
Technological University Dublin Technological University Dublin 

ARROW@TU Dublin ARROW@TU Dublin 

Articles School of Mathematics 

2011-01-01 

On Adjoint Entropy of Abelian Groups On Adjoint Entropy of Abelian Groups 

Brendan Goldsmith 
Technological University Dublin, brendan.goldsmith@tudublin.ie 

Ketao Gong 
Dublin Institute of Technology, ketao.gong@student.dit.ie 

Follow this and additional works at: https://arrow.tudublin.ie/scschmatart 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Goldsmith, B., Gong, K.:On Adjoint Entropy of Abelian Groups. Communications in Algebra, 2011. doi: 
10.21427/rr3e-yg14 

This Article is brought to you for free and open access by 
the School of Mathematics at ARROW@TU Dublin. It has 
been accepted for inclusion in Articles by an authorized 
administrator of ARROW@TU Dublin. For more 
information, please contact arrow.admin@tudublin.ie, 
aisling.coyne@tudublin.ie. 

This work is licensed under a Creative Commons 
Attribution-Noncommercial-Share Alike 4.0 License 

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschmatart
https://arrow.tudublin.ie/scschmat
https://arrow.tudublin.ie/scschmatart?utm_source=arrow.tudublin.ie%2Fscschmatart%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=arrow.tudublin.ie%2Fscschmatart%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/


On Adjoint Entropy of Abelian Groups∗

B. Goldsmith

School of Mathematical Sciences

Dublin Institute of Technology

Aungier Street, Dublin 2, Ireland

email: brendan.goldsmith@dit.ie

and

K. Gong

School of Mathematical Sciences

Dublin Institute of Technology

Kevin Street, Dublin 8, Ireland

email: ketao.gong@student.dit.ie

June 24, 2010

∗2000 Mathematics Subject Classification. Primary: 20K30. Secondary: 20K10, 37A35. Key words and phrases:

algebraic entropy, adjoint entropy, endomorphism rings, Abelian groups, Hopfian groups.



Abstract

The theory of endomorphism rings of algebraic structures allows, in a natural way, a

systematic approach based on the notion of entropy borrowed from dynamical systems. In

the present work we introduce a ‘dual’ notion based upon the replacement of the finite groups

used in the definition of algebraic entropy, by subgroups of finite index. The basic properties

of this new entropy are established and a connection to Hopfian groups is investigated.

1 Introduction

The notion of, but not the name, algebraic entropy for an endomorphism of an Abelian group, first

appeared in a brief sketch at the end of a paper by Adler, Konheim and McAndrew [1] on entropy

of continuous self-maps of compact topological spaces. In a follow-up paper in 1975, Michael Weiss,

[19], elaborated on the ideas in [1] and formally introduced the name algebraic entropy. His work

laid down the basic properties of this entropy and revealed the fundamental connection between the

algebraic entropy of an endomorphism and the topological entropy of its adjoint under Pontryagin

duality. In recent times these concepts have been re-examined and developed significantly – see

for example, [7], [16] and [17]. The fundamental concept in algebraic entropy is the notion of

the trajectory of a finite subgroup of a group G under an endomorphism φ of G; this essentially

restricts the notion to torsion groups. However, Peter Vámos has pointed out the possibility of

an analogy between algebraic entropy and multiplicity in the sense used in [18] and has suggested

that a ‘dual’ concept of entropy may be of interest. This paper is focused on developing the basic

properties of this notion and determining some elementary but fundamental results. The dualizing

principle is to replace ‘finite subgroups’ by ‘subgroups of finite index’. One immediate consequence

is that the new notion is then not restricted to torsion groups. It is an easy exercise to show that

a non-divisible Abelian group G always has subgroups of finite index; indeed in ‘most situations’

the number of such subgroups is large, being equal to 2|G|. It is also worth remarking that one can

approach this dual entropy by working with the algebraic entropy of the adjoint mapping arising

from the theory of Pontryagin duality – such an approach has been exploited in [6] and there is,

of course, some overlap between the present work and that paper; although one can often work

directly with subgroups of finite index, we have found it convenient, particularly in the early part

of Section 2, to quote without proof, results from that work.

The choice of name for this new concept is not without possible contention. As was pointed out

in [6], the new notion does not behave as a perfect duality. Given the connections that we shall

establish here with Hopfian groups and those known to exist between algebraic entropy and co-

Hopfian groups, there is some argument in favour of calling the new entropy “algebraic co-entropy”

or “co-algebraic entropy”. However for this to be perfectly logical, one would need to interchange
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the well-established terminologies for Hopfian and co-Hopfian groups. Consequently we feel it

better to use the terminology “adjoint entropy” introduced in [6], even though we do not need to

explicitly use the connection to Pontryagin duality in this work.

In the first section of this work we provide the basic definition of this adjoint entropy, establish

its existence and derive some elementary properties of it. A point of particular interest is the

connection between groups of zero adjoint entropy and Hopfian groups. (Recall that a group, not

necessarily Abelian, is said to be Hopfian if each epimorphism is an automorphism.) We also show

that the adjoint entropy of an Abelian p-group is zero if, and only if, the group is the direct sum

of a divisible group and a finite group; if the reduced part of an Abelian p-group is infinite, then

the adjoint entropy is also infinite. This is in strong contrast to the situation for algebraic entropy

where groups of power the continuum exist having zero algebraic entropy. In the second section we

examine the situation for torsion-free groups showing, inter alia, that the classification of torsion-

free Abelian groups with zero adjoint entropy is essentially impossible. In the final section we

deal with mixed groups and exploit an idea in an unpublished result of the late A.L.S. Corner to

establish that in the local situation, a mixed Abelian group G with countable torsion-free quotient,

having zero adjoint entropy, necessarily splits.

Finally we remark that in the sequel all groups are additively written Abelian; the fundamental

notions for such groups, which we use without comment, may be found in the standard texts [9, 10]

and [15].

2 Basic Definitions and Elementary Properties

In this section we introduce the basic notions and derive important, but elementary, consequences.

There is considerable overlap with the paper [6] and we shall refer freely to that work for proofs of

many of the results in this section. Suppose that f is an endomorphism of G and N is a subgroup

of finite index in G, then if f−1(N) denotes the pre-image of N under f and f−k(N) means the

kth pre-image of N , so that f−k(N) = f−1(f−1 · · · (f−1

︸ ︷︷ ︸
n

(N))), then f−k(N) is again of finite index

in G.

Definition 2.1 If N is a finite index subgroup of G and f ∈ End(G), then we define the nth-

cotrajectory of f with respect to N , by

Cn(f, N) = N ∩ f−1(N) ∩ · · · ∩ f−(n−1)(N).

If there is no danger of confusion, we simply write Cn in place of Cn(f,N).

Since G/Cn(f, N) can be embedded into
n−1∏
i=0

G/f−i(N) where f0(N) = N , it follows that G/Cn(f, N)

is finite. Set cn(f, N) = |G/Cn(f, N)|, then cn(f, N) is a natural number, which we shall frequently
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abbreviate to cn. In the following we always assume that N is a finite index subgroup of G. It is

easy to see that

C1(f, N) ≥ C2(f,N) ≥ · · ·Cn(f, N) ≥ · · ·

By the usual isomorphism theorem, we have

G/Cn+1

Cn/Cn+1

∼= G

Cn
.

Since G/Cn+1(f, N) is finite, then so is Cn(f, N)/Cn+1(f,N). Thus we may write cn+1 = cnδn

where δn = |Cn(f, N)/Cn+1(f,N)|.
We have the following relationships; for a proof see Lemma 2.2 in [6].

Proposition 2.2 (i) For each natural number n, δn+1 divides δn;

(ii) the sequence {cn} is either stationary or cn+1 = cnδ for some integer δ > 1, for all n large

enough. In particular, |G/Cn(f,N)| = b0δ
n−k for sufficiently large n, where b0 and k depend only

on the finite index subgroup N.

For a fixed finite index subgroup N of G, and an endomorphism f we define the real number

In(f, N) = log |G/Cn(f, N)|.

Clearly we have

0 ≤ I1(f, N) ≤ I2(f, N) ≤ I3(f,N) ≤ · · ·

Hence, we may formally define the cotrajectory of f with respect to N

I(f, N) = lim
n→∞

In(f,N)
n

.

The next result shows that the definition of a cotrajectory makes sense; for a proof see Proposition

2.3 in [6].

Proposition 2.3 Given an endomorphism f of G, and a finite index subgroup N of G, then either

(1) I(f, N) = 0, which happens exactly if the f−cotrajectory of N is stationary; or

(2) I(f, N) = log(δ), where δ = |Cn(f, N)/Ck+1(f, N)| for all large enough k, which happens

exactly if the sequence of f−cotrajectories of N is strictly decreasing.

It is easy to show that I(f, N) is actually equal to inf(In(f, N)/n); either observe that the sequence

In(f, N)is sub-additive and apply the well-known Fekete Lemma or check directly that the sequence

In(f, N)/n is eventually monotonic decreasing.
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Definition 2.4 We define the adjoint entropy, ent∗, of an endomorphism f of a group G as

ent∗(f) = sup
N∈N

I(f, N),

where N is the set of all subgroups of finite index in G. The adjoint entropy of the group G is

defined as

ent∗(G) = sup
f∈End(G)

ent∗(f).

It follows immediately from the definition that every endomorphism of a group G has zero adjoint

entropy if G is either finite or divisible; the latter following from the fact that the only finite index

subgroup of a group G is the whole group G itself.

Our next proposition is intended to give an overview of the basic properties of this new adjoint

entropy. For proofs of the various parts we shall again refer to the appropriate sections of [6];

variants of some of these will appear in the forthcoming thesis of Gong [13].

Proposition 2.5 (i) For any group G, if H is an f−invariant subgroup of G, then ent∗(f) ≥
ent∗(f), where f : G/H −→ G/H is the induced endomorphism;

(ii) if H is an f−invariant finite index subgroup of G, then ent∗(f) ≥ ent∗(f|H);

(iii) for every nonnegative integer t, ent∗(ft) = t · ent∗(f). If f is an automorphism, ent∗(ft) =

|t| · ent∗(f) for every integer t. As a result, either ent∗(G) = 0 or ent∗(G) = ∞;

(iv) for an arbitrary group G and an endomorphism φ, either ent∗(φ) = 0 or ent∗(φ) = ∞;

(v) if V is a vector space over the field of p elements, then an endomorphism φ has zero adjoint

entropy if, and only if, φ is algebraic.

Proof For parts (i) and (ii) see Lemmas 4.7 and 4.9 in [6]; a proof of the first statement of (iii) is

given in [6, Lemma 4.4], while the second statement is an immediate corollary. Parts (iv) and (v)

are much deeper results and may be found in Theorems 7.5 and 7.6 of [6].

At this stage it seems appropriate to include some explicit examples.

Example 2.6 (i) Let B be the standard basic group, B =
⊕∞

i=1 〈ei〉, where the order of ei is

o(ei) = pi. If σ, τ are the endomorphisms defined by σ(ei) = pei+1; τ(ei+1) = ei for i ≥ 1 and

τ(e1) = 0 (i.e. σ, τ are the forward and backward Bernoulli shifts respectively), then ent∗(σ) = 0,

while ent∗(τ) = ∞;

(ii) if V is a countable dimensional vector space over the field of p elements and φ is the forward

Bernoulli shift on V , then ent∗(φ) = ∞.

Proof Both results may be obtained by straightforward, if somewhat tedious, direct calculation.

We prefer to base our proofs on [6]. From Proposition 2.5 (i) we have that ent∗(τ) ≥ ent∗(τ̄) and it
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follows from [6, Proposition 6.2] that the latter term is ∞. Note that the induced map σ̄ induced

on B/pB by σ is the zero map and the result follows from Corollary 7.7 in [6].

Part (ii) follows immediately from Proposition 2.5 (iv) and (v) since φ is not algebraic.

Our first observation is a simple characterization of when an endomorphism has zero adjoint

entropy.

Lemma 2.7 Let f be an endomorphism of G. Then f has zero adjoint entropy if, and only if,

for any finite index subgroup N of G, there is a positive integer K, depending on N , such that

Cn(f, N) ≤ f−n(N) for all n ≥ K.

Proof If ent∗(f) = 0, then for any given finite index subgroup N , there is some natural number K

such that for all n ≥ K, we have δn = |Cn(f,N)/Cn+1(f, N)| = 1. This implies that Cn(f, N) =

Cn+1(f, N) and so Cn(f,N) ⊂ f−n(N). The converse is clear.

The result above may be reformulated in a way which makes it more convenient for some applica-

tions, as follows:

Corollary 2.8 The adjoint entropy of an endomorphism φ is zero if, and only if, for any finite

index subgroup N of G, there exists a finite index subgroup N1 of G with N1 ≤ N such that

φ(N1) ≤ N1.

Proof For the necessity it suffices to take N1 = CK(f,N), where the integer K is chosen as in

Proposition 2.7 above. For the sufficiency, note that if N1 ≤ N2, then I(φ, N1) ≥ I(φ, N2). So it

suffices to show that φ(N1) ≤ N1 implies I(φ,N1) = 0. But this is obvious, since N1 ≤ φ−1(N1).

Our next result is a weak form of the so-called Addition Theorem – see [7], Section 3.

Proposition 2.9 Let f be an endomorphism of G, H an f−invariant subgroup of G, and f :

G/H → G/H the induced endomorphism. If ent∗(f|H) = 0, then ent∗(f) = ent∗(f).

Proof For any finite index subgroup N/H of G/H, N is also a finite index subgroup of G, so we

have

In(f, N/H) =
1
n

log | G/H

Cn(f, N/H)
| = 1

n
log | G/H

(Cn(f, N)/H
| = In(f, N).

Hence, by definition, ent∗(f) ≥ ent∗(f).

Our next step is to prove the reverse inequality, ent∗(f) ≤ ent∗(f). For any finite index subgroup

N of G, the intersection N ∩H is of finite index in H. Since ent∗(f|H) = 0, by Lemma 2.7 we have

some fixed natural number m such that (N ∩H)∩ (f |H)−1(N ∩H)∩ · · · ∩ (f |H)−(m−1)(N ∩H) ≤
(f |H)−m(N ∩ H). This is equivalent to H ∩ Cm(f, N) ≤ H ∩ f−m(N), since H is f−invariant
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in G. As N is of finite index in G, there exists a finite index subgroup M of G/H such that

f−m(N) ≥ Cm(f,N) ∩M , e.g. let M = H + Cm+1(f,N). This gives

f−1(Cm(f,N)) ≥ Cm(f, N) ∩M

and by induction on k > 0, we get

f−k(Cm(f, N)) ≥ Cm(f, N) ∩ Ck(f, M).

Now let n > m say, n = m+k for some k > 0. Then Cn(f, N) ≥ Cm(f, N)∩Ck(f,M), whence we

have In(f, N) ≤ Im(f,N) + Ik(f, M). But m is fixed, so, by letting n → ∞, (1/n)Im(f,N) = 0.

We thus can deduce that I(f, N) ≤ I(f, M) = I(f, M/H) ≤ ent∗(f) as required.

There is, however, no possibility of the Addition Theorem holding in general for adjoint entropy:

as we noted above, the adjoint entropy of a divisible group is necessarily 0. As observed in [6], if

B is a standard basic p-group and D is its divisible hull, then any endomorphism φ of B extends

to an endomorphism of D; in particular the left shift on B extends to a mapping ψ say, on D and

ent∗(ψ) = 0 while ent∗(ψ|B) = ent∗(φ) = ∞. This same example also shows that even the weak

version of Addition Theorem stating that ent∗(ψ) ≥ ent∗(ψ|B), fails. However in the special case

of pure subgroups, we do in fact have such a result. We need some preliminary lemmas before

embarking on this proof.

Lemma 2.10 Let B be a pure subgroup of G, then for any positive integer n, B/nB is a direct

summand of G/nB

Proof First we show that B/nB is pure in G/nB. Suppose that b + nB = k(g + nB) = kg + nB,

then b = kg + nb1 for some b1 ∈ B. Thus, b− nb1 = kg = kb2 for some b2 ∈ B by the purity of B

in G. So b + nB = kb2 + nB and B/nB is pure in G/nB as claimed. On the other hand, B/nB is

bounded by n, so B/nB is a direct summand of G/nB.

We now fix some notation for the remainder of this discussion: let B be a pure subgroup of G, M

a finite index subgroup of B and n a natural number such that nB ≤ M . Let X be a fixed but

arbitrary subgroup of G such that G
nB = B

nB ⊕ X
nB .

Lemma 2.11 There is an injection from the set of all finite index subgroups of B into the set of

all finite index subgroups of G, given by M 7→ M + X.

Proof Firstly, we show that M + X is of finite index in G. We claim that for any g + (M + X),

g ∈ G, there is a b ∈ B such that g + (M + X) = b + (M + B): since G
nB = B

nB ⊕ X
nB , then

g + nB = b + nB + x + nB. In particular, g = b + x + nb1 for some b1 ∈ B. Thus, g + (M + X) =
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b + x + nb1 + (M + X) = b + (M + X) since nb1 ∈ nB ≤ M . Now consider a mapping f from B

to G
M+X by f(b) = b + (M + X). Clearly it is a homomorphism and as we have just shown, f is

surjective; the kernel of f is easily seen to be {b ∈ B|b+(M +X) = 0}. Thus, kerf = (M +X)∩B.

Assuming that we have established that (M + X) ∩B = M , we have the isomorphism

B

M
∼= G

M + X
.

Hence M + X is finite index in G. Furthermore, the mapping M 7→ M + X is then an injection,

since the composite M 7→ M + X 7→ (M + X) ∩B is the identity.

Thus it remains to show that (M+X)∩B = M . By the modular law, (M+X)∩B = M+(X∩B), so

it suffices to prove that X∩B ≤ M . To see this, pick any element b ∈ X∩B, then b+nB ∈ B/nB.

In the same way, b + nB ∈ X/nB for b ∈ X. Thus, b + nB ∈ B
nB ∩ X

nB = 0. Hence b ∈ nB ≤ M .

Thus, (M + X) ∩B = M .

Hence, we have the following for pure φ−invariant subgroups of a group.

Proposition 2.12 If B is a pure φ−invariant subgroup of G , then ent∗(φ) ≥ ent∗(φ|B).

Proof Let M be an arbitrary finite index subgroup of B. Then it follows from Lemma 2.11 that

there is a finite index subgroup N of G such that N ∩ B = M . Assume for the moment that we

have shown that B ∩Ck(φ,N) = Ck(θ, M), where we have written θ for the restriction φ|B . Since

I(θ,M) = inf(In(θ, M)/n), I(θ, M) ≤ In(φ, N)/n for all n. Thus I(θ,M) ≤ inf In(φ, N)/n =

I(φ,N). Hence

ent∗(θ) = sup
M

I(θ, M) ≤ sup
N

I(φ, N) ≤ sup
N∗

I(φ, N∗) = ent∗(φ),

where the first supremum ranges over all finite index subgroups M of B, the second ranges over the

corresponding finite index subgroups N which have the form N = M +X as given by Lemma 2.11

and the third supremum ranges over all finite index subgroups N∗ of G. The proof is completed

by the following lemma.

Lemma 2.13 Let N be a finite index subgroup of G, B a φ-invariant subgroup of G and set

M = N ∩B. Then if θ = φ|B, we have Ck(θ, M) = B ∩ Ck(φ,N).

Proof The proof is based on a straightforward computation of the cotrajectories. First we note

that φ−i(N)∩B = θ−i(N ∩B): if x ∈ φ−i(N)∩B, then φi(x) ∈ N,x ∈ B, thus, φi(x) = θi(x) ∈ B

as θB ≤ B, hence θi(x) ∈ N ∩ B. On the other hand, if x ∈ θ−i(N ∩ B), then θi(x) ∈ N ∩ B.
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Thus, x ∈ B and φi(x) = θi(x) ∈ N . This implies x ∈ φ−i(N) ∩B as claimed. Hence we have

B ∩ Ck(φ,N) = (N ∩ φ−1(N) ∩ · · · ∩ φ−(k−1)(N)) ∩B

= (N ∩B) ∩ (φ−1(N) ∩B) ∩ · · · ∩ (φ−(k−1)(N) ∩B)

= (N ∩B) ∩ (θ−1(N ∩B) ∩ · · · ∩ (θ−(k−1)(N ∩B))

= Ck(θ, M)

An immediate consequence of Proposition 2.12 is the rather obvious, but useful:

Corollary 2.14 If B is a pure subgroup of A and every endomorphism of B lifts to an endomor-

phism of A, then ent∗(B) ≤ ent∗(A); in particular if B is a direct summand of A or if A is the

completion of B in the natural or p-adic topologies, ent∗(B) ≤ ent∗(A).

The injection in Lemma 2.11 above, need not necessarily be a bijection, but it is if we make the

additional assumption that the subgroup B is dense in G i.e. G/B is divisible.

Proposition 2.15 Let B be a pure dense subgroup of G, then there is a bijection between the set

of all finite index subgroups of B and those of G. In particular, if B is basic in G, there is such a

bijection.

Proof Suppose that N is an arbitrary finite index subgroup of G. Then there is an integer n such

that nG ≤ N . Set M = N∩B and observe that N is of finite index in B and that nB ≤ N∩B = M .

Since B is dense in G, we have that G = B+kG for all natural numbers k; in particular G = B+nG.

It follows easily that G
nB = B

nB ⊕ nG
nB . Thus the mapping M 7→ M + nG is an injection by Lemma

2.11 above. To show that this mapping is a bijection, we note that by modularity

M + nG = (N ∩B) + nG = N ∩ (B + nG) = N ∩G = N.

The statement about basic subgroups is then, of course, immediate.

In the above situation we can improve on Proposition 2.12

Proposition 2.16 If B is a pure dense subgroup of the group G and φ is an endomorphism of G

leaving B invariant, then ent∗φ = ent∗φ|B.

Proof The proof is a simple modification of the proof of Proposition 2.12 above. When B is dense

in G, we have just seen that the correspondence between finite index subgroups of B and those

of G is given by M 7→ N + kG where kG ≤ N . It follows that kG ≤ Cn(φ, N) for all n and so

In(φ|B ,M) = In(φ,N). Moreover, as the correspondence is a bijection, the range of the supremum
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used in the argument in Proposition 2.12, is the whole of the set of finite index subgroups of G;

this ensures the desired equality.

There is another situation where we can relate the adjoint entropy of a group and a non-pure

subgroup:

Proposition 2.17 For any group G and any endomorphism φ of G, ent∗(φ) ≥ ent∗(φ|pnG) for all

positive integers n. Moreover ent∗(pnG) ≤ ent∗(G).

Proof Let n be a fixed but arbitrary integer. For any finite index subgroup M of pnG, consider

the subgroup N = p−nM = {g ∈ G|png ∈ M}. Claim N is a finite index subgroup of G: define a

homomorphism f from G to pnG/M by f(g) = png + M . Clearly f is onto and the kernel of f is

exactly N . Thus G/N ∼= pnG/M and so is finite. For convenience of notation, let ψ = φ|pnG.

For each positive integer k consider the cotrajectory Ck(φ,N): if x ∈ Ck(φ,N), then certainly

pnx ∈ M by definition of N and for each r(1 ≤ r ≤ k − 1) we have that x ∈ φ−r(N), so that

φr(pnx) = pnφr(x) ∈ M . Since φr(pnx) = ψr(pnx), we deduce that pnx ∈ ψ−r(M). Thus

we have that pnCk(φ,N) ≤ Ck(ψ, M). Since the kernel of the map χ : G ³ pnG/Ck(ψ, M)

contains Ck(φ,N), we conclude that pnG/Ck(ψ, M) is an epimorphic image of G/Ck(φ,N) and so

(log |pnG/Ck(ψ, M)|/k) ≤ (log |G/Ck(φ, N)|/k) for all k. Hence we have that I(ψ, M) ≤ I(φ,N)

and so

ent∗(ψ) = sup
M

I(ψ, M) ≤ sup
N=p−nM

I(φ, N) ≤ sup
all N

I(φ, N) = ent∗(φ).

To establish the final assertion, let ψ be an arbitrary endomorphism of pnG. Since G/pnG is a

direct sum of cyclic groups, it follows and is well known – see for example [14] – that there is an

endomorphism φ of G such that φ|pnG = ψ. By the first part of the proposition ent∗(ψ) ≤ ent∗(φ)

and so the result follows.

We now return to the investigation of groups with zero adjoint entropy. We begin with a simple

result:

Proposition 2.18 If the adjoint entropies ent∗(G), ent∗(H) are both zero, and either Hom(G,H) =

0 or Hom(H, G) = 0, then ent∗(G⊕H) = 0.

Proof For any endomorphism φ of G⊕H, one can write φ =


 α δ

γ β


 where α ∈ End(G), β ∈

End(H), δ ∈ Hom(H, G), γ ∈ Hom(G, H). We show that if ent∗(G) = ent∗(H) = 0 and δ = 0 or

γ = 0, then ent∗(φ) = 0. Without loss in generality, suppose δ = 0. Then H is a φ−invariant

subgroup of G ⊕H and by Proposition 2.9, since φ|H = β one has that ent∗(φ|H) = ent∗(β) = 0.

Hence ent∗(φ) = ent∗(φ̄), where φ̄ ∈ End((G⊕H)/H). On the other hand, (G⊕H)/H ∼= G. This

implies that ent∗(φ̄) = 0 as ent∗(G) = 0.

9



The next lemma is the key observation concerning zero adjoint entropy.

Lemma 2.19 Suppose that an epimorphism f of G has zero adjoint entropy, then for any finite

index subgroup N of G, the kernel of f is contained in N .

Proof We first note that if f has zero adjoint entropy, then, by Lemma 2.7, there exists some

integer k ≥ 1, depending on N, f , such that for all i ≥ 0, Ck = Ck(f,N) = Ck+i. Hence

Ck = Ck+1 = Ck∩f−k(N), so Ck ⊂ f−k(N) and similarly Ck = Ck+1 = Ck+2 = Ck+1∩f−(k+1)(N)

and an easy induction shows that Ck ⊂ f−(k+i)(N) for all i ≥ 0. Moreover, f−k(Ck) = f−k(N ∩
f−1(N) ∩ · · · ∩ f−(k−1)(N)) = f−k(N) ∩ f−(k+1)(N) ∩ · · · ∩ f−(2k−1)(N). Hence we have

Ck ⊂ f−k(Ck) (1)

Now assume that f is surjective, we first observe that

G

Ck

∼= G

f−k(Ck)
(2)

To see this, we define a mapping φ : G → G/Ck by g 7→ fk(g)+Ck and note that φ is onto since f, fk

are onto. The isomorphism follows since Kerφ = f−k(Ck). By Equation 1, G/Ck

f−k(Ck)/Ck

∼= G
f−k(Ck)

is meaningful. It then follows from Equation 2 that G/Ck

f−k(Ck)/Ck

∼= G
Ck

and so

|G/Ck| = |G/Ck||f−k(Ck)/Ck| (3)

However, the subgroups Ck are of finite index in G and so all the cardinalities in Equation 3 are

finite. Hence |f−k(Ck)/Ck| = 1, so that f−k(Ck) = Ck. Clearly Kerfk ⊂ f−k(Ck) = Ck and so

Kerf ⊂ Ck ⊂ N .

We will use the notation U(G) for the first Ulm subgroup of a group G, so that U(G) =
⋂

n≥1

nG;

recall that U is then a radical.

The following result is well known and its proof is omitted:

Lemma 2.20 For any group G, the intersection of all finite index subgroup is precisely U(G) =
⋂

n≥1

nG.

Recall the notion of Hopficity: a group is said to be Hopfian if every epimorphism is an automor-

phism. Such groups have been the subject of investigation for a long time but many problems

relating to them are still unresolved. Our next result shows a connection with adjoint entropy and

should be compared to a corresponding observation in [7, Proposition 2.9].

Theorem 2.21 If G is a reduced group with zero adjoint entropy and U(G) is Hopfian, then G is

Hopfian.
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Proof Suppose that f is an epimorphism of G. Then f has zero adjoint entropy and so, by Lemma

2.19, we have Kerf ⊂ N for any finite index subgroup of G. Thus, kerf ⊂ ⋂
N =

⋂
nG = U(G).

Since f is epic, G ∼= G/kerf and so U(G) ∼= U(G/kerf). However, kerf ⊂ U(G) and as U is

a radical, we have U(G/kerf) = U(G)/kerf . Thus, U(G) ∼= U(G)/kerf . If kerf 6= 0, then

U(G) would have a proper isomorphic quotient contrary to U(G) being Hopfian. So we conclude

kerf = 0 and G is Hopfian as required.

Since a reduced torsion-free group has trivial first Ulm subgroup, we have:

Corollary 2.22 If G is a torsion-free, reduced group with zero adjoint entropy, then it is Hopfian.

At first sight Theorem 2.21 might seem to be a promising source of Hopfian p-groups, but this

hope is dashed by the final result of this section.

Proposition 2.23 If G is an infinite reduced p-group, then there is an endomorphism φ ∈ End(G)

such that ent∗(φ) = ∞.

Proof Our proof is a simple modification of an old argument due to Szele used to show that a basic

subgroup of a p-group is always an endomorphic image. Let B be any basic subgroup of G. If B

is bounded then so also is G, and hence G would be an infinite direct sum of cyclic groups. As the

left shift on such a group has infinite adjoint entropy, we are finished.

From the proof of Proposition 2.9 we see that ent∗(G) ≥ ent∗(G/pωG) since pωG is a fully-invariant

subgroup of G. Thus it suffices to prove the claim in the case that pωG = 0, i.e. G is an infinite

separable p−group and is embedded as a pure subgroup of the torsion-completion of any of its

basic subgroups.

Suppose then that B is unbounded. Then B has a canonical direct summand H such that the

exponents of the successive cyclic generators of H are at least doubling, i.e. if the generators are hi,

then e(hi+1) ≥ 2e(hi). The left shift on H extends to an endomorphism φ of B̄ whose restriction

to G maps G into B – see the introductory paragraph of [8, Theorem 32.1]. However, it follows

from Propositions 2.16 and 2.12 that ent∗(φ) = ent∗(φ|B) ≥ ent∗(φ|H), and since the latter is easily

seen to be infinite, we have the desired result.

We immediately deduce

Corollary 2.24 The adjoint entropy of a reduced p−group is zero if and only if the group is finite;

the adjoint entropy is infinite if and only if the group is infinite.
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3 Adjoint entropy of torsion free groups

In this section we consider torsion-free groups only. As we have seen in Theorem 2.21 above, a

torsion-free group with zero adjoint entropy is necessarily Hopfian. Our first example shows that

the class of torsion-free Hopfian groups is much wider than the class of groups with zero adjoint

entropy. We have chosen to use an example of Corner [3] which displays, in some sense, rather

extreme behaviour.

Example 3.1 There are Hopfian groups A,B such that A⊕B is not Hopfian and each of ent∗A, ent∗B

is infinite.

Proof Let ak, bk, xk, yk(k ∈ Z) be a basis of a vector space V over the rationals and let p, qk, r, s(k ∈
Z) be distinct prime numbers. Define A,B as subgroups of V by

A =
∑

k

{p−∞ak, q−∞k xk,
1
r
(ak + xk)}

B =
∑

k

{p−∞bk, q−∞k yk,
1
s
(ak + xk)}

where p−∞ak is an abbreviation for the set of elements p−mak(m = 0, 1, 2, · · · ). It was shown in

[3, Example 2] that A,B are torsion free Hopfian groups, but that A⊕B is not Hopfian. Here we

compute their adjoint entropies. It is clearly enough to consider ent∗(A).

We first construct an endomorphism of A. Since {p−∞ak(k ∈ Z)}, {q−∞k xk} (k ∈ Z) are fully

invariant subgroups of A, we can construct an endomorphism φ of A as follows:

φ : µa1 → 0 ,

φ : ai+1 → rai, αai+1 → αrai, i ≥ 1

φ : xi → rxi, βixi → βirxi, i ≥ 1

φ : γ 1
r (a1 + x1) → γx1

φ : γ 1
r (ai+1 + xi+1) → γai + γxi+1, i ≥ 1,

where µ, α are rationals with denominators power of p, βi, i = 1, 2, · · · . are rationals with denom-

inators power of qi respectively, and γ is an integer.

Suppose that t is a prime number which is different from p, qk, r, s(k ∈ Z), we claim that the

subgroup

N = t{p−∞a1}+ r{1
r
(a1 + x1)}+

∞∑

k=1

{p−∞ak+1, q
−∞
k xk,

1
r
(ak+1 + xk+1)}

is of finite index in A.
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Lemma 3.2 The quotient group A/N is finite.

Proof The elements in A/N are of the form µ
pl a1+ ν

r (a1+x1)+N where 0 < |µ| < p. Since (p, t) = 1,

when l ≥ 1, there exist two integers α, β such that αpl + βt = u, then µ
pl a1 + N = αpl+βt

pl a1 + N =

αa1 + N . When l ≤ 0, µ
pl a1 + N = p−lµa1 + N . On the other hand, r( 1

r (a1 + x1) + N) =

a1 + x1 + N = a1 + N . In any case, A/N is a cyclic group with the generator 1
r (a1 + x1) + N , and

clearly, the order of 1
r (a1 + x1) + N is tr. So |A/N | = tr is finite.

Proposition 3.3 The cotrajectory I(φ,N) > 0 and thus ent∗(A) = ∞

Proof First we note that a1 /∈ N . Furthermore, rna1 /∈ N for any natural n; for if were, then since

(t, rn) = 1, there are two integers α, β such that αt + βrn = 1, giving αta1 + βrna1 = a1, but the

left hand side is in N–a contradiction! Now, since ra1 /∈ N , and φ(a2) = ra1, we have a2 is not

in φ−1(N). On the other hand φ(ra2) = rφ(a2) = r2a1 /∈ N , thus, ra2 /∈ φ−1(N). By induction,

ak+1 /∈ φ−k(N).

Our next step is to show that ak+1 ∈ N ∩ φ−k(N) ∩ · · · ∩ φ−(k−1)(N). Clearly, a2 ∈ N , so is

ra2. But φ(a3) = ra2 ∈ N , thus a3 ∈ φ−1(N). This means a3 ∈ N ∩ φ−1(N). By induction,

ak+1 ∈ N ∩ φ−k(N) ∩ · · · ∩ φ−(k−1)(N). Thus, the cotrajectory never stabilizes and I(φ,N) > 0,

as required.

The classification of torsion-free groups with zero adjoint entropy is essentially an impossible

task since the groups exist in such abundance. We justify this statement by looking at so-called

realization theorems. The first of these was the famous theorem of Corner [4] that every reduced

countable torsion-free ring is the endomorphism ring of a reduced countable torsion-free group.

Corner’s approach was to realize a ring A as the endomorphism ring of a group G where G lies

between the additive group of A and that of Â, where the completion is in either the natural

or the p-adic topology. Moreover, G is a pure dense subgroup of Â and the endomorphisms of

G act on A as scalar multiplication; for convenience, we shall say that a ring A is C-realizable

by G if there exists a group G with properties as described having endomorphism ring equal to

A. This result has been extended to much wider classes of groups than the countable ones and

there is an extensive literature on the problem; a good survey of modern developments may be

found in [11, Chapter 12]. These recent approaches share a fundamental approach that was already

present in Corner’s original work but have a significant difference: the ring A is now realized as the

endomorphism ring of a group G where G lies between the additive group B of a large direct sum

of copies of A and that of B̂. Moreover, G is a pure dense subgroup of B̂ and the endomorphisms

of G act on each summand A as scalar multiplication; for convenience, we shall say that a ring A

is realizable by G if there exists a group G with properties as described having endomorphism ring

equal to A.
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The next result is an immediate consequence of Propositions 2.16 and 2.12.

Proposition 3.4 Let A be a ring, C-realizable on G, then ent∗(a) = ent∗(a|A) for each endo-

morphism a of G; if A is realizable on G, then ent∗(a) ≥ ent∗(a|A) for each endomorphism a of

G.

With this result one may calculate the adjoint entropy of a wide variety of torsion-free groups. We

content ourselves with:

Example 3.5 There exists arbitrary large torsion-free groups G which are indecomposable and

have zero adjoint entropy and arbitrary large torsion-free groups H which are indecomposable and

have infinite adjoint entropy.

Proof Groups with the properties ascribed to G are obtained by realizing the ring of integers,

Z as endomorphism ring; it is well known that this is possible. To obtain groups of a type like

H, observe that the ring Z[X] has free additive group and hence may be realized on arbitrarily

large groups – see [11, Chapter 12]. Multiplication by X corresponds to the forward (right) shift

on Z[X] and it is an easy consequence of Proposition 2.5 that this mapping has infinite adjoint

entropy. Consequently H has infinite adjoint entropy.

4 Adjoint entropy on mixed groups

First, we introduce an unpublished theorem due to A.L.S.Corner [5]– this is the result referred to

as [U14] in [12] – concerning the existence of an epimorphism from a mixed group onto a basic

subgroup of its torsion subgroup. Since this result(and Corner’s other unpublished works) will

shortly be freely available on the Arrow website of the Dublin Institute of Technology (for details

see [5] in the References section), we have not included the full details of that work here.

Theorem 4.1 Let G be an extension of a p-group T by a countable torsion-free group and let B

be a basic subgroup of T . Then there exists an epimorphism from G onto B.

In fact, we shall not exploit this result directly, rather we shall make use of a technical observation

used by Corner in the proof.

It is clear from our discussion in the previous section that there is no possibility of classifying all

mixed groups with zero adjoint entropy. We can, however, provide such a classification “modulo

torsion-freeness” in a special but nonetheless reasonably general case.
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Theorem 4.2 Let G be a mixed group of countable torsion-free rank with torsion subgroup a p-

group T having an unbounded basic subgroup B. Then there is an endomorphism of B with infinite

adjoint entropy which extends to a mapping G → B. In particular ent∗(G) = ∞.

Note: It suffices to prove the theorem under the additional hypothesis that G/T is divisible. For

if G/T is not divisible, we may choose a group, G′ say, such that G′/T is a divisible hull of G/T .

Clearly an endomorphism of B extending to a map G′ → B will restrict to a mapping G → B.

Proof Let B =
∞⊕

n=1
Bn be an unbounded basic subgroup of T , where, to simplify notation, we

assume that each Bn is a non-zero direct sum of cyclic groups of order pn. For each n, fix a

canonical summand Cn of Bn which is cyclic of order pn generated by cn. Clearly, for each n,

B1⊕B2⊕· · ·⊕Bn is a maximal pn-bounded summand of G: G = B1⊕B2⊕· · ·⊕Bn⊕G′n. Hence

for an arbitrary element g ∈ G, we have g = g1+g2 · · ·+gn+g′n, where gi ∈ Bi and g′n ∈ G′n. In this

way one can associate with each element g ∈ G, a unique “vector” 〈g1, g2, . . . , gn, . . . 〉 ∈
∞∏

n=1
Bn.

Now it follows from Corner’s proof in [5] of Theorem 4.1 above, that there is a sequence of integers

sn with the properties (i)sn →∞ and (ii)H(gn)− sn →∞ for each g ∈ G. (Here we are writing

H(x) for the height in G of the element x ∈ G.) Since sn → ∞, for each integer k there is an

integer Nk such that sn ≥ k for all n ≥ Nk. Now define a sequence of integers Mr as follows: let

M1 = max{1, N1} and assuming that Mk has been defined, set Mk+1 = max{NMk
,Mk + 1}. Note

that the sequence {Mk} is, by construction, strictly monotonic increasing and if n ≥ Mk+1, then

sn ≥ Mk.

Now define a map ω : B → B by setting ω(cMr+1) = cMr and mapping all other basis elements to

0. Claim that ω extends to a endomorphism ω̂ : G → B where ω̂(g) =
∞∑

n=1
ω(gn). Clearly it will

suffice to show that ω(gn) vanishes for all but a finite number of n and this certainly holds true

when gn has no component in Cn(n ∈ {M1,M2, . . . }). In the remaining cases, if r is sufficiently

large, we have

H(ω(gMr+1) ≥ H(gMr+1) ≥ sMr+1 ≥ Mr,

where H(x) denotes the height of the element x in G. However, ω(gMr+1) ∈ CMr , a cyclic summand

of G of order pMr , so that the only element of CMr of height ≥ Mr is precisely 0.

Thus ω̂ is an endomorphism of G and its restriction to B acts as the backward shift on
∞⊕

r=1
CMr ;

it follows from Example 2.6(i) that ent∗(ω̂) = ∞.

Theorem 4.3 Let G be a reduced mixed group of countable torsion-free rank having torsion sub-

group a p-group T . Then ent∗(G) = 0 if, and only if, G = T ⊕ X where T is finite and X is a

(countable) torsion-free group with ent∗(X) = 0.

Proof Sufficiency follows from Proposition 2.18 and the fact that finite groups have zero adjoint

entropy. Conversely suppose ent∗(G) = 0. It follows from Proposition 2.12 that ent∗(T) = 0 and
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so by Proposition 2.23, T is finite. Clearly then G splits as G = T ⊕ X for some torsion-free

countable group X. Since every endomorphism of X lifts trivially to an endomorphism of G,

ent∗(X) ≤ ent∗(G) = 0 and thus ent∗(X) = 0 as required.

It seems to be difficult to give an explicit description of mixed groups of countable torsion-free rank

in the non-local situation. There is, however, one further situation which is easily described and

which lies, in a certain sense, at the opposite end of the spectrum. Recall that a group G is said

to be cotorsion if Ext(Q, G) = 0. It is well known this is incompatible with G having countable

torsion-free rank and that every cotorsion group G may be expressed as G = A ⊕ T •, where A is

torsion-free algebraically compact and T • = Ext(Q/Z, T ) is the so-called cotorsion completion of

the torsion subgroup T of G – see [9, Sections 54-58].

Suppose now that G is a reduced cotorsion group with ent∗(G) = 0. It follows immediately

from Corollary 2.14 that ent∗(A) = 0 = ent∗(T•). Now consider A: it is a reduced algebraically

compact group and so, by Kaplansky’s result (Proposition 40.1 in [9]), A =
∏

p Ap where each

Ap is the completion of a free p-adic module. Since the Ap are fully invariant, it follows that

ent∗(Ap) = 0 for all primes p. It follows easily from Corollary 2.14 that each free p-adic module

involved is of finite rank. Thus A is the direct product (over primes p) of finite rank p-adic

modules. The description of T • is equally straightforward: applying Corollary 2.14, we have that

ent∗(T) = 0 and so each primary component Tp of T must be finite. Moreover, we have that

T • = Ext(Q/Z, T ) =
∏

p Ext(Z(p∞), Tp) since the Tp are q-divisible for all primes q 6= p. As Tp

is finite, it follows that Ext(Z(p∞), Tp) ∼= Tp and hence T • ∼= ∏
p Tp with each Tp being a finite

p-group.

Summarizing we can deduce

Proposition 4.4 A reduced cotorsion group G has zero adjoint entropy if, and only if, it has the

form G =
∏

p Tp

⊕∏
p Ap where Tp is a finite p-group and Ap is the direct sum of a finite number

of copies of the group of p-adic integers, Jp; equivalently G =
∏

p Fp where Fp is a finitely generated

p-adic module.

Proof The necessity has been established above and the sufficiency follows easily since each Tp⊕Ap

is fully invariant. The equivalent statement follows by taking Fp = Tp ⊕Ap.
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Goldsmith) Walter de Gruyter, Berlin (2008), pp 487–497.

17



[17] L. Salce and P. Zanardo, A general notion of algebraic entropy and the rank-entropy, Forum

Math. 21 (2009), 579–599.
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