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Dielectric elastomers (DEs) are being exploited for biological applications such as artificial blood pumps, biomi-
metic grippers and biomimetic robots. Generally, polyacrylate and silicone rubber (SR) are themost widely used
materials for fabricating DEs in terms ofmixingwith other polymers or compounding themwith highly dielectric
particles. Furthermore, pre-stretch offers an effective approach to increasing actuated strain and dielectric
strength and eliminating ‘pull-in’ instability. In the work described here, a comparison in electromechanical
properties was made between SR/10% barium titanate (BaTiO3) and commercial VHB 4910. Trends in these
dielectric parameters are shown graphically for variation in pre-stretch ratio (λpre). It was found that permittivity
of SR/10% BaTiO3 was independent of frequency, whereas permittivity was frequency-independent due to the
polarization of polymer chains. The maximum deformation and the coupling efficiency for SR/10% BaTiO3

can be achieved at a pre-stretch ratio between 1.6 and 1.9. For VHB 4910, they can be obtained in the pre-
stretch ratio range from 2.6 to 3.0. A maximum energy density of 0.05 MJ/m3 was achieved by SR/10% BaTiO3

(λpre = 1.6) and VHB 4910 (λpre = 3.4). The findings provide an insight into critical pre-stretch ratios required
for a range of applications of DEs based on silicone and the commercially available polyacrylate VHB 4910.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Dielectric elastomers (DEs) are also termed dielectric electroactive
polymers which are a subset of electroactive polymers (EAPs). The
high dielectric properties of a DE can be used to induce a large actuated
strain by the application of an electric field. DEs were discovered by
Pelrine [1]. In his experiments, area strains of up to 30%, corresponding
to actuation pressures as high as 1.9 MPa and high specific energy
densities up to 0.1 J/g, were obtained. DEs have gained a deserved
reputation as “artificial muscles” [2–4] because they behave similarly
to biological muscles in terms of actuation pressure, energy conversion
efficiency and response speed to stimulus. Hence DEs are used for
intelligent applications such as tactile displays [5–7], bionic actuators
[8–12] and other applications [13–16].

The working principle of DEs is illustrated in Fig. 1. When a high
voltage is applied to the compliant electrodes which are coated onto
the surfaces of a DE, the DE can quickly change its shape and when
the electric stimulus is removed, the DE rapidly recovers its original
shape. The pressure produced by the electrostatic force induced by the
electric stimulus compresses the film and transfers electrical energy
into mechanical energy [17,18].

DEs can be considered as isochoric (volume retainingmaterials) [4].
When a high voltage is applied, the relation between the area strain sa
and the thickness strain sz (the compressive ratio in thickness), can be
easily obtained from Eq. (1).

1þ sað Þ 1−szð Þ ¼ 1 ð1Þ

The pressure, p which originates from the Maxwell stress, created
between the positive charges on the top surface of the DE and the
negative charges on the bottom surface of the DE, complies with
Eq. (2) [19]:

p ¼ ε0ε0
Φ
H

� �2
¼ ε0ε0φ

2 ð2Þ

where ε′ is the relative permittivity (dielectric constant) of the DE
material, ε0 is the permittivity of the free space (8.85 × 10−12 F/m), φ
is the electric field which equals the applied high voltage (Φ) divided
by the initial thickness of the DE (H).

However, for a dielectric elastomer, the voltage-actuated strain is
often limited by pull-in instability (electromechanical instability) [20]
and electrical breakdown. As the applied voltage is increased, the thick-
ness of the polymer decreases, so that this same applied voltage induces
an even higher electric field. In this case, the pull-in instability may
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cause the DE to reduce in thickness drastically and this can lead to elec-
trical breakdown. Zhao [21] determined conditions for pull-in instability
by analyzing voltage–stretch curves Φ(λ) deduced from stress–stretch
curves σ(λ) (Eq. (6)).

Φ ¼ Hλ−2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ λð Þ=ε

p
ð6Þ

where ε ≈ ε′ ε0 is the permittivity of elastomers.
Zhao assumed thematerial conformed to a neo-Hookeanmodel and

the application of the current induces a uniaxial compression kinemat-
ically equivalent to equi-biaxial stretching. As illustrated in Fig. 2, the
critical stretch ratio of 1.26 was obtained by maximizing the voltage,
which corresponds to a reduction in the thickness of 37%. Generally,
the electric field will become unstable when the stretch ratio is above
this value and pull-in instability may be induced.

The output properties of DE actuators can be improved by mechan-
ically inducing uniaxial or equi-biaxial pre-stretch which has a
significant effect on the material's performance, including improving
breakdown strength [22,23] and reducing the effective compressive
modulus which can enhance lateral actuation [14].

VHB 4910 is a polyacrylate, available as a commercial product from
the 3 M Company. A VHB 4910 sample can exhibit a large deformation
of about 100% [4] when a large voltage is applied. Kofod [23] proved
that dielectric strength and electrostatic force were greatly increased
by modelling cuboid DE actuators using VHB 4910 which has a relative
permittivity of about 4.7. It was also found that the pull-in instability,
which significantly affects the electrical performance of DEs, can be
eliminated by applying a pre-stretch [24–27]. An investigation of the
influence of pre-stretch on the electromechanical properties of DEs by

using VHB 4910 and DEs based on silicone rubber containing BaTiO3 is
presented here.

2. Materials

Two kinds of hyperelastic DE base materials were chosen for this
research. A commercial silicone polymer, dimethylsiloxane (LSR 4305
DEV, Bluestar Ltd., U.S.A.), consisting of two parts (part A and part
B) was used to fabricate DE samples and a commercial DE, VHB 4910,
a polyacrylate from the UK 3 M company, having a thickness of 1 mm,
was also employed. NYOGEL 756G (Nye Lubricants, Inc., USA) was
chosen as the conductive carbon grease to be used as the compliant
electrode for the DEs. BaTiO3 was chosen as the filler material and
added to the silicone to improve its permittivity. The particle size of
the filler was below 3 μm and the density was 6.08 g/ml at 25 °C associ-
ated with a relative permittivity of 1200 at 1 kHz.

3. Experimental

3.1. Sample preparation

The silicone rubber used as theDEmatrix contained two partswhich
weremixed at a ratio of 1:1. Barium titanate (BaTiO3)was subsequently
added to the silicone composite at a volume fraction of 10%. Themixture
was stirred manually for 10 minutes and then poured into two moulds
formaking samples about 0.3mm in thickness for different uses: one for
mechanical tests and one for dielectric and electromechanical tests.
After degassing for 1.5 hours, the samples were solidified in a heating
room at a temperature of 60 °C for 12 hours.

3.2. Dielectric tests

Wideband dielectric spectroscopy was carried out on samples at
20 °C in the frequency range from 0.1 Hz to 10 MHz using a Turnkey
broadband dielectric spectrometer. The cell used was a disposable
gold-plated flat electrode with a diameter of 20 mm and thickness of
2 mm. Samples were placed in the gap between the electrode and the
sample holder.

3.3. Electromechanical tests

The electromechanical test system consisted of a camera, a biaxial
clamp for pre-stretching and a high voltage power supply ranging
from 0 to 10 kV. Samples of 0.3 mm thickness were coated on both
faces with the compliant electrode. The samples were clamped at the
edges to give various pre-stretch ratios. A camera recorded changes in
the area of the compliant electrode when an electric field was
incrementally applied in voltage steps of 0.5 kV. Triplicate samples
were tested.

4. Results and discussion

4.1. Dielectric tests

Generally, dielectric constant increases with the enhancement of
polarizability of molecules in materials. Polar groups are reoriented
under the electric field to promote the elongation of molecular
chains. Therefore, the voltage-induced deformation resulted from not
only the external Maxwell stress but also the internal polarization of
DEs.

Fig. 3 shows the plot of dielectric constant relatedwith frequency for
SR, SR with 10% BaTiO3 and VHB 4910. The dielectric constant of VHB
4910 fell dramatically from approximately 4.9 to 3.5 at a frequency of
1MHz indicating that the polarization group had an obviously hysteretic
response to the applied electric field. The dielectric constant of the
silicone composite was measured at around 5 and changed only slightly

Fig. 1. Schematic representation of a DE's working principle.

Fig. 2. A membrane of a dielectric elastomer subjected to a voltage reduces in thickness
and expands in surface area. The voltage–stretch curve is typically not monotonic.
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over the range of test frequencies. When compared, the permittivity of
silicone rubber LSR 4305 (ε′ ≈ 2.9) was lower than that of VHB 4910.
This was probably due to the larger polarity of the ester group in VHB
4910 by contrast with that of the non-polar structure of the molecule
of silicone rubber. When the high dielectric particles BaTiO3 of 10 vol %
were added in the silicone matrix, ε′ increased to 5 and maintained
this value in the wide frequency range from 100 Hz to 10 MHz. The
appearance of dielectric enhancement is related to the Maxwell Wagner
effect in the thin DE film [28]. This indicated that SR based DEs were
more stable than VHB 4910 in respect of dielectric properties when
subject to changes in frequency.

4.2. Electromechanical tests

The 3 cm square samples of silicone rubberwith 10% barium titanate
were stretched from their initial size in steps of 1 cmand to afinal size of
6.5 cm square which was achieved just prior to tearing. The 2.5 cm
square VHB 4910 samples were stretched, also in steps of 1 cm, from
their original size to a final size of 9.5 cm × 9.5 cm before experiencing
tear.

4.2.1. The behaviour of fabricated silicone rubber DEs with added BaTiO3

particles
Fig. 4 shows samples of fabricated DEs with increased deformations

depending not only on the applied electric field but also on the pre-
stretch ratio (λpre). In the absence of a mechanical pre-stretch, small
strains of no more than 0.3% were obtained; while pre-stretching the
samples to a ratio of 1.6 achieved an increase in area of approximately
32%. As can be observed from the plots, the voltage-induced area strain
for each samples used in the experiment increased with the increase in
electric field. However, the electric stimulus was negligible, below 10 V/
μm and this was possibly because the input electrical energy was not
enough to drive the molecular chains.

Fig. 5 shows changes in the area strain achieved by varying the pre-
stretch ratio. For the fabricated DEs, the actuated area strain increased
steadily for pre-stretch ratios up to λpre = 1.6. After this threshold
value, the area strain went down to 10% at a pre-stretch ratio of 2.2.
Thereafter, the samples fractured at higher pre-stretch ratios.
Pre-stretching can induce the molecular chains to rearrange to have
approximate linearity and thus promote larger strains, but there is a
material dependent limit on the pre-stretch that induces maximum
strain.

Pre-stretch has a beneficial effect on the enhancement of Dielectric
strength [29,30]. Dielectric strength increased with increasing pre-
stretch ratio, mainly due to a decrease in thickness. As can be seen
from Fig. 6, dielectric strength changed little under an equi-biaxial
pre-stretch ratio of 1.4, whereas the dielectric strength increased linear-
ly up to 90V/μmbeyond this ratio. As iswell-known, polymermolecular
chains are rearranged by the application ofmechanical stress.Moreover,
the mechanical stretch can generate free volume by driving the seg-
mental motions of chains, which is propitious to increase the dielectric
strength [31]. Furthermore, as a result of the thickness of the material
being reduced when strained, the heat in DEs produced by the applied
electric field can readily dissipate, which can also enhance dielectric
strength [32].

The maximum pressure caused by the electrostatic force was calcu-
lated according to the dielectric strength and the relative permittivity of
the composites. The maximum pressure increased to nearly 0.4 MPa
which was 10 times larger than the pressure produced without
pre-stretch (refer to Fig. 7). Notably, pre-stretch can greatly influence
the pressure produced in DE materials.

The elastic energy density (ee) is the amount of work generated in
one actuation cycle per unit volume of the actuator. It is minimally af-
fected by the compliant electrodes, power supplies, counter electrodes

Fig. 3.Dielectric constant of silicone rubber, SR with 10% BaTiO3 and VHB 4910 dependent
on frequency.

Fig. 4. Strain in area versus electric field applied to SR containing 10% BaTiO3.
Fig. 5. Actuated area strain of SR with 10% BaTiO3 at break related to equi-biaxial pre-
stretch ratio.
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and packaging and can be calculated directly from experimentally
measured quantities including the electrostatic stress and thick-
ness strain. The equations representing these relations are as
follows [33]:

If szb10%; ee ¼ Ysz
2
=2 ð3Þ

where Y is the modulus of elasticity for the DE material,

If sz≥10%; ee ¼ −p ln 1−szð Þ : ð4Þ

The elastic energy density increased with increasing pre-stretch
ratio. The maximum energy density achieved was 0.05 MJ/m3 (Fig. 8).
However, the energy density appeared to decline for pre-stretching
beyond ratios of about 2.

As well as the elastic energy density, another important parameter
for characterizing a DE's performance is the efficiency (K2), which is
the electrical energy, converted into mechanical work per cycle relative
to the electrical energy applied per cycle. This can alternatively be
thought of as the ratio of stored mechanical energy to input electrical
energy. Presuming that the elastomers are virtually isochoric materials,

the change in electrical energy upon actuation is approximately equal to
the work output; in which case K2 can be calculated using Eq. (5) [33]:

K2 ¼ 2sz−sz
2
: ð5Þ

The electromechanical coupling efficiency exhibited a parabolic
distribution for pre-stretched samples. As can be observed in Fig. 9,
the peak of the curve (0.42) corresponded to a ratio somewhere
between1.6 and1.9. The efficiencywas directly dependent on the thick-
ness strain induced by the electric field. K2 increased monotonically up
to about 0.42 which corresponded to a deformation of 32% as can be
seen from Fig. 5. It can be assumed that the maximum strain would be
experienced at a ratio between 1.6 and 1.9.

4.2.2. The influence of pre-stretch on electromechanical properties of VHB
4910

Fig. 10 shows that VHB 4910 samples obtained amaximum actuated
strain at breakdown of approximately 75% for an equi-biaxial pre-
stretch ratio between λpre = 2.6 and λpre = 3.0. However, the change
in shape of the samples was minimal in the absence of pre-stretch. At
other values for pre-stretched samples, slight changes occurred when

Fig. 6. Dielectric strength of SR with 10% BaTiO3 at break, related to equi-biaxial pre-
stretch ratio.

Fig. 7.Maximum pressure of SR with 10% BaTiO3 related to equi-biaxial pre-stretch ratio.

Fig. 8. Energy density of SR with 10% BaTiO3 related to equi-biaxial pre-stretch ratio.

Fig. 9. Electromechanical coupling efficiency of SRwith 10% BaTiO3 related to equi-biaxial
pre-stretch ratio.

757L. Jiang et al. / Materials Science and Engineering C 49 (2015) 754–760

 
 

 



applying electric fields under approximately 8 V/μm, while a steep in-
crease occurred when the electric field was raised above this threshold
value. However, as the transverse strain reached 37%, corresponding to
an area strain of 59%, the films becamewrinkled, indicating the onset of
the pull-in effect in samples. As can be seen from Fig. 10, for the samples
with pre-stretch ratios of 2.2, 2.8, 3.0 and 3.4, a plateau caused by the
pull-in effect was reached before the samples punctured, while below
the threshold, wrinkles were not found. The pull-in instability could
be eliminated under these pre-stretch ratios for DEs if it was not essen-
tial to constrain DE test samples at their perimeters [24,34]. However, it
should be considered that the maximum deformation of the samples
was constrained by the frame employed in the test and this contributed
to the pull-in instability in these experiments.

Pre-stretch plays an important part in electro-active deformation
when applying high electric fields to DEs. Using this mechanical
approach, the maximum actuated area strains at break were monoton-
ically increased from almost zero without pre-stretch to 75% at stretch
ratios of about 3. The area strain diminished to 34% at a pre-stretch
ratio of 3.8 (Fig. 11). Considering that the molecular chains were
completely extended when the DE samples were stretched nearly to
tear, there was virtually no additional elongation stimulated by the
application of an electric field.

Fig. 12 shows that dielectric strength can be enhanced by the
equi-biaxial stretching of DE samples. The dielectric strength was

above 70 V/μm for VHB 4910 at the largest pre-stretch ratio of 3.8.
This was because, firstly the pre-stretch reduced the thickness of the
DE samples and secondly, pre-stretch promoted molecular alignment.
However, the stretched samples suffered from relaxation in the elasto-
mer and mechanical failure during the test process. This resulted in
slight variations in electromechanical properties for all samples at
different constant pre-stretch ratios.

An electrostatic pressure is created from the high electric field that is
generated between the top and bottom surfaces of a DEmaterial. Fig. 13
shows the relation between the electrostatic pressure and the equi-
biaxial pre-stretch ratio. Stress increased with increasing pre-stretch
ratio and reached a maximum value above 0.16 at a pre-stretch ratio
of 3.8. However, stress increased only slightly, by approximately
0.02 MPa, up to a ratio of 2.2, before increasing markedly to a peak
after this value.

The energy density ee increased dramatically from 0 to a maximum
value of above 0.05 MJ/m3 (Fig. 14). ee mainly depends on the electro-
static force and the strain in the thickness direction. Below a stretch
ratio of around 3.4, the electrostatic force contributed more to the
energy density output than to the change in strain. Thereafter, the strain
decreased as a result of the energy density reducing.

The relation between electromechanical coupling efficiency and
equi-biaxial pre-stretch ratio was observed to be in the form of a para-
bolic curve (Fig. 15). As can be seen from the figure, a maximum value

Fig. 10. Area strain versus electric field strength for VHB 4910.

Fig. 11. The actuated area strain of VHB 4910 at break related to pre-stretch ratio.

Fig. 12. Dielectric strength of VHB 4910 versus pre-stretch ratio.

Fig. 13. Maximum pressure of VHB 4910 versus pre-stretch ratio.
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of about 70%was achieved at a peakpre-stretch ratio between2.6 and 3.
Also, K2 increased with increased actuated area strain at fracture in the
range of 0 to 75%. Hence, the form of the trend-line for K2 related to λpre

is similar to that for sz related to λpre.

5. Conclusions

Pre-stretch greatly influences the electromechanical properties of
DEs including those for DEs based on silicone and polyacrylate.

For silicone rubber basedDEswith the inclusionof BaTiO3 particles, a
maximumactuated area strain of 32% andmaximumcoupling efficiency
of 42% were obtained for an equi-biaxial pre-stretch ratio of 1.6. The
highest dielectric strength of 90 V/μm and maximum pressure of
about 0.4 MPa were each achieved for a DE with an equi-biaxial
pre-stretch ratio of 2.2. The DE with an equi-biaxial pre-stretch ratio
of 1.9 exhibited a maximum energy density of 0.05 MJ/m3.

For VHB 4910 samples, both the maximum strain in area of 75% and
the maximum electromechanical coupling efficiency of 70% occurred at
an equi-biaxial pre-stretch ratio of 3.0. The highest dielectric strength of
70 V/μm and the maximum pressure of 0.16 MPa were obtained by ap-
plying a driving voltage to the VHB 4910 at an equi-biaxial pre-stretch
ratio of 3.8. A maximum energy density of 0.05 MJ/m3 was achieved
for VHB 4910 at an equi-biaxial pre-stretch ratio of 3.4.

Comparing the fabricated silicone DE with VHB 4910 showed that,
though the maximum strain achieved for the silicone was slightly
smaller, the maximum energy density output of each was roughly
equal. Also, the maximum pressure and the maximum dielectric
strength were much higher for the fabricated silicone DE samples con-
taining BaTiO3 particles than for the commercially available VHB 4910
samples and importantly they did not exhibit a pronounced pull-in
effect. However, both silicone and polyacrylate are considered promising
materials for DE applications.
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