R3 and weak limits are unique) we may assume that29

ψ j → ψ a.e. on R3.30

Since V belong to the Kato class we can, for all ε > 0, write31

V = V1 + V2,32
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where V1 ∈ L3/2, V2 ∈ L∞ and ‖V2‖∞ < ε. By again invoking the Sobolev embedding theorem we have that 1

sup
j

‖|ψ j |
2
‖L3 < ∞. 2

Thus, |ψ j |
2 ⇀ |ψ |

2 in L3(R3) and we infer that (since L3/2(R3) has dual space L3(R3)) 3∫
R3

V1|ψ j |
2

→

∫
R3

V1|ψ |
2. 4

This is of course also true for our original sequence. Indeed, assume that there exist a subsequence {ψ jk }, to {ψ j } such 5

that 6

ψ 7→

∫
R3

V1|ψ |
2dx, 7

is not weakly sequentially continuous. Hence there exist some ν > 0 such that 8∣∣∣∣∫
R3

V1|ψ jk |
2dx −

∫
R3

V1|ψ |
2dx

∣∣∣∣ > ν (3.7) 9

for all jk . By the same argument as before we can create a subsequence to {ψ jk } (still denoted by {ψ jk }) such that 10∫
R3

V1|ψ jk |
2dx →

∫
R3

V1|ψ |
2dx 11

but this is an obvious contradiction to (3.7). Now, the assertion is a direct consequence of the fact that Q4 12∫
R3

|V2| |ψ j |
2
− |ψ |

2
≤ ε(sup

j
‖ψ j‖

2
L2 + ‖ψ‖

2
L2). 13

We show that the functional EMHF(·) is weakly lower semi-continuous in H1
A(R

3)N . 14

Lemma 3.4. Assume thatA ∈ L2
loc(R

3)3. Then the functional EMHF(·) is weakly lower semicontinuous on H1
A(R

3)N . 15

Proof. The first term is weakly lower semi-continuous because the L2(R3)N norm of ∇φn is weakly lower semi- 16

continuous. In view of Lemma 3.3 the second term is weakly continuous. The two remaining terms of EMHF(·) are 17

conveniently regarded as one single term having a nonnegative integrand; see (3.6). Then we may argue as in the proof 18

of Lemma 3.3; briefly, the compact embedding in (2.4) on bounded subsets enable us to extract a subsequence so that 19

φ
( j)
n converges to φn a.e. and an application of Fatou’s lemma yields 20∑

1≤m<n≤N

∫
R3N

Vee(xm − xn)|Ψ(x)|2dx ≤ lim inf
j→∞

∑
1≤m<n≤N

∫
R3N

Vee(xm − xn)|Ψ ( j)(x)|2dx . 21

We are ready to complete the proof of Theorem 3.1. 22

Proof (Proof of Theorem 3.1). Lemma 3.2 yields the existence of a minimizing sequence. Let n ∈ {1, . . . , N } and 23

for each j ∈ Z+ choose a minimizing sequence φ( j)
n ∈ H1

A(R
3), with L2-norm smaller than or equal to one, such that 24

〈φ
( j)
m , φ

( j)
n 〉L2 = 0 provided m 6= n and 25

EMHF(φ
( j)
1 , . . . , φ

( j)
N ) ≤ EMHF

≤ +
1
j
. 26

From the latter, together with ‖φ
( j)
n ‖ ≤ 1 for all j and all n, we get that ‖∇Aφ

( j)
n ‖L2 ≤ c for some positive constant 27

c. Hence the minimizing sequence is contained in a fixed ball in the Hilbert space H1
A(R

3)N . Weak compactness of 28

bounded sequences in the latter space implies that there exists a weakly convergent subsequence, i.e., there exists 29

some ϕ̃ ∈ H1
A(R

3)N such that 30

Φ( jk ) ⇀ ϕ̃ in H1
A(R

3)N . 31
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The components of ϕ̃ are denoted ϕ̃n . We have ϕ( j)
n → ϕ̃n weakly in H1

A(R
3) with 〈ϕ

( j)
m , ϕ

( j)
n 〉 ≤ δmn . Then1

〈ϕ̃m, ϕ̃n〉 = Mmn are the entries of an N × N matrix with 0 ≤ M ≤ 1 (in the sense of matrices); the same argument2

as in [23, Lemma 2.2] applies.3

At this stage we have a minimizer ϕ̃ satisfying4

EMHF(ϕ̃) = EMHF
≤5

and6

0 ≤

{∫
ϕ̃m ϕ̃

∗
n dx

}
≤ 1.7

We select an unitary matrix U = {umn} which diagonalizes M . Setting ϕn =
∑

umnϕ̃m and ϕ = (ϕ1, . . . , ϕN ),8

Lemma 2.3 guarantees that EMHF(ϕ) = EMHF
≤ and, by repeating the argument above, 〈ϕm, ϕn〉 = γmδmn holds for9

some γm ∈ [0, 1].10

4. Magnetic Hartree–Fock equations11

We show that the components of ϕ = (ϕ1, . . . , ϕN ) satisfy the magnetic Hartree–Fock equations (or Euler–12

Lagrange equations).13

Lemma 4.1. Suppose that A ∈ L2
loc(R

3)3. Then the functional EMHF(·) belongs to C1(H1
A(R

3)N ,R).14

Proof. A straightforward computation show that the Gateaux derivative of EMHF(·) (in this proof we henceforth15

suppress the superscript) is given by16

E ′(Φ)Ψ = 2
N∑

n=1

Re
∫
R3

∇Aφn(x)∇Aψ
∗
n (x)+ Ven(x)φn(x)ψ

∗
n (x)dx17

+ 2Re
∫
R3

∫
R3

ρ(x)φn(y)ψ∗
n (y)

|x − y|
dxdy − 2Re

∫
R3

∫
R3
τ(x, y)

φn(y)ψ∗
n (x)

|x − y|
dydx .18

It suffices to prove that E ′(Φ( j)) → E ′(Φ) in the strong operator topology. Using the Hölder inequality and Hardy’s19

inequality (3.4) we obtain, for some constant c > 0, the estimate20

|E ′(Φ)Ψ − E ′(Φ( j))Ψ | ≤ c

{
N∑

n=1

‖∇Aφ
( j)
n − ∇Aφn‖L2‖ψn‖L2 + ‖φ

( j)
n − φn‖L2‖∇Aψn‖L221

+ ‖ρ‖L1‖φ
( j)
n − φn‖L2‖∇Aψn‖L2 + ‖ρ( j)

− ρ‖L1 sup
j

‖φ
( j)
n ‖L2‖∇Aψn‖L222

+ ‖ρ‖L1‖φ
( j)
n − φn‖L2‖∇Aψn‖L2 + Λ(τ (n), φ( j)

n , τ, φn, ψn)

}
,23

where24

Λ(τ ( j), φ
( j)
n , τ, φn, ψn) :=

∫
R3

∫
R3

|τ ( j)φ
( j)
n − τφn||ψn|

|x − y|
dxdy.25

A direct application of the inequality26 ∣∣∣|λ( j)
n |

2
− |λ|2

∣∣∣ ≤ |λn − λ
( j)
n | |λn + λ

( j)
n |27

yields28

‖ρ( j)
− ρ‖L1 ≤

N∑
n=1

‖φ
( j)
n − φn‖L2 sup

j
‖φ

( j)
n + φn‖L229
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and hence ρ( j)
→ ρ in L1(R3). It remains to prove that Λ → 0. The triangle inequality and the Cauchy–Schwarz 1

inequality imply that 2

|τ ( j)(x, y)− τ(x, y)| ≤

√√√√ρ( j)(x)
N∑

n=1

|φ
( j)
n (y)− φn(y)|2 +

√√√√ρ(y) N∑
n=1

|φ
( j)
n (x)− φn(x)|2. (4.1) 3

Writing τ ( j)φ
( j)
n − τφn = (τ ( j)

− τ)φ
( j)
n + τ(φ

( j)
n −φn) we may argue as for the other terms above by applying (4.1), 4

in conjunction with Hölder’s inequality, Hardy’s inequality and the diamagnetic inequality; for instance, 5

∫
R3

∫
R3

√
ρ( j)(x)

N∑
n=1

|φ
( j)
n (y)− φn(y)|2|φ

( j)
n (y)ψn(x)∗|

|x − y|
dxdy 6

≤ c‖ψn‖L2

(
N∑

n=1

‖φ
( j)
n − φn‖

2
L2

)1/2

‖∇Aψn‖L2‖ρ
( j)

‖L1 . 7

This yields the desired fact and we conclude that EMHF(·) ∈ C1(H1
A(R

3)N ,R). 8

Lemma 4.1 shows that the minimizer to the relaxed Hartree–Fock problem is a critical point to the functional 9

EMHF(·) and Theorem 3.1 ensures that 10∫
R3
ϕmϕ

∗
n = γmδmn, 11

where γm ∈ [0, 1]. 12

Theorem 4.2. Suppose that A ∈ L2
loc(R

3)3. Then the components of the minimizer ϕ for the relaxed Hartree–Fock 13

problem satisfy the magnetic Hartree–Fock equations 14

−1Aϕn + Venϕn +

(
ρ ∗

1
|x |

)
ϕn −

(∫
R3
τ(x, y)

1
|x − y|

ϕn(y)dy

)
+ εnϕn = 0, in R3,∀n 15

for some constants εn . 16

Proof. Define the functional Gn : H1
A(R

3)N
→ R by 17

Φ 7→ ‖φn‖
2
L2 − γn, Φ = (φ1, . . . , φN ) ∈ H1

A(R
3)N , 18

and note that clearly G′
n ∈ C(H1

A(R
3)N ,R) and, in particular, the Gateaux derivative at Φ equals 19

G′
n(Φ)(Ψ) = 2Re

∫
R3
φnψ

∗
n dx . 20

According to the Lagrange multiplier rule [39, Section 4.14] there exists εn such that, for all n, the minimizer 21

ϕ = (ϕ1, . . . , ϕN ) satisfies 22

Re hF
A[ϕn, ψn] + εnRe

∫
R3
ϕnψ

∗
n dx = 0 ∀ψn ∈ H1

A(R
3), (4.2) 23

where the sesquilinear form hF
A[ϕn, ψn] is defined by 24

hF
A[ϕn, ψn] :=

∫
R3

∇Aϕn(x)∇Aψ
∗
n (x)+ Ven(x)ϕn(x)ψ

∗
n (x)dx 25

+

∫
R3

∫
R3

ρ(x)ϕn(y)ψ∗
n (y)

|x − y|
dxdy −

∫
R3

∫
R3
τ(x, y)

ϕn(y)ψ∗
n (x)

|x − y|
dydx . 26

Since both the terms in (4.2) are conjugate-linear in their second argument we can extend the equations to 27

hF
A[ϕn, ψn] + εn

∫
R3
ϕnψ

∗
n dx = 0 ∀ψn ∈ H1

A(R
3). (4.3) 28
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5. The Fock mean-field operator1

Herein we introduce the magnetic Fock operator and relate it to the minimizer for the relaxed Hartree–Fock2

problem.3

Proposition 5.1. Suppose Am ∈ L4
loc(R

3), m = 1, 2, 3, and divA ∈ L2
loc(R

3). Let4

K xc(x, y) =
τ(x, y)

|x − y|
5

be the integral kernel of the exchange operator K xc. Then the operator6

−1Aφ + Venφ + ρ ∗
1
|x |
φ − K xcφ (5.1)7

defined on D(R3) has a unique self-adjoint extension, denoted H F
A . The sesquilinear form associated with H F

A is8

hF
A[φ,ψ] =

∫
R3

∇Aφ(x)∇Aψ
∗(x)+ Ven(x)φ(x)ψ

∗(x)dx9

+

∫
R3

∫
R3

ρ(x)φ(y)ψ∗(y)

|x − y|
dxdy −

∫
R3

∫
R3
τ(x, y)

φ(y)ψ∗(x)

|x − y|
dydx (5.2)10

and the Lagrange multipliers (with changed sign) in (4.3) correspond to eigenvalues of the operator H F
A with11

associated eigenfunctions ϕn provided the latter are nonzero.12

Proof. Let us first prove that the operator in (5.1) is essentially self-adjoint and bounded from below on D(R3) and13

hence that there exists a unique self-adjoint extension, denote by H F
A . It is well-known that the magnetic Laplacian14

−1A is essentially self-adjoint on D(R3) provided Ak ∈ L4
loc(R

3) and divA ∈ L2
loc(R

2) holds [18]; in particular, the15

latter is ensured by Assumption 1.1(i) and Property A.1(i).16

By invoking (3.3), the Hardy inequality (3.4) and the diamagnetic inequality (2.2), it follows that the kernel K xc
17

belongs to L2(R6) and, consequently, the exchange operator is a (bounded and self-adjoint) Hilbert–Schmidt operator.18

We recall that V is infinitesimally −1-bounded by Kato’s theorem [15] and, due to [3, Theorem 2.4], Ven is thus19

infinitesimally −1A-bounded. Now ρ ∈ L1(R3) and the bound (2.5) implies that ρ ∈ L5/3(R3). From this it follows20

that ρ ∗
1
|x |

is a bounded function; in fact, it is continuous and tends to zero at infinity and, consequently, it belongs21

to the Kato class K3. An application of the Kato–Rellich theorem yields that −1A + Ven + ρ ∗
1
|x |

is an self-adjoint22

operator (and bounded from below) on D(R3).23

Now, consider the following quadratic form:24

q[φ] =

∫
R3

|∇Aφ(x)|
2
+ Ven(x)|φ(x)|

2dx +

∫
R3

∫
R3

ρ(x)|φ(y)|2

|x − y|
dxdy.25

We prove that this form is closed and semi-bounded from below on H1
A(R

3) and therefore, according to the first26

representation theorem [4, Theorem VI.2.4], there exists a self-adjoint and bounded from below operator Q such that27

q[φ,ψ] = 〈Qφ,ψ〉28

for φ ∈ D(Q) ⊂ H1
A(R

3) and ψ ∈ H1
A(R

3), where q[φ,ψ] is the sesquilinear form associated with q[φ], i.e.,29

q[φ,ψ] =

∫
R3

∇Aφ(x)∇Aψ
∗(x)+ Ven(x)φ(x)ψ

∗(x)dx +

∫
R3

∫
R3

ρ(x)φ(y)ψ∗(y)

|x − y|
dxdy.30

Invoking (3.5), in conjunction with ρ ∗
1
|x |

being continuous and bounded on R3, we infer that31

|q[φ]| ≤ ‖∇Aφ‖
2
L2 + c2‖φ‖L2‖∇Aφ‖L2 + c2‖φ‖

2
L2 ≤ c3‖φ‖

2
H1
A
,32

which proves that the form is bounded on H1
A(R

3). The form is closed if it is lower semi-continuous [33]. Since33

Ven, ρ ∗
1
|x |

∈ K3, the result follows from Lemma 3.3. Now, evidently,34

hF
A[φ,ψ] = q[φ,ψ] − 〈K xcφ,ψ〉35
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and H F
A will be the operator associated with this sesquilinear form. Using (4.3) we conclude from [4, Theorem VI.2.4] 1

that −εn corresponds to an eigenvalue of H F
A with ϕn as its eigenfunction provided ϕn 6= 0. 2

Next we describe the components of ϕ by means of “complementary” minimization problems. 3

Theorem 5.2. Suppose Am ∈ L4
loc(R

3), m = 1, 2, 3, and divA ∈ L2
loc(R

3). Let hF
A denote the sesquilinear form in 4

(5.2). Then the nth component of ϕ, i.e. ϕn , is a minimum to 5

inf
{
hF
A[φ, φ] : φ ∈ H1

A(R
3) ∧ ‖φ‖L2 ≤ 1 ∧

∫
R3
φφ∗

mdx = 0,∀m 6= n

}
. (5.3) 6

Moreover, the minimum is equal to −γnεn . 7

Proof. First note that 8

EMHF(φ1, . . . , φn−1, φ, φn+1, . . . , φN ) = EMHF(φ1, . . . , φn−1, 0, φn+1, . . . , φN )+ hF
A[φ, φ] + r[φ, φn], (5.4) 9

where 10

r[φ, φn] =

∫
R3

∫
R3
φ∗(x)φ(y)

1
|x − y|

φn(x)φ
∗
n (y) dxdy −

∫
R3

∫
R3

|φ(x)|2|φn(y)|2

|x − y|
dxdy. 11

It is clear that r[φn, φn] = 0. The Cauchy–Schwartz inequality implies that 12∣∣∣∣∫
R3

∫
R3
φ∗(x)φ(y)

1
|x − y|

φn(x)φ
∗
n (y)dxdy

∣∣∣∣ ≤

∫
R3

∫
R3

|φ(x)|2|φn(y)|2

|x − y|
dxdy 13

and we conclude that 14

r[φ, φn] ≤ 0. 15

We also note that according to (4.3) the minimum is −γnεn . 16

6. Lower spectral bound 17

Eventually we shall balance the electrostatic interaction. For this purpose we establish the following spectral result. 18

Lemma 6.1. Let Assumptions 1.1 and 1.2 hold, and let µ be any bounded nonnegative measure on R3 obeying 19

µ(R3) ≤ ϑ . Define the magnetic Schrödinger operator 20

Lµ = −1A + Ven + µ ∗
1
|x |
. 21

Then, for any j ≥ 1 and any 0 ≤ ϑ < Z, there exists ε j,ϑ > 0 such that 22

Coun(−ε j,ϑ ; Lµ) ≥ j. 23

Proof. Under Assumptions 1.1 and 1.2 the essential spectrum of the magnetic Laplacian −1A equals the semiaxis 24

[0,∞), as stated in Proposition A.2. Let lµ denote the quadratic form defined by 25∫
R3

|∇Aφ(x)|
2
+

(
Ven + µ ∗

1
|x |

)
|φ(x)|2dx . (6.1) 26

For any j ≥ 1 and any 0 ≤ ϑ ≤ Z we construct a j-dimensional subspace H j,ϑ in H1
A(R

3) such that 27

lµ[φ, φ] < −ε j,ϑ < 0 (6.2) 28

for all L2-normalized φ ∈ H j,ϑ . We pick any normalized function φ ∈ D(R3) and then we let 29

φλ := λ−3/2φ(·/λ), λ > 0. 30

Observe that 31

|∇Aφ|
2

= |∇φ|
2
− 2ImAφ · ∇φ∗

+ |Aφ|
2. 32
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Since A is homogeneous of degree −1, we thus find that1

lµ[φλ, φλ] =
1

λ2

∫
R3

|∇φ(x)|2dx −
1

λ2

∫
R3

2ImAφ · ∇φ∗
+ |Aφ|

2dx2

+
1
λ

∫
R3

Vλ(x)|φ(x)|
2dx +

1
λ

∫
R3

(
µλ ∗

1
|x |

)
|φ(x)|2dx, (6.3)3

where4

Vλ(x) := −

K∑
k=1

Zk

|x − Rk/λ|
, and µλ = λ3µ(λ·).5

By choosing φ as radially symmetric on R3, Newton’s Theorem for measures [21, Theorem 9.7] enables us to re-write6

the last term in (6.3):7 ∫
R3

(
µλ ∗

1
|x |

)
|φ(x)|2dx =

∫
R3

(
|φ(x)|2 ∗

1
|x |

)
dµλ8

=

∫
R3

∫
R3

|φ(x)|2

max(|x |, |y|)
dxdµλ ≤ µλ(R3)

∫
R3

|φ(x)|2

|x |
dx,9

where, obviously, µλ(R3) = µ(R3). We observe that, as λ → ∞,10 ∫
R3

Vλ(x)|φ(x)|
2dx −→ −Z

∫
R3

|φ(x)|2

|x |
dx < −µ(R3)

∫
R3

|φ(x)|2

|x |
dx .11

As a consequence, by selecting a j-dimensional subspace of normalized, radially symmetric functions in D(R3) and12

then dilate them as above, we can construct a subspace H j,ϑ of functions satisfying (6.2) provided λ is large enough.13

Then the assertion follows by an application of Glazman’s Lemma (see, e.g., [31]).14

For A ≡ 0 a similar result was established in [26].15

7. Completion of proof of Theorem 1.416

We are ready to complete the proof of Theorem 1.4:17

Proof (Proof of Theorem 1.4: Final Arguments). If the measure µ in Lemma 6.1 is chosen as ρdx with ρ being the18

density ρ(x) =
∑N

n=1 |ϕn(x)|2 (x ∈ R3), then the resulting Schrödinger operator Lρdx satisfies the operator inequality19

H F
A ≤ Lρdx , (7.1)20

where H F
A is the magnetic Fock mean-field operator introduced in Proposition 5.1.21

We first claim that all components of ϕ are nonzero. Suppose one of the orbitals vanishes, say ϕ1; i.e. ρ(x) =
∑N

n=222

|ϕn(x)|2. Then23

µ(R3) =

N∑
n=2

∫
R3

|ϕn(x)|
2dx ≤ N − 1.24

By hypothesis, N − 1 < Z so an application of Lemma 6.1, in conjunction with (7.1), informs us that H F
A has at least25

N negative eigenvalues. The eigenvalues of H F
A are related to the “complementary” minimization problems (5.3) in26

the following way. Let ΠN−1 be the subspace spanned by the N − 1 orbitals ϕ2, . . . , ϕN , and letMN−1 be any linear27

subspace of H1
A(R

3) of dimension at most N − 1. If the N th eigenvalue of H F
A is denoted by νN , then the min–max28

principle yields29

0 > νN (H
F
A) = sup

MN−1

inf
ψ∈D (H F

A)∩M
⊥

N−1,‖ψ‖=1
〈H F
Aψ,ψ〉30

= inf
ψ∈D (H F

A)∩Π⊥

N−1,‖ψ‖=1
〈H F
Aψ,ψ〉31

≥ −ε1γ1.32
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Since the infimum in (5.3) is negative, ϕ1 cannot vanish (if ϕ1 ≡ 0, then the infimum in (5.3) equals zero when ϕ1 is 1

inserted). Hence all orbitals ϕ1, . . . , ϕN are nonzero. In particular, we have thus shown that γ1, . . . , γN > 0. 2

Next we show that γ1 = γ2 = · · · = γN = 1. Generally, the infimum in (5.3) is nonpositive; this is easily shown by 3

a scaling argument. In particular, this implies that εn ≥ 0. To prove that εn > 0 for all n, we argue by contradiction. 4

Suppose ε1 vanishes. Then Theorem 5.2 implies that 5

〈H F
Aϕ1, ϕ1〉 = 0, ϕ1 6= 0. 6

In view of (5.4), we infer that 7

EMHF(ϕ1, . . . , ϕN ) = EMHF(0, ϕ2, . . . , ϕN ). 8

In other words, (0, ϕ2, . . . , ϕN ) is a minimizer in S≤

N and thus γ1 = 0 which contradicts γn for all n (shown above). 9

We conclude that ε1, . . . , εN > 0, i.e. H F
A has at least N negative eigenvalues, namely −ε1, . . . ,−εN . The latter 10

implies that γn = 1 for all n. 11

Uncited references 12

[32]. 13

Appendix. Essential spectrum of magnetic Laplacian 14

The following properties of the vector potential are straightforward to verify from (1.4) and Assumption 1.2

Q5

15

(cf. [2]). 16

Property A.1. Let Assumption 1.2 be satisfied. Then, for m = 1, 2, 3, 17

(i) 18

Am ∈ L4
loc(R

3). 19

(ii) 20∥∥∥Am(x)(−1+ i)−
1
2

∥∥∥
B(L2)

< ∞. 21

(iii) |Am(x)|2 and Am(x)∇ are −1-bounded with relative bound less than one. 22

(iv) Smallness at infinity: For ν ∈ (0, 1), 23∥∥∥Am(x)χ̃(|x | > R)(−1+ 1)−
1
2

∥∥∥
B(L2)

≤ c R−ν and 24∥∥∥|Am(x)|
2χ̃(|x | > R)(−1+ 1)−1

∥∥∥
B(L2)

≤ c R−2ν . 25

Let Assumptions 1.1 and 1.2 be satisfied. Then −1A = (i∇ − A(x))2 is a self-adjoint operator on L2(R3) with 26

domain D(−1A) = D(−1) = H2(R3). Moreover, −1A is essentially self-adjoint on C∞

0 (R
3). Indeed, in view of 27

Assumption 1.1(ii) and Property A.1(ii), the operators divA(x), A(x)∇, and |A(x)|2 are −1-bounded with bound 28

less than one, and thus the Kato–Rellich theorem asserts that −1A is a self-adjoint operator on L2(R3) with domain 29

D(−1A) = D(−1) = H2(R3). Assumption 1.1(i) and Property A.1(i) ensure that −1A is essentially self-adjoint 30

on C∞

0 (R
3) [18]. We proceed to determining the essential spectrum of −1A: 31

Proposition A.2. Let Assumptions 1.1 and 1.2 be satisfied. Then f (−1A)− f (−1) is compact for any f ∈ C∞(R); 32

the continuous functions vanishing at infinity. In particular, σess(−1A) = σess(−1) = [0,∞). 33

Proof. We make a few introductory observations. Now 34

χ̃(|x | ≤ R)(−1+ 1)−
1
2 (A.1) 35

is Hilbert–Schmidt and thus compact because the kernel of (A.1), namely 36

χR(x)(−1+ 1)−
1
2 (x, y) 37
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belongs to L2(R6). In view of Assumption 1.1(ii) and Property A.1(iii), the operator1

(−1+ 1)−1(−1A − ζ )−
1
22

is bounded and, consequently,3

χ̃(|x | ≤ R)(−1A − ζ )−
1
2 = χ̃(|x | ≤ R)(−1+ 1)−

1
2 (−1+ 1)

1
2 (−1A − ζ )−

1
24

is compact. It follows that5

χ̃(|x | ≤ R)χ̃(−1A ≤ E)6

is compact. Next we set VA := 2iA∇ + idivA+ |A|
2. To prove the first assertion, it suffices to prove that7

(−1A − ζ )−1
− (−1− ζ )−1

= (−1A − ζ )−1χ̃(|x | ≤ R)− (−1− ζ )−1χ̃(|x | ≤ R)8

+ (−1A − ζ )−1VA(−1− ζ )−1χ̃(|x | ≥ R). (A.2)9

The first two terms are compact for any (finite) R because, as we demonstrated above, χ̃(|x | ≤ R)χ̃(−1A ≤ E)10

is compact. According to Assumption 1.1(iii) and Property A.1(iv), the third term in (A.2) has arbitrary small norm11

provided R is large enough. Hence (−1A − ζ )−1
− (−1 − ζ )−1 is compact by the norm-closure of the compact12

operators. This proves the first assertion. The second follows directly from Weyl’s essential spectrum theorem.13
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