
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Doctoral Science

2008-08-22

A Generic Approach and Framework for Managing Complex A Generic Approach and Framework for Managing Complex

Information Information

Essam Mansour
Technological University Dublin, essam.mansour@tudublin.ie

Follow this and additional works at: https://arrow.tudublin.ie/sciendoc

 Part of the Databases and Information Systems Commons, and the Software Engineering Commons

Recommended Citation Recommended Citation
Essam Mansour. (2008). A Generic Approach and Framework for Managing Complex Information.
Doctoral Thesis. Dublin Institute of Technology. doi:10.21427/D7DG61

This Theses, Ph.D is brought to you for free and open access by the Science at ARROW@TU Dublin. It has been
accepted for inclusion in Doctoral by an authorized administrator of ARROW@TU Dublin. For more information,
please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie, vera.kilshaw@tudublin.ie.

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/sciendoc
https://arrow.tudublin.ie/scienthe
https://arrow.tudublin.ie/sciendoc?utm_source=arrow.tudublin.ie%2Fsciendoc%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=arrow.tudublin.ie%2Fsciendoc%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=arrow.tudublin.ie%2Fsciendoc%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie

A Generic Approach and Framework for
Managing Complex Information

By

Essam Mansour B.Sc, M.Sc

Supervisor: Dr Bing Wu

Thesis submitted to the Office of Postgraduate Studies and Research

at the Dublin Institute of Technology in fulfilment of the requirements

for the Degree of Doctor of Philosophy

June, 2008

School of Computing

Dublin Institute of Technology

Kevin Street, Dublin 8, Ireland.

Abstract

Several application domains, such as healthcare, incorporate domain knowledge

into their day-to-day activities to standardise and enhance their performance. Such

incorporation produces complex information, which contains two main clusters (ac-

tive and passive) of information that have internal connections between them. The

active cluster determines the recommended procedure that should be taken as a

reaction to specific situations. The passive cluster determines the information that

describes these situations and other descriptive information plus the execution his-

tory of the complex information. In the healthcare domain, a medical patient plan

is an example for complex information produced during the disease management

activity from specific clinical guidelines.

This thesis investigates the complex information management at an applica-

tion domain level in order to support the day-to-day organization activities. In

this thesis, a unified generic approach and framework, called SIM (Specification,

Instantiation and Maintenance), have been developed for computerising the com-

plex information management. The SIM approach aims at providing a concep-

tual model for the complex information at different abstraction levels (generic and

entity-specific). In the SIM approach, the complex information at the generic level

i

is referred to as a skeletal plan from which several entity-specific plans are generated.

The SIM framework provides comprehensive management aspects for managing the

complex information. In the SIM framework, the complex information goes through

three phases, specifying the skeletal plans, instantiating entity-specific plans, and

then maintaining these entity-specific plans during their lifespan.

In this thesis, a language, called AIM (Advanced Information Management),

has been developed to support the main functionalities of the SIM approach and

framework. AIM consists of three components: AIMSL, AIM ESPDoc model, and

AIMQL. The AIMSL is the AIM specification component that supports the formal-

isation process of the complex information at a generic level (skeletal plans). The

AIM ESPDoc model is a computer-interpretable model for the entity-specific plan.

AIMQL is the AIM query component that provides support for manipulating and

querying the complex information, and provides special manipulation operations

and query capabilities, such as replay query support.

The applicability of the SIM approach and framework is demonstrated through

developing a proof-of-concept system, called AIMS, using the available technologies,

such as XML and DBMS. The thesis evaluates the the AIMS system using a clinical

case study, which has applied to a medical test request application.

ii

Declaration

I certify that this Thesis, which I submit for examination for the award of the

degree of Doctor of Philosophy, is entirely my own work and has not been taken

from the work of others save and to the extent that such work has been cited and

acknowledged within the text of my work.

This Thesis was prepared according to the regulations for post graduate study by

research of the Dublin Institute of Technology, hereafter referred to as the Institute,

and has not been submitted in whole or in part for an award in any other institute

or university.

The Institute has permission to keep, to lend, or to copy this Thesis in whole

or in part, on condition that any such use of the material of the Thesis is duly

acknowledged.

. .

Essam Mansour

Dublin, Ireland

June 2008

iii

Acknowledgements

”In the name of GOD (Allah), Most Gracious, Most Merciful. Praise be to GOD,

the Cherisher and Sustainer of the worlds; Most Gracious, Most Merciful; Master

of the Day of Judgement. Thee do we worship, and Thine aid we seek. Show us the

straight way,“ [Quran: Al-Fatiha (The Opening)]. ”and my success (in my task)

can only come from GOD. In Him I trust and unto Him I turn (repentant).“ [Quran:

Hud,88]. I am not able to fulfil the due thanks to GOD, but I seek his forgiveness

and that GOD assists me in thanking His Majesty.

”And your Lord has commanded that you worship none but Him, and that you

be kind to parents. If either or both of them reach old age with you, say not to them

(so much as) ”Ugh” nor chide them, and speak to them a generous word. And make

yourself submissively gentle to them with compassion, and say: O my Lord! have

compassion on them, as they brought me up (when I was) little.“ [Quran: Al-Isra

23-24]. I am deeply indebted to my father for accepting that I pursue my PhD away

from him. And May Allah bless my mother’s soul and join all of us in the Paradise.

I am grateful to my wife, ElKhansaa, and my children, for their encouragement and

understanding. Thanks to my brothers and sisters, Duaa, Teama, Nesreen, Moataz

and Mostafa.

iv

I am deeply indebted to my supervisor, Dr Bing Wu, for many insightful conver-

sations during the development of the ideas in this thesis, and for helpful comments

on the text. Dr Wu has supported me not only by providing research guidelines

and advices over almost four years, but also academically and emotionally through

the rough road to finishing this thesis. And during the most difficult times when

writing this thesis, he gave me the moral support. I also extend my sincere grat-

itude to Dr Kudakwashe Dube who has had a significantly positive influence on

my development through his role as my research co-supervisor. His patience and

willingness to discuss the minutiae of the different obstacles I encountered while

working on this project were invaluable.

I want to thank the the Office of Postgraduate Studies and Research of the

Dublin Institute of Technology (DIT) for sponsoring me to carry out this thesis

and to publish my research findings. I am grateful to Dr Janet Carton, Ms Nicole

O’Neill and Ms Denise Farrell and all the staff in the Office of Postgraduate Studies

and Research for their kindly helping and supporting me over my PhD study period.

I am very grateful to Prof Brendan O’Shea, Mr Dave Carroll, Mr Paul Kelly, Ms

Denise Murray and the staff of the School of Computing, who were very helpful to

me during my study period. I am also grateful to Dr Fred Mtenzi for his encourage-

ment, invaluable advices and interest in my progress throughout the study period.

I also extend my sincere gratitude to the technicians of the School of Computing,

specially Mr David Ng and Mr Michael Gleeson.

I would like to thank Dr Jamie Brett Stevens, a researcher in Astrophysics at

the University of Tasmania, Australia, for providing me the style file of his PhD

thesis.

I am deeply indebted to my MSc supervisor, Prof Mohamed El-Sharkawi, who

taught me the craft of research. I also extend my sincere gratitude to all the staff

v

of the Faculty of Computers and Information, Cairo University, Egypt, where I did

my undergraduate and master studies. I specially thank Professors, Reem Bahgat,

Mokhtar Boshra, Ali Elbastawesy, Salwa Elgamal, Aly Fahmy, Ibrahim Farag, Ehab

Hasaneen, Galal Hassan, Osman Hegazy, Sherif Mazen, and Khaled Mostafa.

Thanks for all my friends specially Ali Ahmed, Mohammed Al-Kalbani, Mo-

hammed Al-Kateb, Amr Arisha, Ahmad Awad, Hosam Bayomy, Mohamed El

Wakil, Mohammad El-Ramly, Waleed Elrawy, Gomathy Ramaswamy, Suhaib Fahmy,

Mostahfizz Gani, Mohamed Ghaleb, Xiang Han, Mohamed Maher, Sherif Sakr,

Yasser Salem, and Erqiang Zhou.

I would like to express my gratitude to all those who gave me the possibility to

complete this thesis.

. .

Essam Mansour

Dublin, Ireland

June 2008

vi

Glossary and Abbreviations

active part is one of the main clusters or parts of the complex

information and determines the recommended pro-

cedures or actions that should be taken as a reaction

to specific situations, 1

passive part is one of the main clusters or parts of the complex in-

formation and determines the information that de-

scribes the situations invoking the active part and

other descriptive information plus the execution his-

tory of the complex information, 1

active XML XML-based ECA rule languages, 24

ADBMS Active Database Management System, 40

AIM is a complex information specification and query

language and is an acronym for Advanced

Information Management, 86

AIMQL is the AIM query and manipulation sub-language,

119

AIMQL Replay Language is a language that plays over again the evolution

(history) of the complex information, 132

vii

Glossary and Abbreviations

AIMS is a proof-of-concept system for managing the Com-

plex Information, and utilizes the available XML

technologies and database systems as a base for its

functionality, 141

AIMSL is the AIM specification sub-language, 87

AIMSL ECA Rule Paradigm provides a temporal support for the ECA rule

paradigm at an application domain level, 98

Business Process Management (BPM) encompasses methods, techniques and tools to de-

sign, enact, control, and analyse business processes

involving organizations activities, 21

Business Process Modelling focuses on process formalisation, validation and ver-

ification to model domain knowledge as processes

with maintained control flow and order, 21

Clinical Guidelines provide guides for clinicians and patients in deter-

mining recommended strategies for managing and

monitoring the patients condition, 17

CoAX is a Comparative frAmework for XML-Based ECA

Rule Languages, 24

Complex information (CI) (From Existence Perspective) is interconnected and

clustered information produced during day-to-day

organisation activities, which incorporate domain

knowledge to standardise and enhance their perfor-

mance, 1

Complex information (CI) (From Nature Perspective) contains two main clus-

ters (active and passive) of information that have

internal connections between them, 1

viii

Glossary and Abbreviations

Complex information Management in this thesis, focuses on specifying the complex

information at different abstraction levels (generic

and entity-specific), instantiating entity-specific in-

stances and maintaining these instances by provid-

ing execution, manipulation and query support with

emphasising the demand to history and replay fa-

cilities, 3

DBMS Database Management System, 119

ECA Event-Condition-Action, 12

ECA rule paradigm is paradigm with a reactive semantics; when an

event occurs, check the condition and execute the

action only if the condition is evaluated to true, 15

entity-specific (ES) plan is a conceptual model for the complex information

at an entity-specific level, 66

Event-driven Process Chain (EPC) is an ordered graph of events and functions, 21

Extensible Markup Language (XML) is a general-purpose specification for creating cus-

tom markup languages, 13

patient plan is an example of the complex information, which

is produced during the disease management from a

specific clinical guideline to suit a particular patient,

2

Protocol in this thesis is a logical model for the skeletal plan,

92

RDB relational database, 148

ix

Glossary and Abbreviations

SIM is an approach and framework for managing com-

plex information and stands for Specification,

Instantiation, and Maintenance, 63

SIM approach aims at providing a conceptual model for the com-

plex information at an application domain level with

different abstraction levels, 66

SIM framework is a management framework for the complex infor-

mation and consists of three planes, specification,

instantiation and maintenance, 72

skeletal plan is a conceptual framework or model for the complex

information at a generic level, 66

Temporal Active XML is a combination of temporal database, ECA rule

paradigm and XML, 4

The AIM ESPDoc provides a computer-interpretable or logical model

for the entity-specific (ES) plan, 112

TRME is an intermediate model that translates AIMSL

rules into a pure SQL triggers, and is an acronym

for Temporal Rules M ade Easy, 153

TXME is a temporal XML data model that implements

the AIM ESPDoc model, and is an acronym for

Temporal XML Made Easy, 168

XQuery is an XML query language that provides means to

extract and manipulate data from XML documents,

15

x

Contents

Abstract ii

Declaration iii

Acknowledgements vi

Glossary and Abbreviations x

1 Introduction 1

1.1 Complex Information: Existence and Nature 1

1.2 The Complex Information Management 3

1.2.1 Research Problem . 4

1.2.2 An Implementation Method 5

1.2.3 Research Challenges . 6

1.3 Background . 7

1.4 Research Aim, Objectives and Scope 9

1.5 Expected Research Benefits . 9

1.6 Thesis Organization . 11

xi

CONTENTS

2 Related Work and Analysis of XML-Based ECA Rule Languages 12

2.1 Background: the XML Language and ECA Rule Paradigm 13

2.1.1 The XML Language . 14

2.1.2 The ECA Rule Paradigm . 15

2.2 Computer-Based Clinical Guidelines and Patient Plan Management 16

2.2.1 Clinical Guidelines and Events 17

2.2.2 The XML and ECA Rule Paradigm Support for Clinical Guide-

lines . 18

2.2.3 Discussion: Patient Plan Management 19

2.3 Workflow and Business Process Approaches 20

2.3.1 Business Process Management 21

2.3.2 Adaptive Workflow . 22

2.3.3 Discussion . 23

2.4 CoAX: A Framework for Comparing XML-Based ECA Rule Languages 24

2.4.1 An Application Example . 26

2.4.2 Brief Overview of the XML-Based ECA Rule Languages . . 28

2.4.2.1 Active XQuery . 28

2.4.2.2 ECA language for XML 30

2.4.2.3 AXML . 31

2.4.2.4 Active XML Schemas (AXS) 33

2.4.2.5 Activeweb . 34

2.4.2.6 ARML . 36

2.4.3 The CoAX Framework Dimensions 37

2.4.4 Knowledge Dimension . 40

2.4.4.1 Knowledge Model 40

2.4.4.2 Event . 41

xii

CONTENTS

2.4.4.3 Condition. 43

2.4.4.4 Action . 45

2.4.5 Execution Model . 46

2.4.6 Management Model . 48

2.4.7 Application Dimension . 48

2.4.7.1 XML-based ECA Rule Applications 48

2.4.7.2 Type of Information 49

2.4.8 Implementation Dimension 50

2.4.9 Implementation Approach 50

2.4.10 Comparing the XML-based ECA Rule Languages Using CoAX 51

2.4.10.1 Knowledge Model 51

2.4.10.2 Execution Model 54

2.4.10.3 Management Model 55

2.4.10.4 XML-based ECA Rule Applications 56

2.4.10.5 Type of Information 56

2.4.10.6 Distributed Management Issues 57

2.4.10.7 Implementation Approach 57

2.4.11 A Taxonomy for the XML-based ECA Rule languages 58

2.5 Chapter Summary . 59

3 SIM: A Generic Approach and Framework for Computerising the

Complex Information 63

3.1 An Overview of the SIM Approach and Framework 63

3.2 The SIM Approach to Modelling the Complex Information 66

3.2.1 The Skeletal Plan and Entity-Specific Plan 66

3.2.2 A Conceptual Model for the Complex Information 68

3.2.3 The Complex Information Life-Cycle 70

xiii

CONTENTS

3.3 The SIM Framework for Managing the Complex Information 72

3.3.1 The Specification Plane . 73

3.3.1.1 Capturing . 73

3.3.1.2 Formalisation . 73

3.3.2 The Instantiation Plane . 74

3.3.2.1 Customisation . 74

3.3.2.2 Instantiation . 75

3.3.2.3 Realization . 75

3.3.3 The Maintenance Plane . 75

3.3.3.1 Execution . 76

3.3.3.2 Manipulation . 76

3.3.3.3 Query . 77

3.3.3.4 Information Mining 78

3.3.3.5 Sharing and Distribution 78

3.3.4 Human-Computer Interaction Support 79

3.3.5 Complex Information Kernel 80

3.3.6 The SIM Framework Requirements 80

3.4 Scope and Limitations . 81

3.5 The Role of Temporal Active XML Database in Supporting SIM . . 82

3.6 Chapter Summary . 84

4 AIM: An Advanced Information Management Language for the

Complex Information 86

4.1 The AIM Specification Component 87

4.1.1 The AIMSL Model . 88

4.1.1.1 Overview . 89

4.1.1.2 Knowledge Action and Domain Information 90

xiv

CONTENTS

4.1.1.3 Descriptive Information and Evolution History . . 91

4.1.2 The AIMSL language . 91

4.1.2.1 Protocol Library 92

4.1.2.2 Protocol . 92

4.1.2.3 Header . 93

4.1.2.4 Schedule . 95

4.1.2.5 Rule . 96

4.1.3 AIMSL ECA Rule Paradigm 98

4.1.3.1 Terms . 99

4.1.3.2 Event . 100

4.1.3.3 Condition . 103

4.1.3.4 Action . 107

4.1.4 An Example . 109

4.1.5 Discussion . 111

4.1.5.1 AIMSL Specification as an XML Document 111

4.1.5.2 Extension to the DBMS Triggering Mechanism . . 112

4.2 The AIM ESPDoc: an Instantiation and Execution Model for the

Entity-Specific Plan . 112

4.2.1 The AIM ESPDoc Model . 113

4.2.2 Instantiation and Realization 114

4.2.3 Execution . 115

4.2.3.1 Active Mechanism 115

4.2.3.2 Temporal Mechanism 116

4.2.4 An Example . 117

4.2.5 Discussion . 118

4.2.5.1 The need for a Replay Support 118

xv

CONTENTS

4.2.5.2 The need to a temporal XML Support 119

4.3 The AIM Query Component . 119

4.3.1 The Query and Manipulation Requirements of the Complex

Information . 120

4.3.2 The High-Level Manipulation Operations 123

4.3.2.1 Add . 124

4.3.2.2 Remove . 125

4.3.2.3 Modify . 127

4.3.2.4 Activate . 129

4.3.2.5 Deactivate . 129

4.3.2.6 Terminate . 130

4.3.2.7 Fire . 131

4.3.3 The AIMQL Replay Query Support 131

4.3.3.1 The AIMQL Replay Language 132

4.3.3.2 Examples: Replay Patterns 134

4.4 Chapter Summary . 138

5 AIMS: A Proof-of-Concept System for Managing the Complex In-

formation 141

5.1 AIMS Conceptual Structure and DBMSs support 142

5.1.1 A functional decomposition of AIMS 142

5.1.2 The Criteria of Selecting a Modern DBMS for AIMS 145

5.2 Conceptual, Logical, and Physical Design of AIMS System 148

5.2.1 The Conceptual Design . 149

5.2.2 The Logical Design . 150

5.2.3 The Physical Design . 151

5.3 TRME: A Model for Translating the AIMSL Rules into SQL Triggers 153

xvi

CONTENTS

5.3.1 TRME Model at Conceptual Level 154

5.3.2 DBMS Support for the TRME Model 157

5.3.3 Translating the Terms of the AIMSL Rules 158

5.3.4 Translating the AIMSL Rules into Triggers 159

5.3.4.1 Generate a Trigger 159

5.3.4.2 Once Off ECA Rules 160

5.3.4.3 Repetitive ECA Rules 161

5.3.4.4 The Condition and Action 161

5.4 The AIMS Execution Mechanism: Limitations and Performance . . 163

5.4.1 Limitations . 163

5.4.2 Overcoming the Limitations and Enhancing the Performance 164

5.5 AIMS Method for Calculating the Expire Date of the Entity-Specific

Plan . 165

5.6 TXME: A Temporal XML Data Model for implementing the AIM

ESPDoc Model . 168

5.6.1 Time-Varying Simple Element 170

5.6.1.1 Structure . 171

5.6.1.2 Temporal Constrains 171

5.6.1.3 An Example . 172

5.6.2 Time-Varying Complex Element 173

5.6.2.1 Structure . 173

5.6.2.2 Temporal Constrains 173

5.6.2.3 An Example . 174

5.7 AIMS Method for Logging the Execution History of the Entity-

Specific Plan . 175

5.7.1 The TXME Support for the Entity-Specific Plan Model . . . 175

xvii

CONTENTS

5.7.2 Logging the Plan Execution History 175

5.7.3 An Example . 177

5.8 Translating AIMQL Queries into XQuery 177

5.8.1 The XQuery template for the AIMQL Replay Variables . . 179

5.8.2 The XQuery template for the AIMQL Replay Functions . . 180

5.8.3 The XQuery Generator . 185

5.9 Chapter Summary . 186

6 Evaluation: A Case Study and Experimental Results 188

6.1 Case Study: Applying SIM and AIMS to Managing a Test Request

Protocol . 189

6.1.1 The Test Request Protocol Used in the Case Study 190

6.1.2 Applying the SIM Approach and Framework to Patient Plan

Management: Dynamic Patient Plan 191

6.1.3 The AIMSL Specification for the Test Request Protocol . . . 193

6.1.4 A Simulation for the AIMS Execution 195

6.1.4.1 A Simulated Electronic Healthcare Record 195

6.1.4.2 AIMS Execution for the Dynamic Patient Plan . . 197

6.1.5 AIMQL Replay Queries . 199

6.2 A Comparison between AIMS and TOPS 201

6.2.1 Complex Information Storage 202

6.2.2 Temporal Rules Execution 202

6.2.3 Replay Queries Support . 203

6.3 Experimental Results . 204

6.3.1 The Experimental Results of the AIMS Execution Mechanism 204

6.3.2 The Experimental Results of the ES Plan Document Size . . 205

6.3.3 The Experimental Results of the AIMQL Replay Queries . . 207

xviii

CONTENTS

6.4 Concluding Remarks . 208

6.4.1 Maintainability . 208

6.4.2 Extensibility . 208

6.4.3 Reusability . 209

6.4.4 Performance . 209

7 Conclusion 211

7.1 Thesis Review . 211

7.2 Summary of Thesis Contributions 215

7.3 Future Work . 217

7.3.1 AIMQL Visualisation Mechanism 217

7.3.2 The Information Mining . 218

7.3.3 The Distributed and Mobile Management 218

7.3.4 The Human-Computer Interaction support 218

References 219

Appendix 235

A The XML Schema of the AIM Specification Component 235

B The Author’s Publications Related to this Ph.D. 244

Index 245

xix

List of Figures

2.1 The dimensions of the XML and event-driven support for the com-

puterised clinical guidelines. 17

2.2 A tree digram for a portfolio XML schema. 26

2.3 The syntax of an XQuery trigger. 28

2.4 Rule 1 written using XQuery trigger. 29

2.5 A trigger written by using ECA language for XML. 31

2.6 Rule 2 written using AXML. 32

2.7 Active XML metaschema for rules. 33

2.8 (A) An instance of the event class DeleteHolder. (B) Rule 1 written

using AXS. 34

2.9 A brief XML DTD specification for the Activeweb rules. 35

2.10 Rule 3 written using Activeweb trigger. 35

2.11 The general DTD for the ARML syntax. 36

2.12 Rule 4 written using ARML. 37

2.13 The CoAX framework. 39

2.14 The taxonomy of the XML-based ECA rule languages. 58

xx

LIST OF FIGURES

3.1 SIM: A generic approach and framework for computerising the Com-

plex Information. 64

3.2 A class diagram for the relationship between the skeletal plan and

the entity-specific plan. 66

3.3 An UML class diagram for the complex information conceptual model. 68

3.4 the life-cycle of A) an entity-specific (ES) plan and B) an ES plan

rule. 71

4.1 The AIMSL model based on XML Schema for the skeletal plan de-

fined by the SIM Approach. 88

4.2 The XML Schema of AIMSL ECA rule paradigm. 89

4.3 A: the XML Schema definition for the protocol library. B: a protocol

library example. 93

4.4 A: the XML Schema definition for the protocol. B: a protocol example. 94

4.5 A: the XML Schema definition for the header. B: an header example 95

4.6 A: the XML Schema definition for the person and validation datatype.

B: an example for a specialist of type personDT 95

4.7 A: the XML Schema definition for the schedule. B: a schedule example. 96

4.8 A: the XML Schema definition for the rule. B: a rule example. . . . 98

4.9 A: the XML Schema definition for the term. B: an example for two

terms . 99

4.10 A: the XML Schema definition for the event. B: an example for an

event of the type absolute time. 100

4.11 A: the XML Schema definition for the event types. B: examples for

events of type episode and relative time once-off. 101

4.12 A: the XML Schema definition for the event base Relative Time DT.

B: an example for a repetitive time event. 102

xxi

LIST OF FIGURES

4.13 The XML Schema definition for the condition. 103

4.14 The XML Schema definition of the simple and composite predicate

datatypes. 104

4.15 The XML Schema definition of the operand1 and operand2 datatypes.104

4.16 A: the XML Schema definition of the simple datatypes. B: an exam-

ple for a simple condition. 105

4.17 An example for a composite condition. 106

4.18 The XML Schema definition for the action. 107

4.19 The XML Schema definition for the procedural action. 108

4.20 A: an example for an action of a procedural type. B: an example for

an action of a AIMQL type. 108

4.21 Two rules of the microalbuminuria screening (MAS) protocol. . . . 109

4.22 the AIMSL specification for the simplified version of the microalbu-

minuria screening (MAS) protocol. 109

4.23 the AIMSL specification for the rule MAP2. 110

4.24 The AIM entity-specific plan model based on XML Schema. 114

4.25 A part of the patient plan on day 4 after patient admission. 118

4.26 The XML Schema definition of the AIMQL manipulation operations. 123

4.27 A: the XML Schema definition of the add operation. B: an example

for add operation. 124

4.28 A: the XML Schema definition of the remove operation. B: an ex-

ample for a remove operation. 126

4.29 A: the XML Schema definition of the modify operation. B: an ex-

ample for a modify operation. 127

4.30 A: the XML Schema definition of the activate operation. B: an ex-

ample for an activiate operation . 129

xxii

LIST OF FIGURES

4.31 A: the XML Schema definition of the deactivate operation. B: an

example for a dectiviate operation 130

4.32 A: the XML Schema definition of the terminate operation. B: an

example for a terminate operation 131

4.33 A: the XML Schema definition of the fire operation. B: an example

for a fire operation. 131

4.34 The AIMQL replay query structure. 132

4.35 The AIMQL replay query for pattern 1. 134

4.36 The AIMQL replay query for pattern 2. 135

4.37 The AIMQL replay query for pattern 3. 135

4.38 The AIMQL replay query for pattern 4. 136

4.39 The AIMQL replay query for pattern 5. 136

4.40 The AIMQL replay query for pattern 6. 136

4.41 The AIMQL replay query for pattern 7. 137

4.42 The AIMQL replay query for pattern 8. 137

4.43 The AIMQL replay query for pattern 9. 138

4.44 The AIMQL replay query for pattern 10. 138

5.1 AIMS: A proof-of-concept system for complex information manage-

ment. 143

5.2 The conceptual design of AIMS stotage and functionality 149

5.3 The logical design of AIMS stotage and functionality 150

5.4 The physical design of AIMS stotage and functionality 152

5.5 DB2 Task command script for calculating the granularity attributes. 158

5.6 Algorithm 1 getARTrigger. 160

5.7 Algorithm 2 getWhenClauseOE. 161

5.8 Algorithm 3 getWhenClauseRE. 162

xxiii

LIST OF FIGURES

5.9 The rules of the entity-specific plan, number ESP131. 166

5.10 The SQL Query for calculating the expire date. 168

5.11 (A) The structure of an XML simple element. (B) The time-varying

simple element structure and temporal constrains. 170

5.12 (A) An example for an XML simple element. (B) An example for a

TXME time-varying simple element. 172

5.13 The time-varying complex element structure and temporal constrains.173

5.14 An example for a time-varying complex element, an AIMSL rule of

an ES plan. 174

5.15 The new value element. 176

5.16 An example for an ES plan rule. 178

5.17 The AIMQL replay query for pattern 7. 179

5.18 The XQuery template for the variables p1 and p2. 180

5.19 The XQuery template for the valid($exp as expression) function. . 181

5.20 The XQuery template for the cast($costnode as node, $unit as String)

function. 181

5.21 The XQuery template for the cast($costnode as node, $unit as String)

function. 182

5.22 The XQuery template for the count($exp as as expression) function. 182

5.23 The XQuery template for the first($tNode as temporal node) function.182

5.24 The XQuery template for the first($tNode as temporal node) function.183

5.25 The XQuery template for the overlaps($tNode1 as temporal node,

$tNode2 as temporal node) function. 183

5.26 The XQuery template for the precedes($tNode1 as temporal node,

$tNode2 as temporal node) function. 184

xxiv

LIST OF FIGURES

5.27 The XQuery template for the precedes($tNode1 as temporal node,

$tNode2 as temporal node) function. 184

5.28 The XQuery script for the AIMQL replay query of pattern 2. 185

6.1 The six rules of the experimental version of the MAP protocol utilized

in the case study. 190

6.2 the AIMSL specification for the used microalbuminuria protocol (MAP).193

6.3 the AIMSL specification for the rule 5. 194

6.4 The initial patient plan for patient PID050 generated from protocol

PRO124. 197

6.5 the XQuery script for the AIMQL replay query of pattern 2. 198

6.6 an AIMQL replay query determining how many times rule 5 is executed.199

6.7 The equivalant XQuery script for the AIMQL query determining how

many times rule 5 is executed. 200

6.8 Part of the count query. 201

6.9 The execution time according to the average elapsed time. 205

6.10 The correlation between the ES plan growing size and the number of

updates happening in the plan. 206

6.11 The The correlation between the query execution time and the size

of the ES plan. 207

7.1 SIM: A generic approach and framework for computerising the Com-

plex Information. 213

xxv

List of Tables

2.1 Knowledge model aspects . 41

2.2 Execution model aspects . 46

2.3 Event features. 52

2.4 Condition feature. 53

2.5 Action features. 54

2.6 The execution model. 55

2.7 Managment aspects. 55

2.8 Active XML applications . 56

2.9 Type of information . 56

2.10 Distributed management . 57

2.11 Implementaion tools . 58

2.12 Comparison of the XML-based ECA rule languages using CoAX. . . 62

3.1 A comparison between the skeletal plan and entity-specific plan. . . 67

3.2 A comparison between the complex information components. 69

4.1 AIMQL function applicability for the skeletal plan 121

4.2 AIMQL functions applicability for the entity-specific plan. 122

xxvi

LIST OF TABLES

5.1 Comparison summary of the support provided by modern DBMSs

for the AIMS system . 148

5.2 The domain information table. 153

5.3 The initial timing event table for the terms Patient Admission and

surgery. 155

5.4 The domain information table. 158

5.5 The AIMS table assisting in calculating the expire date of the entity-

specific plan. 167

6.1 the Category table. 195

6.2 the domain entity table. 196

6.3 the initial domain information table. 196

6.4 A comparison between AIMS and TOPS. 202

xxvii

1
Introduction

This chapter is organised as follows: Section 1.1 discusses the existence of the

complex information and its nature; Section 1.2 presents the main focus of the

thesis in terms of research problem, implementation method and challenges; Section

1.3 introduces the background of this research; The aim, objectives and scope of

this thesis are discussed in Section 1.4; The expected benefits of the thesis and its

organisation are presented in Sections 1.5 and 1.6 respectively.

1.1 Complex Information: Existence and Nature

In the context of this thesis, complex information (CI) is referred to as intercon-

nected and clustered information produced during day-to-day organisation activ-

ities, which incorporate domain knowledge to standardise and enhance their per-

formance. For each entity, to which these activities are applied, the complex in-

formation contains two main clusters of information that have internal connections

1

1.1. COMPLEX INFORMATION: EXISTENCE AND NATURE

between them. These clusters are: 1) an active cluster of information that deter-

mines the recommended procedure, which should be taken as a reaction to specific

situations; and 2) a passive cluster of information that describes these situations

plus the execution history of the recommended procedure.

Complex information exists in several domains. In healthcare domain, the Clin-

ical Guidelines (Field and Lohr 1992) are instantiated to a specific patient in the

activity of disease management (Shahar 2002). In agriculture, the Good Agricul-

tural Practices are instantiated to a specific animal in the activity of animal produc-

tion management (FAO 2003). In stock exchange, the Best Execution Guidelines

are instantiated for a specific customer in the activity of customer securities order

management (EAMA 2002).

In these activities, an instantiation process produces a plan for managing a par-

ticular entity in a specific activity. According to its specific domain, that entity

could be a patient, animal, or customer order. Such a plan is an example of com-

plex information that consists of the following main components:

• the domain information or data items that is relevant and is therefore required

to be monitored in the activity;

• recommended procedures that are inherited from domain knowledge, and are

applied in consideration to the users preferences or situations;

• A descriptive information about the plan or reference material associated with

the specific area of focus; and

• the history of the plan evolution and experience arising from daily practice of

using best practices for this particular entity.

In the healthcare domain, the patient plan is an example of the complex infor-

mation, which consists of:

2

1.2. THE COMPLEX INFORMATION MANAGEMENT

• particular healthcare information that is monitored in the patient record;

• Clinical Guidelines that provide suggestions and provide guidance to patients

and clinicians in making decisions about disease management in consideration

of the variations in the monitored patient healthcare information;

• descriptive and didactic information for the Clinical Guidelines and procedures

as applied to the patient; and

• the care plan progression history that is required in enhancing and reviewing

the applied information and knowledge from the Clinical Guideline.

1.2 The Complex Information Management

The complex information management at an application domain level is the main

topic to be investigated in this thesis. In this thesis, the complex information

management focuses on specifying the complex information at different abstraction

levels (generic and entity-specific), instantiating entity-specific instances and main-

taining these instances by providing execution, manipulation and query support

with emphasising the demand to history and replay facilities. The thesis research

questions are:

(1) what is a suitable and practical way to model and manage the complex infor-

mation as it is seen by the domain users?

(2) according to this way how to facilitate the complex information management

using a high level and declarative language?

(3) how to utilize the available technologies, such as XML and database systems, to

demonstrate that the adopted way supported by this language can be applied

in practice?

3

1.2. THE COMPLEX INFORMATION MANAGEMENT

1.2.1 Research Problem

The problem of this research is three-fold. The first problem is the need to a generic

approach for modelling the complex information at an application domain level. Ap-

plying this approach to activities, such as disease management, animal production

management and/or securities order management, provides a computerised patient

plan, animal production plan and/or customer order execution plan, respectively.

The computerised version of these plans and their components should be managed

as a first class object.

The second problem is the need to a management framework for computerising

the complex information. The framework is to specify the complex information at

different abstraction levels in order to support a variety of domain entities. Con-

sequentially, the complex information is to be defined initially for a general group

of entities, then instantiated to a particular entity. For example, defining a generic

plan for a group of diabetes patients and instantiating this plan for particular pa-

tients support the varieties between the diabetes patients. The framework should

provide the functionality supporting the maintenance of the complex information,

such as maintaining the patient plan during its lifespan. The maintenance support

emphasises the need to record the complex information execution history and re-

play this history. Recording and replaying the execution history provide a motion

picture that depicts the evolution of the complex information. Such motion picture

facilitates the review and decision-support capabilities in the organization.

The third problem is the need to an implementation method realizing the ap-

proach and framework as a unified and high-level method using the available tech-

nologies. The adopted technologies are to be seamlessly integrated and easily incor-

porated with the domain application systems in order to demonstrate the complex

4

1.2. THE COMPLEX INFORMATION MANAGEMENT

information management in practice.

1.2.2 An Implementation Method

This thesis adopts the combined application of XML, the ECA rule paradigm, and

a temporal database mechanism supported by database systems, as an implemen-

tation method for the approach and framework developed by the thesis. This com-

bination of temporal database, ECA rule paradigm and XML presents the concept

of Temporal Active XML. The hypothesis of the thesis is that the Temporal Active

XML method supported within database systems is an effective and practical tool

for facilitating and realizing the management of the complex information. This

hypothesis is supported by the following:

• the active database, which a database includes triggering mechanism, is con-

sidered as a connection between systems effectively handling data storage and

information retrieval, and systems with the power of a rule language in mon-

itoring changes and expressing complex inference mechanism (Caironi et al.

1997). Database systems are widely used as a base for managing informa-

tion domains. That means an easy integration between systems managing the

complex information and systems managing domain information;

• the ECA rule paradigm has been proven to be effective in supporting the

specification of best practices (Clayton et al. 1989; Caironi et al. 1997; Wu and

Dube 2001);

• the ECA rule paradigm and XML are seamlessly integrated and easily incor-

porated in research proposals, such as (Bonifati 2000; Kiyomitsu et al. 2001;

Schrefl and Bernauer 2001; Abiteboul et al. 2002), and in modern database

systems, such as DB2 (Nicola and Linden 2005) and Oracle (Mark Scardina

2004; Zhen Hua Liu 2005);

5

1.2. THE COMPLEX INFORMATION MANAGEMENT

• regarding the distributed management, XML provides capabilities, such as

heterogeneity, extensibility, and flexibility, that support the distributed man-

agement (Mller and Schwartzbach 2006); and

• the temporal database provides support for keeping the history and tracking

the evolution of domain information (Tansel et al. 1993).

1.2.3 Research Challenges

Complex information management poses major challenges for information manage-

ment. These challenges could be classified into intellectual and practical categories.

The intellectual challenges are: 1) the challenge of modelling conceptually the com-

plex information at different abstraction levels (generic and entity-specific); 2) the

challenge of supporting the instantiation process, on which the complex informa-

tion is defined to suit a particular entity, and 3) the challenge of maintaining the

complex information evolution history and replaying it to provide a motion picture

of the complex information.

The practical challenges are based on the adopted implementation method, which

realizes the active part of the complex information using XML-based ECA rules and

the passive part as temporal XML. The first challenge is to provide an execution

mechanism for the complex information. That needs to translate the complex in-

formation from a generic level into an entity-specific level. That translation maps

the platform-independent rules of the generic version into platform-dependent rules

in the entity-specific version. The major challenge here is that database systems do

not incorporate a comprehensive implementation of the ECA rule paradigm, which

is adopted by the thesis as implementation method. Instead, the database systems

provide a basic triggering mechanism, which has a number of limitations in its sup-

port of the ECA rule components (Ceri et al. 2000). For example in the complex

6

1.3. BACKGROUND

information, the events are not limited to the basic events of the triggering mech-

anism that are based on the occurrence of the INSERT, DELETE and UPDATE

operations. The main challenges here are to provide an extension to

• the event component to provide support for the time-based and domain-specific

events;

• the condition component to support the specification and evaluation of tem-

poral conditions in the ECA rules; and

• the action component to allow detached actions to be performed externally

and at time point after the rule has been executed.

The second challenge is to keep the execution history in order to review and

analysis the evolution of the complex information. The core challenge here is to

provide temporal extensions to the XML data model. The difficulty here is to

provide a temporal XML data model that is compatible with the XML data model,

in order to re-use the XML support provided by the database systems. The third

challenge is to facilitate the manipulation and query of the complex information as

a first class object. That means the complex information is subject to the same

manipulation and query operations, as domain information, plus special operations

that handle the rules and reviewing the execution history.

1.3 Background

The most related research areas to this thesis research are the workflow and comput-

erised clinical guidelines. Both areas focus on specifying and executing the active

part of the complex information. That part determines the recommended procedure

or action as a reaction to specific situations. The focus of the workflow approaches

is to model and manage only the active part as business processes. The approaches

7

1.3. BACKGROUND

of computerised clinical guidelines overlook the need to specify and manage the pa-

tient plan (complex information), which is produced by applying a specific clinical

guideline to a particular patient.

This thesis work differs from all these approaches by providing a generic approach

and framework for managing the complex information at a platform-independent

and application domain level. The thesis provides a unified management environ-

ment that provides support to specify and formalize the complex information at a

generic level, instantiate complex information instances, such as patient plan, ex-

ecute these instances, keep the execution history incorporated into each instance,

manipulate and query all these pieces of information at a high and declarative level.

This thesis reports the second stage of on-going research of KCAMP Group led

by Dr Bing Wu at Dublin Institute of Technology. The first stage of this research

work has developed a framework with a declarative language PLAN (Wu 1998; Wu

and Dube 2001) for specifying clinical guidelines of reactive applications, such as

clinical test request application. Furthermore, a prototype system TOPS (Dube

2004) was developed using relational active database to implement the framework

and language.

The PLAN specification is represented in plain text. Querying and manipulat-

ing a text file is limited to specific functions, such as find and replace functions,

respectively, that are provided within text editors. It is very important to provide

query and manipulation support for the domain knowledge specification. In order

to provide such support, TOPS (Dube 2004) maps the PLAN specification plain

text into database schema to be stored and managed using the DBMS. However,

mapping the PLAN specification into relational database schema decomposes the

specification into several tables. Therefore, it is not easy to deal with the specifica-

tion as one document, as it is in the real life. Moreover, it is not easy to exchange

8

1.4. RESEARCH AIM, OBJECTIVES AND SCOPE

the specification between heterogeneous systems. TOPS did not provide multi-level

of abstraction nor a model for the complex information.

1.4 Research Aim, Objectives and Scope

This thesis aims at providing an applied approach for facilitating the management

of the complex information at an application domain level. The main objectives of

this study are to:

• develop a generic approach for modelling the complex information and unified

framework for managing the complex information;

• develop a high level declarative language for facilitating the management of

the complex information;

• develop a proof-of-concept system using the available technologies to demon-

strate the applicability of our work; and

• evaluate the system using a clinical case study.

The approach and framework of the thesis are restricted to applications that

naturally take the form of reactive applications that monitor events of interest to

domain users, and respond to changes in situations by issuing alerts, reminders,

requests, and/or observations to the domain user. Our approach and framework do

not provide recommendations on courses of action, but rather provide the necessary

information needed to make informed decisions.

1.5 Expected Research Benefits

This thesis contributes in a number of ways to the research of the information

management. The major contributions of this thesis are:

9

1.5. EXPECTED RESEARCH BENEFITS

• a generic approach and framework, called SIM. The SIM approach provides a

conceptual model for the complex information at different abstraction levels;

generic and entity-specific. The SIM framework classifies the requirements of

the complex information management into three generic planes; specification,

instantiation and maintenance.

• an advanced language, called AIM, for supporting the SIM approach and

framework. This language is based on XML and the ECA rule paradigm and

consists of three main components; specification component (AIMSL), instan-

tiation model (AIM ESPDoc) and query component (AIMQL).

• a proof-of-concept system, AIMS, for demonstrating that the available XML

and database systems could be extended to support the SIM approach and

framework and implement the AIM language.

The minor contributions of this thesis are:

• the TRME model, which extends the DBMS triggering mechanism to support

the advanced features of AIMSL, such as time-based ECA rules. Using the

TRME model, the AIMSL rules are translated into pure SQL triggers managed

by the DBMS.

• the TXME model, which extends the XML support provided by the modern

DBMSs to implement the AIM ESPDoc model. The TXME model is consistent

and compatible with both XML Schema and the XML data model. Using the

TXME model, the complex information could be stored and retrieved using

the modern DBMSs.

• an evaluation of the AIMS system using a clinical case study, which focuses

on evaluating the AIMS execution mechanism based on the TRME model, the

10

1.6. THESIS ORGANIZATION

AIMS repository based on the TXME model, and the AIMS queries perfor-

mance.

1.6 Thesis Organization

This thesis is organized as follows. Chapter 2 reviews the most related approaches

proposed in the area of workflow management and the computerised clinical guide-

lines. The implementation method adopted in this thesis is based on a combination

of XML and ECA rule paradigm. Chapter 2 develops a framework for comparing

and analysing the available XML-based ECA rule languages.

Chapter 3 presents a generic approach and framework, called SIM, for modelling

and managing the complex information. Chapter 4 presents a high-level declarative

language, called AIM, for facilitating the management functions provided by SIM. In

Chapter 5, a proof-of-concept system, called AIMS, is presented. Chapter 6 presents

a case study in which AIMS is used to manage patient plans existing in a clinical

test request application. Chapter 6 is concluded by discussing the evaluation results

of the case study. The thesis summary and future work are discussed in Chapter

7.

11

2
Related Work and Analysis of XML-Based ECA

Rule Languages

This chapter reviews relevant approaches addressing the complex information man-

agement, and presents a framework, called CoAX, developed to compare XML-

based ECA rule languages. The thesis adopts the clinical guidelines management

used for test request protocol as an application domain, in which the complex infor-

mation management is demanded. Therefore, the chapter discusses the approaches

for computerising the clinical guidelines management. This chapter provides a clas-

sification for the clinical guidelines approaches that are based on the ECA rule

paradigm and XML. The chapter also presents a brief literature review for the

workflow approaches, which are used to support the active part of the complex in-

formation as a step for incorporating domain knowledge into organization activities.

The Event-Condition-Action (ECA) rule paradigm incorporated into XML is

adopted as a main method for realizing the thesis approach and framework for

12

2.1. BACKGROUND: THE XML LANGUAGE AND ECA RULE PARADIGM

managing the complex information produced from incorporating domain knowledge

into organization activities. The chapter provides a brief introduction about the

XML language and the ECA rule paradigm.

The chapter presents a framework, called CoAX, for comparing the XML-based

ECA rule languages. The CoAX framework outlines the main features of the XML-

based ECA rule languages, analyses and compares six typical XML-based ECA

rule languages, which have been developed by several institutions. Moreover, CoAX

offers a classification of these languages, depicting their evaluation. These languages

range from ones, which standardize the ECA rules representing a specific domain

knowledge and more properly targeted to relational database, to languages, which

extend the W3C consortium for a standard XML query language.

The rest of this chapter is organized as follows: Section 2.1 is an introduction for

the XML language and the ECA rule paradigm; Section 2.2 classifies the comput-

erised clinical guidelines approaches based on the ECA rule paradigm and XML,

and discusses the support provided to the clinical complex information; Section

2.3 presents the workflow approaches, and discusses the differences between the re-

search addressed in this thesis and the workflow research; Section 2.4 presents the

CoAX framework; Section 4.4 summarizes the chapter.

2.1 Background: the XML Language and ECA Rule Paradigm

This section introduces the main technologies used to support the development

of the research presented in this thesis. These technologies are mainly the XML

language and the Event Condition Action (ECA) rule paradigm.

13

2.1. BACKGROUND: THE XML LANGUAGE AND ECA RULE PARADIGM

2.1.1 The XML Language

The Extensible Markup Language (XML) is a general-purpose specification for cre-

ating custom markup languages. The XML language was developed by Bray et al.

(1998). The most recent recommendation of the XML language has been presented

by Bray et al. (2008). XML become the prime standard for data exchange on the

Web (Arciniegas 2000). XML is a language to represent semi-structured data, which

refers to data with some of the following characteristics:

• The schema is not given in advance and may be implicit in the data;

• The schema is relatively large;

• The schema is descriptive rather than prescriptive, i.e., it describes the current

state of data, but violations of the schema are still tolerated;

• The data is not strongly typed, i.e., for different objects; the values of the same

attribute may be of different types.

Any XML document should be a Well-formed document (Arciniegas 2000), which

is a document conforming to all of XML’s syntax rules. The XML document might

additionally conform to some semantics rules. These rules are either user-defined,

or included as an XML schema (Fallside and Priscilla 2004).

A valid XML document means that the document has been validated against a

rule set, such as a Document Type Definition (DTD) or an XML Schema (Fallside

and Priscilla 2004). An XML document is not considered valid unless it has a DTD

or XML Schema, and the document meets the constraints in that schema. DTDs

are a type of schema for describing the data structure of an XML document. DTD

could be used to specify the types of the child element, the order and number of

times the element may occur within a document, and the default value. DTD is

14

2.1. BACKGROUND: THE XML LANGUAGE AND ECA RULE PARADIGM

one of the technologies of SGML, so DTDs are not designed specifically for XML

and therefore although some of the syntax and structures of DTD might seem very

convoluted, they are the result of adapting the SGML technology for XML. An

XML Schema defines a class of XML documents by providing constraints on both

structure and content. XML schemas offer an alternative to describing an XML

grammar using DTDs. The main advantage of XML Schema is that schemas are

actually XML documents.

XQuery provides means to extract and manipulate data from XML documents

or any data source that can be viewed as XML, such as relational databases or

office documents (Walmsley 2007). Chamberlin et al. (2001) proposed the first

working draft of the XQuery language. The most recent XQuery recommendation

is presented by Boag et al. (2007). XQuery is supported with some programming

language features (Walmsley 2007). The XQuery language is a SQL-like language

with the main ”FLWOR expression” for performing joins. A FLWOR expression

is constructed from the five clauses after which it is named: FOR, LET, WHERE,

ORDER BY, RETURN. The reader is refered to Walmsley (2007) for more details

regarding XQuery.

2.1.2 The ECA Rule Paradigm

The Event Condition Action (ECA) rule paradigm (Widom and Ceri 1996; Paton

1999) refers to the structure of active rules in event driven architecture and database

systems. The general structure of the ECA rule paradigm is:

• the event part specifies the signal that triggers the invocation of the rule,

• the condition part is a logical test that, if satisfied or evaluates to true, causes

the action to be carried out,

• the action part consists of updates or invocations on the local data.

15

2.2. COMPUTER-BASED CLINICAL GUIDELINES AND PATIENT PLAN
MANAGEMENT

Most modern database systems support the ECA rule paradigm through a trig-

gering mechanism. In the relational database systems, this triggering mechanism

implements the SQL triggering language (Kulkarni et al. 1999). Some recent database

systems (Mark Scardina 2004), which provide XML storage and retrieval support,

extended the SQL language (Kulkarni et al. 1999) with XML functions, which is

known as SQL/XML (Andrew and Melton 2002; Sql/Xml 2003) language. The

SQL/XML language in most database systems is incorporated with their triggering

mechansim, such as in Oracle (Mark Scardina 2004; Zhen Hua Liu 2005) and DB2

(Nicola and Linden 2005; Chen et al. 2006).

2.2 Computer-Based Clinical Guidelines and Patient Plan Man-

agement

This section provides a brief review for the computerised clinical guidelines. The

focus of this review is on the use of the XML and event-deriven approach to support

the computerised clinical guidelines. Clercq et al. (2004) and Dube (2004) have

analysed and evaluated several approaches for computerising the clinical guidelines

management. The reader is referred to these references for more details about

the computerised clinical guidelines approaches. Most of the computerised clinical

guidelines approaches focus on specifying and executing clinical guidelines, and give

little attention to the query and manipulation support (Clercq et al. 2004).

Figure 2.1 illustrates the author’s view on the main dimensions of the XML and

event-driven support for the computerised clinical guidelines. These dimensions are

clinical guidelines, clinical events, XML, and ECA rule paradigm. Clinical guidelines

should ideally be executed as soon new or extra patient information, which generally

represents some changes in the patient circumstances, becomes available. It would

16

2.2. COMPUTER-BASED CLINICAL GUIDELINES AND PATIENT PLAN
MANAGEMENT

Figure 2.1: The dimensions of the XML and event-driven support for the comput-
erised clinical guidelines.

benefit the patient, if clinicians could be informed of the recommendations from

clinical guidelines based on the contents of the medical record. Thus, the event-

driven approach appears to be one of the suitable ways to support effective and

efficacious computerisation of clinical guidelines.

2.2.1 Clinical Guidelines and Events

The clinical guidelines provide guides for clinicians and patients in determining rec-

ommended strategies for managing and monitoring the patients condition (Field

and Lohr 1992). A computerised clinical guidelines management is one of the sug-

gested methods for improving and enhancing the health care services (Grimshaw

and Russell 1993; Dart et al. 2001; Shahar 2002; Votruba et al. 2004).

The monitoring and detection of clinical events play key roles in the practice of

disease management and patient care (Hripczak et al. 1996). In a pioneering study

that used a computer to detect and respond to clinical events, (McDonald 1976)

concluded that computer detection and response to simple clinical events would

have a positive effect on the behaviour of clinicians and build a foundation for more

complex clinical event detection. Studies of clinical events occurring before and

17

2.2. COMPUTER-BASED CLINICAL GUIDELINES AND PATIENT PLAN
MANAGEMENT

during disease progression help to inform treatment and deepen understanding of

disease progression (Khanda et al. 2000). Hence, clinical events could be seen as a

core driver to clinical practice guidelines and protocols.

2.2.2 The XML and ECA Rule Paradigm Support for Clinical Guide-

lines

Several research efforts propose XML-based languages for formalising clinical guide-

lines (Jones et al. 2005; Georg and Jaulent 2007; Wainer et al. 2008; Casteleiro and

Diz 2008). As in other approaches, these research works focus on specification

and execution while providing a little or no support for manipulation or querying

of clinical guideline information. Most efforts in supporting information sharing

in guideline management approaches have been concentrating on making the for-

mal clinical guidelines specification sharable across healthcare institutions (Greenes

et al. 2001; Ciccarese et al. 2003). The problem of sharing clinical guidelines spec-

ifications has been dealt with in literature (Pattison-Gordon et al. 1996; Greenes

et al. 2001; Dart et al. 2001). However, these works did not consider the specification

and the execution of clinical guidelines within a computer-supported collaborative

environment.

Furthermore, the means for sharing knowledge and information in patient care

practice continues to be based mainly on paper-based methods. Thus, patient infor-

mation continues to be shared between collaborating clinicians primarily through

referral and clinical notes. However, significant research efforts have been expended

into supporting the sharing of electronic patient records among healthcare institu-

tions by Grimson et al. (1998) and Halamka et al. (1998). Little effort has so far

been expended in supporting information manipulation, sharing and collaboration

with respect to the key aspects of guideline management.

18

2.2. COMPUTER-BASED CLINICAL GUIDELINES AND PATIENT PLAN
MANAGEMENT

In order to support distributed clinical event monitoring, the clinical event is

specified using XML. This combination is used to implement a wide range of clinical

event notification system that provides notification via remote procedure calls, such

as work done by Arabshian and Schulzrinne (2003)

The event-driven approach based on ECA rule paradigm has been adopted in

computerised clinical guidelines systems. TOPS (Dube 2004), which was devel-

oped by the author’s research group, the Arden Syntax (Clayton et al. 1989) and

HyperCare (Caironi et al. 1997) are the major relevant works that computerised

clinical guidelines by following the event-driven approach. Arden Syntax does not

distinguish between the generic specifications of clinical guidelines and the gener-

ated instance. HyperCare computerises a clinical guideline without providing a

generic mechanism to be applied to other guidelines. Like other computerised clin-

ical guideline approaches, both the Arden Syntax and HyperCare provide a little

or no support for manipulation and querying clinical guideline information. Both

Arden Syntax and HyperCare do not provide support for creating a medical plan.

They manage the clinical guidelines at the rule level.

2.2.3 Discussion: Patient Plan Management

A patient plan represents an instance of a specific clinical guidelines applied to a

particular patient. In healthcare domain, the patient plan could be seen as an ex-

ample of the complex information, which contains active and passive parts. The

active part determines the recommended procedure that should be taken in spe-

cific situations. The passive part determines the information that describes these

situations and other descriptive information.

Computerizing clinical guidelines mainly covers the specification and execution

the guidelines. Consequentially, the computerised clinical guidelines approaches

19

2.3. WORKFLOW AND BUSINESS PROCESS APPROACHES

focus on the active part of the complex information. These approaches overlook

the need to specify and manage the patient plan as one distinct entity; as it is seen

in the healthcare domain.

This thesis provides an approach and framework for not only specifying and

executing the complex information, but also manipulating, querying and distribut-

ing the complex information. Applying this approach and framework to the patient

plan facilitates the patient plan management at an application domain and end-user

level. Therefore, the patient plans are to be managed under a unified framework

that provides support to specify the clinical guidelines, instantiate patient plans

using these guidelines, execute these plans, keep the execution history incorporated

into each plan, manipulate and query all these pieces of information at a high and

declarative level.

The approach presented in this thesis facilitate the dissemination of not only

the clinical guidelines specification but also the patient plans. In this approach,

the patient plan represents an application case of a specific clinical guideline. The

ability to review the execution history of the patient plan within any time period

is supported in the Author work. Reviewing the execution history is leading to a

new research trend, that is to investigate into mining the patient plans to enhance

and discover new clinical guidelines.

2.3 Workflow and Business Process Approaches

In the area of workflow management, several research efforts have addressed the

problem of incorporating domain knowledge into organization activities. In this

thesis, the workflow approaches are classified into three categories, Business Process

Management (BPM), Adaptive Workflow and Process Mining. The process mining

category is ignored because it is not strongly related to this thesis. The first two

20

2.3. WORKFLOW AND BUSINESS PROCESS APPROACHES

categories and the distinguishing features of this thesis research focus are discussed

in the following sub-sections.

2.3.1 Business Process Management

Business Process Management (BPM) encompasses methods, techniques and tools

to design, enact, control, and analyse business processes involving organizations

activities (van der Aalst et al. 2003). A survey highlighting the life-cycle of the

BPM has been presented by van der Aalst et al. (2003). In BPM, the focus is

on managing domain knowledge as business processes, which are modelled using

different modelling approaches.

The business process modelling focuses on process formalization, validation and

verification to model domain knowledge as processes with maintained control flow

and order (Lu and Sadiq 2007). The business process modelling languages are

classified into graph-based languages, such as van der Aalst and ter Hofstede (2005),

or rule-based languages, such as Knolmayer et al. (2000a). Lu and Sadiq (2007)

have presented a comparative analysis of the business process modelling languages.

Most of the graph-based languages are based on Petri Nets (Lu and Sadiq 2007).

Two surveys on the Petri Nets-based languages and their applications in workflow

modeling have been presented in Janssens et al. (2000); Kiepuszewski et al. (2003).

Other graph-based languages, such as SAP reference model (Curran et al. 1997;

Keller and Teufel 1998), are based on Event-driven Process Chain (EPC), which is

an ordered graph of events and functions (Verbeek and van der Aalst 2006). The

business process modelling, such as van Dongen et al. (2007); Rosemann and van der

Aalst (2007), provide formalization and validation models for business processes

based on the SAP reference model.

Most of the rule-based languages are based on business rules (Knolmayer et al.

21

2.3. WORKFLOW AND BUSINESS PROCESS APPROACHES

2000b). The business rules are supported by using the ECA rule paradigm, such

as in Müller et al. (2004), Inference Rules, such as in Zeng et al. (2002), and Web

Services, such as in Orriëns et al. (2003). The support of the ECA rule paradigm

to the business processes is discussed by Bry et al. (2006).

The main advantages of the ECA rule paradigm are the flexibility, dynamism

and adaptability to the dynamic changes in the business processes (Bry et al. 2006;

Lu and Sadiq 2007). In workflow systems, the ECA rules are implemented using

several technologies such as active object oriented database systems as in Kappel

et al. (1998, 2000) and active database systems as in Müller et al. (2004).

The use of the ECA rule paradigm for implementing the workflow systems facil-

itates the integration with the systems managing the domain information, because

most of these systems use the DBMSs that support the ECA rule paradigm. The

ECA rule paradigm is utilized to implement workflow management system, such as

Wang et al. (2006) that supports the advanced resource reservation.

2.3.2 Adaptive Workflow

One of the workflow research trends is to support adaptive workflow, which is able

to change when necessary in order to improve the exception handling and deal with

failure situations that may occur during workflow execution (Müller 2002). The

workflow adaptation is supported using several approaches, such as data-driven

process modelling (Müller et al. 2006), case-based reasoning (Weber et al. 2006),

templates-oriented (Gottschalk et al. 2007), variability model (Rosa et al. 2007)

and agent-based models (Müller et al. 2004). The common feature among these

approaches is that these approaches cope with the logical failures occurring during

workflow execution.

22

2.3. WORKFLOW AND BUSINESS PROCESS APPROACHES

2.3.3 Discussion

Implementing domain knowledge into workflow systems forces organizations, which

generally do not have formal procedures, to conform to a single standard. Deviation

from this standard requires a change to the systems of these organizations (Rinderle

and Reichert 2007). The workflow approaches focus only on the active part of the

complex information. That means the active part and the passive part of the

complex information are not detached.

Most of workflow approaches provide modelling languages that model the ac-

tive part of the complex information as business processes. It is easier for the end

user to deal with the complex information as one distinct entity; as it exists in the

real-world. For example, clinicians deal with medical patient plan as one distinct

entity that includes information about reacting to specific situations and informa-

tion about the patient and the execution history of the plan. In workflow, the focus

only on the information about reacting to specific situations.

The adaptive workflow approaches deals with exception handling and logical

failures during workflow execution. Instead, the complex information adaptation

is to adapt the general medical plan incorporated from the domain knowledge to

a specific patient before execution. These workflow approaches provide little or

no support for manipulating the active part of the complex information using a

manipulation language.

The author’s approach differs from workflow approaches in that workflow ap-

proaches address the specification aspects with little or no support to query and

manipulate all aspects of the information in a unified manner. However, the au-

thor’s approach aims at computerising the management of the complex information

using a unified framework that provides support to specify, execute, query, and

23

2.4. COAX: A FRAMEWORK FOR COMPARING XML-BASED ECA RULE LANGUAGES

manipulate the complex information.

The major challenge addressed in this thesis is to provide an approach and frame-

work that give flexibility in incorporating domain knowledge into the day-to-day

organization’s activities, and managing the instantiated plans, such as patient plans,

at the domain entity level. This thesis distinguishes from all workflow approaches

by providing a generic approach and framework for managing the complex informa-

tion at a platform-independent, domain, and high level under a unified management

environment. Consequentially, the workflow could be used to support the low-level

implementation of our approach and framework.

2.4 CoAX: A Framework for Comparing XML-Based ECA Rule

Languages

Novel languages that incorporate the ECA rule paradigm into XML have been

proposed, such as in Bonifati et al. (2002), Bailey et al. (2002b) and Abiteboul

et al. (2002). In this thesis, XML-based ECA rule languages refer to these novel

languages. The ECA rule paradigm could be used to represent the event-based

behaviour of the application domain (Caironi et al. 1997; Jenders et al. 1998; Dube

et al. 2002; Mansour et al. 2007). The event-based behaviour performs actions or

reactions in response to events (Widom and Ceri 1996; Paton 1999). The semantics

of the ECA rule paradigm is that when an event E occurs, evaluate a condition C,

and if the condition is satisfied, then execute an action A (McCarthy and Umeshwar

1989; Widom and Ceri 1996; Paton 1999).

The XML-based ECA rule languages aim at reacting according to events that

happen to XML data or using XML to standardize and unify the specification of

ECA rules. The XML-based ECA rule languages, as languages for supporting the

24

2.4. COAX: A FRAMEWORK FOR COMPARING XML-BASED ECA RULE LANGUAGES

active part of the complex information, have different shortcomings.

These languages:

• specify and execute rule individually. However, it is needed to specify, execute

and manipulate the specification of the active part as one unit of cohesive and

correlative rules that achieve a certain objective.

• provide a basic trigger implementation of the ECA rule paradigm. In order

to support a comprehensive ECA rule paradigm, several features are needed,

such as providing support for composite and temporal events, supporting the

specification and evaluation of temporal conditions, and allowing not only the

primitive actions, update, delete and insert, but also advanced actions, such

as application defined and time-based actions.

ECA rule paradigm could be implemented using the SQL triggers. When shift-

ing from relational databases to XML data, it is necessary to review the features

of SQL triggers. In databases, SQL trigger is associated with a table and accord-

ing to the update operations the trigger is activated. However, the XML-based

ECA rule languages are of a tree structure within it the event-based rules among

heterogeneous and distributed applications need to be supported.

This section presents a framework, called CoAX for analysing and comparing

the XML-based ECA rule Languages. CoAX provides a comparative outline of the

XML-based ECA rule features by analysing and comparing XML-based ECA rule

languages that have been proposed. Moreover, CoAX offers a classification of these

languages, depicting their evolution from several perspectives. The implementation

approaches and technologies for the XML-based ECA rule languages are discussed.

These languages range from ones that use XML format and are targeted to deal

with relational database to the latest proposal of W3C consortium for a standard

XML query language.

25

2.4. COAX: A FRAMEWORK FOR COMPARING XML-BASED ECA RULE LANGUAGES

2.4.1 An Application Example

This sub-section introduces a case study that is used throughout Section 2.4 to ex-

emplify the analysed XML-based ECA rule languages. This case study is originally

proposed by Chandra and Arie (1994) and also used by Paton (1999). The Au-

thor has modified this case study to become suitable for the XML-based ECA rule

languages. This case study is selected because the real world application greatly

helps to understand the capabilities of the languages and determine the differences

between these languages.

Portfolio
Root element

HValueHName HCountryHRegNo

Holder

HRegKey HRegKeyRef SPriceSName SQtyStockNo

Stock

StockKey StockKeyRef OQtyOStockNo ODateOHRegNo

Own

OwnsKey

Sequence

Constraints

Holders Stocks Owns

Figure 2.2: A tree digram for a portfolio XML schema.

Figure 2.2 illustrates the tree diagram of the XML Schema of a financial market

portfolio. It consists of three element Holder, Stock and Owns. A Holder is an

individual or organization that owns stocks. Every Holder has a unique registration

number, name, country, and total value of stock held. An organization that has

been floated on the stock market is represented by the element Stock, which has

elements that record the organization’s name, share price, the total number of shares

available, and the unique identification number by which it can be referenced. The

element Owns indicates that a Holder possesses OQty items of a particular kind of

Stock. This application scenario has the following active semantics:

• Integrity Constraints:

26

2.4. COAX: A FRAMEWORK FOR COMPARING XML-BASED ECA RULE LANGUAGES

Key Constraint. The elements Holder, Stock and Owns have key constraint

HRegKey, StockKey and OwnsKey respectively. HRegKey is a key constraint

that define HRegNo as a key for the element Holder, and StockKey is a key

constraint that define StockNo as key for the element Stock. For the element

Owns, OwnsKey defines a composite key that consists of OHRegNo, OStockNo

and ODate.

Referential Integrity. The element Holder has a key reference, in which the

OHRegNo element refers to the key HRegNo. The element Stock has a key

reference, in which the OStock element refers to the key Stock.

• Web Content Rules:

Rule 1. Delete Cascade Rule. When a holder is deleted, delete its owns from

the element Owns.

Rule 2. The organizations that has been floated on the stock provide their

share price on their web site. The value of SPrice element should be equal to

the last up to date price on the organizations’ web site.

Rule 3. the web site of Portfolio XML database should add the content of read

me XML document to the main page of the web site for a user who accesses

at the first time or has accessed since more than 6 months ago.

• Business Rules:

Rule 4. Do not allow the delete operation for a holder to proceed if that holder

has a value > 0, and inform the system manager through email or SMS.

Rule 5. Report the system manager by the holders who increase the possessed

items of a particular kind of stock within last 6 months.

27

2.4. COAX: A FRAMEWORK FOR COMPARING XML-BASED ECA RULE LANGUAGES

2.4.2 Brief Overview of the XML-Based ECA Rule Languages

This sub-section provides a brief overview of current available XML-based ECA

Rule languages. The chosen languages are Active XQuery (Bonifati et al. 2002),

ECA language for XML (Bailey et al. 2002b), Active XML or AXML (Abiteboul

et al. 2002), Activeweb (Kiyomitsu et al. 2001), Active XML Schemas (Schrefl and

Bernauer 2001) and ARML (Cho et al. 2002).

2.4.2.1 Active XQuery

Bonifati et al. (2002) have designed the Active XQuery language for extending

the W3C proposed standard XQuery language. Active XQuery adapts the active

database features in SQL3 to hierarchical nature of XML data. It is a user-friendly

language in the XQuery style. A proposed implementation to it over XML views

that created from relational database has been developed by Shao et al. (2004).

CREATE TRIGGER Trigger-Name
[WITH PRIORITY Signed-Integer-Number]
(BEFORE|AFTER)
(INSERT|DELETE|REPLACE|RENAME)+
OF XPathExpression (,XPathExpression)*
[FOR EACH (NODE|STATEMENT)]
[XQuery-Let-Clause]
[WHEN XQuery-Where-Clause]
DO (XQuery-UpdateOp|ExternalOp)

Figure 2.3: The syntax of an XQuery trigger.

Active XQuery Syntax. Figure 2.3 illustrates the syntax of XQuery trigger.

The CREATE TRIGGER clause is used to define a new XQuery trigger, with the

specified name. Rules can be prioritized in an absolute ordering, expressed with an

optional WITH PRIORITY clause. The BEFORE/AFTER clause expresses the

triggering time relative to the operation. Each trigger is associated with a set of

update operations (insert, delete, rename, replace), adopted from the update exten-

28

2.4. COAX: A FRAMEWORK FOR COMPARING XML-BASED ECA RULE LANGUAGES

sion of XQuery (Tatarinov et al. 2001). The operation is relative to elements that

match an XPath expression (specified after the OF keyword). One or more predi-

cates (XPath filters) are allowed in the steps to eliminate nodes that fail to satisfy

given conditions. Once evaluated on document instances, the XPath expressions

result into sequences of nodes, possibly belonging to different documents. The op-

tional clause FOR EACH NODE/STATEMENT expresses the trigger granularity.

A statement-level trigger executes once for each set of nodes extracted by evaluating

the XPath expressions mentioned above, while a node-level trigger executes once

for each of those nodes. DO clause express the action part that could be update

operations or external operation such as send email or invoke SOAP procedural

CREATE TRIGGER CascadeDelete
AFTER Delete OF document(”Portfolio.xml”)/Holder
FOR EACH NODE
LET $OwnsOfDeletedHolder := (

FOR $d IN document(”Portfolio.xml”)//Own
WHERE $d[OHRegNo= OLD-NODE/Holder/HRegNo])
RETURN $d)

WHEN (not(empty($OwnsOfDeletedHolder)))
DO (FOR $Owns IN document(” Portfolio.xml”)//Owns,

$Own IN $Owns/Own[OHRegNo=$OwnsOfDeletedHolder/OHRegNo]
UPDATE $Owns
{ DELETE $Own)

Figure 2.4: Rule 1 written using XQuery trigger.

Active XQuery Example Figure 2.4 illustrates Active XQuery trigger for Rule

1 defined in Sub-Section 2.4.1. The trigger has a unique Name, CascadeDelete. This

trigger fired after the deletion of a Holder element. ”document(”Portfolio.xml”)/Holder”

is an XPath expression that specifies the portion of the XML document that is to be

monitored for the event Delete. ”FOR EACH NODE” means the trigger granularity

is node-oriented. ”LET $OwnsOfDeletedHolder” is a let clause that defines variable

named OwnsOfDeletedHolder. This variable is used in where clause. Condition is a

Boolean predicate, (not (empty ($OwnsOfDeletedHolder))), that specifies the con-

dition under which the trigger is to be fired. The semantics of the condition means

29

2.4. COAX: A FRAMEWORK FOR COMPARING XML-BASED ECA RULE LANGUAGES

the deleted holder has owns. ”Do” is the action part of that trigger. It deletes the

owns of the deleted holder.

2.4.2.2 ECA language for XML

Bailey et al. (2002b) have proposed ECA language for XML as a simple ECA

rule language for providing reactive functionality on XML database. It uses the

XQuery to construct new XML fragment, and uses XPath (Berglund et al. 2005)

to determine a certain XML part. Several techniques for analyzing and optimizing

this language were presented by Bailey et al. (2002a). Papamarkos et al. (2003) hav

used the same concept and syntax of the ECA language for XML to extend RDF

(Manola and Eric 2004) to support ECA rule paradigm as a tool for web semantics.

A distributed system architecture for supporting ECA rules on distributed RDF

repository is proposed by Papamarkos et al. (2003).

ECA language for XML Syntax. The syntax of ECA XML takes the following

form:

on event

if condition

do actions.

The event part of an ECA rule is an expression of the form INSERT e or DELETE

e. where e is a simple XPath expression which evaluates to a set of nodes. The

rule is said to be triggered if this set of nodes includes any node in a new sub-

document, in the case of an insertion, or in a deleted sub-document, in the case of a

deletion. The condition part of an ECA rule is either the constant TRUE, or one or

more simple XPath expressions connected by the boolean connectives and, or, and

30

2.4. COAX: A FRAMEWORK FOR COMPARING XML-BASED ECA RULE LANGUAGES

not. If the condition references the system-defined $delta variable, it is evaluated

once for each instantiation of $delta for each document. Otherwise, the condition

is evaluated just once for each document. The actions part of an ECA rule is a

sequence of one or more actions: action 1; . . . ; action N. These actions are

executed on each XML document which has been changed by an event of the form

specified in the rules event part and for which the rules condition query evaluates

to True. The actions could be insert or delete operations. XQuery is used in these

ECA rules only where there is a need to be able to construct new fragments of

XML.

on DELETE document(Portfolio.xml)/Holder
if (document(Portfolio.xml)/Owns[OHRegNo=$delta/Holder/HRegNo])
do DELETE document(Portfolio.xml)/Owns[OHRegNo=$delta/Holder/HRegNo]

Figure 2.5: A trigger written by using ECA language for XML.

ECA language for XML Example Figure 2.5 illustrates a trigger writen using

ECA language for XML to implement Rule 1 defined in Sub-Section 2.4.1. In this

example, the specified event that activates the trigger is delete a holder in the path

”document(Portfolio.xml)/Holder”. The trigger’s condition checks whether the

deleted holder has owns or not. The action delete the owns that belong to the

holder.

2.4.2.3 AXML

Abiteboul et al. (2002) have designed AXML for supporting data and service in-

tegration over the web. It combines XML documents with embedded calls to web

services. The Condition-Action model rule, in which the action part could refer to

some of free variables refereed to the condition part, was proposed by Sistla and

Wolfson (1995). AXML uses the Condition-Action model.

31

2.4. COAX: A FRAMEWORK FOR COMPARING XML-BASED ECA RULE LANGUAGES

<Stock>
<StockNo>255</StockNo>
<SName>Org1</SName>
...
<sc> stock.org/getPrice(Org1) </sc>
</Stock>
(A) AXML document

let sc stock.org/getPrice($c) be
for $org in document(stock.org/a.xml)//org,
where $org/name=$c
return <SPrice> $org/price < /SPrice >

(B) A parameterized XQuery

Figure 2.6: Rule 2 written using AXML.

AXML Syntax. Figure 2.6.A illustrates an AXML document that contains an

element < sc >, service call, or more. These elements represent service calls that

are embedded in the AXML document. The element < sc > is activated according

to specified time interval, when the AXML document is retrieved or queried, or

whenever desired information are changed.

The called service could be expressed as parametrized XQuery, as illustrated in

Figure 2.6.B. It could be used to evaluate a certain condition. The called service is

stored detachedly from the AXML document. The called service returns its result

as a sub-tree that is inserted as sibling elements of < sc >.

AXML Example. Figure 2.6 illustrates an AXML trigger for Rule 2 defined in

Sub-Section 2.4.1. This trigger is activated when the element < sc > is retrieved

or the AXML document is queried. The function getPrice represents the condition,

which is the organization name equals to the name of the stock. The function

returns the element SPrice. The action of AXML trigger is insertion to returned

result as sibling elements of < sc >.

32

2.4. COAX: A FRAMEWORK FOR COMPARING XML-BASED ECA RULE LANGUAGES

2.4.2.4 Active XML Schemas (AXS)

AXS, which has been developed by Schrefl and Bernauer (2001), reuses concepts

from active database systems and event-based business rules to automatically and

asynchronously manage the distributed Web content. It integrates passive and

active behaviour into document schemas that can be stored and queried just as

other document data. AXS was designed to support Web content management.

<xs:element name=”rule”>
<xs:complexType>
<xs:sequence>
<xs:element name=”condition” type=”actm:NativeCode” minOccurs=”0”/>
<xs:element name=”action” type=”actm:NativeCode”/>
</xs:sequence>
<xs:attribute name=”name” type=”xs:QName” use=”required”/>
<xs:attribute name=”priority” type=”xs:integer” use=”optional”/>
<xs:attribute name=”definedOn” type=”xs:QName” use=”required”/>
</xs:complexType>
</xs:element>

Figure 2.7: Active XML metaschema for rules.

AXS Syntax. The Active XML Metaschema for rules is shown in Figure 2.7. A

rule is described by a name and priority. It is defined on an event class. Event

class is a class, in which events are collected. Events are happenings of interest to

a document. Each rule is defined upon an event class. If an event class occurs,

all rules defined on that event class are triggered. A rule comprises a condition

and an action. The condition and action are expressed using XSLT. actm, which is

shown in Figure 2.7, is a namespace for Active XML Metaschema. The minimum

occurrence of the element condition is 0. It means that the rule might be without

a condition.

AXS Example. Figure 2.8.B shows the active document for Rule 1 defined in

Sub-Section 2.4.1. It defines the rule RemoveOwns on the event class DeleteHolder.

An instance of this class is shown in Figuer 2.8.A. The rule condition tests whether

33

2.4. COAX: A FRAMEWORK FOR COMPARING XML-BASED ECA RULE LANGUAGES

<DeleteHolder>
<actf:even id=’e168’ status=’occured’>
<actf:occurrenceTime pt=’2005-05-01...’/>
<actf:return xsi:nil=’true’/>
<Holder>
<HRegNo>15</HRegNo>
</Holder>
<actf:even>
<DeleteHolder>
A

<rule definedoOn=’DeleteHolder’ name=’RemoveOwns’>
<condition lang=’http://www.w3.org/1999/XSL/Transform’>
<xsl:value-of select=”$evt//Holder[HRegNo=document(”Portfolio.xml”)//OHRegNo]”/>
</condition>
<action lang=’http://www.w3.org/1999/XSL/Transform’>
<invokeOperation name=’removeOwns’>
<parameter name =’job’>
<xsl:value-of select=’$cond’/>
</parameter>
</invokeOperation>
</action>
</rule>
B

Figure 2.8: (A) An instance of the event class DeleteHolder. (B) Rule 1 written
using AXS.

the holder’s has owns or not by querying the elements HRegNo and OHRegNo.

If the condition applies, the holder’s owns is removed from the Portfolio.xml by

invoking operation removeOwns(j:HolderRegNo).

2.4.2.5 Activeweb

Kiyomitsu et al. (2001) have developed Activeweb for supporting Web personaliza-

tion, such that a Web page including its hyperlinks is changed according to each

user’s browsing history. Activeweb is used to provide XML-based active rules for

deriving Web views and for defining access control. Activeweb aims at dealing with

Web pages, html document, rather than dealing with XML document.

Activeweb Syntax. As shown in Figure 2.9, the Activeweb rule has three sub-

elements EVENT, CONDITION and ACTION,and two attributes ID and NAME.

An attribute ID indicates the identifier of the rule which is used by the system. The

other attribute NAME indicates the name of the rule which is used by the author.

34

2.4. COAX: A FRAMEWORK FOR COMPARING XML-BASED ECA RULE LANGUAGES

< ! ELEMENT RULES (RULE*)>
< ! ELEMENT RULE (EVENT, CONDITI ON?, ACTION)>
< ! ELEMENT EVENT (READ) >
< ! ELEMENT EVENT (READ) >
< ! ELEMENT CONDITION (USER?,AGGREGATE?) >
< ! ELEMENT ACTION (ADDI|HIDE|REPPLACE) >
< ! ATTLIST RULE ID #IMPLIED NAME (#PCDATA?)>

Figure 2.9: A brief XML DTD specification for the Activeweb rules.

MP, () : (times=0), () \
⇒ activate(MP, content=”read-me-first.html);

MP, () : (period=6 months), ()\
⇒ activate(MP, content=”read-me-first.html);

Figure 2.10: Rule 3 written using Activeweb trigger.

The event part of a rule is: the subelement of EVENT is READ only, because Web

systems allow users only to issue ”http get” requests. It is supported to determine

the location from and date at which the read request is issued respectively. The

historical condition part of a rule CONDITION has two sub-elements. A sub-

element USER is used to evaluate an access history of a user who gives rise to the

event of the rule or triggers the rule. AGGREGATE element indicates aggregation

from the access history data of the server (e.g. times of all access to page A).

With the action part of a rule, an author can specify ADD, HIDE and REPLACE

functions which enable reconfiguration of the combination of contents in the page.

Activeweb Example Figure 2.10 illustrates an Activeweb trigger for Rule 3 de-

fined in Sub-Section 2.4.1. This trigger is activated when a user accesses the main

page MP. If the user accesses the MP page for the first time or has accessed it since

more than 6 months ago, then the system adds the content of the read me html

page to the MP page.

35

2.4. COAX: A FRAMEWORK FOR COMPARING XML-BASED ECA RULE LANGUAGES

2.4.2.6 ARML

ARML, which has been developed by Cho et al. (2002), is an XML-based rule

definition language, called Active Rule Markup Language (ARML). It aims at en-

abling event-based business rules, which were defined in various rule languages, to

be shared and reused among different systems. ARML was designed for dealing

with relational database. Therefore, it does not use XQuery or XPath.

<!ELEMENT rule (ruleDef, event , condition ,action , coupling, precedence, info)>
<!ELEMENT ruleDef (ruleName, table?, ruleSet?)>
<!ELEMENT event (eventName — algebra)?>
<!ELEMENT condition (methodCall — boolean — algebra)?>
<!ELEMENT action (methodCall+)>
<!ELEMENT coupling (ec? , ca?)>
<!ELEMENT precedence (after?, before?)>
<!ELEMENT info (designer*, description?, category?)>

Figure 2.11: The general DTD for the ARML syntax.

ARML Syntax. Figure 2.11 illustrates the DTD for the ARML syntax. In gen-

eral, the rule consistes of the ruleDef, event , condition ,action , coupling, precedence

and info. The ruleDef element defines the rule with a rule name, rule set and rule

table. The event element defines the rule event. The event could be a composite

event. The supported operators among the events are ”and”, ”or” and sequence.

The element condition might consist of one or more sub-elements methodCall that

represents application-specific conditions. The supported operators are ”and”, ”or”

and sequence. The sub-element methodCall returns boolean value. The element ac-

tion has series of sub-element methodCalls to describe simple or complex business

logic. The element coupling has two sub-elements ec and ca that represent the

transactional relationship among event, condition, and action. The element prece-

dence defines the rule priority between rules triggered by the same event. The

element Info specifies meta-information of the rule.

36

2.4. COAX: A FRAMEWORK FOR COMPARING XML-BASED ECA RULE LANGUAGES

<rule>
<ruleDef> <ruleName>DoNotDel</ruleName>
<table> </table>Holder</ruleDef>
<event> <eventName> Delete </eventName> </event>
<condition> <methodCall> <methodName> holder.hasvalue </methodName>
<action> <methodCall> <methodName> holder.cancelDel </methodName>

<methodCall> <methodName> holder.informeAdmin </methodName>
<params> <param> <value> <int> Holder.HRegNO </int>
</value> </param> </params> </methodCall> </action>

<info> <designer>escho </designer>
<description> do not delete a holder that has value greater than 0 </description>
<category>business</category> </info>

</rule>

Figure 2.12: Rule 4 written using ARML.

ARML Example Figure 2.12 illustrates the ARML trigger for Rule 4 defined in

Sub-Section 2.4.1. The trigger name is DoNotDel. ARML does not support XML

document. It is assumed that Holders element is stored in a table called Holder.

This trigger is activated when a holder is deleted. The methodCall element, whose

value is holder.hasvalue, checks whether the deleted holder has value > 0 or not.

If it is true, the methodCall, whose value is holder.cancelDel, cancels the delete

operation and the methodCall, whose value is holder.informeAdmin, that takes the

holder registration number as parameter to inform the system manager by that

through an email.

2.4.3 The CoAX Framework Dimensions

This sub-section presents the dimensions of the CoAX framework that: 1) deter-

mines the fundamental characteristics of the XML-based ECA rule languages. Some

of these features are inherited from active database, others relate to the nature of

XML data and others cover the needs of real-world situations, such as temporal

support for ECA rule paradigm; and 2) analyses and compares the XML-based

ECA rule languages in order to determine the circumstances, in which the use of a

certain language is more appropriate.

To the author’s best knowledge, there was no framework for analysing the XML-

37

2.4. COAX: A FRAMEWORK FOR COMPARING XML-BASED ECA RULE LANGUAGES

based ECA rule languages before CoAX. For short, the term active XML is used

to refer to the XML-based ECA rule languages. The methodology, which has been

used to build up CoAX, is based on:

• investigating into the structure of the active XML languages;

• determining how they execute the active behaviour;

• studying the management aspects provided by these languages to deal with

the specified rules;

• determining the purpose of these languages;

• classifying the information targeted by the active rules according to its storage

format;

• deciding whether these languages support the distributed environment or not;

• determining the implementation approaches and tools used in implementing

these languages; and

• determining the features that should be provided in order to support real world

active applications.

The objectives of the thesis focus on providing a formal language for the complex

information and an implementation for this language using the available technolo-

gies, and applying this language to several application domains. Therefore, CoAX

analyses the XML-based ECA rule languages in three dimensions: knowledge, imple-

mentation and application. The knowledge dimension focuses on the specification

and execution model of these languages and the management aspects supported

by them. The implementation dimension focuses on the utilized implementation

methods and the distributed support. The application dimension focuses on the

38

2.4. COAX: A FRAMEWORK FOR COMPARING XML-BASED ECA RULE LANGUAGES

Figure 2.13: The CoAX framework.

application domains, to which the languages were applied, and information format

supported by these languages.

Figure 2.13 illustrates the CoAX dimensions. The first dimension is Knowledge

Dimension that has three categories:

• knowledge model that determines the main structure for the active rules. Ac-

cording to the knowledge model, the features for modelling a formal language

are determined;

• execution model that determines how an active rule or more behave in the

runtime; and

• management model that determines the required management functionality for

active rules.

The second dimension is Application Dimension that has two categories:

• type of application. According to the application, the purpose and character-

istics of the language are determined. The type of application is classified into

39

2.4. COAX: A FRAMEWORK FOR COMPARING XML-BASED ECA RULE LANGUAGES

Web content management and business rule management ; and

• type of information. The targeted information is classified according to its stor-

age format into information stored in XML document, data stream, relational

database and HTML document;

The third dimension is Implementation Dimension that has two categories:

• implementation tools. The tools used are ADBMS, the relational database

systems provide support for active mechanism, and XML technologies; and

• Distributed Management. It might be needed that the active XML languages

and systems provides management support for the active rule within dis-

tributed environment. That means the distributed event detection, condition

monitoring and action execution should be supported over distributed environ-

ment. Moreover, it is needed to determine where the rule specification should

be stored. In the following three sections, this dimensions are discussed in

details.

2.4.4 Knowledge Dimension

This sub-section presents the details of the knowledge dimension. This dimension

focuses on three required functionalities: model and formal language; computer-

based execution and management aspect, for active rules. These functionalities

were studied in the database area (Widom and Ceri 1996; Paton and Diaz 1999).

However, it is new to consider them in a framework for the XML-based ECA Rule

languages. In the following three subsections, these functionalities are discussed.

2.4.4.1 Knowledge Model

The knowledge model for active XML rules consists of three parts event, condi-

tion and action. Event-Condition-Action (ECA) rule paradigm refers also to the

40

2.4. COAX: A FRAMEWORK FOR COMPARING XML-BASED ECA RULE LANGUAGES

knowledge model for active semantics. The semantics of ECA rule paradigm is that

when an event E occurs, evaluate a condition C, and if the condition is satisfied,

then execute an action A (Widom and Ceri 1996; Paton and Diaz 1999). Table 2.1

illustrates the features of each part. In the following, these features are discussed.

Knowledge Model Features
1.1 Event

Primitive

Insert
Delete
Update
Retrive

Advanced

Time
Composite and Temporal
Application Defined
External Defined

Event Granularity
1.2 Condition

Conventional Information
Predicate
Query
Method

Temporal Information
Temporal Predicate
Temporal Query

1.3 Action

Primitive

Insert
Delete
Update
Retrive

Advanced
Time
Composite and Temporal
Application Defined

Table 2.1: Knowledge model aspects

2.4.4.2 Event

Event is an occurrence of significance to a task or action that happens inside or

outside XML Repository and cause the ECA rule to be triggered. The features of

the events are classified to primitive, advanced events and event granularity.

Primitive Events. Data manipulation operations, insert, delete, update, and data

retrieval are considered as primitive events. Insert means to add a new XML

element or sub-tree at certain position. Delete means to delete an XML element or

a sub-tree. Update means to change the value or the content of an XML element

or change the parent of an XML element or a sub-tree. Retrieving any part of an

XML document might be considered as an event.

41

2.4. COAX: A FRAMEWORK FOR COMPARING XML-BASED ECA RULE LANGUAGES

Advanced Events. In order to support the comprehensive rules that could be

used to describe real world situations, advanced features should be added, such as

composite and temporal, time, external and application defined events. A taxonomy

for composite and temporal events has been proposed by Al-Kateb et al. (2003).

Detecting the XML composite events has been studied by Bernauer et al. (2004).

• Time Event. A time event specifies that a rule should be triggered at certain

time. That time may be absolute time, such as 18 March 05 at 10:30, or

relative time, such as every month and last day in the week.

• Composite and Temporal Event. According to the taxonomy proposed by

Al-Kateb et al. (2003), Composite event is a set of correlated events. These

events could be primitive or composite events. The relationship between these

events are logical or temporal relationship. Logical relationships are ”and”,

”or” and ”not”. Temporal relationships are Time Window and Preceding

Relationship. Time Window means more than one event happen within the

same time period, such as events E1 and E2 happen within the same time

period. Preceding Relationship means there are time order between the events,

such as event E1 happens before/after event E2. In this thesis, temporal event

is used to refer to a composite event that has temporal relationship.

• Application Defined Event. Application defined event is an event E that is

defied by the application, such that the application sends a signal that means

the event E happen. Then all rules that specify E as an event are triggered.

Application defined event provides ability to the application to define events

that could not be defined using the primitive events or using XML repository

functions, such as patient admission and test result received.

• External Defined Event. External defined event is an event E that define

42

2.4. COAX: A FRAMEWORK FOR COMPARING XML-BASED ECA RULE LANGUAGES

external entity happing or occurrence, such that this entity sends a signal

that means the event E happen. Then all rules that specify E as an event

are triggered. The external defined event supports the interaction between

distributed applications that collaborate to achieve a shared objective.

Event Granularity. The granularity of an event determines whether the event is

defined for all entities, such as manipulation operations for all student, or for sub-

entity, manipulation operations for fresh students (Paton 1999). It means adding

conditions on the declaration of the event. This feature is important to the XML

data. It could be supported using XPath that allocate a node in XML tree according

to a filter expression.

2.4.4.3 Condition.

Once the rule is triggered, the specified conditions are evaluated to determine

whether the action will be executed or not. The condition might be on conventional

information or temporal information, which reflects the history and evolution of an

object instance. The condition might be a predicate, a query, or a method (Widom

and Ceri 1996; Bonifati 2001).

Non-Temporal Information. Non temporal information does not reflect the

history. It is supported by the conventional query languages, such as SQL and

XQuery. Conditions on the non temporal information might be:

• Predicate. The condition might be a predicate that filters information, re-

taining some object instances and discarding others. A predicate is defined

using XML query languages. The result of the predicate is boolean value, true

or false. The predicate might be simple or complex.

• Query. The condition might be a complete query that is encoded using an

43

2.4. COAX: A FRAMEWORK FOR COMPARING XML-BASED ECA RULE LANGUAGES

XML query language. The condition is evaluated to be true, if the query

returns non-empty result. Otherwise, the condition is evaluated to be false.

• Methods. The condition might be specified as a call to a procedure written in

an application programming language or a call to a web service (He et al. 2004).

The condition is evaluated to be true, if the method returns true. Otherwise,

the condition is evaluated to be false. A method provides compensation for

the shortcomings of the query languages and support to interaction between

collaborative distributed applications.

Temporal Information. In order to support real world situation, the history

and the evolution of object instances should be stored to provide support to rules

that depend on the history of object instances. Time is an important aspect of

all real-world application. The ability to model the time dimension is essential to

many real-world applications, such as banking, inventory control, health-care, and

geographical information systems (Goralwalla et al. 1995; Abraham and Roddick

1999; Terenziani et al. 2000). Conditions on temporal information might be:

• Temporal Predicates. The condition might be a temporal predicate that fil-

ters information according to temporal aspects. Temporal predicate key words

are such as overlap, contain, preceding, last. Temporal predicates key words

for Temporal Database are proposed by Snodgrass et al. (1994). Temporal

XML predicates are proposed by Mansour (2003).

• Temporal Query. The condition might be a temporal XML query. Temporal

XML query language supports temporal aspects such as coalescing and tem-

poral predicates. Coalescing is a necessary operation that should be performed

to arrange temporal data before executing other temporal operations (Zaniolo

et al. 1997). Moreover, the other aspects of XML query, such as evaluation

44

2.4. COAX: A FRAMEWORK FOR COMPARING XML-BASED ECA RULE LANGUAGES

path expression, should be extended to support the temporal dimension. Tem-

poral XPath evaluation and temporal extensions for XPath have been studied

by Mansour (2003).

2.4.4.4 Action

The action is executed when the rule is triggered and the condition is true. The

action is classified into primitive action, data manipulation, data retrieval, and

advanced actions, such as time and application defined actions.

Primitive Actions. The primitive actions might be a data manipulation opera-

tions, insert, delete, update, and data retrieval.

Advanced Actions. In order to support the comprehensive rules that could be

used to describe real world situation, advanced actions might be needed, such as

time, composite and temporal, and application defined actions. Events and Actions

correlate to each other. Intuitively, an event causes an action of the evaluated rules,

and an action may be cause an event.

• Time Action. Although, the rule is triggered and the condition is evaluated

to true, however it might be needed to execute an action at certain time in

the future. That time may be absolute time, such as first of June, or relative

time, such as after the triggering time by 5 hours.

• Composite and Temporal Action. The rules, which have the same event

and condition clause, could be rewritten as one rule with composite conjugation

actions. Likewise, the rule might be specified set of actions. If these rules have

partial order, priorities, among them, the composite conjugation actions might

have a preceding among the actions, it called Temporal Actions. For example,

execute action A1 then after 5 hours execute A2 and A3.

45

2.4. COAX: A FRAMEWORK FOR COMPARING XML-BASED ECA RULE LANGUAGES

• Application Defined Action. The application defined action provides the

application ability to define the actions that could not be defined as primitive

actions, such as sending an email, SMS message or invoking an procedure or

web services. Invoking a procedure or web services could be used to support

the interaction among distributed applications that collaborate to achieve a

shared objective.

2.4.5 Execution Model

The execution model determines how a set of rules is treated at run time (Widom

and Ceri 1996; Paton 1999). Intuitively, the features of active database execution

model should be restudied according to XML data model. According to XML data

model, Bonifati (2001) studied some of these features, such as trigger granularity,

transition values.

2. Execution Model

Trigger Granularity
Set
Node

Transition Value
New
Old

Let Clause
Priority

Table 2.2: Execution model aspects

Trigger Granularity. The granularity determines the relationship between event

occurrences and rule instance. The same event E might be simultaneously happened

for different XML elements, then there are different event instances of E. If the

collection of these event instances are used together to trigger a rule, that is called

set-oriented granularity. However, If each single event instances is used to trigger a

rule, that is called node-oriented granularity. It means if N nodes are affected by

an operation, with node-oriented, N rule instances will be created, and with set-

oriented only one rule instance will be created. Comparing with trigger features in

46

2.4. COAX: A FRAMEWORK FOR COMPARING XML-BASED ECA RULE LANGUAGES

SQL3 (Kulkarni et al. 1999), a node-oriented trigger does not execute if the set of

affected nodes is empty. However, a set-oriented trigger always executes once, even

if the set of affected nodes is empty.

Transition Values. Both the trigger action and condition should be able to access

the current state of the database, the old and the new values of the affected nodes.

With set-oriented, the trigger condition or action may refer to the set of affected

nodes by means of two transition set, New-Set and Old-Set. The New-Set contains

the new values of the affected nodes. The Old-Set contains the old values of the

affected nodes. With node-oriented, the trigger condition or action may refer to

the affected node by means of two transition variables, New and Old. The New

contains the new values of the affected node. The Old contains the old values of

the affected node. Intuitively, with insert operation there is no old values, and with

delete operation there is no new values. Therefore, with insert operation, the Old

variable or Old-Set could not be used, and with delete operation, new variable or

New-Set could not be used.

Let Clause. Let clause could be used to define a variable, whose scope covers the

condition and the action (Bonifati 2001).

Priority. Priority is used to select a rule from a collection of the rules that is

fired at the same time. Priority might be user defined or system defined. In user

defined, user assigns integer number to a rule definition. In system defined, the

system determines the selected rule according to system criteria, such as creation

time of the rule.

47

2.4. COAX: A FRAMEWORK FOR COMPARING XML-BASED ECA RULE LANGUAGES

2.4.6 Management Model

Active database and active XML specify and execute rules individually. However,

the active part of the complex information should be represented as one unit of

cohesive and correlative rules, which generally could be seen as a set of ECA rules

and metadata. A cohesive and correlative event-based rules should be specified as

correlated rules that have certain objectives and metadata. The objective of certain

correlated rules R could be evaluated using a set of rules that triggered when the

rules of R are executed, and they query the execution of the rules of R. The rules,

which support the objective, are handled such as the other ECA rules. Evaluating

the objective of the business rules provide support in modifying the business rules.

The execution of these business rules means the execution of each rule. The

manipulation operations are one of the desired features of managing business rules.

A rule might be added, deleted or modified. Likewise, a rule might be activated or

deactivated. Querying the business rules is required to obtain information about

certain unit of business rules and their execution. Querying the business rules and

their execution provides ability to replay what happened during certain period.

Temporal query could provide important information for the users.

2.4.7 Application Dimension

2.4.7.1 XML-based ECA Rule Applications

Active rules could be used to support different types of applications ranging from

database internal applications to active behaviour that presents in many real-world

domains (Zoumboulakis et al. 2004; Bailey et al. 2005; Bry et al. 2006). In this

thesis, XML-based ECA Rule applications are classified into two categories, Web

Content Management and Business Rule Management.

48

2.4. COAX: A FRAMEWORK FOR COMPARING XML-BASED ECA RULE LANGUAGES

Web Content Management focuses on the applications of active rules that sup-

port classical XML management features, such as integrity constraints, web content

management, replication management, temporal XML management, XML security

management. The common features of the XML internal applications are that: 1)

the rules of these applications are system-generated and hidden to the user; and 2)

the generation process is fully automated.

Business Rule Management focuses on real world applications that need to react

to events which occur in the real world with tangible side effects on the database

contents. Business rules normally would be encapsulated in an application code.

One class of the business rules is alerters. The action of alerters rules consists of

sending message, such as Short Message Service (SMS).

2.4.7.2 Type of Information

The XML-based ECA rules might be targeted different kind of data, on which con-

ditions are evaluated and/or actions are performed. According to the applications,

the data source is determined. Intuitively, the kind of data source determines the

technologies that might be used to implement the XML-based ECA rules language.

XML repository might be a native XML repository or a relation database repos-

itory, which is used store XML document using database schema, such as (Florescu

and Donald 1999; Yoshikawa and Amagasa 2001), by converting from XML tree

structure to relational structure. XML document might be an XML View that

could be used to publish relational database. Business rules might be defined over

these XML views. The trigger implementation of these rules could be supported by

SQL.

Data Stream is a continuous, rapid, real-time and ordered flow of data or se-

quence of items (Golab and Tamer 2003; Babcock et al. 2002). Data stream is

49

2.4. COAX: A FRAMEWORK FOR COMPARING XML-BASED ECA RULE LANGUAGES

suitable when the data is changing constantly and there is no need to operate on

large portions of the data multiple times (Babu and Widom 2001). Some XML-

based ECA rule languages use XML format and aim at supporting active semantics

over relational database or Web pages.

2.4.8 Implementation Dimension

In order to store the rule specification within distributed environment, there are

different alternatives to determine where the specification should be stored. One

of the challenge for managing the ECA rules within distributed environment is

detecting the events that happen in remote external locations with consideration

to the differences in time and a possibility of a delay.

The condition might be access information that is not stored in the local site. It

is needed to provide distributed monitoring for the conditions. Within distributed

environment the actions could take place in an external entities

2.4.9 Implementation Approach

The relational database technologies is used to store and query XML database, such

as (Florescu and Donald 1999; Yoshikawa and Amagasa 2001; DeHaan et al. 2003;

Grust et al. 2004). Active database could be used in implementing XML-based

ECA Rule languages. XML technologies, such as DOM (Hors et al. 2000), could be

used to implement the XML-based ECA rule language.

XML technologies, such as XQuery and XML schema, might be integrated with

XML-based ECA Rule languages. These technologies could be used in one or more

of active XML paradigm, event, condition and action. That integration increase

the functionality and capabilities of the active XML languages. Web services could

be invoke by condition or action part of an active XML language. Web services

50

2.4. COAX: A FRAMEWORK FOR COMPARING XML-BASED ECA RULE LANGUAGES

could be used to support interaction among distributed application.

2.4.10 Comparing the XML-based ECA Rule Languages Using CoAX

The XML-based ECA rule languages are evaluated according to the CoAX frame-

work. Table 2.12 illustrates the summary of this evaluation. When the language

fully supports a certain feature, it is denoted as Yes. When a feature is not com-

pletely covered, it is denoted as Partially. Otherwise, it is denoted as No.

2.4.10.1 Knowledge Model

Event Active XQuery supports primitive events, insert, delete and update. How-

ever, it does not support the retrieving events and the advanced events. It supports

the event granularity because it uses XPath expression to determine the nodes that

are affected by a certain event.

ECA language for XML supports primitive events, insert and delete. However,

it does not support the update and retrieving events and the advanced events. It

supports the event granularity because it uses XPath expression to determine the

nodes that are affected by a certain event.

AXML implements the rules, which are used to support data integration, by

using web services. These web services are triggered according to specified time

interval, when AXML document is retrieved or queried, or whenever desired in-

formation are changed (Abiteboul et al. 2002). In order to support the later one,

AXML use the extension to XQuery proposed in (Tatarinov et al. 2001). AXML

supports the primitive events, insert, delete, update, retrieve, and time-based events.

It does not support the event granularity.

In Activeweb, the event clause represents only a user’s behaviour that could be

reading or accessing a web page from another one, on specific location, and in certain

51

2.4. COAX: A FRAMEWORK FOR COMPARING XML-BASED ECA RULE LANGUAGES

date. The events of Activeweb are application defied events, such as requesting for

reading a page from location A in time t.

Active XML Schemas supports different event types, primitive events, composite

events and application defined events. The event granularity, however, is not sup-

ported. ARML supports primitive events, insert, delete and update. However, it

does not support the retrieving events. It also supports composite events. However,

it does support the other advanced events and the event granularity. Table 2.3

shows the summary of the event support in the selected languages.

Active XML Features Active XQuery ECA XML AXML Activeweb AXS ARML
A.1. Knowledge Model
A.1.1 Event

Primitive

Insert Yes Yes Yes No Yes Yes
Delete Yes Yes Yes No Yes Yes
Update Yes No Yes No Yes Yes
Retrive No No Yes No Yes No

Advanced

Time No No Yes No Yes No
Composite and Temporal No No No No Yes Yes
Application Defined No No No Yes Yes No
External Defined No No No No No No

Event Granularity Yes Yes No No No No

Table 2.3: Event features.

Condition. Active XQuery supports the conditions on snapshot information as

a predicate and a query. However, the method and the condition on the temporal

information are not supported. In ECA language for XML, the condition might

be one or more simple predicates, XPath expressions, on snapshot information.

However, the query, method and also the condition on the temporal information

are not supported.

AXML supports the conditions on snapshot information as a predicate and a

query. The conditions could be encoded using XPath or XQuery. The conditions

might be sent to the web service as parameters. In Activeweb, the condition clause

deals only with user’s access history and aggregated information of all user’s access

history. User’s access history only consider the time at which the user accesses the

page, the period from when the user accessed last, or the pages and the links that

52

2.4. COAX: A FRAMEWORK FOR COMPARING XML-BASED ECA RULE LANGUAGES

the user has already accessed or navigated. Intuitively, the historical conditions in

Activeweb are partially supported for temporal predicate and temporal query.

Active XML Schemas expresses the condition using XSLT. Invoking a method

is not supported. ARML supports the conditions on the snapshot information as a

predicate, a query and a method. However, conditions on the temporal information

are not supported. Table 2.4 shows the summary of the condition support in the

selected languages.

Active XML Features Active XQuery ECA XML AXML Activeweb AXS ARML

A.1. Knowledge Model

A.1.2 Condition

Non-Temporal Information
Predicate Yes Yes Yes No No Yes
Query Yes Yes Yes No Yes Yes
Method No No No No No Yes

Temporal Information Temporal Predicate No No No Partially No No
Temporal Query No No No Partially No No

Table 2.4: Condition feature.

Action Active XQuery supports primitive actions, insert, delete, update, and re-

trieve. Moreover, it supports application defined actions. However, it does not

support composite and temporal actions. In ECA language for XML, there are two

kind of actions insert and delete actions. However, it does not support update,

retrieve and advanced actions, such as composite and temporal, and application

defined actions.

AXML inserts the sub-tree, which is generated by the triggered web services,

into the AXML document. However, the other primitive actions, such as delete or

update, and the advanced actions are not supported. With the action part of the

Activeweb, an application defined actions, such as add, hide and replace functions,

are applied for the contents in the page. The action part might perfore more

functions. Activeweb supports application defined actions and partially supports

the composite and temporal actions.

Active XML Schemas supports the primitive actions and application defined

actions. ARML supports primitive actions, insert, delete, update, and retrieve.

53

2.4. COAX: A FRAMEWORK FOR COMPARING XML-BASED ECA RULE LANGUAGES

Moreover, it supports application defined actions. However, it does not support

composite and temporal actions. Table 2.5 shows the summary of the action support

in the selected languages.

Active XML Features Active XQuery ECA XML AXML Activeweb AXS ARML
A.1. Knowledge Model
A.1.3 Action

Primitive

Insert Yes Yes Yes No Yes Yes
Delete Yes Yes No No Yes Yes
Update Yes No No No Yes Yes
Retrive Yes No No No No Yes

Advanced
Time No No No NO No No
Composite and Temporal No No No Partially No No
Application Defined Yes No No Yes Yes Yes

Table 2.5: Action features.

2.4.10.2 Execution Model

Active XQuery supports the different types of the trigger granularity, set-oriented

and node-oriented. ECA language for XML, AXML, Active XML Schemas and

ARML do not consider the trigger granularity features.

Active XQuery supports the different types of the transition value. With node-

oriented, the variable OldNode and NewNode denote the affected XML element in

its before and after state. With set-oriented, the variable OldNode and NewNode

denote the affected sequence of XML elements in their before and after state. ECA

language for XML, AXML, Activeweb and Active XML Schemas do not consider

the transition values feature. ARML supports the different types of the transition

value, new and old.

In Active XQuery, XQuery variable could be defined. The scope of this vari-

able covers the condition and the action clauses. ECA language for XML, AXML,

Activeweb, Active XML Schemas and ARML do not consider the let clause feature.

In Active XQuery, the user can assign a signed integer number as priority for

the rules. ECA language for XML does not provide the user defined priority. It

assumes that no two rules can have the same priority. AXML, Activeweb and Active

54

2.4. COAX: A FRAMEWORK FOR COMPARING XML-BASED ECA RULE LANGUAGES

XML Schemas do not support the priority. ARML provides ability to determine

the precedence between the rules. Table 2.6 shows the summary of the execution

model support in the selected languages.

Active XML Features Active XQuery ECA XML AXML Activeweb AXS ARML
A.1. Knowledge Model
A.2. Execution Model

Trigger Granularity
Set Yes No No No No No
Node Yes No No No No No

Transition Value
New Yes No No No No Yes
Old Yes No No No No Yes

Let Clause Yes No No No No No
Priority Yes Partially No No No Yes

Table 2.6: The execution model.

2.4.10.3 Management Model

The features of managing business rules are not fully supported by any of the

proposed languages. However, AXML document are syntactically valid XML doc-

ument. It could be stored, manipulated and queried using existing tools for XML.

However, the AXML document includes only the call for web services. The web

services are stored separately. Therefore, AXML partially supports the query and

manipulation for rules, which are implemented using web services. Only the calls

for the web services could be queried or manipulated.

Moreover, Activeweb and ARML rules are expressed in XML format that is

validated by using a DTD. The existing tools for XML could be used to query and

manipulate these rules. However, querying and manipulating ECA rules require

extra features that are directed to deal with the rules. Table 2.7 shows the summary

of the management model support in the selected languages.

Active XML Features Active XQuery ECA XML AXML Activeweb AXS ARML
A.3. Management Model
Specifying No No No No No No
Manipulating No No Partially Partially Partially Partially
Quering No No Partially Partially Partially Partially

Table 2.7: Managment aspects.

55

2.4. COAX: A FRAMEWORK FOR COMPARING XML-BASED ECA RULE LANGUAGES

2.4.10.4 XML-based ECA Rule Applications

Active XQuery and ECA language for XML focuses on the applications of web

content management and could be partially used to implement the applications of

the business rule management. AXML mainly supports data integration, which

is a kind of web content management application. Activeweb mainly supports web

personalization, which is a kind of web content management. Activeweb mainly sup-

ports applications of the business rule management. Active XML Schemas mainly

supports web content management. Table 2.8 shows the summary of the type of

the active XML applications support in the selected languages.

Active XML Features Active XQuery ECA XML AXML Activeweb AXS ARML
B.1. Active XML Applications
Web Content Management Yes Yes Yes Partially Yes No
Business Rule Management Partially Partially No No NO Yes

Table 2.8: Active XML applications

2.4.10.5 Type of Information

Active XQuery could be used with XML document and XML views over relational

database, as shown by Shao et al. (2004). ECA language for XML and AXML

deals with XML document. Activeweb targets the html documents and Web pages.

Activeweb targets the relational database. Active XML Schemas targets the XML

document. Dealing with XML data stream is not studied. Table 2.9 shows the

summary of the type of the information storage support in the selected languages.

Active XML Features Active XQuery ECA XML AXML Activeweb Active XML Schema ARML
B.2 Type of Information
XML Document Yes Yes Yes No Yes No
Data Stream No No No No No No
Relational DB No No No Yes No Yes
HTML Document No No No Yes No Yes

Table 2.9: Type of information

56

2.4. COAX: A FRAMEWORK FOR COMPARING XML-BASED ECA RULE LANGUAGES

2.4.10.6 Distributed Management Issues

Although AXS only discussed the distributed management issues, it studied only

the distributed event detection and storing the specification. AXS considers the

variation in time from site to site and also considers the delay that might happen

in sending the notification. In order to solve that, AXS attaches with the event

class instance three pieces of information: 1) the publication time, at which the

remote document publishes the event, 2) the delivery time, at which the event is

delivered, and 3) the occurrence time, at which the event is stored in the document.

Using these timestamps, a partial order can be established. The rule administrator

determines where AXS rules specifications should be stored. Table 2.10 shows the

summary of distributed management support.

Active XML Features Active XQuery ECA XML AXML Activeweb AXS ARML
C.1. Distributed Management
Storing No No No No Yes No
Event Detection No No No No Yes No
Condition Monitoring No No No No No No
Action Execution No No No No No No

Table 2.10: Distributed management

2.4.10.7 Implementation Approach

RDBM and XML technologies could be used to implement these languages. Active

XQuery supports the XPath, XQuery, and Web Services. ECA language for XML

is integrated with XPath and XQuery. AXML supports the XPath, XQuery, and

Web Services. Activeweb partially supports XLST and XML Schema, DTD. Active

XML Schemas supports XLST and XML Schema. ARML does not support any of

the XML technologies except DTD and web services. Table 2.11 shows the summary

of the implementation tools used in the selected languages.

57

2.4. COAX: A FRAMEWORK FOR COMPARING XML-BASED ECA RULE LANGUAGES

Active XML Features Active XQuery ECA XML AXML Activeweb AXS ARML
C.2. Implementation Tools
Using RDBMS Yes No No No No Yes

XML Technologies
XQuery Yes Partially Yes No No No
XML Schema No No No Partially Yes Partially
Web Services Yes No Yes No No Yes

Table 2.11: Implementaion tools

Active XQuery

Activeweb AXML

ECA Language for XML

Active XML Schema

ARML

I t Lacks :

A d v a n c e d f e a t u r e s f o r E C A

T e m p o r a l F e a t u r e s

M a n a g e m e n t F e a t u r e s

I t Lacks :

U p d a t e E v e n t

A d v a n c e d f e a t u r e s f o r E C A

T e m p o r a l F e a t u r e s

M a n a g e m e n t F e a t u r e s

It Lacks:
Features of Executive Model

It Lacks:
Features of Executive Model

It Lacks:
Features of Executive Model

It Lacks:
Integration with XML Technologies

C l a s s 2 : A p p l y i n g E C A p a r a d i g m

C l a s s 3 : E x p r e s s i v e A c t i v e X M L L a n g u a g e s

C l a s s 1 : S t a n d a r d i z a t i o n a n d U n i f i e d E C A R u l e s

Figure 2.14: The taxonomy of the XML-based ECA rule languages.

2.4.11 A Taxonomy for the XML-based ECA Rule languages

The XML-based ECA Rule languages are classified to three classes, As illustrated

in figure 2.14. The classification is made according to the number of the covered

features, partially and not covered features.

Class 1: Standardized and Unified ECA rules. This category standardizes

and unifies the ECA rule specification. The languages in this category do not deal

with XML data. However, they use XML format to represent the rules.

Class 2: Applying ECA Rule Paradigm. This category focuses on imple-

menting active XML solution to a certain problem rather than providing a complete

language that could be used to express ECA rules over XML database.

58

2.5. CHAPTER SUMMARY

Class 3: Expressive XML-based ECA Rule languages. This category in-

cludes languages that play the same role as high level SQL trigger standard and

languages in relational database. Active XQuery provides the most features that

are provided for SQL trigger in (Kulkarni et al. 1999).

2.5 Chapter Summary

This chapter has discussed shortcomings of the management provided to the com-

plex information. The most related research areas to this thesis research are the

workflow and computerised clinical guidelines. Both areas overlook the manage-

ment of the complex information as a distinct entity, which consists of active and

passive parts. The active part determines the recommended procedure that should

be taken in specific situations. The passive part determines the information that

describes these situations and other descriptive information.

This chapter has also classified the computerised clinical guidelines approaches

adopting the ECA rule paradigm and XML into 5 categories: 1) a category supports

clinical guidelines dissemination using XML; 2) a category utilizes the ECA rule

paradigm to provide a specification and execution support to the clinical guidelines;

3) a category represents clinical events using XML; 4) a category supports the

clinical events with the ECA rule paradigm; and 5) a category incorporates the

XML into ECA rule paradigm to support the clinical guidelines management. All

the approaches related to these categories focus on supporting the active part of the

complex information. These approaches overlook the need to specify and manage

the patient plan (complex information), which is produced by applying a specific

clinical guidelines to a particular patient. The patient plan is seen in the healthcare

domain, as one distinct entity.

In this chapter, the workflow approaches have been classified into three cat-

59

2.5. CHAPTER SUMMARY

egories, Business Process Management (BPM), Adaptive Workflow and Process

Mining. The process mining category is ignored because it is not strongly related

to this thesis. In the BPM, the focus of the workflow approaches is to model and

manage only the active part of the complex information as business processes. Sev-

eral languages for modelling these business processes have been proposed. These

languages are classified into graph and rule based languages. Most of the rule based

languages are supported using the ECA rule paradigm. The adaptive workflow ap-

proaches focus on exception handling and logical failures during workflow execution.

Instead, the complex information adaptation is to adapt the general specification,

which represents the domain knowledge, to a specific domain entity, such as patient,

before the execution.

This thesis work distinguishes from all these approaches by providing a generic

approach and framework for managing the complex information at a platform-

independent, application domain, and high level under a unified management envi-

ronment. The complex information are to be managed under a unified framework

that provides support to specify and formalize the complex information at a generic

level (skeletal plan), instantiate complex information instances, such as a patient

plan, using the formalized skeletal plan, execute these instances, keep the execution

history incorporated into each instance, manipulate and query all these pieces of

information at a high and declarative level.

A combination of ECA rule paradigm, XML technologies, and database sys-

tems is adopted as a method for realizing the author’s approach and framework for

managing the complex information. Therefore, the Author has developed a com-

parative framework, called CoAX. The CoAX framework considered the require-

ments demanded to support the complex information management to analyse the

XML-based ECA rule languages in details. This analysis aimed at determining the

60

2.5. CHAPTER SUMMARY

compatibility of these languages with the requirements of the complex information

management and shortcomings of these languages.

The main findings of CoAX are that the ECA rule paradigm has been incor-

porated into XML to provide: 1) support to Web content management, such as

in (Schrefl and Bernauer 2001; Abiteboul et al. 2002); 2) active behaviour support

over XML data, such as in (Bonifati et al. 2002; Bailey et al. 2002b); and 3) support

for sharing business rules among relational database, such as in (Cho et al. 2002).

These languages have several weaknesses, such as 1) they are not at a user domain

and high level; 2) they have lack of support to the temporal features required to

store and retrieve the execution history of the complex information; and 3) they

have lack of manipulation and query support.

61

2.5. CHAPTER SUMMARY

A. Knowledge Dimension
Features A-XQuery ECA XML AXML Activeweb AXS ARML

A.1. Knowledge Model
A.1.1 Event

Primitive

Insert Yes Yes Yes No Yes Yes
Delete Yes Yes Yes No Yes Yes
Update Yes No Yes No Yes Yes
Retrive No No Yes No Yes No

Advanced

Time No No Yes No Yes No
Temporal No No No No Yes Yes
Application Defined No No No Yes Yes No
External Defined No No No No No No

Event Granularity Yes Yes No No No No
A.1.2 Condition

Non-Temporal Information
Predicate Yes Yes Yes No No Yes
Query Yes Yes Yes No Yes Yes
Method No No No No No Yes

Temporal Information
Temporal Predicate No No No Part No No
Temporal Query No No No Part No No

A.1.3 Action

Primitive

Insert Yes Yes Yes No Yes Yes
Delete Yes Yes No No Yes Yes
Update Yes No No No Yes Yes
Retrive Yes No No No No Yes

Advanced
Time No No No NO No No
Temporal No No No Part No No
Application Defined Yes No No Yes Yes Yes

A.2. Execution Model

Trigger Granularity
Set Yes No No No No No
Node Yes No No No No No

Transition Value
New Yes No No No No Yes
Old Yes No No No No Yes

Let Clause Yes No No No No No
Priority Yes Part No No No Yes
A.3. Management Model
Specifying No No No No No No
Manipulating No No Part Part Part Part
Quering No No Part Part Part Part

B. Application Dimension
Features A-XQuery ECA XML AXML Activeweb AXS ARML

B.1. Active XML Applications
Web Content Management Yes Yes Yes Part Yes No
Business Rule Management Part Part No No NO Yes
B.2 Type of Information
XML Document Yes Yes Yes No Yes No
Data Stream No No No No No No
Relational DB No No No Yes No Yes
HTML Document No No No Yes No Yes

C. Implementation Dimension
Features A-XQuery ECA XML AXML Activeweb AXS ARML

C.1. Distributed Management for
Storing Yes Yes Yes No Yes No
Event Detection No No No No No No
Condition Monitoring No No No Yes No Yes
Action Execution No No No Yes No Yes
C.2. Implementation Tools
Using RDBMS Yes No No No No Yes

XML Technologies
XQuery Yes Part Yes No No No
XML Schema No No No Part Yes Part
Web Services Yes No Yes No No Yes

A-XQuery is a short version of Active XQuery and Part is a short version of Partially

Table 2.12: Comparison of the XML-based ECA rule languages using CoAX.

62

3
SIM: A Generic Approach and Framework for

Computerising the Complex Information

This chapter presents a generic approach and framework, called SIM, for managing

the complex information and a method based on Temporal Active XML database

for realizing the proposed approach and framework.

3.1 An Overview of the SIM Approach and Framework

This section presents an overview of the SIM approach and framework for the

complex information management. SIM stands for Specification, Instantiation, and

Maintenance of the complex information. In SIM, the complex information manage-

ment is achieved through modelling the complex information as one distinct entity

with different abstraction levels and managing this entity with multi-dimensional

management, as depicted in Figure 3.1.

63

3.1. AN OVERVIEW OF THE SIM APPROACH AND FRAMEWORK

Figure 3.1: SIM: A generic approach and framework for computerising the Complex
Information.

The SIM approach aims at modelling the complex information as one distinct en-

tity, which is represented as plan that combines the active and passive information.

This plan has a general specification (skeletal plan), from which an entity-specific

plan is generated. The SIM approach models the complex information at different

abstraction levels. For example in the cancer tumor disease management, the SIM

approach could be used to produce general medical plans (skeletal plans), from

which a patient plan (entity-specific plan) will be generated to suit a particular

patient. These both kind of plans represent complex information at different ab-

straction levels, and should be maintained over the time as the patient state is

changing.

The SIM framework aims at managing the complex information through three

dimensions: specification, instantiation and maintenance. Specification is the formal

definition of the complex information at a generic level (skeletal plan). Instantiation

is a refinement for a specific skeletal plan to suite a particular entity. Maintenance

is the work done to keep the complex information in a proper condition, which

means:

64

3.1. AN OVERVIEW OF THE SIM APPROACH AND FRAMEWORK

• Execution. The complex information is executed as soon as a change of interest

happens;

• Manipulation. The complex information is subject to the same manipulation

operations, as other information, plus special operations, such as activate, de-

activate, terminate and fire. Through the execution and manipulation, the ex-

ecution history is logged in the complex information itself as an object growing

over time;

• Query. As other information, the complex information is subject to the same

queries plus special queries for recovering the complex information at any time

point and review the complex information evolution over a time period;

• Information Mining. Analysing and comparing the complex information is to

produce new, better and enhanced domain knowledge. That leads to better

skeletal plans for a particular activity; and

• Sharing and Distribution. Most of the modern application domains have a dis-

tributed architecture, thus leading to domain users demanding the support for

remote management for the complex information, which represents a successful

practice in a specific situation for a specific entity.

A Human-Computer Interaction support is a common base for the three planes

of the framework. The user interface to the three planes should be based on under-

standing the relationships among users’ goals and objectives, their personal capa-

bilities, the social environment, and the designed artifacts with which they interact.

Human-Computer Interaction provides bi-directional support between the users and

the system in order to support the different abstraction levels of the complex infor-

mation management.

65

3.2. THE SIM APPROACH TO MODELLING THE COMPLEX INFORMATION

3.2 The SIM Approach to Modelling the Complex Information

This section presents the SIM approach that provides a conceptual model for the

complex information and its life-cycle.

3.2.1 The Skeletal Plan and Entity-Specific Plan

The SIM approach aims at providing a conceptual model for the complex informa-

tion at an application domain level with different abstraction levels. The complex

information is classified into skeletal plan and entity-specific plan, as illustrated in

Figure 3.2.

Skeleta l Plan Enti ty-Specif ic Planis Generated from1 0..*

Complex In format ion

Figure 3.2: A class diagram for the relationship between the skeletal plan and the
entity-specific plan.

The skeletal plan is a conceptual framework or model for the complex information

at a generic level. As a logical framework, the skeletal plan defines the relationship

between it’s information members. The skeletal plan changes when necessary in

order to be suitable for a particular organization and/or environment. The entity-

specific plan is an instance plan generated from a skeletal plan for a particular entity.

consequently, the entity-specific plan represents a real case for a particular skeletal

plan. Table 3.1 provides a comparison between the skeletal plan and entity-specific

plan.

The entity-specific plan is a conceptual model for the complex information at an

entity-specific level. An entity-specific plan realizes its behaviour and state from its

skeletal plan. The skeletal plan is static in the sense that it is almost fixed before,

66

3.2. THE SIM APPROACH TO MODELLING THE COMPLEX INFORMATION

Skeletal Plan Entity-Specific Plan
static. dynamic

contains one or more entity-specific plans belongs to only one Skeletal plan
unlimited lifespan limited lifespan

Table 3.1: A comparison between the skeletal plan and entity-specific plan.

during, and after the execution and does not have a state transition. However, the

entity-specific plan is dynamic in the sense that it may undergo significant changes

during the execution and it does have state transitions. An entity-specific plan

should belong to only one skeletal plan. However, the skeletal plan might contain

many entity-specific plans. An entity-specific plan has a limited lifespan. Entity-

specific plans during their lifespan are created and eventually completed, terminated

and/or suspended.

The SIM approach emphasizes the organisation of the complex information as

one distinct entity. The complex information is

• a skeletal plan that 1) represents a general structure specified according to

domain knowledge; and 2) deals with a particular activity; or

• an entity-specific plan that is 1) generated from a skeletal plan according to

the users preferences and interest; 2) executed, as soon as a change of interest

happens to the domain information; 3) a real case study of applying a particular

skeletal plan.

The complex information, as one distinct entity, is subject to 1) manipulation

and query as a first class object, not only as row data; 2) a distributed management

that supports the remote users and distributed applications.

67

3.2. THE SIM APPROACH TO MODELLING THE COMPLEX INFORMATION

3.2.2 A Conceptual Model for the Complex Information

The conceptual model of the complex information is an abstract construct that

represents the complex information, with a set of information components and a

set of logical relationships between these components, as depicted in Figures 3.3.

The model in this sense is constructed to organise of the complex information as one

distinct entity. The complex information consists of active part and passive part.

The active part represents the way in which an activity should behave and react

in a particular situation. The information component under this part is expressing

actions rather than states of being. The passive part is subject to changes without

taking any action.

Complex In format ion

Domain In format ionKnowledge Act ion Evolut ion History Descr ipt ive In format ion

is monitored by

1..*1..*

logs the execution or changes of

1..*1..*

Act ive Part Passive Part

Figure 3.3: An UML class diagram for the complex information conceptual model.

Figure 3.3 illustrates an UML class diagram model for the complex information

according to the nature of its information components. The active part is modelled

by the knowledge action component that determines the reaction that should be

taken as a response to a specific situation. The initial step for modelling the active

part is to describe the primitive reactive decision logic for a specific situation. E.g. if

a service is unavailable (event) and it is not maintenance time (condition) then send

a notification (action). This primitive reactive decision logic is defined as an Event-

Condition-Action rule. Therefore, the knowledge action component constitutes the

68

3.2. THE SIM APPROACH TO MODELLING THE COMPLEX INFORMATION

activity reactive behaviour as modularized sets of ECA rules.

The passive part is expressing states of being rather than actions. Its compo-

nents are domain information, evolution history, and descriptive information. The

domain information component models the situations, to which the knowledge ac-

tion component reacts. Situations are represented through terms, whose value are

monitored by the knowledge action component, e.g. if term “service” becomes un-

available, the rest of the rule will be evaluated. The evolution history component

tracks changes to the initial complex information, dependencies, and goals, e.g. the

primitive reactive decision logic might be changed over time. Moreover, the execu-

tion of the primitive reactive decision logic is also logged by the evolution history

component. The descriptive information component provides didactic information,

such as purpose, explanation, keywords, citation, and links, and release information,

such as version, institution, author, and specialist.

Components Skeletal Plan Entity-Specific (ES) Plan
Knowledge Action platform-independent platform-specific

Domain Information domain-specific and computer-specific and
entity-independent entity-dependant

Descriptive Information specification-oriented execution-oriented
Evolution History logs modification logs modification and execution

Table 3.2: A comparison between the complex information components.

The four components of the complex information, knowledge action, domain in-

formation, evolution history, and descriptive information, exist in both the skeletal

plan and entity-specific plan, but at different abstraction levels, as depicted in Table

3.2. In the sense that the entity-specific plan is generated from a skeletal plan, the

different abstraction levels are appeared.

The knowledge action component in the skeletal plan is a platform-independent,

which means the rules should be formalized as platform-independent statements

that could be directly mapped into executable statements of a software system.

69

3.2. THE SIM APPROACH TO MODELLING THE COMPLEX INFORMATION

However, the knowledge action component in the entity-specific plan is a platform-

specific, which means the rules are statements in a language of a specific execution

environment.

The domain information component in the skeletal plan is a domain-specific,

which means the terms representing specific situations are defined using the do-

main terminologies. In the entity-specific plan, these terms should be mapped into

computer interpretable terms, such as data items of a database schema. Moreover,

in the skeletal plan the domain information component refers to attributes without

values, but in the entity-specific plan, the domain information component refers to

attributes with values.

The descriptive information component in the skeletal plan is a specification-

oriented to provide a descriptive information regarding the specification and for-

malization process, such as information about the author. However, in the entity-

specific plan, it provides a descriptive information related to the execution, such as

person in charge of the ES plan, and a specific entity, to which the ES plan is gener-

ated. The evolution history component, in the skeletal plan, logs the modification

made to the skeletal plan. However, in the entity-specific plan, the modification

made to ES plan’s components and the execution history of the knowledge action

component.

3.2.3 The Complex Information Life-Cycle

In SIM approach, the complex information is either a skeletal plan; which is static

in the sense that it does not have a state transition; or an entity-specific (ES) plan;

which is dynamic in the sense that it has state transitions. Consequently, this

section focuses on the state transitions of the ES plan, as shown in Figure 3.4.

The state transitions of the ES plan are predefined and context-sensitive. The

70

3.2. THE SIM APPROACH TO MODELLING THE COMPLEX INFORMATION

executed

generated

registered

disabled

terminated

completed

re-registered

enabled

[n t imes]

A B

Figure 3.4: the life-cycle of A) an entity-specific (ES) plan and B) an ES plan rule.

context-sensitive means that the ES plan’s state is affected by changes in the appli-

cation information, such as increasing the patient temperature. These state tran-

sitions are applied to the ES plan and its knowledge action component, which

represents sets of modularized ECA rules.

When the ES plan is generated from the skeletal plan, the ES plan and its sets

of rules go into generated state from the initial state as shown in Figure 3.4. In

generated state, the ES plan is not yet a subject to execution, it should be firstly

authorized to be then registered. So, it become subject to be executed. The ES

plan is authorized by an domain expert, who is in charge of the ES plan to domain

entities. Once it is authorized, the ES plan and its sets of rules go into the registered

state. In the registered state, all rules of the ES plan are installed in the system.

In this state, no rule has fired yet.

On the first occurrence of an event of interest to one or more of the ES plan’s

rules, the ES plan goes into the active state, and one or more rules are fired and

go into the executed state. The active state includes two sub-states, waiting and

executing, as shown in Figure 3.4.A. In the waiting state, all ES plan’s rules are

waiting for events that are of interest to them. In the executing state, at least one

rule is being executed. Once the rule execution completes, the ES plan returns to

71

3.3. THE SIM FRAMEWORK FOR MANAGING THE COMPLEX INFORMATION

the waiting state. Between the waiting and executing states of the ES plan, the

rules are considered to be executed, as shown in Figure 3.4.B . The executed state is

a state for the rules. On this state, a rule is being executed and after the execution

the rule was waiting to the next event occurrence of interest. The ES plan might be

transited from active state to inactive, terminated, or completed states, as shown

in Figure 3.4.A.

The inactive state means that all the ES plan rules become disabled. The ES

plan might be transited from inactive state to active state. That means enabling the

rules of the ES plan. The terminated state means that all the ES plan rules removed

from the system, but are not removed from the ES plan itself. The completed state

of a rule means that the execution of the rule successfully done and the rule will not

be subject to any further execution. When all the enabled rules in the ES plan are

completed that means the ES plan goes into the completed state. The completed

state of the ES plan could be determined by a domain user, who is in charge of the

ES plan. After the ES plan had become in the completed state, all the ES plan

rules are removed from the system. It could be decided to re-register the ES plan

again, after it had been terminated or completed.

3.3 The SIM Framework for Managing the Complex Information

This section presents the SIM framework for managing the complex information.

The SIM framework is a generalized and enhanced version of the SpEM framework

developed in an early stage of previous research by Dube (2004). The complex

information goes through three phases: Specification to specify the skeletal plans;

Instantiation to instantiate the entity-specific plans; and Maintenance to main-

tain the entity-specific plan during its life-cycle. The SIM framework consists of

three planes, specification, instantiation, and maintenance planes with the human-

72

3.3. THE SIM FRAMEWORK FOR MANAGING THE COMPLEX INFORMATION

computer interaction support as a base, as illustrated in Figure 3.1. The rational

and functionality of each plane are discussed in the following subsections.

3.3.1 The Specification Plane

The specification plane provides support for capturing the domain knowledge, from

which the complex information at the level of skeletal plan is defined. This plane

contains two main functions, Capturing and Formalisation.

3.3.1.1 Capturing

The capturing process aims at gathering domain knowledge as a pre-process to

specify the complex information at a generic level as skeletal plans. This process

involves the formalization of human knowledge regarding a certain activity to build

a system that can guide the end user through performing a specific activity. The

domain knowledge is provided in non-computer-interpretable form. That is a major

obstacle to exchange domain knowledge among organisations and/or individuals. A

standard computer-interpretable form is required to overcome this obstacle. There

is a need to computer-based tools assisting in capturing domain knowledge. These

tools are intermediator between the real-world and the computer-world.

3.3.1.2 Formalisation

In order to effectively support the SIM approach to model the complex information

as skeletal plans, the specification plane must provide a computer-interpretable

model for expressing the skeletal plans. This model supports automatic verification

and validation of the complex information. Different methodologies, such as process

based or event-driven based, could be used as a primitive represent ion of the active

part of the complex information. Here, the primitive represention is following the

Event-Condition-Action (ECA) rule paradigm.

73

3.3. THE SIM FRAMEWORK FOR MANAGING THE COMPLEX INFORMATION

The specification plane formally specifies the skeletal plan according to the con-

ceptual model of the complex information discussed in the previous section. There-

fore, the model of the skeletal plan should take into account the features of the

skeletal plan, such as domain-specific and platform-independent.

3.3.2 The Instantiation Plane

This plane aims at refining the skeletal plan to suit an organization and generating

entity-specific plans as the following.

3.3.2.1 Customisation

The customisation process of the complex information as skeletal plans is one of

the most valued activities. It includes filtering, synthesising, and presenting the

skeletal plans so that they are directly relevant to the client. Professional services

firms generate an enormous amount of high-value domain knowledge, however, the

final step of customizing this domain knowledge to meet the client specific situation

arguably adds the greatest value to the process of incorporating domain knowledge

into organization activities as complex information.

According to the SIM framework, the customisation is a process of adapting the

skeletal plan to meet the customer‘s, organisation‘s, and/or environment specific

needs. The customisation process provides support to the skeletal plan to be an

adaptive template. Therefore, the SIM framework provides flexibility for the cus-

tomisation process. Because the SIM framework provides support to the deviation

from standards, based on which the skeletal plans are defined.

The customisation of skeletal plans provides the ability to balance the uniqueness

of an organisation with domain knowledge that is in common with other organisa-

tions. This process required assisting tools that is able to formalize the needs of the

74

3.3. THE SIM FRAMEWORK FOR MANAGING THE COMPLEX INFORMATION

organization; to identify how far the skeletal plans is compatible with these needs;

and to automatically adapt the skeletal plan to these needs.

3.3.2.2 Instantiation

The instantiation is the process of generating an entity-specific plan from the skele-

tal plan. The instantiation process should provide a model for the entity specific

plan. This model should take into account the features distinguishing the entity

specific plan from the skeletal, such as platform- and entity- specific. This pro-

cess considers the information of specific entity and maps the four components of

a skeletal plan into the corresponding component in the entity-specific plan at low

level of details.

3.3.2.3 Realization

The realization is the process of activating the entity-specific plan in reality. Af-

ter understanding and reviewing the entity-specific plan clearly and distinctly, the

entity-specific plan is authorized to be in the condition of being in operation or

service. This condition is achieved by installing or registering the knowledge action

component in the system managing the domain entities. The realized entity-specific

plans are maintained by the maintenance Plane.

3.3.3 The Maintenance Plane

The maintenance plane provides the means, which are needed to support life-cycle

of entity-specific plans and keep the complex information in a functional state. That

requires several functionality such as execution, manipulation, query, information

mining, and distribution management.

75

3.3. THE SIM FRAMEWORK FOR MANAGING THE COMPLEX INFORMATION

3.3.3.1 Execution

The entity-specific plans are executed as soon as a change of interest happens.

That requires a computer-based execution model, which depends on the active part

representation model provided by the specification plane. The Event-Condition-

Action (ECA) rule paradigm is adopted as a representation model for the primitives

of the active part of the complex information. In the instantiation process of the

entity-specific plan, the knowledge action component of the skeletal plan is mapped

into platform-specific that is amenable to execution by using a specific execution

environment, such as specific active DBMS.

The instantiation and realization processes are a pre-process for the execution.

The instantiation process translate the primitive rules of the knowledge action com-

ponent into database triggers. In the realization process, these triggers are regis-

tered in the system. That means the core part of the adopted execution model

is managed by the active database. That poses major challenges for the active

database, which provides a basic implementation of the ECA rule paradigm. That

implementation has a number of limitations in its support of the ECA rule compo-

nents (Ceri et al. 2000).

3.3.3.2 Manipulation

The manipulation is a process that provides the operations against the complex

information, skeletal plans and entity-specific plans. The complex information is

subject to same manipulation operation, as other kind of information. These op-

erations are add, delete, and modify. However, these operations are performed at

high-level of abstraction that deals with the complex information in the terms of its

components. The life-cycle of the complex information and specially entity-specific

plan are to be supported by several manipulation operations, such as activate,

76

3.3. THE SIM FRAMEWORK FOR MANAGING THE COMPLEX INFORMATION

deactivate, terminate and fire. For example, the deactivate operation transit the

entity-specific plan from the active state to the inactive state.

3.3.3.3 Query

The query is a process that provides the ability to query against the complex in-

formation, skeletal plans and entity-specific plans. The complex information is

subject to same queries, as other kind of information. Queries may be issued in or-

der to obtain information about skeletal plan dealing with specific situations and/or

entity-specific plan of specific entity.

These queries are issued at a high-level of abstraction and might combine entity-

specific information as well, such as what are the plans of patients (the domain

entity here is a patient), whose ages are greater than 50 years old, and whose blood

pressure is high? What are the skeletal plans dealing with medulloblastoma, which

is a tumor that arises from embryonic cells in the inner part of the brain, and its

diagnosis depends on the type and location of the tumor? Querying the skeletal

plans is important to support the functionality of the instantiation plane by directly

access specific skeletal plan.

In addition to these kind of queries, the entity-specific plan is subject to replay

queries for recovering the plan at a specific time point and review the plan evolu-

tion over a time period. The replay query support provides a motion picture that

depicts the evolution of the complex information. The evolution history component

represents several information scenes. The ability of replaying these information

scenes enhances the reporting and decision-support capabilities in the organization.

The replay queries provides support to find out information, such as the time at

which the entity-specific plan became active, at which a rule is executed, why it is

executed, what is the action made, and how many times a rule is executed. An ex-

77

3.3. THE SIM FRAMEWORK FOR MANAGING THE COMPLEX INFORMATION

ample of special query is: replay the patient plan of patient X over the time period

from T1 to T2. These special queries (replay queries) require support for querying

the evolution history component of the entity-specific plan.

3.3.3.4 Information Mining

The information mining targets the automatic discovery of information from an

evolution history component of the entity-specific plan, which represents a real case

study. This discovered information can be used to deploy new domain knowledge or

as a feedback tool that helps in auditing, analysing and improving already enacted

domain knowledge.

The information mining is helpful because it gathers information about what is

actually happening according to an evolution history component of several entity-

specific plans, and not according to what people think that is happening during

the activity. The starting point of any information mining is an evolution history

component and the ability of querying it. From an evolution history component, one

can find out information about the time at which the entity-specific plan became

active, at which a rule is executed, why it is executed, what is the action made, and

how many times a rule is executed. Therefore, the information mining provides an

objective picture that depicts possible situations in which actions are performed in

a predefined order.

3.3.3.5 Sharing and Distribution

The sharing and distribution provide interoperability support for managing the

complex information in highly heterogeneous, widely distributed, and fragmented

context. This context brings together a geographically dispersed stockholders, who

are participating in the management process of the complex information. The shar-

ing and distribution support require an infrastructure components in a platform-

78

3.3. THE SIM FRAMEWORK FOR MANAGING THE COMPLEX INFORMATION

independent and technology-neutral way.

Sharing the complex information refers to exchange information among and de-

liver it to people in need. Regarding the skeletal plan, information sharing facilitates

the domain knowledge dissemination. The major obstacle for sharing the informa-

tion of entity-specific plan is that that sharing violate the privacy of the entity.

For example, sharing a patient plan violates the patient privacy. Therefore, in the

process of sharing the entity-specific plan, all the entity privacy must be preserved.

The distribution management provides support for distributed execution, manip-

ulation, and query. The distributed manipulation and query should overcome the

heterogeneity fragmentation of the information. The distributed execution requires

distributed event detection, condition evaluation and action. The time difference

between geographically dispersed organization and users should be taken into ac-

count in the executing time-based rules.

3.3.4 Human-Computer Interaction Support

A Human-Computer Interaction support is required to be provided for the three

planes of the framework. It is difficult to the end users to understand and review

the skeletal plans and the entity-specific plans at the low level. The nature of the

complex information as a huge amount of advanced information should be consid-

ered as an essential factor for the user interface in two directions. The first direction

is to translate from a natural language, in context of domain knowledge, into a for-

mal specification that the system can process further. The second direction is to

translate the complex information from physical and low level representation into

a human readable and high level representation model.

79

3.3. THE SIM FRAMEWORK FOR MANAGING THE COMPLEX INFORMATION

3.3.5 Complex Information Kernel

The core of the SIM framework is the complex information kernel, which are the

the integrating factor and communication among the three planes. The complex

information kernel provides a storage and retrieval support for the complex infor-

mation. In this work, the DBMS and XML technologies are utilized as a base for

the complex information kernel.

3.3.6 The SIM Framework Requirements

A high-level declarative language, which unifies the management of the three planes,

is the main requirement for the SIM framework. The language should:

• provide a computer-interpretable model for the complex information as it is

presented in the SIM approach. This computer-interpretable model supports

at the same time the skeletal plan and the entity-specific plan and preserve

their features;

• support the specification plan through incorporating domain knowledge as

skeletal plans;

• provide support for customizing the skeletal plan and instantiating and realiz-

ing the entity-specific plan;

• provide a suitable mechanism for executing the entity-specific plan;

• provide both traditional and advanced manipulation operations and queries

capabilities for the complex information; and

• be an interpretable language that is platform-independent

In order to support the human-computer interaction base, it is required to pro-

vide the ability of translating 1) the human language into the high-level declarative

80

3.4. SCOPE AND LIMITATIONS

language and 2) the computer-interpretable model complex information into a hu-

man readable model. It is also required to provide analytical language for mining

the complex information.

Due to the distributed management nature, several modifications should be pro-

vided to the execution, manipulation and query of the complex information, such

as 1) supporting the remote manipulation and query, and 2) providing a distributed

detection for the situation of interest to the complex information.

3.4 Scope and Limitations

The scope of this thesis is the development of the SIM approach and the main

management aspects provided in the SIM framework. These management aspects

are:

• in the specification plane, the formalization of domain knowledge as skeletal

plan. Capturing domain knowledge and its required management aspects are

out of the scope of the thesis. As well As, the evolution history for the skeletal

plan is not considered in the scope of the thesis.

• in the instantiation plane, the instantiation and realization of the entity-

specific plan. The Customisation management aspects are out of the scope of

the thesis.

• in the maintenance plane, the execution of the entity-specific plan, manip-

ulation and query the complex information. The infrastructure for analysing

and distributing the complex information is considered in this research. How-

ever, the management aspects for the information mining and distribution are

out of the scope of the thesis. As well as, the human-computer interaction

support are also out of the scope.

81

3.5. THE ROLE OF TEMPORAL ACTIVE XML DATABASE IN SUPPORTING SIM

The focus of the thesis is to develop a unified language that facilitates the formal-

ization, instantiation, execution, manipulation, and query the complex information

with providing an infrastructure for the other management aspects stated under the

SIM framework. The extensions required to the technologies adopted as a method

for developing the framework and language are within the scope of the thesis.

The unified language supporting the SIM approach and framework is restricted to

be applied to reactive applications that monitor events of interest to domain users,

and respond to changes in situations by issuing alerts, reminders, requests, and/or

observations to the domain user. The language provides the necessary information

needed to make informed decisions. SIM combined with the unified language is

evaluated using a proof-of-concept system utilized to manage a clinical case study

of an health-care reactive application.

3.5 The Role of Temporal Active XML Database in Supporting

SIM

Realizing SIM as a unified approach and framework for managing the complex

information requires enabling technologies that: 1) can be seamlessly integrated and

easily incorporated; 2) support the monitoring process; 3) support temporal data

management; 4) provide interpretable support; 5) provide an integration support

with the systems managing an application domain information.

A Temporal Active XML database is an XML database that includes active rules,

in the form of ECA rules, and built-in time aspects for both XML data and ECA

rules, e.g. temporal ECA rule model, a temporal data model and a temporal version

of a query language. The XML database provides storage and retrieval support for

XML data. The modern Database Management Systems (DBMSs), such as Oracle,

82

3.5. THE ROLE OF TEMPORAL ACTIVE XML DATABASE IN SUPPORTING SIM

DB2 and SQL Server, provide a basic and primitive support for temporal data man-

agement, ECA rule paradigm and XML technologies. The modern DBMSs provide

ECA rule-processing capabilities that supports monitoring and alerting processes.

The provided ECA rule-processing capabilities are needed to be extended in order

to deal with real-world situations. The temporal support provided by the modern

DBMSs is very basic, because the modern DBMSs did not provide a temporal data

model for storing and retrieving the history. The modern DBMSs are widely used

in managing information of several application domains. Consequently, the Tem-

poral Active XML database, as enabling technologies for information management,

satisfies the five conditions stated in the previous paragraph.

The Temporal Active XML database is utilized here to support the SIM ap-

proach of modelling the complex information. It is adopted to play a crucial role in

providing the base support for the three planes of the SIM framework and its base of

Human-Computer interaction. The benefits of this method include: 1) the flexibility

of managing the complex information as one unit (document), and the easy inte-

gration of the complex information management system into other systems. This

method facilitates the development of the proposed complex information model and

a management language and a decentralized system for the complex information.

Based on this method a language, called AIM, is developed as a high-level lan-

guage that required to facilitate the management aspects of the SIM framework.

Chapter 4 discusses the details of the AIM language, which:

• is an XML-based language and enjoys the general benefits of XML, such as

parser reuse, incorporation into Web services, query generation;

• has an ECA- and XML- based specification component language, called AIM-

SL, which formalizes the complex information into interpretable format;

83

3.6. CHAPTER SUMMARY

• has a high level XQuery-based component language, AIMQL, that provides

support to manipulate and query the complex information;

• provides a physical model for the complex information based on the temporal

active XML;

• provide an execution mechanism based on translating ECA rules represented

in the skeletal plan into triggers stored in the entity-specific plan.

Intermediate models for extending the modern DBMSs to support the temporal

active XML method in a real-world context are developed. These models mainly

extend the DBMSs to support temporal ECA rules and temporal XML model.

These models are utilized by a proof-of-concept system, called AIMS, to implement

the AIM language.

3.6 Chapter Summary

This chapter has presented the SIM approach and framework for managing the com-

plex information. The SIM approach focuses on modelling the complex information

at different abstraction levels (generic level and entity-specific level). The skeletal

plan refers to the complex information at the generic level. The entity-specific plan

refers to the complex information at the entity-specific level. The skeletal plan is to

be instantiated to suite a particular entity and an entity-specific plan is generated.

The SIM approach provides a conceptual model for the complex information and

differentiates between the skeletal plan and the entity-specific plan.

The SIM framework provides comprehensive management aspects for manag-

ing the complex information. In the SIM framework, the complex information

goes through three phases, specifying the skeletal plans, instantiating entity-specific

plans, and then maintaining these entity-specific plans during their lifespan. Con-

84

3.6. CHAPTER SUMMARY

sequently, these management aspects are classified into three planes, specification,

instantiation, and maintenance. The specification plane includes the capturing and

formalizing aspects. The instantiation plane includes the customisation, instantia-

tion, and realization aspects. The maintenance planes includes the execution, ma-

nipulation, query, information mining, and sharing and distribution aspects. The

base of the three planes is a human-computer interaction support.

The management aspects capturing, customisation, information mining, sharing

and distribution and the human-computer interaction support are outside the thesis

scope. However, providing an infrastructure for these management aspects is within

the scope of the thesis.

The work done in this thesis is restricted to complex information within reac-

tive applications with a support for the decision making process by providing the

necessary information required for such a process. This information are provided

through alerts and/or reminders. The thesis is unique in utilizing the temporal ac-

tive XML database, which is a database providing support for ECA rule and XML

with temporal data management, as a method for implementing the SIM approach

and framework.

85

4
AIM: An Advanced Information Management

Language for the Complex Information

This chapter presents a langauge, called AIM, for supporting the main manage-

ment aspects of the SIM approach and framework. AIM is a complex information

specification and query language. AIM is an acronym for Advanced Information

Management. The purpose of developing AIM is to facilitate the SIM approach

and framework by supporting the complex information specification, instantiation,

manipulation, and query.

The AIM language consists of three main components; specification component,

instantiation model and query component. The specification component provides a

computer-interpretable model and language, called AIMSL, for specifying the skele-

tal plan. The AIM language supports the instantiation and realization processes

of the SIM framework by providing a computer-interpretable model, called ESP-

Doc, for the entity-specific plan. This model combined with a database triggering

86

4.1. THE AIM SPECIFICATION COMPONENT

mechanism supports the entity-specific plan execution. The query component pro-

vides the AIM Query Language (AIMQL) that is used to manipulate and query the

complex information (skeletal plan and entity-specific plan). The AIM language is

a high-level, declarative and XML-based language. The AIM grammar syntax is

defined using the XML Schema (van der Vlist 2002), and the AIM specifications

are represented as XML document.

The chapter is organized as follows: Section 4.1 presents the AIM specification

component that provides a specification language, called AIMSL; Section 4.2 dis-

cusses the AIM ESPDoc model for the entity-specific plan, and the AIM execution

mechanism; Section 4.3 presents the AIM query component that supports manipu-

lation and query processes; and Section 4.4 summarises the chapter.

4.1 The AIM Specification Component

The AIM specification component provides a specification language (AIMSL) for

formalizing the domain knowledge as skeletal plans defined by the SIM approach in

Chapter 3. AIMSL is an acronym for AIM Specification Language. AIMSL is the

second stage of an ongoing work that starts with PLAN language (Wu and Dube

2001), which is based on the event-condition-action (ECA) rule paradigm.

The PLAN specification is represented in a plain text. Querying and manipulat-

ing a text file is limited to specific functions, such as find and replace functions. It

is very important to provide query and manipulation support for the domain knowl-

edge specification. In order to provide such support, TOPS (Dube 2004) maps the

PLAN specification plain text into a database schema to be stored and managed us-

ing the DBMS. However, mapping the PLAN specification into relational database

schema decomposes the specification into several tables. Therefore, it is not easy

to deal with the specification as one document, as it is in the real life. Moreover, it

87

4.1. THE AIM SPECIFICATION COMPONENT

is not easy to exchange the specification between heterogeneous systems. As well

as, representing the specification at different levels of abstractions is not supported

in the PLAN language.

AIMSL enhanced the PLAN language mainly by enriching the ECA rule com-

ponent, and extended the PLAN language to be an XML-based language. AIMSL

overcomes the plain text limitations of the PLAN language by utilizing the XML

Schema and XML langauge to represent the AIMSL grammar and specification,

respectively as discussed in the following sub-sections.

Protocol Library

Name Category

ID

SchedulesHeader Protocol Rules

Protocol

Name

Global Rules

Schedule Rules
Header

Rule

Schedule

ID

ID

releasedInfo didacticInfo

institutionversion author specialist validation linksexplanationpurpose keywords citation

complex element

simple element

attribute

sequence

choice

reference

edge

Figure 4.1: The AIMSL model based on XML Schema for the skeletal plan defined
by the SIM Approach.

4.1.1 The AIMSL Model

AIMSL utilized the conceptual model of complex information provided by the SIM

approach to provide a computer-interpretable model for the skeletal plan. Figure

4.1 depicts the AIMSL model that preserves the four components of the conceptual

model of complex information, knowledge action, domain information, evolution

history, and descriptive information. The knowledge action is implemented through

88

4.1. THE AIM SPECIFICATION COMPONENT

the schedule element, which is a modularized set of rules. The model of AIMSL

follows the event-condition-action (ECA) rule paradigm. Figure 4.2 illustrates the

AIMSL ECA rule paradigm.

Rule

ID

Name Properties

BodyHeader

Rule

Scope

Rule

Type
Priority

Event
Condition

Action

absolute

Time

relativeTime episode

ID

ON

ProceduraActionAIMQLAction

ID

DOdescription

description

simplePredicate compositePredicate

Terms

term

ID

type

title

description

dataType

TermID

OnceOff every

granularity timeLength beforeORafter

episodeBAValue

granularity timeLength beforeORafter

episodeBAValue

for

logic

operand1 operator operand2

operandDT

termID getValue value

junction morePredicatessimplePredicate

complex element

simple element

attribute

sequence

choice

reference

(of type)

edge

TermID

type

Figure 4.2: The XML Schema of AIMSL ECA rule paradigm.

AIMSL model expresses the best practice as modularized sets of rules, which are

classified according to functional objectives and scopes. The domain information,

which describes monitored information in order to detect a specific situation, is im-

plemented through the Terms element. The descriptive information is implemented

through the Header element. For simplicity, the evolution history component is not

considered. For short, the AIMSL model refers to the skeletal plan as protocol.

4.1.1.1 Overview

As illustrated in Figure 4.1, the AIMSL model formalizes the domain knowledge as

a protocol library, which consists of protocol (skeletal plan) specifications as well

as specifications of global rules whose scope is the entire domain of discourse. As

89

4.1. THE AIM SPECIFICATION COMPONENT

shown in Figure 4.1, the individual protocols made up of schedules and a set of

protocols rules that are not associated with any schedule. Each schedule is a set of

rules that differs from an ordinary rule set in that it has an entry criteria and the

fact that all rules in it are bound together by a common functional objective.

Each rule in a specification is deemed to be an ECA rule, which is defined over

some relevant domain information attributes. It should also be noted that protocol,

schedule and rule elements in the schema model has a set of attributes and that

each element in the schema is made up of a sequence of a combination of attributes

and other elements. Thus, the schema model allows ECA rules to be specified as

either a memes of a set or a part of a protocol or a schedule elements. It should

be pointed out here that the protocol and the schedule elements are manageable as

single units although they are effectively sets of rules.

The AIMSL schema is modularized to provide flexibility in modifying or enriching

the AIMSL language to suit several application domains. For example, the condition

element shown in Figure 4.2 could be replaced with another element in order to suit

a specific application domain.

4.1.1.2 Knowledge Action and Domain Information

The knowledge action and domain information, which are defined in Chapter 3,

together describe actions, which should be taken, in a specific situation. The domain

information is modelled using the Terms element that contains terms used in an

application domain to be used in AIMSL specification and maps these terms into

a specific database schema, which is used to manage the application information,

consider as example the database schema of the patient record. The knowledge

action is modelled as Schedule elements that contains rules. These rules contains

three major elements, event,condition and action. The Event element defines the

90

4.1. THE AIM SPECIFICATION COMPONENT

context in which the AIMSL rule is relevant. The condition element analyses the

application information and decides whether a specific action can be taken or not.

The action element defines what is the appropriate action is, such as sending an

email, changing in the knowledge action information.

4.1.1.3 Descriptive Information and Evolution History

The descriptive information is represented using the Header element that provides

the necessary documentation for each skeletal plan and its sub-elements. The de-

scriptive information facilitate the sharing of the skeletal plans. The Header ele-

ment is a collection of pieces of release and didactic information. The release part

provides information related to a specific specification version. The didactic part

provides literature related to the domain knowledge; cites references to the source

of the knowledge that is encapsulated in the AIMSL specification; and provides

explanation. The evolution history component could be supported by providing

extending the elements representing the knowledge action and domain information

to be temporal elements that are able to log its changes over times.

4.1.2 The AIMSL language

The syntactic structure of the AIMSL language is specified using an XML Schema

that follows the AIMSL model depicted in Figure 4.1. Instead of the Backus-Naur

Form (BNF), the XML Schema (van der Vlist 2002; Fallside and Priscilla 2004) is

used to formalize the syntactic structure of the AIMSL language. The XML Schema

expresses the grammar of the AIMSL language at the element and attribute level,

not at the character sequence level.

The AIMSL language consists of five main elements: protocolLibrary, protocol,

header, schedule, and rule. The AIMSL language describes primitive reactive de-

91

4.1. THE AIM SPECIFICATION COMPONENT

cision logic of the domain knowledge for a specific situation as rules. The rule

element should be expressive in order to express real-world situations and actions.

The following sub-sections presents the AIMSL main elements.

4.1.2.1 Protocol Library

The protocolLibrary element is a library of computer-interpretable domain knowl-

edge, which formalized as skeletal plans, to which the protocol element is a computer-

interpretable model. The protocolLibrary element consists of global rules and pro-

tocols. Figure 4.3.A illustrates the AIMSL XML Schema for the protocolLibrary

element.

The protocolLibrary element has a complex type composed of a sequence of two

elements protocols and globalRules. The protocols element must appear exactly one

time in the sequence. The globalRules element is optional, it may occur zero times.

The protocols element has a complex type composed of a sequence of one protocol

element or more. The protocol element should appear at least one time. That means

the protocolLibrary element must contain at least one protocol (skeletal plan). The

globalRules element has a complex type composed of a sequence of one rule element

or more. The rule element should appear at least one time. Figure 4.3.B illustrates

an example for a protocolLibrary, which consists of 7 protocols and 5 global rules.

4.1.2.2 Protocol

The protocol element is a computer-interpretable model of the skeletal plan, which

is a logical framework and adaptive template for the domain knowledge utilized in

a specific activity. Figure 4.4.A illustrates the AIMSL XML Schema of the protocol

element. The AIMSL language is used to formalized the domain knowledge as

several skeletal plans (protocol).

The protocol element has a complex type composed of a sequence of elements

92

4.1. THE AIM SPECIFICATION COMPONENT

<xsd:element name=”protocolLibrary”>
<xsd:complexType>

<xsd:sequence>
<xsd:element name=”protocols”>

<xsd:complexType>
<xsd:sequence>

<xsd:element ref=”pxsd:protocol” maxOccurs=”unbounded”/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name=”globalRules” minOccurs=”0”>

<xsd:complexType>
<xsd:sequence>

<xsd:element ref=”rxsd:rule” minOccurs=”0”/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

-<protocolLibrary>
-<protocols>

+<protocol id=”proID1”>
+<protocol id=”proID2”>
+<protocol id=”proID3”>
+<protocol id=”proID4”>
+<protocol id=”proID5”>
+<protocol id=”proID6”>
+<protocol id=”proID7”>

</protocols>
-<globalRules>

+<rule id=”grul1”>
+<rule id=”grul2”>
+<rule id=”grul3”>
+<rule id=”grul4”>
+<rule id=”grul5”>

</globalRules>
</protocolLibrary>

A B

Figure 4.3: A: the XML Schema definition for the protocol library. B: a protocol
library example.

(name, categoryID, header, schedules, and protocolRules) and id. The value of the

name element denotes the protocol name. The value of the categoryID element

denotes the category of the protocol. The protocols and the domain entities are

classified categories, based on which a specific protocol is used with an entity of the

same category. The header element is explained in Sub-section 4.1.2.3.

The schedules element has a complex type composed of a sequence of one schedule

element or more. The schedule element should appear at least one time. The

protocolRules element is an optional element that has a complex type composed of

a sequence of one rule element or more. The rule element should appear at least

one time. Figure 4.4.B illustrates an example for a protocol, which consists of 7

schedules and 5 protocol rules.

4.1.2.3 Header

The header element provides descriptive information regarding an element, to which

the header element is attached. The header element is subject to changes over time.

As shown in Figure 4.5.A, the header element has a complex type composed of a

sequence of elements (releaseInfo and didacticInfo). The releaseInfo element has

93

4.1. THE AIM SPECIFICATION COMPONENT

<xsd:element name=”protocol”>
<xsd:complexType>

<xsd:sequence>
<xsd:element name=”name” type=”xsd:string”/>
<xsd:element name=”categoryID” type=”xsd:token”/>
<xsd:element ref=”hxsd:header”/>
<xsd:element name=”schedules”>

<xsd:complexType>
<xsd:sequence>

<xsd:element ref=”sxsd:schedule” maxOccurs=”unbounded”/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name=”protocolRules” minOccurs=”0”>

<xsd:complexType>
<xsd:sequence>

<xsd:element ref=”rxsd:rule” maxOccurs=”unbounded”/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
<xsd:attribute name=”id” type=”xsd:ID”/>

</xsd:complexType>
</xsd:element>

-<protocol id=”proID1”>
<name>protocol1</name>
<categoryID>CID316</categoryID>
+<header>
-<Schedules>

+<schedule id=”schID1”>
+<schedule id=”schID2”>
+<schedule id=”schID3”>
+<schedule id=”schID4”>
+<schedule id=”schID5”>
+<schedule id=”schID6”>
+<schedule id=”schID7”>

</Schedules>
-<protocolRules>

+<rule id=”prulID1”>
+<rule id=”prulID2”>
+<rule id=”prulID3”>
+<rule id=”prulID4”>
+<rule id=”prulID5”>

</protocolRules>
</protocol>

A B

Figure 4.4: A: the XML Schema definition for the protocol. B: a protocol example.

a complex type composed of a sequence of elements (version, institution, author,

specialist, validation). The didacticInfo element has a complex type composed of

a sequence of elements (purpose, explanation, keywords, citation, links). According

to the needs of a specific application domain, more pieces of information could be

added under the both elements; (releaseInfo and didacticInfo); to make the header

is more useful. The header element is a sub-element for the protocol, schedule,

and rule elements. The header element is optional sub-element. That is to give

flexibility in adding the descriptive information at any time of the specification and

formalization process. Figure 4.5.B illustrates an example for a header.

Figure 4.6.A shows the definition of the personDT datatype. The personDT

datatype is a complex type composed of elements (name, email and contactNum-

ber). The validationDT datatype is a simple type that restricts the token datatype

to the values (production, research, test and expired). The production value means

that it is approved for applying to domain entities. The research value means that

it is approved for research only. The test value means approved for test. The expired

value means that it is no longer in use. Figure 4.6.B illustrates an example for a

94

4.1. THE AIM SPECIFICATION COMPONENT

<xsd:element name=”header”>
< xsd:complexType>

< xsd:sequence>
< xsd:element name=”releaseInfo”>

< xsd:complexType>
< xsd:sequence>

< xsd:element name=”version” type=”xsd:integer”/>
< xsd:element name=”institution” type=”xsd:string”/>
< xsd:element name=”author” type=”personDT” minOccurs=”0”/>
< xsd:element name=”specialist” type=”personDT” minOccurs=”0”/>
< xsd:element name=”validation” type=”validationDT”/>

< /xsd:sequence>
< /xsd:complexType>

< /xsd:element>
< xsd:element name=”didacticInfo”>

< xsd:complexType>
< xsd:sequence>

< xsd:element name=”purpose” type=”xsd:string”/>
< xsd:element name=”explanation” type=”xsd:string”/>
< xsd:element name=”keyWords” type=”xsd:string”/>
< xsd:element name=”citation” type=”xsd:string”/>
< xsd:element name=”links” type=”xsd:string”/>

< /xsd:sequence>
< /xsd:complexType>

< /xsd:element>
< /xsd:sequence>

< /xsd:complexType>
< /xsd:element>

<header>
<releaseInfo>

<version>1</version>
<institution>James Hospital</institution>
+<author>
+<specialist>
<validation>test<validation>

</releaseInfo>
<didacticInfo>

+<purpose>
+<explanation/>
+<keyWords>
+<citation>
+<links/>

</didacticInfo>
</header>

A B

Figure 4.5: A: the XML Schema definition for the header. B: an header example

specialist of type personDT.

<xsd:complexType name=”personDT”>
<xsd:sequence>

<xsd:element name=”name”>
<xsd:complexType>

<xsd:sequence>
<xsd:element name=”firstname” type=”xsd:string”/>
<xsd:element name=”surname” type=”xsd:string”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name=”email” type=”xsd:string”/>
<xsd:element name=”contactNumber” type=”xsd:token”/>

</xsd:sequence>
</xsd:complexType>
<xsd:simpleType name=”validationDT”>

<xsd:restriction base=”xsd:token”>
<xsd:enumeration value=”production”/>
<xsd:enumeration value=”research”/>
<xsd:enumeration value=”test”/>
<xsd:enumeration value=”expired”/>
</xsd:restriction>

</xsd:simpleType>

<specialist”>
<name>

<firstname>Essam</firstname>
<surname>Mansour<surname>

</name>
<email>emansour@dit.ie<email>
<contactNumber>4024701<contactNumber>

<specialist”>

A B

Figure 4.6: A: the XML Schema definition for the person and validation datatype.
B: an example for a specialist of type personDT

4.1.2.4 Schedule

AIMSL language formalizes the reactive behaviour extracted from the domain

knowledge as modularized sets of the AIMSL ECA rules. Each set is represented

as a schedule element, which carries out a specific function and may be used alone

or combined with other sets. Modularizing the AIMSL ECA rules facilitates the

manipulation of these rules.

95

4.1. THE AIM SPECIFICATION COMPONENT

Figure 4.7.A shows the XML Schema of the schedule element that has a complex

type composed of a sequence of elements (name, header, and scheduleRules) and id.

The value of the name element denotes the schedule name. The header element is

explained in subsection 4.1.2.3. The scheduleRules element is a mandatory element

that has a complex type composed of a sequence of one rule element or more. The

rule element should appear at least one time. That means the schedule should at

least contain one rule. Figure 4.7.B shows an example for a schedule element.

< xsd:element name=”schedule”>
< xsd:complexType>

< xsd:sequence>
< xsd:element name=”name” type=”xsd:string”/>
< xsd:element ref=”hxsd:header”/>
< xsd:element name=”scheduleRules” minOccurs=”1”>

< xsd:complexType>
< xsd:sequence>

< xsd:element ref=”rxsd:rule” maxOccurs=”unbounded”/>
< /xsd:sequence>

< /xsd:complexType>
< /xsd:element>

< /xsd:sequence>
< xsd:attribute name=”id” type=”xsd:ID”/>

< /xsd:complexType>
< /xsd:element>

< schedule id=”schID1”>
<name>schedule 1</name>
+<header>
-<scheduleRules>

+<rule id=”rulID1”>
+<rule id=”rulID2”>
+<rule id=”rulID3”>
+<rule id=”rulID4”>
+<rule id=”rulID5”>
+<rule id=”rulID6”>
+<rule id=”rulID7”>

</scheduleRules>
</schedule>

A B

Figure 4.7: A: the XML Schema definition for the schedule. B: a schedule example.

4.1.2.5 Rule

The rule element represents the primitive reactive decision logic of the domain

knowledge. The rule element is an ECA rule that should has event and action, and

might have condition. AIMSL extends the ECA rule paradigm to support advanced

features, such as temporal events and domain-specific events. The rule element is

specified as a platform-independent statement that could be directly mapped into

executable statements, such as SQL triggers (Widom and Ceri 1996) or XQuery

triggers (Bonifati et al. 2002; Shao et al. 2004). Section 4.1.3 presents in details the

the rule element as an AIMSL ECA rule paradigm.

Figure 4.8.A shows the XML Schema of the rule element that has a complex

96

4.1. THE AIM SPECIFICATION COMPONENT

type composed of a sequence of elements (name, properties, header, and body) and

id. The value of the name element denotes the rule name. The properties element

has a complex type composed of a sequence of elements (ruleScope, ruleType, and

priority). The priority element determines the order in which the rule should be

invoked.

The ruleScope element determines the rule scope, which is global, protocol or

schedule. The ruleScopeDT is a simple datatype that restricts the token datatype

to accept only 3 values (global, protocol, and schedule). Respectively, they refer to

the three types of the rules, global rule, protocol rule, and schedule rule. A global

rule is a rule carrying out actions irrespective of the protocol being followed for

the patient. The global rule is associated with all protocols. The global rule is

applied to all patients. A protocol rule is a rule carrying out actions irrespective

of the schedule being followed for the patient. The protocol rule is associated with

all schedules of the protocol. A schedule rule is a rule associated with the schedule

only.

The ruleType element determines the rule type, which is static or dynamic. The

ruleTypeDT is a simple datatype that restricts the token datatype to accept only

2 values (static and dynamic). They refer to the type of the rule. A static rule

is a rule that has only time-based event and action. The static rule is useful in

representing the actions associated with a time table. A dynamic rule is an ECA

rule that has event, condition and action.

The header element is explained in subsection 4.1.2.3. The body element has a

complex type composed of three elements (terms, event, condition, action). The

terms element maps terms used in the event, condition, and action elements to

the institutions database. The event element determines when the rule should be

triggered. The condition element is an optional element that specifies the criteria,

97

4.1. THE AIM SPECIFICATION COMPONENT

which should be satisfied to perform the action. The action element determines the

action that should be performed. These elements are discussed in more details in

the next section. Figure 4.8.B shows an example for a rule element.

<xsd:element name=”rule”>
<xsd:complexType>

<xsd:sequence>
<xsd:element name=”name” type=”xsd:string”/>
<xsd:element name=”properties”>

<xsd:complexType>
<xsd:sequence>

<xsd:element name=”ruleScope” type=”ruleScopeDT”/>
<xsd:element name=”ruleType” type=”ruleTypeDT”/>
<xsd:element name=”priority” type=”xsd:integer”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element ref=”hxsd:header”/>
<xsd:element name=”body”>

<xsd:complexType>
<xsd:sequence>

<xsd:element ref=”tsxsd:terms”/>
<xsd:element ref=”exsd:event”/>
<xsd:element minOccurs=”0” ref=”cxsd:condition”/>
<xsd:element ref=”axsd:action”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>
<xsd:attribute name=”id” type=”xsd:ID”/>

</xsd:complexType>
</xsd:element>

<rule id=”rulID1”>
<name>rule 1</name>
<properties>

<ruleScope>schedule<ruleScope>
<ruleType>dynamic<ruleType>
<priority>1<priority>

</properties>
+<header>
-<body>

+<terms>
+<event>
+<condition>
+<action>

</body>
</rule>

A B

Figure 4.8: A: the XML Schema definition for the rule. B: a rule example.

4.1.3 AIMSL ECA Rule Paradigm

Providing ECA rule paradigm at an application domain and end-user level assists

the domain users or experts to specify their knowledge easily using their own ter-

minologies. AIMSL rules provides a temporal support for the ECA rule paradigm

at a domain and high level. The AIMSL ECA rule paradigm consists of rule ID,

name, properties, header, and body, as shown in Figure 4.2 that illustrates the

XML Schema of the AIMSL rule paradigm. The properties element specifies the

rule scope, type, and priority. The header element indicates what the rule is about,

and provides release information. This section discusses the body of the AIMSL

rule. The body consists of elements (terms, event, condition, and action).

98

4.1. THE AIM SPECIFICATION COMPONENT

4.1.3.1 Terms

Domain specific terms are used in specifying the rule event, condition, and action.

The terms element specifies general terms and maps them into particular data items

according to the utilized database schema. Examples for domain specific terms are

patient admission, test result received, and test value. The terms patient admission

and test result received are of type event. The term test value is of type element.

If the term is of type event, it will be mapped into database operation(s), such

as insert, delete, update. If the term is of type element, it will be mapped into

database attribute.

Figure 4.9.A illustrates the XML Schema of the terms element that has a complex

type composed of a sequence of one term element or more. The term element has

a complex type composed of a sequence of elements (title, type and dataType)

and id attribute. The value of the title element denotes the term title, such as

patient admission. The type element is of the “termTypeDT” datatype, which is

a simple datatype that restricts the token datatype to accept only 2 values (event

and element). The dataType element is an optional element of the “dataTypeDT”

datatype, which is a simple datatype that restricts the token datatype to accept

only the values (char,integer, double, date, time, and time stamp). Figure 4.9.B

shows an example for two terms of type event and element, respectively.

<xsd:element name=”terms”>
<xsd:complexType>

<xsd:sequence>
<xsd:element name=”term” maxOccurs=”unbounded”>

<xsd:complexType>
<xsd:sequence>

<xsd:element name=”title” type=”xsd:string” minOccurs=”1”/>
<xsd:element name=”type” type=”termTypeDT” minOccurs=”1”/>
<xsd:element name=”dataType” type=”dataTypeDT” minOccurs=”0”/>

</xsd:sequence>
<xsd:attribute name=”id” type=”xsd:ID”/>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<Terms >
<term id=”E2.1”>

<type>event</type>
<title>ACR test Result Received</ title >

</term>
<term id=”E2.2”>

<title>ACR test result value</ title >
<type>element</type>
<dataType>integer</dataType>

</term>
</ Terms >

A B

Figure 4.9: A: the XML Schema definition for the term. B: an example for two
terms

99

4.1. THE AIM SPECIFICATION COMPONENT

<xsd:element name=”event”>
<xsd:complexType>

<xsd:sequence>
<xsd:element name=”on”>

<xsd:complexType>
<xsd:choice>

<xsd:element name=”absoluteTime” type=”xsd:dateTime”/>
<xsd:element name=”relativeTime” type=”relativeTimeDT”/>
<xsd:element name=”episode” type=”episodeDT”/>

</xsd:choice >
</xsd:complexType>

</xsd:element>
</xsd:sequence>
<xsd:attribute name=”id” type=”xsd:ID”/>

</xsd:complexType>
</xsd:element>

<event id=”EID123”>
<on>

<absoluteTime>2008-01-14T12:13:29</absoluteTime>
</on>

</event>

A B

Figure 4.10: A: the XML Schema definition for the event. B: an example for an
event of the type absolute time.

4.1.3.2 Event

The event is something that happens at a given place and time or a phenomenon

located at a single point in space-time. AIMSL supports three kinds of events,

domain-specific event (episode), relative time event, and absolute time event. The

episode is an event or a series of connected events happening in the domain and

related to a domain entity, such as patient admission and test result received, which

happen in the heath-care domain and related to a specific patient. in AIMSL,

the episode is associated with a term of type event. The relative time event is a

temporal event, whose time is related to an episode event. The relative time event

is happening once-off or repeatedly. Examples of once-off events are such as on

2 days after patient admission and on 2 hours before the surgery. Examples of

repetitive events are such as every 3 days after patient admission for 10 days, and

every 10 hours before the surgery. Figure 4.10.A illustrates the XML Schema

of the event element that has a complex type composed of one of the elements

(absoluteTime, relativeTime, episode) and id attribute. Figure 4.10.B illustrates an

example for an event of the type absolute time.

4.1.3.2.1 Absolute Time Event The absoluteTime element is of the dateTime

simple type, whose value is a set of integer values representing a date and time, such

100

4.1. THE AIM SPECIFICATION COMPONENT

<xsd:complexType name=”episodeDT”>
<xsd:simpleContent>

<xsd:extension base=”xsd:string”>
<xsd:attribute name=”term” type=”xsd:IDREF”/>

</xsd:extension>
</xsd:simpleContent>

</xsd:complexType>
<xsd:complexType name=”relativeTimeDT”>

<xsd:choice>
<xsd:element name=”onceOff” type=”baseRelativeTimeDT”/>
<xsd:element name=”every”>

<xsd:complexType>
<xsd:complexContent>

<xsd:extension base=”baseRelativeTimeDT”>
<xsd:sequence>

<xsd:element name=”for” minOccurs=”0”>
<xsd:complexType>

<xsd:sequence>
<xsd:element name=”granularity” type=”granularityDT”/>
<xsd:element name=”timeLength” type=”xsd:integer”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
</xsd:element>

</xsd:choice>
</xsd:complexType>

<event id=”EID124”>
<on>

<episode term= ”T123”>patient admission
</episode>

</on>
</event>

<event id=”EID125”>
<on>

<relativeTime>
<onceOff>

<granularity>day</granularity>
<timeLength >3</timeLength>
<beforeORafter>

<BAValue>after</BAValue>
<term id=”T123”>patient admission
</term>

</beforeORafter>
</onceOff>

</relativeTime>
</on>

</event>

A B

Figure 4.11: A: the XML Schema definition for the event types. B: examples for
events of type episode and relative time once-off.

as yyyy-mm-ddThh:mm:ss. The absoluteTime element is used to specify an event

that is not related to specific domain event, such as making a specific test on May

15, 2008 at 15.30 hours. Figure 4.10.B illustrates an example for an absolute time

event, whose value is 2008-01-14T12:13:29.

4.1.3.2.2 Episode Event The episode element is of episodeDT datatype that

has a complex type composed of a simple content value, which denotes the episode

name, and an id attribute, which refers to a specific term element of the type event,

as depicted in Figure 4.11.A. Figure 4.11.B illustrates an example for an episode

event.

4.1.3.2.3 Relative Time Event The relativeTime element is of relativeTimeDT

datatype that has a complex type composed of a choice between two elements (on-

ceOff, every). The onceOff element refers to non-repetitive temporal event, and

is of baserelativeTimeDT datatype. As depicted in Figure 4.11.A, the baserelative-

TimeDT datatype is a complex type composed of a sequence of elements (granular-

ity, timeLength, beforeORafter). The granularity element is of the granularityDT

101

4.1. THE AIM SPECIFICATION COMPONENT

<xsd:complexType name=”baseRelativeTimeDT”>
<xsd:sequence>

<xsd:element name=”granularity” type=”granularityDT”/>
<xsd:element name=”timeLength” type=”xsd:integer”/>
<xsd:element name=”beforeORafter”>

<xsd:complexType>
<xsd:sequence>

<xsd:element name=”BAValue”/>
<xsd:element name=”episode”>

<xsd:complexType>
<xsd:simpleContent>

<xsd:extension base=”xsd:string”>
<xsd:attribute name=”id” type=”xsd:IDREF”/>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>
<xsd:simpleType name=”granularityDT”>

<xsd:restriction base=”xsd:token”>
<xsd:enumeration value=”second”/>
<xsd:enumeration value=”minute”/>
<xsd:enumeration value=”hour”/>
<xsd:enumeration value=”day”/>
<xsd:enumeration value=”week”/>
<xsd:enumeration value=”month”/>
<xsd:enumeration value=”year”/>

</xsd:restriction>
</xsd:simpleType>

<event id=”EID126”>
<on>

<relativeTime>
<every>

<granularity>hour</granularity>
<timeLength >5</timeLength>
<beforeORafter>

<BAValue>after</BAValue>
<term id=”T124”>surgery
</term>

</beforeORafter>
<for>

<granularity>day</granularity>
<timeLength>3</timeLength>

</for>
</every>

</relativeTime>
</on>

</event>

A B

Figure 4.12: A: the XML Schema definition for the event base Relative Time DT.
B: an example for a repetitive time event.

datatype. As shown in Figure 4.12.A, the granularityDT datatype is a token type

restricted to the values (second, minute, hour, day, week, month, year). The in-

teger value of timeLength element refers the number of unites. The beforeORafter

expresses the triggering time relative to the episode (term of type event).

Figure 4.11.B illustrates the AIMSL specification for the event 3 days after pa-

tient admission. In this event, the value of granularity element is day, the value of

the timeLength element is 3, and the beforeORafter contains the value after for the

BAValue element and the episode element referes to the term patient admission of

type event.

The every element refers to a repetitive time event, such as every 5 hours after the

surgery for 3 days. The every element extends the baserelativeTimeDT datatype by

adding new element named for. The for element is an optional element that has a

102

4.1. THE AIM SPECIFICATION COMPONENT

complex type composed of a sequence of two elements (granularity and timeLength).

The for element determines the period of the repetition. If the every element does

not have the for element: 1) the rule is expired by the end of the ESP plan, if the

value of the beforeORafter element is after ; or 2) the rule is expired by reaching the

start time of the term, on which the rule is based, if the value of the beforeORafter

element is before.

The every element consists of the elements (granularity, timeLength, beforeO-

Rafter, and for). The previous repetitive time event is shown in Figure 4.12.B, in

which the assigned values to the elements (granularity, timeLength, beforeORafter,

and for) are (hour, 5, surgery, (day and 3)), respectively.

<xsd:element name=”condition”>
<xsd:complexType>

<xsd:sequence>
<xsd:element name=”description” type=”xsd:string” minOccurs=”0”/>
<xsd:element name=”logic” minOccurs=”1”>

<xsd:complexType >
<xsd:sequence>

<xsd:element name=”simplePredicate” type=”simplePredicateDT” minOccurs=”1”/>
<xsd:element name=”compositePredicate” type=”compositePredicateDT” minOccurs=”0”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>
<xsd:attribute name=”id” type=”xsd:ID”/>

</xsd:complexType>
</xsd:element>

Figure 4.13: The XML Schema definition for the condition.

4.1.3.3 Condition

A condition is a logical expression meaningful to the domain users, and determines

whether to perform an action or not. The historical and snapshot information

are subject to be checked by a condition. As shown in Figure 4.13, the condition

element has a complex type composed of a sequence of elements (description and

logic) and id attribute. The description element is an optional element that explains

the semantic of the condition. The logic element contains a sequence of elements

(simplePredicate and compositePredicate), which are of datatypes simplePredicat-

103

4.1. THE AIM SPECIFICATION COMPONENT

eDT and compositePredicateDT, respectively, as illustrated in Figure 4.14. The

compositePredicate element is an optional element.

<xsd:complexType name=”simplePredicateDT”>
<xsd:sequence>

<xsd:element name=”operand1” type=”operandDT”/>
<xsd:element name=”operator” type=”logicalOperatorDT”/>
<xsd:element name=”Operand2” type=”operandDT”/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name=”compositePredicateDT”>

<xsd:sequence>
<xsd:element name=”junction” type=”junctionDT” minOccurs=”1”/>
<xsd:element name=”predicate” type=”simplePredicateDT” minOccurs=”1”/>
<xsd:element name=”morePredicate” type=”compositePredicateDT” minOccurs=”0”/>

</xsd:sequence>
</xsd:complexType>

Figure 4.14: The XML Schema definition of the simple and composite predicate
datatypes.

<xsd:complexType name=”operandDT”>
<xsd:choice>

<xsd:element name=”termID” type=”xsd:IDREF”/>
<xsd:element name=”getValue” >

<xsd:complexType>
<xsd:sequence>

<xsd:element name=”of” type=”xsd:IDREF”/>
<xsd:element name=”number” type=”xsd:integer”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name=”value” >

<xsd:complexType>
<xsd:sequence>

<xsd:element name=”amount” type=”xsd:string”/>
<xsd:element name=”datatype” type=”valueDT”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:choice>

</xsd:complexType>

Figure 4.15: The XML Schema definition of the operand1 and operand2 datatypes.

4.1.3.3.1 Simple Predicate simplePredicate expresses a condition of two operands

that are connected using an operator (=, <>, >, >=, <, or <=). Examples to

simple predicates are test result Y < 25, test result X >= test result Y, and 5th

ACR test result > 55. The operand1 and operand2 elements might be:

• a refereance to a term element of type element, such as ACR test result ;

• the getValue function that is applied to temporal data. In the case of receiving

104

4.1. THE AIM SPECIFICATION COMPONENT

<xsd:simpleType name=”logicalOperatorDT”>
<xsd:restriction base=”xsd:token”>

<xsd:enumeration value=”eq”/>
<xsd:enumeration value=”neq”/>
<xsd:enumeration value=”lt”/>
<xsd:enumeration value=”lteq”/>
<xsd:enumeration value=”gt”/>
<xsd:enumeration value=”gteq”/>

</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name=”junctionDT”>

<xsd:restriction base=”xsd:token”>
<xsd:enumeration value=”and”/>
<xsd:enumeration value=”or”/>

</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name=”valueDT”>

<xsd:restriction base=”xsd:token”>
<xsd:enumeration value=”string”/>
<xsd:enumeration value=”integer”/>
<xsd:enumeration value=”float”/>

</xsd:restriction>
</xsd:simpleType>

<condition id=”ID36”>
+<description>
<logic>

<simplePredicate>
<operand1>

<getValue>
<of>E2.2</of>
<number>5</number>

</getValue>
</operand1>
<operator>gt</operator>
<operand2>

<value>
<amount>55</amount>
<datatype>integer</datatype>

</value>
</operand2>

</simplePredicate>
</logic>

</condition>

A B

Figure 4.16: A: the XML Schema definition of the simple datatypes. B: an example
for a simple condition.

several test results, it might be needed to evaluate the fifth test result. The

getValue function returns the value number 5 of the test result ; or

• a value of a specific datatype, such as 25 that is an integer value.

The simplePredicateDT datatype is a complex type composed of a sequence of

elements (operand1, operator, operand2). Both operand1 and operand2 elements

are of type operandDT that is a complex type composed of one element of (termID,

getValue, or value) elements, as shown in Figure 4.15. The termID element is a

references to a specific term element defined under the terms element. The getValue

element has a complex type composed of a sequence of elements (of and number).

The of element refers to a specific term element. The number element referes to

a specific integer number. The value element has a complex type composed of two

element (amount and datatype). The datatype element is of valueDT datatype that

is a token type restricted to the values (string, integer, float), as shown in Figure

4.16.A.

105

4.1. THE AIM SPECIFICATION COMPONENT

For example, the value of test result Y should be an integer value. As shown in

Figure 4.16.A, the logicalOperatorDT datatype is a simple type that restricts the

token datatype to the values (eq, neq, lt, lteq, gt, and gteq). Respectively, they refer

to equal, not equal, less than, less than or equal, greater than, and greater than

or equal. Figure 4.16.B illustrates an example for a condition containing a simple

predicate, which checks that the fifth value of a specific term is grater than 55.

<condition id=”ID37”>
+<description>
<logic>

<simplePredicate>
<operand1>

<getValue>
<of>TER123</of>
<number>3</number>

</getValue>
</operand1>
<operator>lt</operator>
<operand2>

<value>
<amount>75</amount>
<datatype>integer</datatype>

</value>
</operand2>

</simplePredicate>
<compositePredicate>

<junction>and</junction>
<predicate>

<operand1>
<getValue>

<of>TER123</of>
<number>3</number>

</getValue>
</operand1>
<operator>gt</operator>
<operand2>

<value>
<amount>55</amount>
<datatype>integer</datatype>

</value>
</operand2>

</predicate>
</compositePredicate>

</logic>
</condition>

Figure 4.17: An example for a composite condition.

4.1.3.3.2 Composite Predicate The compositePredicateDT datatype is a com-

plex type composed of a sequence of elements (junction, predicate, morePredicate).

The junction element is of type junctionDT that is a token type restricted to the

values (and or or), as shown in Figure 4.16.A. The predicate element is of type

simplePredicateDT. The morePredicates element is of type compositePredicateDT,

106

4.1. THE AIM SPECIFICATION COMPONENT

which provides support to express composite predicates. To expresses composite

predicates, such as (P1 or P2) and (P3 and P4) or P5; where Pi is a simple predicate,

the logic element contains:

• a simplePredicate element, which is P1; and

• a predicate element, which represents “or P2) and (P3 and P4) or P5” as

compositePredicate.

Figure 4.17 illustrates an example for a composite condition, which checks that

the third value of a term, whose ID is TER123, is less than 75 and grater than

55. The condition element contains a simple predicate, which checks that the term

is less than 75, and a composite predicate, which connects the previous simple

predicate using the and conjunction with the simple predicate, which checks that

the the term is grater than 55.

<xsd:element name=”action”>
<xsd:complexType>

<xsd:sequence>
<xsd:element name=”description” type=”xsd:string” minOccurs=”0”/>
<xsd:element name=”do”>

<xsd:complexType>
<xsd:sequence>

<xsd:element ref=”AIMQLxsd:AIM-QLAction” minOccurs=”0”/>
<xsd:element name=”proceduralAction” type=”proceduralActionDT” minOccurs=”0”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>
<xsd:attribute name=”id” type=”xsd:ID”/>

</xsd:complexType>
</xsd:element>

Figure 4.18: The XML Schema definition for the action.

4.1.3.4 Action

An action is an operation meaningful to domain users. The action element is a

procedural action, such as sending email, or an AIMQL action for manipulating or

querying the complex information. As shown in Figure 4.18, the action element has

a complex type composed of a sequence of two elements (description, do) and id

107

4.1. THE AIM SPECIFICATION COMPONENT

<xsd:complexType name=”proceduralActionDT”>
<xsd:sequence>

<xsd:element name=”SendSMS” minOccurs=”0” maxOccurs=”unbounded”>
<xsd:complexType>

<xsd:sequence>
<xsd:element name=”mobileNo” type=”xsd:integer”/>
<xsd:element name=”content” type=”xsd:string”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name=”sendEMAIL” minOccurs=”0” maxOccurs=”unbounded”>

<xsd:complexType>
<xsd:sequence>

<xsd:element name=”from” type=”xsd:string”/>
<xsd:element name=”to” type=”xsd:string”/>
<xsd:element name=”subject” type=”xsd:string”/>
<xsd:element name=”content” type=”xsd:string”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name=”invokeMethod” minOccurs=”0” maxOccurs=”unbounded”>

<xsd:complexType>
<xsd:sequence>

<xsd:element name=”name” type=”xsd:string”/>
<xsd:element name=”parameters” type=”xsd:string” minOccurs=”0” />

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>

Figure 4.19: The XML Schema definition for the procedural action.

<action id=”AID5”>
<do>

<proceduralAction>
<sendEMAIL>

<from>emansour@gmail.com</from>
<to>emansour@gmail.com</to>
<subject>ACR Test Order</subject>
<content>make the ACR test to patient number PID1234</content>

</sendEMAIL>
</proceduralAction>

</do> </action>

<action id=”AID36”>
<do>

<AIMQLAction>
<add>

<rule id=”RUL1”>
<rule id=”RUL2”>

</add>
</AIMQLAction>

</do>
</action>

A B

Figure 4.20: A: an example for an action of a procedural type. B: an example for
an action of a AIMQL type.

attribute. The description element is an optional element that explains the semantic

of the action. The do element has a complex type composed of a sequence of two

elements (AIM-QLAction, proceduralAction). the AIMQL actions are defined in the

schema of the AIMQL language, as explained in Section 4.3.

Figure 4.19 illustrates the proceduralActionDT that is a complex type composed

of elements (sendEmail, sendSMS, and invokeMethod). The sendEmail element has

a complex type composed of two elements (mobileNo and content). They determine

the content of the short message and the received number. The sendEmail element

108

4.1. THE AIM SPECIFICATION COMPONENT

has a complex type composed of a sequence of the elements (from, to, subject,

content). Respectively, they specify the sender, the receiver, the subject of the

email and the email content. The invokeMethod has a complex type composed of

elements (name and parameters). Respectively, they specify the method name and

the required parameters, if any.

Figure 4.20.A illustrates an example for an action of procedural type, where the

action sends an email. Figure 4.20.B illustrates an example for an action of AIMQL

type, where the action adds two rules two an AIMSL specification.

4.1.4 An Example

Figure 4.21 illustrates an example for two rules of the simplified version of the

microalbuminuria screening protocol (MAP), which has a schedule containing two

rules, MAP1 and MAP 2. MAP2 defines a set of clinical recommendation that

should happen two hours after the result of the required test in MAS1 is received.

Rule MAP1:
ON day 2 after the patient admission,
DO order the test albumin creatine ratio (ACR)

Rule MAP2:
ON 2 hours after receiving the result of test ACR
IF the first ACR test result is greater than 25
DO order ACR test twice on

day number 6 after the patient admission and
day number 38 after the patient admission

Figure 4.21: Two rules of the microalbuminuria screening (MAS) protocol.

-<protocol id=”ProID-MAP”>
<name>microalbuminuria screening protocol (MAP)</name>
<categoryID>CID316</categoryID>
+<header>
-<Schedules>

-<schedule id=”SIDMAP”>
<name>Basic MAP</name>
+<header>
-<scheduleRules>

+<rule id=”MAP1”>
+<rule id=”MAP2”>

</scheduleRules>
</schedule>

</Schedules>
</protocol>

Figure 4.22: the AIMSL specification for the simplified version of the microalbu-
minuria screening (MAS) protocol.

109

4.1. THE AIM SPECIFICATION COMPONENT

-<rule id=”MAS2”>
<name>Rule 2 of basic MAP</name>
+<properties>
+ <header>
- <body>

-<Terms >
<term id=”E2.1”>

<type>event</type>
<title>ACR test Result Received</ title >

</term>
<term id=”E2.2”>

<title>ACR test result value</ title >
<type>element</type>
<dataType>integer</dataType>

</term>
</ Terms >
-<event id=”E1R2”>

<on>
<relativeTime>

<onceOff>
<granularity>hours</granularity>
<timeLength >2</timeLength>
<beforeORafter>

<BAValue>after</BAValue>
<term id=”E2.1”>ACR test Result Received</term>

</beforeORafter>
</onceOff>

</relativeTime>
</on>

</exsd:event>
-<condition id=”ID36”>

+<description>
<logic>

<simplePredicate>
<operand1>

<getValue>
<of>E2.2</of>
<number>1</number>

</getValue>
</operand1>
<operator>gt</operator>
<operand2>

<value>
<amount>25</amount>
<datatype>integer</datatype>

</value>
</operand2>

</simplePredicate>
</logic>

</condition>
- <action id=”AID36”>

- <do>
-<AIMQLAction>

- <add>
+<rule id=”MAS3”>
+<rule id=”MAS4”>

</add>
</AIMQLAction>

</do>
</action>

</body>
</rule>

Figure 4.23: the AIMSL specification for the rule MAP2.

If the first result is greater than 25, the action of the rule MAP2 is executed, and

adds two rules to the specification, MAP3 and MAP4. The both rules are similar

to the rule MAP1, but they fire on day 6 and day 38 after the patient admission, re-

spectively. Figure 4.22 illustrates the AIMSL specification for the simplified version

of the microalbuminuria screening protocol (MAP), which contains one schedule

containing two rules.

A focus is given to the specification of rule MAP2, whose specification is illus-

trated in Figure 4.23. Rule MAP2 has two terms elements. A term element of type

110

4.1. THE AIM SPECIFICATION COMPONENT

event represents the event ACR test result received. Another term element of type

element represents the value ACR test result value. The event element of the MAP2

Rule is a once-off relativeTime event based on the ACR test result received term,

whose granularity is hour, and timeLength is 2. The MAP2 rule is fired two hours

after the ACR test result received.

The logic element of the MAP2 condition is a simplePredicate that is getValue

of the term ACR test result value, such that the value is the first value, and this

value is grater than 25. The action element adds two rules; MAP3 and MAP4.

4.1.5 Discussion

Section 4.1 has presented the AIM Specification language (AIMSL), and its model.

AIMSL specification format is based on XML. AIMSL provides an advanced ECA

rule paradigm. The following subsections discuss the merits of representing the

AIMSL specification as an XML document, and the advanced features of the AIMSL

rule element, which require an extension for the database triggering mechanism.

4.1.5.1 AIMSL Specification as an XML Document

AIMSL specification is stored as XML document to facilitate transport across dis-

part architecture. There is no need to use separation between the data items of

the AIMSL specification, because of the tag-based representation of the XML doc-

ument. AIMSL specifications are edited with many different kinds of editors, which

are ranged from normal text or XML editors to an AIMSL editor.

A graphical AIMSL editor hides the code in the background and present the

content to the user in a more user-friendly format. This is helpful for situations

where people who are not fluent in AIMSL and XML code need to enter information

in XML based documents. The AIMSL editor should take care of syntax details

111

4.2. THE AIM ESPDOC: AN INSTANTIATION AND EXECUTION MODEL FOR THE
ENTITY-SPECIFIC PLAN

by validating the AIMSL specification against the AIMSL model. The use of such

editor is faster and more convenient.

4.1.5.2 Extension to the DBMS Triggering Mechanism

Translating the platform-independent rules (in the skeletal plan) into platform-

specific rules (in the entity-specific plan) is a major challenge for providing an

execution mechanism based on the active database, because the modern DBMSs

provide a basic triggering mechanism, which has a number of limitations in its

support of the ECA rule components (Ceri et al. 2000).

There is a need for intermediate models to extend the triggering mechanism of the

modern DBMSs. AIMSL provides support for temporal events, which are absolute

time events, and relative time events that is based on domain specific event, such

as patient admission. In order to provide support for the time-based and domain-

specific events, an extension to the event component of the DBMS trigger is needed

to support the AIM execution mechanism. AIMSL provides support for temporal

condition; that needs to extend the condition component of the DBMS trigger to

evaluate temporal conditions. In order to support AIMSL action element, the action

component of the DBMS trigger should be extended to allow detached actions that

can be performed external to the DBMS and at some point long after the rule has

been executed.

4.2 The AIM ESPDoc: an Instantiation and Execution Model

for the Entity-Specific Plan

This section presents the AIM ESPDoc model, which provides a computer-interpretable

model for the conceptual model of the entity-specific (ES) plan presented in Chapter

3, and the AIM execution mechanism. ESPDoc is an acronym for Entity-Specific

112

4.2. THE AIM ESPDOC: AN INSTANTIATION AND EXECUTION MODEL FOR THE
ENTITY-SPECIFIC PLAN

Plan Document. AIM provides an execution mechanism based on active database

to the ESPDoc model.

4.2.1 The AIM ESPDoc Model

the conceptual model of ES plan consists of two main parts an active part and the

passive part. The active part represents the reactive behaviour derived from the

skeletal plan, represented as an AIMSL protocol. The passive part represents the

descriptive information, which represents the states of the ES plan and its evolution

since it has been created.

The passive part is subject to actions that log the execution history of the ES

plan. Therefore, the ES plan grows over time. The ES plan is subject to dynamically

changes in order to suit the current conditions and constrains of interest to the

domain user. The active part of the ES plan is represented as rules, which are

coded as a trigger or several triggers, which are used to register the rule in the

system. The passive part of the ES plan is modelled as time-varying information.

The AIM ESPDoc model provides support for the four component of the complex

information, which are discussed in Chapter 3, at the level of the ES plan. The

AIM ESPDoc is capable of storing the evolution history of the ES plan, as well

as the descriptive information regarding the ES plan. The knowledge action and

domain information components of a specific skeletal plan together are utilized to

generate rule component of the ESPDoc model.

Figure 4.24 illustrates the XML Schema of the AIM ESPDoc model. As shown

in Figure 4.24, the knowledge action and domain information components are rep-

resented as rule element. Each rule element contains a trigger or several triggers.

The evolution history component is presented as state element. The descriptive in-

formation component is represented using the header element. The AIM ESPDoc

113

4.2. THE AIM ESPDOC: AN INSTANTIATION AND EXECUTION MODEL FOR THE
ENTITY-SPECIFIC PLAN

Plan

Schedule

state
Schedules

DEID ProID t i t le
val idi ty
Period

Protocol Rules Global Rules

val idi ty
Period

val idi ty
Period

val idi ty
Period

IDRef validity Period

Rule

IDRef val idi ty
Period

tr iggersstate

state

val idi ty
Period

value tr igger

validity Period

startTime endTime

complex element

simple element

at t r ibute

sequence

choice

reference

edge

validity Period

value

validity Period

startTime endTime

validity Period

value

validity Period

endTimestartTime

header

Group of attr ibutes

status event condit ion action
startTime endTime

actor

Figure 4.24: The AIM entity-specific plan model based on XML Schema.

is modelled as time-varying information. The model captures the valid times of the

fact recorded under the ES plan. That is leading to temporal relations among the

ES plan and its components. The validity period represents a time period, during

which a component is existence as a part of the ES plan. A temporal XML support

is needed to realize the AIM ESPDoc model.

4.2.2 Instantiation and Realization

The ES plan document is generated through two main steps instantiation and re-

alization. The customization step is a pre-step, during which users apply some

modifications, and/or attach more descriptive information in order to adapt the

specified skeletal plan for use within a specific organization. In the instantiation

114

4.2. THE AIM ESPDOC: AN INSTANTIATION AND EXECUTION MODEL FOR THE
ENTITY-SPECIFIC PLAN

step, the creation of a ES plan document of a specific and appropriate skeletal plan

is done. The instantiation process starts by accessing a specific protocol (skeletal

plan specification), and construct the ES plan document according to its schedules,

protocol rules, and the global rules. In the realization step, if the ES plan document

is approved, its triggers are installed in the system.

Several varieties of languages could be utilized in creating the triggers, ranging

from SQL language, to an active XML language or Web services combined with

publish/subscribe technique. Chosen the language depends on the storage model

and the nature of the application, whether it is decentralized or centralized. The

AIM ESPDoc model is flexible to support varieties of languages.

4.2.3 Execution

The evolution history component, represented using the state element, is managed

by the AIM ESPDoc model itself. This means the execution model of the AIM ES-

PDoc model should provide self-management support. The AIM execution method

is based on the active and temporal mechanism.

4.2.3.1 Active Mechanism

The ECA rule paradigm as implemented in database systems is a promising tech-

nology for supporting the execution method of the ESPDoc model. The DBMSs

provide support for the active mechanism using triggers. Once the ES plan rules

are registered (installed) in a database system, the DBMS becomes in charge of

executing the triggers representing the rules of an ES plan.

The semantic handling the temporal feature of ESPDoc is represented also as

triggers. By this method a self-management for the ES plan model is provided. The

Web service Notifications could be used to subscribe the monitored information,

115

4.2. THE AIM ESPDOC: AN INSTANTIATION AND EXECUTION MODEL FOR THE
ENTITY-SPECIFIC PLAN

which specified as general terms in the Terms element.

Utilizing the database triggering mechanism facilitates the integration of the

AIM ESPDoc model into the system managing the domain information, such as the

patient information system that manages the electronic healthcare record. The use

of the Web Services provides support for distributed management for the ESPDoc

model.

4.2.3.2 Temporal Mechanism

The ES plan and its component are joined with a validity period. The validity

period refers to the period of existence, in which the component considered as part

of the ES plan. It is assumed that the valid time, which is the time when the fact

is true in the reality, equals the transaction time, which is the time when the fact

is stored in the database. The validity period represents as a tuple,<start time,

end time>. If the component has the validity period <5, NOW>, that means the

component is currently part of the ES plan document since the time point 5.

Assume at time T2, the state of a component having a state S1 with validity

period <T1, NOW>, is changed to S2. Then the new state is added to the com-

ponent with validity period <T2, NOW> and the validity period of the old state

will be <T1, T2>. That means at time T2, the state of the component is changed

from S1 to S2. The validity period of a component is equal to <minimum (start

time), maximum (end time)> of its sub-components. The details of the developed

temporal XML data model utilized to support the AIM ESPDoc model is presented

in Chapter 5.

116

4.2. THE AIM ESPDOC: AN INSTANTIATION AND EXECUTION MODEL FOR THE
ENTITY-SPECIFIC PLAN

4.2.4 An Example

An ES plan, in healthcare domain called patient plan, is generated based on the

specified protocol shown in Figure 4.22. In the instantiation and realization process,

the rule body (terms, event, condition and action) is used to generate a trigger,

which could be encoded using SQL, SQL/XML, or XQuery triggering language.

Choosing the triggering language depends on the type of the database used to store

the domain information, whether it is a relational or XML database. Regarding the

execution of this medical patient plan, it is assumed that:

• the medial patient plan is registered at time point 1; and

• the result of ACR test is received on day 3 and its value was 33, which is

greater than 25.

According the the specification of rule MAP2, its action adds two new rules,

MAP3 and MAP4, and then these changes are logged in the patient plan. Figure

4.25 illustrates part of the patient plan on day 4. This part has the history of the

patient plan and its execution. The state element records the several states of a

rule during the lif cycle of the plan. As shown in Figure 4.25, the rule state element

might have several value elements. Each value element specifies a specific status to

the rule, and specify the event firing the rule, the condition evaluated with the real

values at the firing time, the action carried out, and/ or the actor participating.

For example, the first value element of rule MAP1 contains only a status element,

whose value is generated. The generated status is a system-defined status that

happens at the generation time of an entity-specific plan. Therefore, there is not

need to the other element, such as actor or event elements. Another example is the

value element of rule MAP3 that is registered by rule MAP2. The content of the

condition element of rule MAP2 is “the condition (ACR test value is greater than

117

4.2. THE AIM ESPDOC: AN INSTANTIATION AND EXECUTION MODEL FOR THE
ENTITY-SPECIFIC PLAN

25) is true, because the ACR test value at the firing time was 33”. The content

of the event element of rule MAP1 is “ time-based rule fires when the plan is 2-

hours old“. These pieces of information, status, event, condition, action and actor,

provide support in the reviewing process to know why and when the rule is fired

and executed, how the rule is executed, who participates in moving the rule to such

state.

schedule

MAP1 MAP2

complex element

simple element

edge

MAP3 MAP4

state
state state state

value

status

generated

value

registered

value

registered

value

status

registered

value

status

executed

event act ion

value

status

generated

value

status

registered

value

status

executed

event act ioncondit ion status status

text value

0 - 2

0 - 3
3 - N O W 3 - N O W

0 - 2

0 - 1
1 - 2

2 - 2

0 - 3

0 - 1

1 - 3
3 - 3

3 - N O W

3 - N O W

3 - N O W

3 - N O W

1 - N O Wval idi ty period

Rule MAP2

actor

Rule MAP2

actor

Figure 4.25: A part of the patient plan on day 4 after patient admission.

4.2.5 Discussion

This sub-section discusses the need to a replay support for the ES plans and a tem-

poral XML support to realize the AIM ESPDoc model using the available DBMSs.

4.2.5.1 The need for a Replay Support

The entity-specific plans keep the execution history of applying specific domain

knowledge. Such execution history represents several information scenes. The

ability of replaying these information scenes enhances the reporting and decision-

support capabilities in the organization. The replay support facilitates the infor-

118

4.3. THE AIM QUERY COMPONENT

mation analysis and mining to discover and understand the information trends.

The starting point for information analysis and mining is the evolution history

component and the ability of replaying this history at a high and domain level.

The replay support is to help to find out information, such as the time at which the

entity-specific plan became active, at which a rule is executed, why it is executed,

what is the action made, and how many times a rule is executed. Therefore, the

replay support provides a motion picture that depicts the evolution of a specific task

or activity. The AIM query component provides a replay support for the complex

information, as discussed in the next section.

4.2.5.2 The need to a temporal XML Support

A temporal XML data model is required to support the AIM ESPDoc model. Sev-

eral features should be addressed by the temporal XML data model, such as the

temporal edges between XML elements, temporal elements, and the temporal con-

strains among the sub-elements and their parent element. In order to reuse the

available XML DBMSs, the temporal XML data model should be compatible and

consistent with the XML data model Therefore, all the XML tools could be used to

deal with the ES plans specified using the ESPDoc model. The XQuery language

could be used to query the ES plans, however the temporal relationships among the

ES plan components should be considered. Moreover, the XML databases could be

utilized to store and query the ESPDoc documents.

4.3 The AIM Query Component

There is a need to move the complexity of manipulating and querying the com-

plex information (skeletal and entity-specific plans) from user/application code to

a high level declarative language. AIMQL is a high level XQuery-based language

119

4.3. THE AIM QUERY COMPONENT

provides facilities to perform manipulation operations, and advanced queries, such

as replaying dynamic execution scenarios of the complex information.

4.3.1 The Query and Manipulation Requirements of the Complex In-

formation

The main functional requirements of AIMQL are to assist in: 1) Manipulating the

AIMSL specification (skeletal plan) and ES plan. The changes are made to AIMSL

specification might be required to be propagated to the corresponding ES plan;

and 2) Retrieving this information. This includes the ability to replay the ES plan

or a specific part of it within specific time period. There are general functional

requirements that should be also provided to AIMQL. These requirements are:

• Declarativity, AIMQL should be declarative. It should be independent of

any particular platform or query evaluation strategy;

• Temporal Support, it should be able to record the history of executing the

ES plan reactive behaviour and to query it;

• XQuery-based, the AIMSL specification and ES plan are represented as XML

document. Therefore, AIMQL should be based on XQuery; and

• Convenient for humans to read and write, this could be achieved using

an XML-based graphical tool that assists in generating AIMQL query and

browsing it.

XML is easy to be generated using tools and easy to be converted to human

readable format using a stylesheet language, such as XSL. Using XML in repre-

senting AIMQL provides a compatibility with AIMSL, and assists in managing the

complex information remotely, using Web services.

120

4.3. THE AIM QUERY COMPONENT

Several extensions to XQuery are required in order to achieve the AIMQL re-

quirements as following:

• Manipulation Operations: AIMQL introduces seven manipulation opera-

tions (expressions). These expressions includes add, remove, modify, activate,

deactivate, terminate and fire. The AIMQL manipulation operations are dis-

tinguished in the sense that they do not only potentially modify the AIMSL

specification or ES plan, but also propagate the modification to the correspond-

ing ES plan documents and modify the corresponding triggers created in the

system. Furthermore, the manipulation expressions log the changes occurring

to ES plan documents; and

• Query Support: AIMQL provides support to query AIMSL specification and

ES plan document, as the domain information, plus special query capabilities,

replay function and temporal query support for ES plan document. AIMQL

introduces a new functionality called replay. AIMQL replay query is a query

that plays over again the history of the complex information to show in details

the actions that cause changes on the complex information and how it evolved

over time.

Skeletal Plan
Category Function Cat Pro Sch Rule Trm Eve Con Act

Manipulation

Add A A A A A A A A
Remove A A A A A A A A
Modify A A A A A A A A
activate X X X X X X X X
Deactivate X X X X X X X X
Terminate X X X X X X X X
Fire X X X X X X X X

Query
Normal A A A A A A A A
Replay X X X X X X X X

Table 4.1: AIMQL function applicability for the skeletal plan

Tables 4.1 and 4.2 show the AIM manipulation and query support provided to

the skeletal plan and entity-specific plan, respectively. The A value denotes that

a feature is applied, and the X value denotes that a feature is not applied. The

121

4.3. THE AIM QUERY COMPONENT

Entity-Specific Plan
Category Function Ent Pro Plan Sch Rule Trm Eve Con Act

Manipulation

Add X X X A A A A A A
Remove X X A A A A A A A
Modify X X X A A A A A A
activate X X A A A X X X X
Deactivate X X A A A X X X X
Terminate X X A A A X X X X
Fire X X X X A X X X X

Query
Normal A A A A A A A A A
Replay X X A A A X X X X

Table 4.2: AIMQL functions applicability for the entity-specific plan.

columns (Cat, Pro, Sch, Rule, Trm, Eve, Con, Act, and Ent) shown in Tables

4.1 and 4.2 refer to (Category, Protocol, Schedule, Rule, Terms, Event, Condition,

Action, domain entity) respectively. Each column represents a component of either

the skeletal or entity-specific plan.

For the skeletal plan, the add, remove and modify operations are applied to all

skeletal plan components. However, the activate, deactivate, terminate and fire

operations are used to facilitate the execution of the entity-specific plan. Therefore,

these operations are not used with the skeletal plan components, but used with the

plan, schedule and rule components of the entity-specific plan. The fire operation

is used only with the rule component. The entity-specific plan is generated for a

specific domain entity from a specific protocol (skeletal plan). The domain entity

and protocol of the entity-specific plan are not changeable. Therefore, the add,

remove and modify operations are not applied to the domain entity nor the protocol

components. Moreover, the add and modify operations are not applied to the plan

component.

This research work focuses is on the execution history of the entity-specific plan.

Consequentially, the AIMQL replay query is provided to the entity-specific plan,

specially the components (plan, schedule and rule) that are called re-playable com-

ponents. The other components of the entity-specific plan could be replayed as a

part of the re-playable components.

122

4.3. THE AIM QUERY COMPONENT

4.3.2 The High-Level Manipulation Operations

The manipulation operations shown in Figure 4.26 are applied to the skeletal plan,

entity-specific plan and its corresponding triggers created as an implementation

for the execution process of this plan. The changes made to the skeletal plan or

the entity-specific plan might need to be propagated to the corresponding plan or

triggers, respectively. The manipulation operations could be issued in the action

component associated with the AIMSL rule element.

<xsd:element name=”manipulationOperation” >
<xsd:complexType>

<xsd:sequence>
<xsd:element name=”add” type=”modtxsd:addDT” minOccurs=”0” maxOccurs=”unbounded”/>
<xsd:element name=”remove” type=”modtxsd:removeDT” minOccurs=”0” maxOccurs=”unbounded”/>
<xsd:element name=”modify” type=”modtxsd:modifyDT” minOccurs=”0” maxOccurs=”unbounded”/>
<xsd:element name=”activate” type=”modtxsd:activateDT” minOccurs=”0” maxOccurs=”unbounded”/>
<xsd:element name=”deactivate” type=”modtxsd:deactivateDT” minOccurs=”0” maxOccurs=”unbounded”/>
<xsd:element name=”terminate” type=”modtxsd:terminateDT” minOccurs=”0” maxOccurs=”unbounded”/>
<xsd:element name=”fire” type=”modtxsd:fireDT” minOccurs=”0” maxOccurs=”unbounded”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

Figure 4.26: The XML Schema definition of the AIMQL manipulation operations.

The supported manipulation operations are:

• Add a skeletal plan (protocol), entity-specific plan, or one of their components.

• Remove a protocol, entity-specific plan, or one of their components.

• Modify a protocol, entity-specific plan, or one of their components.

• Activate an entity-specific plan, schedule, or rule components.

• Deactivate an entity-specific plan, schedule, or rule components.

• Terminate an entity-specific plan, schedule, or rule components.

• Fire a rule component.

123

4.3. THE AIM QUERY COMPONENT

4.3.2.1 Add

The add operation is an manipulation operation that add copies of one or more

protocol specification or ES plan components into a designated position with respect

to a target component. Figure 4.27.A shows the XML schema of the add operation

as follows:

<xsd:complexType name=”addDT”>
<xsd:sequence>

<xsd:element name=”addedExpr” />
<xsd:element name=”as” />
<xsd:element name=”into”>

<xsd:complexType>
<xsd:sequence>

<xsd:element name=”posBA”/>
<xsd:element name=”AddedTargetExpr”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name=”propagation” minOccurs=”0”/>

</xsd:sequence>
</xsd:complexType>

<add”>
<addedExpr>

+<rule id=”rul123”>
</addedExpr>
<as>scheduleRule</as>
<into>

<AddedTargetExpr>
protocol[id=”pro123”]//schedule[id=”sch123”]
</AddedTargetExpr>

</into>
</add”>

A B

Figure 4.27: A: the XML Schema definition of the add operation. B: an example
for add operation.

• The AddedExpr represents one of the protocol (skeletal plan) or ES plan com-

ponents.

• The as value could be one of this values (Category, Protocol, Schedule, Terms,

Event, Condition, Action, or domain entity), or the values (schedule rule,

protocol rule or global rule).

• the AddedTargetExpr represents a targeted component in a specific protocol

or ES plan.

• If into is specified without Before or After, AddedExpr becomes children of the

AddedTargetExpr. Else, AddedExpr becomes children of the parent of Added-

TargetExpr.

• the propagation values are (Yes or No), and the default value is No. The Added-

124

4.3. THE AIM QUERY COMPONENT

Expr will not be propagated to the corresponding ES plans, if the value is No.

If the value is Yes, the AddedExpr will be propagated to all the corresponding

plans.

The semantics of an add expression are as follows:

• AddedExpr must be a valid AIMSL component for the protocol or ES plan;

otherwise a static error is raised. The result of this step is either an error or a

sequence of components to be added.

• AddedTargetExpr must refer to a valid AIMSL component; otherwise a static

error is raised.

• The result of the add expression must be a valid AIMSL component for a

protocol or ES plan; otherwise a dynamic error is raised.

• If the add expression is applied for a plan, the validity period associated with

the AddedTargetExpr and its children should be changed to reflect the new

changes that have been made by the add expression.

Figure 4.27.B shows an example for an add operation that adds a rule as a

schedule rule under the schedule, whose id is sch123 and its parent is a protocol,

whose id is pro123. The added rule will not be propagated because the default

value of the propagation is No.

4.3.2.2 Remove

A remove expression removes at least one of AIMSL components from a protocol

or ES plan. Figure 4.28.A shows the syntax of a remove expression as follows:

• The RemovedTargetExpr refers to one of the protocol or ES plan components.

125

4.3. THE AIM QUERY COMPONENT

<xsd:complexType name=”removeDT”>
<xsd:sequence>

<xsd:element name=”RemoveedTargetExpr”/>
<xsd:element name=”propagation” minOccurs=”0”/>

</xsd:sequence>
</xsd:complexType>

<remove”>
<RemoveedTargetExpr>
protocol[id=”pro123”]//schedule[id=”sch123”]//rule[id=”rul123”]
</RemoveedTargetExpr>
<propagation>Yes</propagation>

</remove”>

A B

Figure 4.28: A: the XML Schema definition of the remove operation. B: an example
for a remove operation.

• the propagation values are (Yes or No), and the default value is No. The

RemovedTargetExpr will not be propagated to the corresponding ES plans, if

the value is No. If the value is Yes, it will be propagated to all corresponding

plans.

The semantics of a remove expression are as follows:

• The RemovedTargetExpr must refer to a valid AIMSL component; otherwise

a static error is raised.

• After removing the RemovedTargetExpr, the parent of the removed component

must be a valid AIMSL component or null, otherwise a dynamic error is raised.

• If the remove expression is applied for an ES plan component, the Removed-

TargetExpr is logically removed. That means the component is not deleted,

but it is marked as a deleted component. Also, the validity period associated

with the parent of RemovedTargetExpr should be changed to reflect the new

changes that have been made by the remove expression.

Figure 4.28.B shows an example for an remove operation that removes a rule,

whose id is rul123 and its schedule id is sch123. This schedule is under a pro-

tocol, whose id is pro123. This remove operation will be propagated because the

propagation value is Yes.

126

4.3. THE AIM QUERY COMPONENT

4.3.2.3 Modify

A modify operation might modify a component as a whole or only the values. Figure

4.29.A shows the syntax of the modify operation as follows:

<xsd:complexType name=”modifyDT”>
<xsd:sequence>

<xsd:element name=”value-of” minOccurs=”0”/>
<xsd:element name=”ModifyTargetExpr”/>
<xsd:element name=”with”/>
<xsd:element name=”propagation” minOccurs=”0”/>

</xsd:sequence>
</xsd:complexType>

<modify>
<ModifyTargetExpr>
protocol[id=”pro123”]//rule[id=”rul123”]//event[id=”EID123”]
</ModifyTargetExpr>
<with>

+<event id=”EID127”>
</with>

</modify>

A B

Figure 4.29: A: the XML Schema definition of the modify operation. B: an example
for a modify operation.

• The value-of element determines whether the modify operation updates a value

or a component.

• The ModifyTargetExpr element represents a targeted component in a specific

protocol or ES plan.

• The with element represents a protocol or ES plan components or a valid value

for a protocol or ES plan components.

• the propagation values are (Yes or No), and the default value is No. The modify

operation will not be propagated to the corresponding ES plans, if the value

is No. If the value is Yes, it will be propagated to all corresponding plans, if

applicable.

4.3.2.3.1 Modify Component. If the value-of element is not specified, the

modify operation modifies one valid AIMSL component with a new valid AIMSL

component. The semantics of this form of the modify operation are as follows:

• The ModifyTarggetExpr must refer to a valid AIMSL component; otherwise a

static error is raised. The ModifyTarggetExpr is evaluated. The result of this

step is either an error or a sequence of component to be modified.

127

4.3. THE AIM QUERY COMPONENT

• The with element must be a valid AIMSL component; otherwise a static error

is raised.

• The result of the modify expression must be a valid AIMSL component.

• If the modify operation is applied for a plan, instead of modifying the compo-

nent targeted by ModifyTarggetExpr, a copy of this component will be modified

by the with element and added as a sibling to the ModifyTarggetExpr. Also,

the validity period associated with the ModifyTarggetExpr should be changed

to reflect the new changes that have been made by the modify operation.

4.3.2.3.2 Modify the Value of a Component If the value-of is specified,

the modify operation modifies only the value of a valid AIMSL component. The

semantics of this form of the modify operation are as follows:

• The ModifyTarggetExpr must refer to a valid AIMSL component that does not

contain another component; otherwise a static error is raised.

• The ModifyTarggetExpr is evaluated. The result of this step is either an error

or a sequence of components to be modified.

• The with element must be a valid value for the ModifyTarggetExpr according

to AIMSL Schema; otherwise a static error is raised.

• The result of the modify expression must be a valid AIMSL component.

Figure 4.29.B shows a modify operation that replaces the event, whose id is

EID123. This event is under a rule, whose id is rul123, and the rule’s parent is the

protocol, whose id is pro123.

128

4.3. THE AIM QUERY COMPONENT

4.3.2.4 Activate

The activate operation activates an AIMSL plan, schedule or rule component in a

specific plan. This means these components will be ready for the execution process.

Figure 4.30.A shows the syntax of the activate operation. The semantics of the

activate operation are as follows:

• The ActTargetExpr element must refer to a valid re-playable AIMSL compo-

nent (plan, schedule or rule), or to a component containing at least one of

these components, such as the scheduleRules component.

• As a result to the activate operation, the state of the activated component

will be transited to the active state, and the corresponding triggers will be

activated in the system.

<xsd:complexType name=”activateDT”>
<xsd:sequence>

<xsd:element name=”ActTargetExpr”/>
</xsd:sequence>

</xsd:complexType>

<activate>
<ActTargetExpr>
plan[proid=”pro123”]//rule[id=”rul123”]
</ActTargetExpr>

</activate”>
A B

Figure 4.30: A: the XML Schema definition of the activate operation. B: an example
for an activiate operation

Figure 4.30.B shows an example for activating a rule, whose id is rul123, in a

plan, whose proid is pro123.

4.3.2.5 Deactivate

The deactivate operation deactivates an AIMSL plan, schedule or rule component

in a specific plan. This means these components will be off. Figure 4.31.A shows

the syntax of the deactivate operation, whose semantics are as follows:

• The DeactTargetExpr element must refer to a valid re-playable AIMSL com-

ponent (plan, schedule or rule), or to a component containing at least one of

129

4.3. THE AIM QUERY COMPONENT

these components, such as the scheduleRules component.

• As a result to the deactivate operation, the state of the deactivated component

will be transited to the inactive state, and the corresponding triggers will be

deactivated in the system.

<xsd:complexType name=”deactivateDT”>
<xsd:sequence>

<xsd:element name=”DeacTargetExpr”/>
</xsd:sequence>

</xsd:complexType>

<deactivate>
<DeacTargetExpr>
plan[proid=”pro123”]//rule[id=”rul123”]
</DeacTargetExpr>

</deactivate>
A B

Figure 4.31: A: the XML Schema definition of the deactivate operation. B: an
example for a dectiviate operation

Figure 4.30.B shows an example for deactivating a rule, whose id is rul123, in a

plan, whose proid is pro123.

4.3.2.6 Terminate

The terminate operation halts an AIMSL plan, schedule or rule component in a

specific plan. This means these components will be not in use any more. Figure

4.32.A shows the syntax of the terminate operation, whose semantics are as follows:

• The TermTargetExpr element must refer to a valid re-playable AIMSL com-

ponent (plan, schedule or rule), or to a component containing at least one of

these components, such as the scheduleRules component.

• As a result to the terminate operation, the state of the terminated component

will be transited to the terminated state, and the corresponding triggers will

be deleted from the system.

Figure 4.32.B shows an example for terminating a rule, whose id is rul123, in a

plan, whose proid is pro123.

130

4.3. THE AIM QUERY COMPONENT

<xsd:complexType name=”terminateDT”>
<xsd:sequence>

<xsd:element name=”TermTargetExpr”/>
</xsd:sequence>

</xsd:complexType>

<terminate>
<TermTargetExpr>
plan[proid=”pro123”]//rule[id=”rul123”]
</TermTargetExpr>

</terminate>
A B

Figure 4.32: A: the XML Schema definition of the terminate operation. B: an
example for a terminate operation

4.3.2.7 Fire

The fire operation is applying only to the rule component in a specific plan. This

means the rule’s action will be carried out if the rule condition is evaluated to true.

Figure 4.33.A shows the syntax of the fire operation, whose semantics are as follows:

• The FireTargetExpr element must refer to a valid AIMSL rule component in

an ES plan.

• As a result to the fire operation, the corresponding triggers will be activated

regardless the their event.

<xsd:complexType name=”fireDT”>
<xsd:sequence>

<xsd:element name=”FireTargetExpr”/>
</xsd:sequence>

</xsd:complexType>

<fire>
<FireTargetExpr>
plan[proid=”pro123”]//rule[id=”rul123”]
</FireTargetExpr>

</fire>
A B

Figure 4.33: A: the XML Schema definition of the fire operation. B: an example
for a fire operation.

Figure 4.33.B shows an example for firing a rule, whose id is rul123, in a plan,

whose proid is pro123.

4.3.3 The AIMQL Replay Query Support

This section presents the AIMQL replay query support to the complex information

(skeletal plan and entity-specific plan). Both skeletal plan and entity-specific plan

are represented and stored as XML document. Therefore, any XQuery engine could

131

4.3. THE AIM QUERY COMPONENT

be used to query them. However, querying entity-specific plans demands a special

query operator, which is capable of querying the history at a declarative and high

level. This section focuses on the AIMQL replay queries.

AIMQLReplay

WHERESHOWREPLAY

ReplayedObject

objectType variable

name test

infoKind OF

variableName temporalFunction

simplePredicate predicate

junct ion simplePredicate predicate

functional 2Side

operand1 operator operand2

complex element

simple element

sequence

choice

reference

edge

value

Figure 4.34: The AIMQL replay query structure.

4.3.3.1 The AIMQL Replay Language

The AIMQL replay language is a language that plays over again the history of the

entity-specific plans to show the in details the actions that cause changes on the ES

plans. At the same time, it considers the skeletal plan specification and application

domain information in the query. Figure 4.34 illustrates the XML Schema for the

AIMQL replay query structure. The AIMQL replay query statement consists of

main three clauses as follows:

• The REPLAY clause which indicates the element that is subject to be replayed.

As shown in Table 4.2, the special queries (replay queries) are applied only to

the plan, schedule and rule elements. As shown in Figure 4.34, the REPLAY

element has a complex type that consists of a sequence of ReplayedObject

132

4.3. THE AIM QUERY COMPONENT

elements, which has a complex type that consists of a sequence of elements

(objectType and variable). The objectType element is of token type restricted

to values (plan, schedule and rule). The variable element has a complex type

that consists of a sequence of elements (name, test). The name element refers

to the variable name, which should be unique. The test element is used to

specify a condition that restricts the variable to a specific plan, rule or schedule.

• The SHOW clause which determines which pieces of information are to be

returned. As shown in Figure 4.34, SHOW element has a complex type that

consists of a sequence of elements (infoKind and OF). The infoKind element

has a complex type that consists of at least one value element, which is of

type token that is restricted to values (when, why, who, how, and what). These

values are used as an indicator to specify the information kind, which is of

interest to the user, as follow:

(1) the when value is an indicator to show the validity period.

(2) the why value is an indicator to show the event that causes the firing, and

the condition evaluated in order to execute the rule.

(3) the who value is an indicator to show the actor participating in performing

the rule.

(4) the how value is an indicator to show the action carried out.

(5) the what value is an indicator to show the corresponding specification;

stored in the skeletal plan; of each component.

The OF element has a complex type that consists of a sequence of elements

(variableName, temporalFunction). The variableName element is referring to

one of the variables defined under the REPLAY clause. The temporalFuc-

tion element calls one of the temporal function provided by AIMQL, such as

133

4.3. THE AIM QUERY COMPONENT

overlaps, meets, first, last, valid, and cast.

• The WHERE clause which includes a comparison predicate, which is used to

restrict the number of elements returned by the query. The WHERE clause

eliminates all rows from the result set where the comparison predicate does not

evaluate to true. As shown in Figure 4.34, WHERE element has a complex

type that consists of a sequence of elements(simplePredicate and/or predicate).

The simplePredicate element specifies a simple predicate that calls one of the

temporal function, or a two side predicate that is consists of two operands

connected by an operator. The predicate element is used in the case of dealing

with composite predicate that is consists of two simple predicates connected

by a junction, which is and or or. The predicate element is a recursive element

that calls itself in order to support N number of composite predicates.

4.3.3.2 Examples: Replay Patterns

This subsections provides several replay query patterns and their corresponding

AIMQL replay queries. These patterns covers several situations that shows the

capacity of the AIMQL replay queries.

Replay Pattern 1 It is required to retrieve the history of the plan no (@do-

mainEntityID,@protocolID) (X,PID) over the period from TP1 to TP2. In this

pattern the variables X, PID, TP1, and TP2 are to be replaced with appropriate

values. Figure 4.35 illustrates the AIMQL replay queries for pattern 1. The replay

query returns N versions of the plan no. X over the mentioned period.

REPLAY PLAN p1
SHOW When OF p1
WHERE p1[@domainEntityID = X and @protocolID = PID]

and p1.overlaps(valid(TP1,TP2))

Figure 4.35: The AIMQL replay query for pattern 1.

134

4.3. THE AIM QUERY COMPONENT

Replay Pattern 2 It is required to retrieve the the first version of the plan

no (@domainEntityID,@protocolID) (X,PID). In this pattern the variables X, and

PID are to be replaced with appropiarte values. Figure 4.36 illustrates the AIMQL

replay queries for pattern 2. This replay pattern returns the first version of the plan

no. X.

REPLAY PLAN p1
SHOW When OF FIRST(p1)
WHERE p1[@domainEntityID = X and @protocolID = PID]

Figure 4.36: The AIMQL replay query for pattern 2.

Replay Pattern 3 It is required to retrieve the the last version of the plan no

(@domainEntityID,@protocolID) (X,PID). In this pattern the variables X, and PID

are to be replaced with appropiarte values. Figure 4.37 illustrates the AIMQL replay

queries for pattern 3. This replay pattern returns the last version of the plan no.

X. This replay pattern returns the most recent version of the complex information

no. (X,PID).

REPLAY PLAN p1
SHOW When LAST(p1)
WHERE p1[@domainEntityID = X and @protocolID = PID]

Figure 4.37: The AIMQL replay query for pattern 3.

Replay Pattern 4 It is required to retrieve the history of the plan no (X,PID)

before executing rule no. R of schedule no S. In this pattern the variables X, and

PID, R and S are to be replaced with appropiarte values. Figure 4.38 illustrates the

AIMQL replay queries for pattern 4. This replay pattern returns the plan versions,

which has no. X and its validity period precedes the validity period of the state

executed of rule R.

135

4.3. THE AIM QUERY COMPONENT

REPLAY PLAN p1
SHOW When OF p1
WHERE p1[@domainEntityID = X and @protocolID = PID] and

p1.precedes(valid(p1.schedule[@id=S]/rule[@id = R]/state[value = ’executed’]))

Figure 4.38: The AIMQL replay query for pattern 4.

Replay Pattern 5 It is required to retrieve the history of the schedule no S1 of

the plan no (X,PID) when the state of the rule no R of schedule W was ST. In this

pattern the variables X, and PID, R, W, and ST are to be replaced with appropriate

values. Figure 4.39 illustrates the AIMQL replay queries for pattern 5. This replay

pattern returns the versions of Schedule no S1 of the complex information no X,

such that the validity of the version overlaps the validity period of the state ST of

rule R in schedule W.

REPLAY PLAN p1, SCHEDULE p1.schedule[@id = S1] CIS
SHOW When, How, Why OF CIS
WHERE p1[@domainEntityID = X and @protocolID = PID] and

CIS.overlaps (valid(p1.schedule[@id=S2]/rule[@id=R]/state[value/status = ST]))

Figure 4.39: The AIMQL replay query for pattern 5.

Replay Pattern 6 It is required to replay the plans of category no CAT, which

was working for more than Y hours. In this pattern the variables CAT and Y

are to be replaced with appropriate values. Figure 4.40 illustrates the AIMQL

replay queries for pattern 6. This replay pattern returns the versions of the plans

of category CAT, whose validity period meets the current time, and whose age is

greater than or equal Y hours.

REPLAY PLAN p1
SHOW When, How, Why OF p1
WHERE p1[@domainEntityID = X and @protocolID = PID] and

cast(p1,hour) >= Y

Figure 4.40: The AIMQL replay query for pattern 6.

Replay Pattern 7 It is required to replay the plan no (X1,PID1) after the validity

period of the state ST of the plan no (X2,PID2). In this pattern the variables X1,

136

4.3. THE AIM QUERY COMPONENT

PID1, ST, X2, and PID2 are to be replaced with appropriate values. Figure 5.17

illustrates the AIMQL replay queries for pattern 7. This replay pattern returns

the versions of the plan no X1, whose validity period does not precede the validity

period of the state ST of the plan no X2.

REPLAY PLAN p1,p2
SHOW When, How, Why OF p1
WHERE p1[@domainEntityID = X1 and @protocolID = PID1] and

p2[@domainEntityID = X2 and @protocolID = PID2] and
NOT(p1.precedes(valid(p2.state[value/status=ST])))

Figure 4.41: The AIMQL replay query for pattern 7.

Replay Pattern 8 It is required to retrieve When and Why was rule A of the

schedule S on plan X,PID executed. In this pattern the variables X1, PID1, A, and

S are to be replaced with appropriate values. Figure 4.42 illustrates the AIMQL

replay queries for pattern 8. This replay pattern returns the versions of the plan no

X1, whose validity period does not precede the validity period of the state ST of

the plan no X2. This replay pattern returns the versions of the rule R of schedule

S of the plan no X, such that the replay period is the period, at which the rule R

was executed. The event and the condition evaluation will be shown as well.

REPLAY RULE plan[@domainEntityID = X1 and @protocolID = PID1]//schedule[@id=S]/rule[@id=A] R
SHOW When, Why
WHERE R.meet(valid(R.state[value/status=ST]))

Figure 4.42: The AIMQL replay query for pattern 8.

Replay Pattern 9 It is required to retrieve How many times was the rule R of the

schedule S of the plan (X,PID) executed, and why. In this pattern the variables X1,

PID1, R, and S are to be replaced with appropriate values. Figure 4.43 illustrates

the AIMQL replay queries for pattern 9. This replay pattern returns the versions

of the plan no X1, whose validity period does not precede the validity period of the

state ST of the plan no X2. This replay pattern counts the state value executed of

137

4.4. CHAPTER SUMMARY

the rule R of the schedule S of the plan no X, and shows the evaluation of the rule

R event and the condition at each execution.

REPLAY RULE plan[@id=X]//schedule[@id=S]/rule[@id=A] R
SHOW How, Why OF count(R.state[value/status=’executed’]
WHERE R.meet(valid(R.state[value/status=’executed’]))

Figure 4.43: The AIMQL replay query for pattern 9.

Replay Pattern 10 It is required to retrieve What is the rule R of the schedule

S of the plan X1,PID1. In this pattern the variables X1, PID1, R, and S are to be

replaced with appropriate values. Figure 4.44 illustrates the AIMQL replay queries

for pattern 10. This replay pattern returns the specification of the rule A of the

schedule S of the plan X.

REPLAY Rule plan[@domainEntityID = X1 and @protocolID = PID1]//schedule[@id=S]/rule[@id=A] R
SHOW What OF R
WHERE R.meet(current time)

Figure 4.44: The AIMQL replay query for pattern 10.

4.4 Chapter Summary

This chapter has presented the AIM language that is developed to support the

SIM approach and framework. The AIM language is a high-level, declarative, and

XML-based language that is divided into three components, AIMSL, AIM ESPDoc

model, and AIMQL.

The AIMSL is the AIM specification component that support the formalization

process of the complex information as skeletal plans that is represented as XML

document. The AIMSL model is based on the ECA rule paradigm with extensions

to support temporal events and conditions at the application domain level.

The AIM ESPDoc model is a computer-interpretable model for the entity-specific

plan, which consists of four components; knowledge action, domain information, de-

138

4.4. CHAPTER SUMMARY

scriptive information and evolution history. These four components are supported

by the AIM ESPDoc model that is capable of storing the evolution history of the

ES plan, as well as the descriptive information regarding the ES plan. The knowl-

edge action and domain information components of a specific skeletal plan together

are utilized to generate rule component of the ESPDoc model. The AIM ESPDoc

model demands a temporal XML support to be realized.

The AIM language specifies the complex information; the skeletal plans and

entity-specific plans as XML document that is to be stored in an XML database.

The third component of the AIM language is the AIMQL, which is the AIM query

component. AIMQL provides support for manipulating and querying the complex

information, and provides special manipulation operations, such as activate, deacti-

vate and terminate operation, and query capabilities for the complex information.

XML is generally used as a standard for data representation and exchange on

the WWW and between heterogeneous systems. Several XML query languages

have been developed. The most standard XML query language is XQuery lan-

guage (Boag et al. 2007). XQuery language is a W3C standard. Because, the

AIM language is based on XML: 1) XQuery queries can be used to query the AIM

specification, 2) AIM specification can be easily transformed into different format

representation. For example, the AIM specification could be transformed to HTML

using a stylesheet language, such as XSLT, 3) AIM is also easy to be distributes

among heterogeneous systems, 4) ordinary XML tools can be used to facilitate the

development of AIM.

The implementation of AIM language demands several extension to the modern

DBMSs that support the ECA rule paradigm and XML. The DB triggering mech-

anism of the modern DBMS should be extended to support 1) the time-based and

domain specific events and 2) temporal condition in order to support the AIMSL

139

4.4. CHAPTER SUMMARY

language. The XML data model should be extended to support the temporal di-

mension, which is required to support the AIM ESPDoc model. The AIMQL could

be implemented by translating the AIMQL queries into XQuery.

140

5
AIMS: A Proof-of-Concept System for Managing

the Complex Information

This chapter presents a proof-of-concept System called AIMS with focus on its

main components. AIMS is an acronym for Advanced Information M anagement

System. The AIMS system provides 1) a relational database model called TRME

for executing the AIMSL rules by translating these rules into pure SQL triggers

managed by the database management system (DBMS); 2) a temporal XML data

model called TXME for implementing the AIM entiy-specific plan model using the

XML support provided by the modern DBMSs; and 3) an implemention for the

AIMQL sub-language based on translating the AIMQL queries into pure XQuery

queries.

The chapter is organised as follows: Section 5.1 presents the AIMS structure and

the required features that should be provided by a DBMS to be used by AIMS; Sec-

tion 5.2 discusses the AIMS design at three levels of abstractions, conceptual, logi-

141

5.1. AIMS CONCEPTUAL STRUCTURE AND DBMSS SUPPORT

cal, and physical; Section 5.3 presents the TRME model for executing the AIMSL

rules; Section 5.4 discusses the limitations and performance of the AIMS execution

mechanism; Section 5.5 introduces the AIMS method for calculating the expire date

of the entity specific plan; Section 5.6 presents the TXME model for implementing

the AIM entity-specific plan model; Section 5.7 discusses the AIMS method for log-

ging the execution history; Section 5.8 presents the AIMS implementation for the

AIMQL sub-language; and Section 5.9 summarizes the chapter.

5.1 AIMS Conceptual Structure and DBMSs support

The AIMS system utilizes the available database management systems (DBMS) as

a base for managing the complex information and implementing the AIM language.

New sub-systems must be introduced to DBMSs to support the management of the

complex information as it is modelled in the SIM approach. The conventional sub-

systems of DBMSs must be modified to support advanced features required in real-

world situations, such as time events, temporal data management. AIMS adopts

the service-oriented architecture based on Web services to provide decentralized

management for the complex information. The following sub-sections discuss the

functional decomposition of AIMS, whose conceptual structure is shown in Figure

5.1, and the AIMS required features for using a DBMS.

5.1.1 A functional decomposition of AIMS

The main components of AIMS, depicted in Figure 5.1, are:

• the Complex Information (CI) Manager that provides the high level manage-

ment for the complex information (the skeletal plan and entity-specific plan).

It supports the main functions of the three plans in the SIM framework. The

AIM language is used to communicate with the Complex Information Manager.

142

5.1. AIMS CONCEPTUAL STRUCTURE AND DBMSS SUPPORT

XML
Schemas

XML Repository
- Domain Information
- AIM-SL Specification
- Complex Information

Complex In format ion
 M a n a g e r

- Specification
- Instantiation
- Execution
- Manipulation
- Query and Replay

Rule Manager

- Rule Execution
- Rule Manipulation

Communicat ion Manager

- Dissemination method
- Distr ibut ion method

DBMS Trigger
Mechanism

Registration and
Manipulation

Modifications

I n fo rmat ion Manager

- Validation method
- Temporal storage method
- Temporal query method

- Queries and Manipulations
- Skeletal Plan Doc
- Entity-Specific Plan Doc

AIM Language Statment

Result and Acknowledgement

In format ion
 Provider

User/Cl ient

Messages

AIMS: A Complex In format ion Management System

External Ent i t iesModern DBMS

Figure 5.1: AIMS: A proof-of-concept system for complex information management.

• the Rule Manager that provides an intermediate model for translating the

AIMSL rules existing in a skeletal plan into pure SQL triggers in a corre-

sponding entity-specific plan, plus a method for logging the execution history

of the entity-specific plan, and calculating the expire date of the entity-specific

plan. The Rule Manager manages the execution of the entity-specific plan

rules, manipulates them, and extends the DBMS triggering mechanism, e.g.,

to support temporal triggers. The main functionality of the Rule Manager is

presented in Sections 5.3. AIMS avoids the unexpected interactions that most

likely appear with the growing of the rule base, because 1) the rules are modu-

larized and joined to a specific domain entity instead of specific relation, such

as table in the relational database, and 2) the rule manager is able to remove

a set of rules according to it objective or scope.

• the Information Manager that provides support for managing the skeletal

plans and entity-specific plans as XML documents. It develops an interme-

diate model for extending an XML DBMS to provide temporal support for the

143

5.1. AIMS CONCEPTUAL STRUCTURE AND DBMSS SUPPORT

entity-specific plans. The Information Manager utilizes an XML DBMS to

validate and store the specification of the AIMSL specification (skeletal plan)

and the entity-specific plans documents. The Information Manager provides

an implementation for the AIMSL model and the entity-specific plan model.

The main functionalities of this component are presented in Sections 5.2, 5.6,

and 5.8.

• the Communication Manager that supports the remote access and distributed

management to the CI. The communication manager interacts with the exter-

nal entities, such as users and information provider(s), through messages. The

received messages from the external entities embed AIM language statement(s).

The Web services related standards, such as WS-Notification (Graham et al.

2004), combined with the DBMS triggering mechanism is utilized to develop

the execution process of the CI model. The rule body consists of the elements;

terms, event, condition, and action. The terms element maps the general

terms, which are used in the event, condition and action elements of the rule,

to specific data items. As shown in Figure 5.1, the general terms are stored as

domain information in the XML repository of AIMS. Using WS-Notification,

the communication manager subscribes the data items. As soon as the updates

to data items become available, the information provider(s) publishes these up-

dates. The communication manager receives the updates. Then the domain

information is manipulated according to these updates. The event, condition

and action parts of the rules are translated into triggers, which might be fired,

once the general terms associated with these triggers are modified. Only the

infrastructure of the decentralized management is in the focus of this research

project. Therefore, the Communication Manager is not fully implemented in

the AIMS system.

144

5.1. AIMS CONCEPTUAL STRUCTURE AND DBMSS SUPPORT

• External Entities contain the users of the AIMS system and the Informa-

tion Provider, who manages the domain entity information, such as patient

healthcare record and supplies the AIMS system by the modification on this

information. The communication between the External Entities and the AIMS

system is to be through messages managed by the Communication Manager.

• Modern DBMS is to be used as the core of the AIMS system. The main

functionality of the Modern DBMS is to provide a triggering mechanism and

XML data management supports. Both supports are extended by the Rule

Manager and Information Manager.

5.1.2 The Criteria of Selecting a Modern DBMS for AIMS

AIMS utilizes the modern DBMSs to provide the core functionality for the In-

formation Manager and the Rule Manager. The suitable modern DBMS, which

could be used to support the AIMS system, should generally provide a triggering

mechanism, Jave stored procedure, XML storage and retrieval. The AIMS required

features, which should be supported by the adopted DBMS, could be classified

into categories. These categories are XML Schema, XML Storage, XML Retrieval,

XML Update, Triggering Mechanism, Job Scheduler, Temporal Support and Web

Services. The available DBMSs are to be evaluated according to these required

features to determine the suitable DBMS(s) that could be utilized by AIMS.

The XML Schema category includes the features, validation and recursion. The

validation feature means the DBMSs provides the ability to register XML Schemas.

This feature is required to register the AIMSL schema and the AIM ESDoc model

to validate AIMSL specifications and entity-specific plan documents, respectively.

The recursion feature means that the DBMS support the XML Schema that has

recursion. An XML Schema will have recursion if one of its elements referencing

145

5.1. AIMS CONCEPTUAL STRUCTURE AND DBMSS SUPPORT

itself, such as in AIMSL schema the condition might contain a composite predicate

that contains the element morePredicate of type composite predicate, more details

about the AIMSL schema is provided in Chapter 4.

The XML Storage category includes the features, Size and Storage Model Based

on. First the Size, the AIMS system system records the execution history of the

entity-specific plans. There is limitation in the size of the XML document that

could be handled by the modern DBMSs. It is required to have reasonable support

to deal with big XML documents. Second the Storage Model Based on, the modern

DBMSs support the XML storage based on different models, such as relational

database (RDB) with Btree index or object-relational database (ORDB). The used

model might affect the retrieval performance. For example, using the Btree index

enhances the retrieval performance.

The XML Retrieval category includes the features, XQuery Support and SQL/XML

Support. The XQuery Support is required to support the AIMS implemention for

the AIMQL queries. AIMS translates the AIMQL queries into XQuery. Therefore,

the adopted modern DBMS should provide an XQuery engine. The SQL/XML Sup-

port mean that the SQL language is extended to support several XML functions

(Andrew and Melton 2002; Sql/Xml 2003).

The XML Update category includes the features, Update Level and Standard.

The Update Level feature determines at which level the DBMS can update the

XML document. The update levels range from document level to node level. The

document level means that the update operations are applied only to the whole

document. The node level means that the update operations are applied to any

node in an XML document. AIMS system demands update support at the node

level, as the AIMQL manipulation operations update the AIMSL specification or the

entity-specific plans at the node level. The standard feature determines whether the

146

5.1. AIMS CONCEPTUAL STRUCTURE AND DBMSS SUPPORT

update support is according to the World Wide Web Consortium (W3C) standard

or not. AIMS prefers that the update support following the W3C in order to be

platform independent.

The Triggering Mechanism category includes the features, Associated with XML

Repository, XQuer Support and SQL/XML Support . The Associated with XML

Repository feature means that the triggering mechanism is provided to the XML

data. AIMS needs this feature if AIMS deals with domain knowledge stored in

XML document. Otherwise, AIMS needs only the triggering mechanism with the

relational data. The XQuer Support and SQL/XML Support features means the

triggering mechanism could be specified using XQuery or SQL/XML language. This

feature is required if the AIMSL rules are to deal with XML data. In this case, the

AIMSL rules should be mapped into XQuery triggers or SQL/XML triggers.

The Job Scheduler category includes the features, Minimum Time Granularity

and SQL Script Support. The Minimum Time Granularity feature determines the

minimum granularity that could be support by AIMS for the AIMSL rules. As

explained in Chapter 4, the events of the AIMSL rules support several time gran-

ularities ranging from second to year. The SQL Script Support feature means that

the job scheduler of the DBMS can execute a SQL script. This feature is to be

discussed in Section 5.3.

The adopted modern DBMS should provide support for: 1) Java Stored Proce-

dure in order to support the AIMSL advanced actions; 2) basic temporal support,

such as dateTime and time stamp data types; and 3) Web Services support in order

to be able to receive or send messages.

Most of the modern DBMSs, which provide support for Native XML technology,

extend their relational DBMS features to support XML storage and retrieval, such

DB2 (Nicola and Linden 2005) and Oracle (Mark Scardina 2004; Zhen Hua Liu

147

5.2. CONCEPTUAL, LOGICAL, AND PHYSICAL DESIGN OF AIMS SYSTEM

Comparison Features DB2 Oracle

XML Schema
Validation Yes Yes
Recursion Yes No

XML Storage
Size 2G 64K

Storage Model Based on RDB + Btree ORDB

XML Retrieval
XQuery Support Yes Yes

SQL/XML Support Yes Yes

XML Update
Update Level node node

Standard Yes Not

Triggering Mechanism
Associated with XML Repository Yes Yes

XQuery Support Yes Yes
SQL/XML Support Yes Yes

Job Scheduler
Minimum Time Granularity Minutes Minutes

SQL Script Support Yes Yes
Java Stored Procedure Yes Yes
Temporal Support Partial Partial
Web Services Yes Yes

Table 5.1: Comparison summary of the support provided by modern DBMSs for
the AIMS system

2005). Table 5.1 summarizes our comparative analysis to the support provided to

AIMS by the modern DBMSs using the AIMS required features. The comparative

analysis is applied to DB2 Express-C version 9.5 and Oracle 10g release 2. As

illustrated in Table 5.1 , the most important findings of our comparative analysis

are:

• the main drawback of Oracle is the limitation in the size of the XML document,

which is too small for an application storing the history;

• DB2 provides support for most of the requirements of AIMS. AIMS is imple-

mented using DB2, Java, and XML technologies, such as XQuery and Web

services.

5.2 Conceptual, Logical, and Physical Design of AIMS System

This section presents the design of AIMS storage and functionality (execution mech-

anism, specification and query language) at three levels of abstractions; conceptual,

logical and physical. The implementation method adopted in this research uses

the combined application of the Event-Condition-Action (ECA) rule paradigm, a

temporal mechanism, advanced DBMS features and XML technologies.

148

5.2. CONCEPTUAL, LOGICAL, AND PHYSICAL DESIGN OF AIMS SYSTEM

Domain EntityCategory

Protocol

Entity-Specific (ES) Plan

Global Rule

Protocol Rule

ScheduleSchedule Rule

assined
m1

Has

1

1

generated

f rom

m

1

Has

1

1

Contains

1

Contains
1

Contains
1

Evolution History

Domain Information

Has

Has

1

1

m

m

m

m

m

Speci f icat ion and Storage

*Specification
*Manipulation
 Operation
* Information
 Retrieval
* Replay
 Function

AIM Language

Execution

The reactive
 behavior

Rules

Query and
Manipula t ion

monitors

In AIMS, this part is designed and implemented using XML

1

m

In AIMS, this part could be designed
and implemented using RDB or XML

Figure 5.2: The conceptual design of AIMS stotage and functionality

5.2.1 The Conceptual Design

Conceptually, the execution of the complex information is represented as reactive

behavior rules that monitor domain information and provide recommendations as an

action for detecting specific events of interest. As explained in Chapter 4, the AIM

language provides support for specifying, manipulating, and querying the complex

information and its execution. The AIMS storage repository at the conceptual level

is divided into two main parts, part could be implemented using relational database

(RDB) or XML, and another part that is implemented using XML. As shown Figure

5.2:

• The first part is the entities (domain information, domain entity and category)

that represent the domain knowledge. In the healthcare domain, these entities

are healthcare record, patient, and patient category respectively. This domain

knowledge is managed in some domains using RDB and some others using

XML database.

• The second part is the entities (protocol, schedule, schedule rules, protocol

rules, and global rules) that represent the specification of the complex infor-

mation using the SIM approach explained in Chapter 3. An entity-specific

149

5.2. CONCEPTUAL, LOGICAL, AND PHYSICAL DESIGN OF AIMS SYSTEM

(ES) plan is generated from a specific protocol (skeletal plan) and has at least

one evolution history. The ES plan is used to monitor the domain information

to provide on-line observations and recommendations as soon as an event of in-

terest happened. AIMS implements this part using XML database to support

the distributed management of the complex information.

Speci f icat ion and Storage Execution
Query and

 Manipulat ion

Category

+CatID: String

+CatName: String

+Description: String

Domain_Entity

+DEID: String

+CatID: String

+DEName: String

+DEEmail: String

+DEPhone: String

+DEType: String

Domain_Information

+DIID: String

+DEID: String

+DIName: String

+DIValue: String

+DIDataType: char

+DIDescription: String

+Date_of_RecievingValue: Date

In AIMS, this part is the logical implemenation
of the relat ionship "monitors" between
the ES Plan and the domain information

In AIMS, this part is the logical representation of the AIMSL
specification and the ES Plan using XML

In AIMS, this part is represented using the relational model.

* An Extended
 XQuery language
* SQL/XML language

ECA Rules

Supported by:
- SQL Trigger
- XQuery Trigger
- Web Services

Rule Base

The XML Schema
of AIMSL

 Specification
(Protocol)

The XML Schema
of ESPDoc Model

generated

f rom

1 m

has

1

1

Figure 5.3: The logical design of AIMS stotage and functionality

5.2.2 The Logical Design

At the logical level, the execution of the complex information could be implemented

using SQL Triggers (Kulkarni et al. 1999), XQuery Triggers (Bonifati et al. 2002)

or Web Services (Cerami 2002). The choice is based on the type of data storage

of the domain knowledge (domain information, domain entity and category). The

AIM language could be also mapped into XQuery (Boag et al. 2007) or SQL/XML

(Andrew and Melton 2002; Sql/Xml 2003). The AIM language is XML-based lan-

guage. An XML query language should be uased in order to query the protocol

(skeletal plan) and/or the ES plan.

The AIMS storage repository at the logical level is divided into three main parts,

as shown Figure 5.3:

150

5.2. CONCEPTUAL, LOGICAL, AND PHYSICAL DESIGN OF AIMS SYSTEM

• The first part is the logical representation of AIMSL specification for the skele-

tal plans (protocols) and the ESPDoc model for the ES plan documents. Sev-

eral ES plan documents might generated from a protocol document. A proto-

col document must be assigned to only one category. The ES plan document

provides support for keeping the plan evolution history.

• The second part is the Rule Base that contains the rules of the ES plans coded

using SQL, XML triggers or Web services. The Rule Base is supported by the

modern DBMS using a triggering mechanism. However, this support should

be extended to cover the AIMSL rules that express real-world situations.

• The third part is the relations, on which the domain knowledge of interest to

the complex information is stored. The domain information relation stores

data items monitored by the ES plan rules. These data items are associated

with a specific domain entity, such as the patient temperature data item should

be associated with a specific patient. The domain information relation rep-

resents any data items using the attributes (DIID, DEID, DIName, DIValue,

DIValueNo, DIDataType, DIDescription). The relation domain entity pro-

vides a general information about a specific domain entity, such as ID, Name,

email, phone, and type. The type attribute specifies the type of the entity in

the domain, such as in healthcare domain, domain entities could be a patient

or clinician. The relation category represents any category in the domain using

the attributes (CatID, CatName and Description).

5.2.3 The Physical Design

At the physical level, The DB2 database management system (DBMS) is utilized

to implement AIMS system. The execution of the complex information is imple-

mented using DB2 SQL Triggers, and DB2 SQL/XML language. The DB2 SQL

151

5.2. CONCEPTUAL, LOGICAL, AND PHYSICAL DESIGN OF AIMS SYSTEM

Speci f icat ion and Storage Execution
Query and

Manipula t ion

Entity-Specific Plan

+ESPID: CHAR(6)

+ProID: VARCHAR(6)

+DEID: VARCHAR(6)

+ESPTitle: VARCHAR(17)

+ESPDoc: xml = Temporal XML document

Protocol

+ProID: VARCHAR(6)

+CatID: VARCHAR(6)

+GRID: CHAR(6)

+ProDoc: xml = AIMSL Specification

Category

+CatID: VARCHAR(6)

+CatName: VARCHAR(15)

+Description: VARCHAR (200)

Domain_Entity

+DEID: VARCHAR(6)

+CatID: VARCHAR(6)

+DEName: VARCHAR(15)

+DEEmail: VARCHAR (50)

+DEPhone: VARCHAR(15)

+DEType: VARCHAR(10)

Timing_of_DomainEvent

+ESPID: VARCHAR(6)

+DEveID: CHAR(6)

+DEvent: VARCHAR(50)

+OccuranceTime: timeStamp

+DEDescription: VARCHAR(200)

+NumberOFSeconds: Integer

+NumberOFMinutes: Integer

+NumberOFHours: Integer

+NumberOFDays: Integer

+NumberOFWeeks: Integer

+NumberOFMonths: Integer

+NumberOFYears: Integer

DB2Triggers

+TriggerName

+TriggerTable

+TriggerSchema

+Time_to_tigger

+Operation

+TriggerAction

AIMS-DB Schema in DB2 DBMS

Domain_Information

+DIID: CHAR(6)

+DEID: VARCHAR(6)

+DIName: VARCHAR(15)

+DIValue: VARCHAR(15)

+DIDataType: char(1)

+DIDescription: VARCHAR (50)

+Date_of_RecievingValue: Date

GlobalRule

+GRID: VARCHAR(6)

+GRDoc: xml = AIMSL Specification

* DB2 XQuery
* DB2 SQL/XML
* Java Stored
 Procedure

* DB2 SQL 1999
 Triggers
* DB2 SQL/XML
 Triggers

In AIMS, this part is the physical
implemenation of the relat ionship
"monitors" between the enti ty-specif ic plan
 and the domain information

In AIMS, this part is the physical
storage of the XML repository of the AIM_SL specification
and the complex information

In AIMS, this part is the physical
storage (tables) of the domain information and entity.

Note: in the physical level of AIMS, DB2 DBMS is utilised as
a relational DB and XML repository.

Task Center

Periodically, re-calculate
the attr ibutes
NumberOF#

AIMCalCompletionTimeTAB

+ESPID: VARCHAR(6)

+SID: CHAR(6)

+RID: CHAR(6)

+EvntID: CHAR(6)

+EOccuranceTime: timeStamp

+TimeLength: Integer

+NoOFTimes: Integer

+Granularity: CHAR(6)

+CompletionTime: timeStamp

Figure 5.4: The physical design of AIMS stotage and functionality

triggers is chosen because the domain knowledge (domain information, domain en-

tity and category) in this prototype is stored in relational database. The AIMQL

sub-language is mapped into DB2 XQuery.

The AIMS physical database schema is based on the datatypes supported by

DB2 database, Figure 5.4 classifies the AIMS database schema into three parts, as

the following:

• The first part represents the AIMS XML repository that stores the AIMSL

specification of the protocols (skeletal plans) and the ES plans documents.

DB2 provides an XML datatype. The attribute of the XML datatype can store

an XML document, and the content of this document could be validated using

an XML Schema registered in the DB2 database (Nicola and Linden 2005).

The DB2 database does not provide support to store and validate a temporal

XML document, which is required to support the ES plan documents. It is

a demand to extend the DB2 XML datatype to provide support for temporal

XML documents. Section 5.6 presents our temporal extension to the XML

data model.

152

5.3. TRME: A MODEL FOR TRANSLATING THE AIMSL RULES INTO SQL TRIGGERS

• The second part is the physical representation of the ES plan rules and ex-

tension to DB2 triggering mechanism. The DB2 task center, which provides

support for job schedules, is utilizes to extend the DB2 triggering mechanism to

support the AIMSL rules. A pure relational model for extending the triggering

mechanism is presented in Section 5.3.

• The third part is the relations, on which the domain knowledge of interest

to the complex information is stored. The only difference between this part

at the logical and physical level is the used datatypes. The advantage of the

domain information table is the flexibility to store any kind data items. The

terms of type element specified in AIMSL language, see Chapter 4, are to be

stored in the the domain information. Consider as example, the term patient

temperature, whose second received value is 37.5, will be represented in domain

information table, as shown in Table 5.2.

DIID DEID DIName DIValue DIValueNo DIDataType DIDescription
DIT131 PAT131 patient temperature 37.5 2 Double patient temperature

Table 5.2: The domain information table.

5.3 TRME: A Model for Translating the AIMSL Rules into SQL

Triggers

This section presents an intermediate model, called TRME, for translating AIMSL

rules into a pure SQL triggers. TRME is an acronym for T emporal Rules M ade

Easy, and implemented using relational database utilities, such as SQL triggers and

job scheduler.

153

5.3. TRME: A MODEL FOR TRANSLATING THE AIMSL RULES INTO SQL TRIGGERS

5.3.1 TRME Model at Conceptual Level

In AIMSL, the time-based events are classified into two categories of events, absolute

time and relative time events. The relative time event is classified into once-off and

repetitive event. For more details, the reader is referred to Chapter 4. The main

idea behind TRME model is to represent the absolute time or the occurrence time of

the domain events as tuples of < event id, name, type, description, event occurrence

time, <granularity attributes>>. The event occurrence time is the absolute time

or the occurrence time of an AIMSL event, and could be greater than or less than

the current time.

In temporal data management, there are two types of time, transaction time and

valid time (Tansel et al. 1993). The transaction time is the time in which the event

happened in the system. The valid time is the time in which the event happened in

the real-world. In the TRME model, it is assumed that the transaction time and

the valid time are equal.

The set of the granularity attributes:

(1) represents the time length towards or afterwards the event occurrence time;

(2) is a set of integer data type attributes, whose values might be negative or

positive;

(3) is a set of derived attributes that range from second to years; and

(4) is periodically calculated by subtracting the event occurrence time from the

current time and casting the result to a specific granularity, as shown in Figure

5.5.

If the values of the granularity attributes are negative values that means the time

length is towards the event occurrence time; otherwise the time length is afterwards

154

5.3. TRME: A MODEL FOR TRANSLATING THE AIMSL RULES INTO SQL TRIGGERS

the event occurrence time. Consider as examples for the values of the granularity

attributes might be one day, 2 hours, and 3 minutes after patient admission, or might

be 3 weeks, 2 days, 1 hours, 5 minutes before the surgery. Both categories of time-

based events, once off and repetitive events, could be represented as triggers, which

are triggered after update the corresponding granularity attribute with checking

specific predicates that represents a specific time-based event.

DEID DEVEID DEName EOccurrenceTime SECS MINS YEARS Desc
Pat101 DEPA11 Patient Admission 2008-01-14 12:13:52 -9999 -9999 ... -9999 N/A
Pat101 DESU11 surgery 2008-01-20 12:13:52 -999 -9999 ... -9999 N/A

Table 5.3: The initial timing event table for the terms Patient Admission and
surgery.

As shown on Table 5.3, there are two tuples one for patient admission and

another one for surgery for the same patient (Pat101). Consider as examples for

time-based once-off events:

(1) on 2 days after patient admission; and

(2) on 5 hours before the surgery.

The first event could be represent as a trigger, which is triggered after updating

the day granularity attribute, and checking the predicates:

• P1 : the day granularity attribute is equal to the integer value 2;

• P2 : the other less granularities (from second to hour) should be zero to avoid

the repetition (for now, assume the granularity attributes are updated every

second); and

• P3 : the event id is equal AEPA1.

The second event could be represented as a trigger, which is triggered after

updating the hours granularity attribute, and checking the predicates:

155

5.3. TRME: A MODEL FOR TRANSLATING THE AIMSL RULES INTO SQL TRIGGERS

• P1 : hours is equal to the negative integer value -5;

• P2 : the other less granularities (from second to minute) should be zero to

avoid the repetition; and

• P3 : the event id is equal DESU11.

Consider as examples for time-based repetitive events:

(1) every 3 days after patient admission for 10 times; and

(2) every 10 hours before surgery.

The first event could be represented as a trigger, which is triggered after updating

the day granularity attribute, and checking the predicates:

• P1 : mod (ignoreSign(days) , 3) is equal to zero;

• P2 : the other less granularities (from second to hour) should be zero to avoid

the repetition;

• P3 : the current time is less than the event occurrence time plus (3 * 10 days),

this predicate restricts the repetition to 10 times (30 days) only; and

• P4 : the event id is equal DEPA11.

The second event could be represented as a trigger, which is triggered after

updating the hours granularity attribute, and checking the predicates:

• P1 : mod(ignoreSign(hours),10) is equal to zero;

• P2 : the other less granularities (from second to minute) should be zero to

avoid the repetition;

• P3 : the set of granularity attributes is less than zero, this restricts the repeti-

tion until reaching the occurrence time of the surgery ; and

156

5.3. TRME: A MODEL FOR TRANSLATING THE AIMSL RULES INTO SQL TRIGGERS

• P4 : the event id is equal DESU11.

The function ignoreSign() returns the positive the value of the attribute. The

episode and absolute time events are also implemented by mapping them into the

previous representation and their rules are fired as soon as all the granularity at-

tributes become zero.

5.3.2 DBMS Support for the TRME Model

According to the TRME model, the main steps for implementing the AIMSL ECA

rules are to:

(1) represent and store the AIMSL events as tuples of the previous representation;

(2) capture the occurrence time of the AIMSL events;

(3) monitor and calculate the time length (the value of granularity attributes);

and

(4) translate the AIMSL ECA rules into triggers over the timing event table.

Utilizing the DBMSs to implement the TRME model saves the cost of imple-

menting an AIMSL ECA rule execution processor from scratch and extends the

modern DBMSs to support the domain-specific and time-based ECA rules.

The tuples of the AIMSL events could be represented and stored in a table, whose

schema is (DEID,DEVEID, DEName, OccuranceTimeStamp, Number of Seconds,

Number Of Minutes, Number Of Hours, Number Of Days, Number Of Weeks, Num-

ber Of Months, Number Of Years, Description). The values of the granularity at-

tributes are calculated using the formula shown in Figure 5.5.

Most of the DBMSs, such as DB2, Oracle, and MS SQL Sever, provide support

for scheduling tasks or jobs. This facility is utilized to periodically calculate the

value of the granularity attributes as shown in Figure 5.5.

157

5.3. TRME: A MODEL FOR TRANSLATING THE AIMSL RULES INTO SQL TRIGGERS

CONNECT TO AIMS ;
Update aim TimingDEvent tab

SET
Number of Seconds = SECOND (current timestamp - OccuranceTimeStamp)
, Number of Minutes = MINUTE (current timestamp - OccuranceTimeStamp)
, Number of Hours = HOUR (current timestamp - OccuranceTimeStamp)
, Number of Weeks = DAY (current timestamp - OccuranceTimeStamp) / 7
, Number of Days = DAY (current timestamp - OccuranceTimeStamp) -

((DAY (current timestamp - OccuranceTimeStamp) / 7) * 7)
, Number of Months = MONTH (current timestamp - OccuranceTimeStamp)
, Number of Years = YEAR (current timestamp - OccuranceTimeStamp);

COMMIT;

Figure 5.5: DB2 Task command script for calculating the granularity attributes.

5.3.3 Translating the Terms of the AIMSL Rules

The term element in AIMSL is classified into event or element types. TRME

translates the term element according to its type as explained below. The term of

type element is mapped into a table called, Domain information, as shown in Table

6.3. For example, the term ACR Test Result is of type element, and consists of

ACR Test Result as a title, INTEGER as a data type of its value, and its termID is

TO1234. The term ACR Test Result, whose second received value is 37 for patient

PID001, will be represented in the domain information table, as shown in Figure

6.3. This table supports predicates such as “ getValue(TO1234,3) > 55“, which

means “check that the third value of the ACR Test Result is greater than 55“. The

terms of type event are mapped as shown in Table 5.3. It is assumed that the

occurrence time of any event is estimated or given.

DIID DEID DIName DIValue DIValueNo DIDataType DIDescription
TO1234 PID000 ACR Test Result -99 0 INTEGER this is an ACR test result
TO1234 PID001 ACR Test Result 37 2 INTEGER this is an ACR test result
TO1234 PID002 ACR Test Result -99 0 INTEGER this is an ACR test result

Table 5.4: The domain information table.

158

5.3. TRME: A MODEL FOR TRANSLATING THE AIMSL RULES INTO SQL TRIGGERS

5.3.4 Translating the AIMSL Rules into Triggers

This sub-section presents algorithms that are developed to translate the AIMS

ECA rule into executable trigger over the timing event table. All the corresponding

triggers for the ECA rules are triggered after updating one of granularity attributes

and manipulated for each row under specific condition, as explained in details in

Algorithm 1 shown in Figure 5.6. The condition clause represents the time-based

event.

5.3.4.1 Generate a Trigger

Algorithm 1 translates the AIMSL ECA rule into an equivalent SQL trigger. Algo-

rithm 1 receives as input the AIMSL rule specification, and returns a create trigger

statement. The algorithm constructs the create trigger statement. The function

getTriggerName returns a unique trigger name using the id of the AIMSL rule.

The trigging time for all advanced ECA rules is after updating one of the granu-

larity attributes on the timing event table. The functions getGranularityAttribute

and getTimingTblName return a specific granularity attribute used in the rule, and

the name of the timing event table, respectively. The generated trigger should be

processed for each row in the timing event table, because each row representing a

specific event.

The event of an AIMSL rule is represented as a set of predicates in the when

clause of the generated trigger. If the event type of the AIMSL rule is once-off

event, the function getWhenClauseOE shown in Figure 5.7, is called to return the

equivalent predicates to the once-off event of the rule. Otherwise, if the event type of

the AIMSL rule is repetitive event, the function getWhenClauseRE shown in Figure

5.8, is called to return the equivalent predicates to the repetitive event of the rule.

The function getWhenClause is called to construct the predicates equivalent to the

159

5.3. TRME: A MODEL FOR TRANSLATING THE AIMSL RULES INTO SQL TRIGGERS

condition part of the rule. All the generated predicates are attached to the when

clause of the trigger. The action part of the trigger is constructed using the action

part of the AIMSL rule.

Description : generate a trigger for a specific AIMSL ECA rule
Inputs : r an AIMSL rule specification
Output : ctm create trigger statment
01: ctm = “create trigger “ + getTriggerName (r)
02: ctm = ctm + “ “+ “after update of “+ getGranularityAttribute(r.event)
03: + “ “+ “ on “ + getTimingTblName()
04: ctm = ctm + “ “+ “referencing old as oldrow new as newrow
05: ctm = ctm +“ “ + “for each row
06: ctm = ctm + “ “ + “mode db2sql
07: WhenClause = “(“
08: if getRuleType (r) = “once off“ then
09: WhenClause = WhenClause + getWhenClauseOE()
10: else if getRuleType (r) = repetitive then
11: WhereClause = WhenClause + getWhenClauseRE ()
12: end if
13: WhenClause = WhenClause + getWhenClause (r.condition)
14: WhenClause = WhenClause + “) “
15: ctm = ctm + “ “ + WhenClause
16: ctm = ctm + “ “ + getTriggerAction(r.action)

Figure 5.6: Algorithm 1 getARTrigger.

5.3.4.2 Once Off ECA Rules

Algorithm 2 generates the when clause of an once off event. The Algorithm 2

creates two lists of size 7 gl and tll, one for the granularity attributes and another

one for the time length of the corresponding granularity, respectively. The function

getGranularityPosition returns an integer value p between 0 to 6, which refers to

the position of the granularity in the list. If the value of the element beforeORafter

of the once-off event is after, the timeLengh is assigned as positive value to cell

number p in tll, else the timeLengh is assigned as negative value to the cell. For

each granularity in gl list, a predicate is generated. The predicate checks that a

granularity attribute is equal to the corresponding time length in the tll list. Finally,

the algorithm adds another predicate to check that the predicates are evaluated for

the AIMSL event, whose ID is equal to the once off event ID.

160

5.3. TRME: A MODEL FOR TRANSLATING THE AIMSL RULES INTO SQL TRIGGERS

Description : expressing once off advanced event as condition clause
Inputs : oe once off event
Output : WhereClause
01: gl list of all granularity attributes =
02: {“NumberOfMinutes“, “NumberOfHours“, “NumberOfDays“ ,
03: “NumberOfWeeks“, “NumberOfMonths“, “NumberOfYears“}
04: tll time length list of all granularity = 0,0,0,0,0,0
05: p = getGranularityPosition(oe.granularity)
06: if oe.beforeORafter = “after“ then
07: tll[p] = oe.timeLength
08: else tll[p] = - oe.timeLength
09: end if
10: i = 0
12: for each granularity in gl do
13: WhereClause = WhereClause + “ (“+ gl[i] + “ = “ + tll [i] + “) “
14: WhereClause = WhereClause + “ and “
15: i = i + 1
16: end for
17: WhenClause = WhenClause + “ (AEID = ’“ + oe.eventID + “’)“

Figure 5.7: Algorithm 2 getWhenClauseOE.

5.3.4.3 Repetitive ECA Rules

Algorithm 3 generates the when clause of a repetitive time-based event. Algorithm

3 creates one list of size 7 gl, for the granularity attributes. The function getGranu-

larityPosition returns an integer value p between 0 to 6, which refers to the position

of the granularity in the list. If the value of the element beforeORafter of the event

is before, a predicate will be generated to check that the value of the granularity

attribute is less than zero. For the repetition, another predicate is added to check

that the result of mod (granularity attribute, the repetition time length) is equal

zero. Finally, the algorithm adds another predicate to check that the predicates are

evaluated for the advanced event, whose ID is equal to the event ID, to whose value

the repetition is calculated.

5.3.4.4 The Condition and Action

In AIMSL, the condition might be a simple predicate or a composite predicate. For

more details, the reader is refered to Chapter 4. AIMS implemented only the simple

predicate. Using the TRME model, the condition element is mapped into an SQL

predicate, such as the predicate “ getValue(TO1234,3) > 55“ is to be mapped into

161

5.3. TRME: A MODEL FOR TRANSLATING THE AIMSL RULES INTO SQL TRIGGERS

Description : expressing repetitive advanced event as condition clause
Inputs : re repetitive event
Output : WhereClause
01: gl {list of all granularity attributes} =
02: {“NumberOfMinutes“, “NumberOfHours“, “NumberOfDays“,
03: “NumberOfWeeks“, “NumberOfMonths“, “NumberOfYears“}
04: p = getGranularityPosition(oe.granularity)
05: if oe.beforeORafter = “before“ then
06: WhenClause = WhenClause + “ (“+ gl[p] + “ ¡ “ 0) and “
07: end if
08: WhenClause = WhenClause +
09: “ (mod (“ + gl[p] + “ , “ + oe.timeLength + “))“
10: WhenClause = WhenClause + “ and “
11: WhenClause = WhenClause + “ (AEID = ’“ + oe.eventID + “’)“

Figure 5.8: Algorithm 3 getWhenClauseRE.

“(INTEGER(newrow.ValueNO) = 3) AND (INTEGER(newrow.DIValue) > 55)“,

where newrow is a SQL variable referring to the new updated tuple.

The action of an AIMSL rule might be of a procedural action, such as send email,

or an AIMQL operation, such as add rule or terminate rule. For more details, the

reader is referred to Chapter 4. We have extended the DBMS triggering mechanism

using a Java stored procedural to send an email as an action attached with a SQL

trigger.

The SQL triggers do not allow any SQL data definition statement (DDL), such

as create or drop triggers, to be a part of a SQL trigger. The reason is that the

DDL statements enforce the DBMS to commit after executing a DDL statement.

Executing a commit statement within the SQL trigger action violates one of the

database transaction properties, which is atomic transaction. The database trans-

action, by definition, must be atomic. Atomic means the work units performed in a

database must be completed in their entirety or take no effect whatsoever (Elmasri

and Navathe 2003). The SQL trigger is invoked by a database operation, which

is not yet committed. Therefore, it is not allowed to execute a commit statement

within uncompleted transaction.

In order to implement the AIMSL actions that issue AIMQL operations, such as

add or terminate rules, we have adopted the method developed in (Dube 2004). This

162

5.4. THE AIMS EXECUTION MECHANISM: LIMITATIONS AND PERFORMANCE

method creates a network socket to connect the AIMS database with a Listener,

message processor, that is outside the database. The Listener receives messages

from AIMS to create or drop triggers. Using this method, the SQL trigger, which is

an implementation to an AIMSL rule, can create or drop another trigger as a part

of its action by sending a message to the Listener through a Java stored procedure.

This way logically does not violate the atomic property of the database transaction.

5.4 The AIMS Execution Mechanism: Limitations and Perfor-

mance

The AIMS execution mechanism is based on translating the AIMSL rules into a pure

SQL triggers over the Timing Event Table using the TRME model. The DBMS is

to be in charge of managing these SQL triggers.

5.4.1 Limitations

The limitations of the AIMS execution mechanism are classified into: 1) granularity

limitations and 2) limitations on the maximum number of triggers.

Granularity limitations are: 1) in most of the DBMSs, the minimum granularity

for the job (task) repetition period supported by the job scheduler is minute. This

granularity limitation means that the AIMS rules based on the second granularity

are practically not supported; and 2) as minimum granularity used as the load on

the system increase. For example, supporting the minute granularity means that

the job scheduler should run every minute, but if the rules specified at the day

granularity, the job scheduler should run every 24 hours.

Limitations on the maximum number of triggers. In the DBMSs, there are several

limitations and restrictions on the trigger-based applications (Ceri et al. 2000). We

163

5.4. THE AIMS EXECUTION MECHANISM: LIMITATIONS AND PERFORMANCE

have classified the limitations on the maximum number of triggers into the following

categories:

(1) the total number of triggers per table. There is a limitation on the maximum

number of triggers that could be created on a specific table, some DBMS

supports up to 300 triggers per table, such as DB2;

(2) The total number of concurrent triggers. The DBMSs have a limitation on

multiple triggers that are activated at same time. This limitation based on the

buffer size and the complexity of the triggers; and

(3) the number of levels for nested triggers. Triggers are nested when a trigger

performs an action that initiates another trigger. There is a limitation on the

maximum number of levels supported for the nested triggers, this levels could

be in some systems up to 128 level.

Once the job scheduler updates the granularity attributes in the timing event

table, all the triggers created over the table will fire and become part of the update

transaction that commits after processing all the fired triggers. Consequentially,

the above limitations means that using one timing event table, on which all the

SQL triggers are to be created, is performance problem and also critical limitation

on the maximum number of triggers that could be created or managed at the same

time.

5.4.2 Overcoming the Limitations and Enhancing the Performance

The limitations discussed in the previous sub-section are overcome by AIMS as

discussed in the next paragraphs.

Overcoming the limitation on nested triggers. The AIMS execution mechanism

is not affected by this limitation because the triggers corresponding to the AIMSL

164

5.5. AIMS METHOD FOR CALCULATING THE EXPIRE DATE OF THE
ENTITY-SPECIFIC PLAN

rules do not modify the timing event table, which is updated only by the job sched-

uler. That means there is no nested triggers.

Overcoming the limitation on the maximum number of triggers per table. The

AIMS system overcomes this limitation by performing horizontal fragmentation on

the timing event table using for example the domain entity ID, such as patient

ID. Therefore, several timing event tables will be in use. Logically, the maximum

number of triggers, which could be created on the timing event table, is increased.

Overcoming the limitation on the maximum number of concurrent triggers. The

AIMS system overcomes partially this limitation by performing database tuning

and job scheduler time slicing. The goal of database tuning is to maximize use of

the system resources to perform work as efficiently and rapidly as possible. Slicing

the supported granularity among the job scheduler is utilized in AIMS to reduce the

number of concurrent triggers. For example, assume that the minimum supported

time granularity is an hour and there are three job schedulers JS1, JS2 and JS3 for

updating the timing event tables TET1, TET2, TET3 receptively. The time could

be sliced as follows: JS1 runs in the first 20 minutes, JS2 runs in the second 20

minutes, and JS3 runs in the third 20 minutes. That leads to fire separately the

triggers attached with each timing event table. Therefore the number of concurrent

triggersis reduced. Currently, the time slicing in AIMS is made manually.

5.5 AIMS Method for Calculating the Expire Date of the Entity-

Specific Plan

The AIMS system provides a pure SQL method for calculating the expire date of the

entity-specific plan. The entity-specific plan contains several types of rules, time-

based rules and non-time-based rules that based on domain-specific events, such

165

5.5. AIMS METHOD FOR CALCULATING THE EXPIRE DATE OF THE
ENTITY-SPECIFIC PLAN

as test result received. The time-based rules are classified into absolute time event

rules, such as on May 23, 2008 do something, or relative time event, two hours after

patient admission do something. The relative time event rules are classified into

two type once-off rules and repetitive rules. These rules are captured and specified

using the AIM specification component. For more details, the reader is refered to

Chapter 4.

The AIMS system calculates the duration of each rule in an entity-specific plan.

The maximum duration time represents the expire date of the entity-specific plan.

While AIMS is registering an entity-specific plan, AIMS calculates the duration of

all the rules registered for this plan, and determines the initial expire date of the

plan.

Figure 5.9 shows the four rules of the entity-specific plan, number ESP131, that

contains one schedule containing four rules. Rule1, Rule2, and Rule3 are time-based

rules. Rule3 is an absolute time event rule. Rule1 and Rule2 are relative time event

rules of type repetitive and once-off rules, respectively. Rule4 is a domain-specific

event, which is on receiving the ACR test. The AIMS system assumes that the

occurrence time of the domain-specific events are pre-determined (given) or could

be estimated.

Rule1 : 4 minutes After of the patient admission for 10 times do something.
Rule2 : 1 day Before the operation for do something.
Rule3 : On 2008-01-15 10:05:00 do something.
Rule4 : On ACR test received do something.

Figure 5.9: The rules of the entity-specific plan, number ESP131.

While AIMS is registering an entity-specific plan, for each registered rule a tuple

is inserted in the AIMCalCompletionTimeTAB table, as shown in Table 5.5. The

table consists of 9 attributes:

• ESPID is an attribute representing the entity-specific plan ID

166

5.5. AIMS METHOD FOR CALCULATING THE EXPIRE DATE OF THE
ENTITY-SPECIFIC PLAN

• SID is an attribute representing the schedule ID

• RID is an attribute representing the rule ID

• EvntID is an attribute representing the event ID, on which the rule is based

• EOccurrenceTime is an attribute representing the occurrence time of the event

• TimeLength is an attribute representing the time length before or after the

event. The negative values refers to before, and the positive value refers to

after. This value could be zero in the case of absolute time event rules and

domain-specific event rules.

• NoOFTimes is an attribute representing the number of repetition for the rule.

This value has a value only with the repetitive rules.

• Granularity is an attribute representing the granularity of the time length,

which could be second, minute, hour, day, week, month, or year.

• CompletionTime is a derived attribute representing the expire date of the

rule. The CompletionTime attribute is derived using this SQL formula (EOc-

currenceTime + (TimeLength * NoOFTimes) Granularity). For Rule1, the

formula is (2008-01-14 12:13:52 + (4 * 10) MINUTE).

ESPID SID RID EvntID EOccurrenceTime TimeLength NoOFTimes Granularity CompletionTime

ESP131 Sch1 Rule1 PAD131 2008-01-14 12:13:52 4 10 MINUTE 2008-01-14 12:53:52
ESP131 Sch1 Rule2 OPE131 2008-01-16 12:13:52 -1 1 DAY 2008-01-15 12:53:52
ESP131 Sch1 Rule3 ABS131 2008-01-15 10:05:00 0 0 SECOND 2008-01-15 10:05:00
ESP131 Sch1 Rule4 ACR131 2008-01-16 12:13:52 0 0 SECOND 2008-01-16 14:13:52

Table 5.5: The AIMS table assisting in calculating the expire date of the entity-
specific plan.

The expire date for any entity-specific plan or one of its schedule is the maximum

completion time of its rules. This simple logic is implemented using a pure SQL

query. Figure 5.10.A shows a group-by query selecting the maximum Completion-

Time of the rules that belong to the entity-specific plan ’ESP131’. The result of

167

5.6. TXME: A TEMPORAL XML DATA MODEL FOR IMPLEMENTING THE AIM
ESPDOC MODEL

A
SELECT MAX (CompletionTime)
FROM AIMCALCOMPLETIONTIMETAB
WHERE ESPID = ’ESP131’
GROUP BY ESPID
B
SELECT MAX (CompletionTime)
FROM AIMCALCOMPLETIONTIMETAB
WHERE ESPID = ’ESP131’ and SID = ’Sch1’
GROUP BY ESPID, SID
C
SELECT ESPID, SID, MAX (CompletionTime)
FROM AIMCALCOMPLETIONTIMETAB
GROUP BY ESPID, SID

Figure 5.10: The SQL Query for calculating the expire date.

this query is the expire date of the plan ’ESP131’. If the where-clause is removed

from the group-by query, the query will return the expire date of all entity-specific

plans registered in the system. Figure 5.10.B shows a group-by query selecting the

maximum CompletionTime of the rules that belong to the schedule ’Sch1’ of the

entity-specific plan ’ESP131’. The query returns the expire date of the schedule. If

the where-clause is removed from the group-by query, as shown in Figure 5.10.C,

the query will return the expire date of all schedules in the all plans. The entity-

specific plan is dynamically changing over time by adding or removing rules. After

any modification in the entity-specific plan, the expire date of the plan must be

re-calculated.

5.6 TXME: A Temporal XML Data Model for implementing the

AIM ESPDoc Model

This section presents a temporal XML data model, called TXME, for implementing

the AIM ESPDoc model. TXME is an acronym for T emporal XML M ade Easy.

The TXME model is consistent and compatible with both XML Schema and the

XML data model. Consequentially, the XML storage and retrieval support provided

by the modern DBMSs could be utilized, as it is, to store and retrieve the AIMSL

168

5.6. TXME: A TEMPORAL XML DATA MODEL FOR IMPLEMENTING THE AIM
ESPDOC MODEL

specification and entity-specific plan documents.

The modern DBMSs, such as DB2 and Oracle, provide partial support, such as

date and time data-types, for the temporal data management, as shown in Table

5.1. The modern DBMSs provide an XML data-type that is used to extend their

relational database to store XML documents (Mark Scardina 2004; Zhen Hua Liu

2005; Chen et al. 2006; Nicola and Linden 2005). This XML data-type follows the

W3C XML data model (Bray et al. 2008). In order to re-use the XML support

provided by the modern DBMSs, the temporal extensions should be consistent and

compatible with the XML data model.

The XML data model is a tree structure that consists mainly of two types of

element simple element and complex element (Bray et al. 2008). The simple element

is an element that contains a text value only. The complex element is an element

that contains other simple element and/or complex element. The XML data model

does not provide support for the temporal relationships between the elements. For

examples, a simple element might contain the value V1 at a specific time point,

or an element was a child of a complex element at a specific time period. The

complex element might contains attributes, which are pairs of attribute names ai

and attribute values Ai. These temporal relationships are the basic requirements

for realizing the AIM ESPDoc model.

The TXME model extends the XML data model with the ability to define tem-

poral elements. The temporal element is an element that varies over time. The

TXME data model could be applied for any conventional XML Schema to generate

a temporal Schema, which could be used to validate a temporal XML document.

Any instance of the TXME model is a temporal XML document that is well-formed

XML document and/or a valid XML document, which is defined as a well-formed

XML document and conforms to the rules of a Document Type Definition (DTD) or

169

5.6. TXME: A TEMPORAL XML DATA MODEL FOR IMPLEMENTING THE AIM
ESPDOC MODEL

an XML Schema (XSD). Therefore, the TXME model is consistent and compatible

with both XML Schema and the XML data model.

In TXME model, the time-varying attribute is represented as a time-varying

element. On the other hand, the TXME model does not support temporal (time-

varying) attributes. The temporal elements are classified, according to its content,

into two categories, time-varying simple element and time-varying complex element.

In the following sub-sections, the formal definitions for the two categories of the

temporal elements are discussed.

(A)
<SElement Attributes< simpleValue </SElement>
(B)
<SElement startTime=ST endTime=ED Attributes>

<value startTime=ST1 endTime= ET1> simpleValue</value>
<value startTime=ST2 endTime= ET2>simpleValue</value>
. . .
<value startTime=STn endTime= ETn> simpleValue </value>

</SElement>
Such the following temporal constrains:
1) STn <= ETn
2)STn = ETn-1,
3) STn-1 < STn,
4) ETn-1 < ETn,
5) ETn = Now, Now refers to the current time
6) ST = min (ST1, ST2, . . .,STn)= ST1 and
7) ET = max (ET1, ET2,. . . ,ETn)= ETn.
8) 1,2,,n refers different time point.

Figure 5.11: (A) The structure of an XML simple element. (B) The time-varying
simple element structure and temporal constrains.

5.6.1 Time-Varying Simple Element

The time-varying simple element is an element that has only text node, whose value

varies over time, as shown in Figure 5.11.A, which illustrates the structure of an

XML simple element, whose value is of simple data type such as string or integer.

Figure 5.11.B illustrates the TXME model for time-varying simple element, and

depicts the formal definition for the structure and temporal constrains for the model

of the time-varying simple element.

170

5.6. TXME: A TEMPORAL XML DATA MODEL FOR IMPLEMENTING THE AIM
ESPDOC MODEL

5.6.1.1 Structure

The TXME model for a time-varying simple element is different from XML data

model for a simple element in the point that the time-varying simple element can

hold multiple elements called value that hold the simple element value varying over

time. Each time-varying simple element and value element has a validity period

that presents the period, in which the element or the value was/is valid, as shown

in Figure 5.12.B. The validity period is represented as two attributes, startTime

and endTime, that represents the start time and end time of the validity period,

respectively. In the TXME model, the time-varying simple element might contain

a non-temporal complex element(s), which will not affect the time-varying simple

element temporal constrains.

5.6.1.2 Temporal Constrains

Figure 5.11.B illustrates several temporal constrains that determine how to 1) asso-

ciate a new value to a time-varying simple element and 2) adjust the validity period

of the time-varying simple element. For the same validity period, the start time at

any time point should be less than or equal to the end time. Assume the value is

changed at time point n-1, this means: A) the value of the endTime attribute of

the current value is ETn-1 ; and B) a new value element, whose startTime is ETn-1

and endTime is Now will be added.

The start time and end time of any validity period of the value element at time

point n is greater than the start time and end time of the validity period of the

value element at time point n-1, assuming there is no changes for the same simple

element within the supported time granularity. The validity period of the time-

varying simple element consists of the minimum start time and the maximum end

time of all validity periods attached with the elements called value. According to

171

5.6. TXME: A TEMPORAL XML DATA MODEL FOR IMPLEMENTING THE AIM
ESPDOC MODEL

the temporal constrains 3 and 4, the minimum start time is the start time of the

validity period attached with the first value, and the maximum end time is the end

time of the validity period attached with the last value.

(A)
<status>executed</status>
(B)
<status startTime=”2008-01-14T13:25:18” endTime=”Now”>

<value startTime=”2008-01-14T13:25:18” endTime=”2008-01-14T14:25:19”>registered</value>
<value startTime=”2008-01-14T14:25:19” endTime=”NOW”>executed</value>

</status<

Figure 5.12: (A) An example for an XML simple element. (B) An example for a
TXME time-varying simple element.

5.6.1.3 An Example

Figure 5.12.A illustrates an example for a simple element, called status, that rep-

resents the status of an AIMSL rule. The status of an AIMSL rule are such as

generated, registered, and executed. The status of the AIMSL rule varies over

time. Therefore, the element status is a time-varying simple element. Figure 5.12.B

illustrates the element status as time-varying simple element.

The temporal constrains shown in Figure 5.11.B validate the semantic of the

temporal data. Figure 5.12.B illustrates the following:

• the start time of the value ”registered“ is less than its end time;

• the start time of the value ”executed“ is equal the end time of the value

”registered“;

• the NOW value represents the current time;

• the start time of the status element is the minimum start time belongs to its

values, which is ”2008-01-14T13:25:18”;

• the end time of the status element is the maximum end time belongs to its

values, which is the value NOW ; and

172

5.6. TXME: A TEMPORAL XML DATA MODEL FOR IMPLEMENTING THE AIM
ESPDOC MODEL

• the element, whose end time is equal NOW, is currently valid element.

5.6.2 Time-Varying Complex Element

The time-varying complex element is an element that has sub-elements, which might

be simple or complex, and temporal or non-temporal. The time-varying complex

element might have attributes. Figure 5.13 illustrates the TXME model for the

time-varying complex element, and depicts the formal definition for the structure

and temporal constrains for the model of the time-varying complex element.

<CElement startTime=ST endTime=ED Attributes>
<nonTemporalNode-1 . . .>. . .< /nonTemporalNode-1>
<nonTemporalNode-2 . . .>. . .< /nonTemporalNode-2>
<nonTemporalNode-n . . .>. . .< /nonTemporalNode-n>
<temporalElement-1 startTime=ST1 endTime= ET1 . . .> . . . </temporalElement-1>
<temporalElement-2 startTime=ST2 endTime= ET2 . . .> . . . </temporalElement-2>
<temporalElement-n startTime=STN endTime= ETn . . .> . . . </temporalElement-n>

</CElement>
Such the following temporal constrains:
1) ST = min (ST1, ST2,. . .,STn) and
2) ET = max (ET1, ET2,. . .,ETn)
3) 1,2,. . .,n refers to different element.

Figure 5.13: The time-varying complex element structure and temporal constrains.

5.6.2.1 Structure

The TXME model for the time-varying complex element is different from XML data

model for a complex element in the point that the time-varying complex element has

a validity period, which is represented as two attributes, startTime and endTime.

The validity period presents the period, in which the element was/is valid. The time-

varying complex element consists of at least one temporal element, which might be

a complex or simple time-varying element.

5.6.2.2 Temporal Constrains

As illustrated in Figure 5.13, the validity period of the time-varying complex element

consists of the minimum start time and the maximum end time of all validity periods

173

5.6. TXME: A TEMPORAL XML DATA MODEL FOR IMPLEMENTING THE AIM
ESPDOC MODEL

attached with the temporal elements. There is no temporal relationship between

the validity periods of the different temporal elements, which are children of a

time-varying complex element.

5.6.2.3 An Example

Figure 5.14 illustrates an example for a time-varying complex element, an AIMSL

rule element at the run time. The rule element is a temporal element consisting of

a time-varying complex element, called state, and a non-temporal element, called

triggers. The state element consists of time-varying simple elements, called value.

As shown in Figure 5.14, the start time of each value element vi+1 is equal the end

time of the the value element vi, such that vi precedes vi+1.

The start time of the state element is the minimum start time of its value el-

ements, and the end time of it is the maximum end time of its value elements.

The validity period of the rule element is equal to the state element validity period

because the state element is the only temporal element under the rule element.

<rule IDREF=”rul1” startTime=”2008-01-14T12:13:29” endTime=”NOW”>
<state startTime=”2008-01-14T12:13:29” endTime=”NOW”>

<value startTime=”2008-01-14T12:13:29” endTime=”2008-01-14T13:25:18”>
<status>generated</status>

</value>
<value startTime=”2008-01-14T13:25:18” endTime=”2008-01-14T14:25:19”>

<status>registered</status>
</value>
<value startTime=”2008-01-14T14:25:19” endTime=”2008-01-15T08:25:19”>

<status>executed</status>
<event>time-based rule fire when the plan is 2-hours old</event>
<action>it sent an email</action>

</value>
<value startTime=”2008-01-15T08:25:19” endTime=”NOW”>

<status>terminated</status>
</value>

</state>
<triggers>

<trigger> </trigger>
</triggers>

</rule>

Figure 5.14: An example for a time-varying complex element, an AIMSL rule of an
ES plan.

174

5.7. AIMS METHOD FOR LOGGING THE EXECUTION HISTORY OF THE
ENTITY-SPECIFIC PLAN

5.7 AIMS Method for Logging the Execution History of the

Entity-Specific Plan

This section discusses the support provided by the TXME model for realizing the

AIM ESPDoc model, and the method used to log the execution history of the ES

plan.

5.7.1 The TXME Support for the Entity-Specific Plan Model

In TXME data model, the temporal XML document is a well-formed XML doc-

ument, such that its root element is a temporal element, whose validity period

contains all the validity periods existing in the document. Therefore, the tempo-

ral XML document is consistent and compatible with both XML Schema and the

XML data model. Consequentially, the TXME model extends the XML datatype

provided by the modern DBMSs, such as Oracle (Mark Scardina 2004) and DB2

(Nicola and Linden 2005).

The ESPDoc model for the ES plan document is a temporal XML-based model.

AIMS utilizes the TXME model to realize the AIM ESPDoc model, which is speci-

fied using an XML Schema that follows and obeys the semantic rules of the TXME

model. This XML Schema is to be registered in DB2 database. The ES plan doc-

uments stored in the entity-specific plan table, which is shown in Figure 5.4, is to

be validated against the XML Schema of the AIM ESPDoc model.

5.7.2 Logging the Plan Execution History

Each Rule in the ES plan is translated into DB2 SQL/XML trigger. The generated

SQL/XML trigger contains the logic of the corresponding rule plus a procedure

for logging the changes made by executing the corresponding rule. AIMS system

175

5.7. AIMS METHOD FOR LOGGING THE EXECUTION HISTORY OF THE
ENTITY-SPECIFIC PLAN

implements the semantic of the TXME model using XML update statement. The

changes might be under the state element of the rule, which consists of several value

elements.

<value startTime=”{current Time Stamp}” endTime=”{NOW}”>
<status>executed</status>
<event>{the event evaluation of the rule}</event>
<condition>{the condition evaluation of the rule}</condition>
<action>{the action logic of the rule}</action>

</value>

Figure 5.15: The new value element.

If a trigger is fired and its condition is evaluated to ture, the action of the trigger

applies the business logic and logs the changes made by this business logic as one

transaction. The reader is referred to review the XML Schema of the ESPDoc

model in Chapter 4. The changes are:

(1) Replace the value of endTime attribute under the value element, whose end

time is NOW, by the current Time Stamp,

(2) Add the new value element shown in Figure 5.15. The {current Time Stamp}

is the current system time that is, in this case, equal to the end time of previous

value element, see step 1. The {NOW} is an AIMS system value, which means

at any time point the present time without need to modify its value to reflect

the actual current time-stamp. The {the event evaluation of the rule} is the

actual evaluation of the event in the run-time, each event element contains a

description element, which is modified by the actual values of the run-time,

such as “this is the day 4 of patient admission, the rule fired every two days“.

The {the condition evaluation of the rule} is the the actual evaluation of the

condition, such as “At the evaluation time, the ACR test result was 60, which

is greater than 55, the condition was evaluated to true“. As well as, the {the

176

5.8. TRANSLATING AIMQL QUERIES INTO XQUERY

action logic of the rule} is the description of the action.

(3) if the rule applies an operation, such as terminate, add, or deactivate, on

another rule, these operations is logged as using the same logic of step 1

(replace) and 2 (add), in which a new value element is added under the

state element, but instead of the <status>executed</status>, it could be

<status>terminated</status>.

5.7.3 An Example

Figure 5.16 illustrates an example for an ES plan rule, which fires every 12 hours

if the test result is greater than 55. The steps 1 and 2 are shown with the last

two value elements shown in Figure 5.16. The value of the endTime attribute is

replaced with the current time at the execution, which was 2008-03-24T00:26:09.

Then the new value element recording the execution history at that time is added

with the validity period (2008-03-24T00:26:09,NOW).

The reason of executing the rule and the rule action are recorded with the rule

state values, as shown in Figure 5.16. For example, the last execution happened

because the test result was 86, which is greater than 55. The elements, whose

endTime attribute is equal NOW, are the current valid element of the rule. The

other elements were valid within their validity period.

5.8 Translating AIMQL Queries into XQuery

This section presents the XQuery templates corresponding to the AIMQL replay

language and presents XQuery scripts of some AIMQL replay patterns presented

in Chapter 4. As discussed, the TXME model support the realization of the AIM

ESPDoc model and the process of keeping the execution history of the ES plan.

The TXME model is fully compatible with the XML data model supported by

177

5.8. TRANSLATING AIMQL QUERIES INTO XQUERY

<rule IDREF=”rul5” startTime=”2008-01-14T12:13:29” endTime=”NOW”>
<state startTime=”2008-01-14T12:13:29” endTime=”NOW”>

<value startTime=”2008-01-14T12:13:29” endTime=”2008-01-14T13:25:18”>
<status>generated</status>

</value>
<value startTime=”2008-01-14T13:25:18” endTime=”2008-01-15T00:25:19”>

<status>registered</status>
</value>
<value startTime=”2008-01-15T00:25:19” endTime=”2008-01-16T00:25:33”>

<status>executed</status>
<event>time-based rule fires every 12 hours if the test value is gt 55</event>
<condition>the condition (test value is greater than 55) is true, because the test value was 83</condition>
<action>it sent an email</action>

</value>
...

<value startTime=”2008-03-23T00:26:10” endTime=”2008-03-24T00:26:09”>
<status>executed</status>

<event>time-based rule fires every 12 hours if the test value is gt 55</event>
<condition>the condition (test value is greater than 55) is ture, becuase the test value was 81</condition>
<action>it sent an email</action>

</value>
<value startTime=”2008-03-24T00:26:09” endTime=”NOW”>

<status>executed</status>
<event>time-based rule fires every 12 hours if the test value is gt 55</event>
<condition>the condition (test value is greater than 55) is ture, becuase the test value was 86</condition>
<action>it sent an email</action>

</value>
</state>

...
</rule>

Figure 5.16: An example for an ES plan rule.

the modern DBMS. Consequentially, the AIM ES plan document, which is based

on the TXME model, could be queried using the XQuery language. Therefore,

translating the AIMQL replay queries into pure XQuery scripts is adopted as an

implementation method for the AIMQL language.

The AIMQL replay query is a declarative query, which means that the user

does not need to know the structure of the complex information (Skeletal plan and

ES plan). The translator knows the structure (elements and attributes) of the ES

plan, Skeletal plan and the domain information table. The translator generates the

equivalent XQuery that allows new XML document to be constructed as a result of

the AIMQL replay queries. Each part of an AIMQL replay query is translated into

its corresponding XQuery. The AIMQL replay query consists of REPLAY, SHOW,

and WHERE, for more details the reader is referred to Chapter 4.

178

5.8. TRANSLATING AIMQL QUERIES INTO XQUERY

5.8.1 The XQuery template for the AIMQL Replay Variables

The AIMQL variables are defined in the REPLAY clause to access specific elements

that are subject to be replayed. These elements must be of type plan, schedule, or

rule. The variables might be restricted using a specific condition, which might

be specified in the REPLAY or WHERE clauses. If the variable appears in the

SHOW clause that means there is a need to set up an iteration through the element

associated to the variable. For example, if the variable P1 of type plan, that need to

set up an iteration through the plan element and its sub-elements, such as schedule

and rule. Setting up iterations through these sub-element is implicitly demand.

The XQuery provides the FOR clause support the iteration. Consequentially, the

variables appear in the SHOW clause are defined within an XQuery FOR clause.

However, if variables do not appear in the SHOW clause, its expressions in the

AIMQL replay query are defined within an XQuery LET clause, which binds the

variable to specific value. For example, the AIMQL replay query for pattern 7

defines two variables of type plan, p1 and p2, as shown in Figure 5.17. The variable

p1 is used in the SHOW clause. The variable p2 is used only in one expression in

the WHERE clause. The XQuery template for the variables p1 and p2 are shown

in Figure 5.18.

REPLAY PLAN p1,p2
SHOW When, How, Why OF p1
WHERE p1[@domainEntityID = X1 and @protocolID = PID1] and

p2[@domainEntityID = X2 and @protocolID = PID2] and
NOT(p1.precedes(valid(p2.state[value/status=ST])))

Figure 5.17: The AIMQL replay query for pattern 7.

XQuery uses functions, such as doc and collection, to access XML documents

from within a query (Walmsley 2007). In DB2, an XQuery can obtain input data

by calling a function named db2-fn:xmlcolumn with a parameter that identifies the

179

5.8. TRANSLATING AIMQL QUERIES INTO XQUERY

let $vaildST :=
db2-fn:xmlcolumn(’AIM ESPlan TAB.ESPDOC’)
//Plan[@domainEntity ID=X2 and @protocol ID=PID2]/state[value/status=ST]/xsd:dateTime(@startTime)

let $vaildET :=
db2-fn:xmlcolumn(’AIM ESPlan TAB.ESPDOC’)
//Plan[@domainEntity ID=X2 and @protocol ID=PID2]/state[value/status=ST]/xsd:dateTime(@endTime)

for $p1 in
db2-fn:xmlcolumn(’AIM ESPlan TAB.ESPDOC’)//Plan[@domainEntity ID=X1 and @protocol ID=PID1]

Figure 5.18: The XQuery template for the variables p1 and p2.

table name and column name of an XML column in a DB2 table (Chen et al. 2006).

Figure 5.4 shows the tables representing the AIMS XML repository. These tables

are AIM ESPlan TAB, AIM Protocol TAB, and AIM GlobalRules TAB.

As shown in Figure 5.18, the equivalent of the AIMQL replay variable p1 and

of p2 type plan are:

• for p1, the XQuery variable $p1 that is defined within a FOR clause, which

sets up an iteration over the plan element, whose attributes @domainEntity ID

and @protocol ID are equal the values X1 and PID1 respectively.

• for p2, the XQuery variables $vaildST and $vaildET that are defined within

a LET clause as an equivalent XQuery expressions for the p2 expression

(valid(p2.state/value[text()=ST])), as discussed in Sub-section 5.8.2.

5.8.2 The XQuery template for the AIMQL Replay Functions

This sub-section presents the XQuery equivalents for the AIMQL replay functions

valid, cast, first, last, overlaps, meets, contains, and precedes.

AIMQL: valid($exp as expression) as variables In AIMQL, the valid func-

tion returns the time during which the $exp is valid. The XQuery equivalent of

the valid function is two XQuery variables, $vaildST and $vaildET, that are de-

fined within a LET clause using a specific expression. The variable $vaildST is

180

5.8. TRANSLATING AIMQL QUERIES INTO XQUERY

assigned the start time of the validity period of the $exp expression , and the vari-

able $vaildET is assigned the end time of the validity period of the $exp expression.

The XQuery template for the vaild function is shown in Figure 5.19.

let $vaildST :=
db2-fn:xmlcolumn(’AIM ESPlan TAB.ESPDOC’)//{$exp}/xsd:dateTime(@startTime)

let $vaildET :=
db2-fn:xmlcolumn(’AIM ESPlan TAB.ESPDOC’)//{$exp}/xsd:dateTime(@endTime)

Figure 5.19: The XQuery template for the valid($exp as expression) function.

AIMQL: cast($costnode as node, $unit as String) as xdt: dayTimeDura-

tion In AIMQL, the cast function converts the validity period of a specific element

to another unit. The support units are second, minute, hour, day, week, month,

and year. Figure 5.20 shows the XQuery template for the cast function, which is

translated into dayTimeDuration and any value compared with the cast element or

node is translated also into dayTimeDuration. Figure 5.21 illustrates the XQuery

expression equivalent for the AIMQL expression cast(p1,hour) <= 10, such that p1

is an AIMQL variable of type plan. In this example the value 10 is translated into

PT10H, which is a dayTimeDuration, and then compared with the validity period

of p1, which is also translated into dayTimeDuration.

xdt:dayTimeDuration(
xsd:dateTime($costnode/@endTime) - xsd:dateTime($costnode/@startTime)
)

Figure 5.20: The XQuery template for the cast($costnode as node, $unit as String)
function.

AIMQL: count($exp as as expression) as integer In AIMQL, the count

function counts how many times the $exp expression is appeared. Figure 5.22

shows the XQuery template for the count function, which is translated into the

181

5.8. TRANSLATING AIMQL QUERIES INTO XQUERY

xdt:dayTimeDuration(
xsd:dateTime($p1/@endTime) - xsd:dateTime($p1/@startTime)
) <= xdt:dayTimeDuration(”PT10H”)

Figure 5.21: The XQuery template for the cast($costnode as node, $unit as String)
function.

corresponding count function in the XQuery, and also $exp is translated into a

correct XQuery expression. The function max, min, and avg are also treated in the

same way because these functions are support by the XQuery language.

count($exp)

Figure 5.22: The XQuery template for the count($exp as as expression) function.

AIMQL: first($tNode as temporal node) as node In AIMQL, the first func-

tion returns the first instance of the temporal node or element. The first function

is used with the SHOW clause. That means the variable $tNode is to be trans-

lated into an XQuery variable within FOR clause that sets up an iteration over the

element associated with the variable $tNode. The XQuery template for first is a

condition added to the XQuery WHERE clause associated with the FOR clause

and its sub-FOR clauses. This condition is that the sub-element’s start time should

be equal to the initial start time of the $tNode, as shown in Figure 5.23.

(xsd:dateTime(@startTime) = xsd:dateTime($tNode/@startTime)

Figure 5.23: The XQuery template for the first($tNode as temporal node) function.

AIMQL: last($tNode as temporal node) as node In AIMQL, the last returns

the last or the most recent instance of the temporal node or element. The last

function is used with the SHOW clause. That means the variable $tNode is to be

182

5.8. TRANSLATING AIMQL QUERIES INTO XQUERY

translated into an XQuery variable within FOR clause that sets up an iteration

over the element associated with the variable $tNode. The XQuery template for

last is a condition added to the XQuery WHERE clause associated with the FOR

clause and its sub-FOR clause. This condition is that the sub-element’s end time

should be equal to the end time of the $tNode, as shown in Figure 5.24.

(xsd:dateTime(@endTime) = xsd:dateTime($tNode/@endTime)

Figure 5.24: The XQuery template for the first($tNode as temporal node) function.

AIMQL: overlaps($tNode1 as temporal node, $tNode2 as temporal node)

as boolean In AIMQL, the overlaps function returns boolean value true if the

validity period of $tNode1 overlaps the validity period of $tNode2, otherwise it

returns boolean value false. A validity period P1 overlaps a validity period P2, if

the start time of P1 is less than the end time of P2 and the start time of P2 is less

than the end time of P1. AS shown in Figure 5.25, the XQuery template for overlaps

is a condition representing the previous semantic added to the XQuery WHERE

clause associated with the FOR clause and its sub-FOR clauses. overlaps($tNode1

as temporal node, $tNode2 as validity period) is also supported with the same

semantic.

(xsd:dateTime($tNode1/@startTime) < xsd:dateTime($tNode2/@endTime)) and
(xsd:dateTime($tNode2/@startTime) < xsd:dateTime($tNode1/@endTime))

Figure 5.25: The XQuery template for the overlaps($tNode1 as temporal node,
$tNode2 as temporal node) function.

AIMQL: precedes($tNode1 as temporal node, $tNode2 as temporal node)

as boolean In AIMQL, the precedes function returns boolean value true if the

validity period of $tNode1 precedes the validity period of $tNode2, otherwise it

183

5.8. TRANSLATING AIMQL QUERIES INTO XQUERY

returns boolean value false. A validity period P1 precedes a validity period P2,

if the end time of P1 is less than the end time of P2. AS shown in Figure 5.26,

the XQuery template for precedes is a condition representing the previous seman-

tic added to the XQuery WHERE clause associated with the FOR clause and its

sub-FOR clause. precedes($tNode1 as temporal node, $tNode2 as validity period)

is also supported with the same semantic.

(xsd:dateTime($tNode1/@endTime) < xsd:dateTime($tNode2/@endTime))

Figure 5.26: The XQuery template for the precedes($tNode1 as temporal node,
$tNode2 as temporal node) function.

AIMQL: meets($tNode1 as temporal node, $tNode2 as temporal node)

as boolean In AIMQL, the meets function returns boolean value true if the va-

lidity period of $tNode1 meets the validity period of $tNode2, otherwise it returns

boolean value false. A validity period P1 meets a validity period P2, if the end

time of P1 is equal the end time of P2. AS shown in Figure 5.27, The XQuery

template for meets is a condition representing the previous semantic added to the

XQuery WHERE clause associated with the FOR clause and its sub-FOR clause.

meets($tNode1 as temporal node, $tNode2 as validity period) is also supported

with the same semantic.

(xsd:dateTime($tNode1/@endTime) = xsd:dateTime($tNode2/@endTime))

Figure 5.27: The XQuery template for the precedes($tNode1 as temporal node,
$tNode2 as temporal node) function.

184

5.8. TRANSLATING AIMQL QUERIES INTO XQUERY

5.8.3 The XQuery Generator

The XQuery Generator parses the AIMQL replay queries and constructs the XQuery

equivalent to it. The previous templates are utilized to determine the XQuery

equivalent expression for each part of the AIMQL replay query. The generator is

aware of the complex information structure and has access to XML Schemas of the

skeletal plan (protocol) and the ES plan. The XQuery generator is a module of the

Information Manager component.

Replay Query Pattern 2:

REPLAY PLAN p1
SHOW When OF FIRST(p1)
WHERE p1[@domainEntityID = X and @protocolID = PID]

The XQuery equivalent to pattern 2:

XQUERY
declare namespace xsd =”http://www.w3.org/2001/XMLSchema”;
for $p1 in
db2-fn:xmlcolumn(’AIM ESPlan TAB.ESPDOC’)//Plan[@domainEntity ID=X and @protocol ID=PID]
where(
(xsd:dateTime($p1/@startTime) = xsd:dateTime($p1/@startTime))
)
return
<Plan domainEntity ID=”{$p1/@domainEntity ID}” protocol ID=”{$p1/@protocol ID}”
startTime=”{$p1/@startTime}” endTime=”{$p1/@endTime}”>
{for $PState in $p1/state
return <state startTime=”{$PState/@startTime}” endTime=”{$PState/@endTime}”>
{ $PState/value[((xsd:dateTime($p1/@startTime) <= xsd:dateTime(@endTime)) and
(xsd:dateTime(@startTime) = xsd:dateTime($p1/@startTime))
)] }</state> } {for $PSches in $p1/schedules
return <schedules startTime=”{$PSches/@startTime}” endTime=”{$PSches/@endTime}”>
{ for $sch in $PSches/schedule
where (
(xsd:dateTime($sch/@startTime) = xsd:dateTime($p1/@startTime))
)
return <schedule IDREF=”{$sch/@IDREF}” startTime=”{$sch/@startTime}” endTime=”{$sch/@endTime}”>
<scheduleRules startTime=”{$sch/scheduleRules/@startTime}” endTime=”{$sch/scheduleRules/@endTime}”>
{
for $rul in $sch/scheduleRules/rule
where (
(xsd:dateTime($rul/@startTime) = xsd:dateTime($p1/@startTime))
)
return <rule IDREF=”{$rul/@IDREF}” startTime=”{$rul/@startTime}” endTime=”{$rul/@endTime}”>
{for $RState in $rul/state
return <state startTime=”{$RState/@startTime}” endTime=”{$RState/@endTime}”>
{
$RState/value[((xsd:dateTime($p1/@startTime) <= xsd:dateTime(@endTime)) and
(xsd:dateTime(@startTime) = xsd:dateTime($p1/@startTime))
)]
}</state>
}</rule>
}</scheduleRules></schedule>
}</schedules>
}
</Plan>

Figure 5.28: The XQuery script for the AIMQL replay query of pattern 2.

185

5.9. CHAPTER SUMMARY

Figure 5.28 provides an the XQuery script for the AIMQL replay query of pattern

2. This XQuery script returns a complete ES plan document that represents the

initial plan of the domain entity X and this plan is generated from the protocol

PID.

The XQuery statement in DB2 starts with the key word XQuery, as shown in

Figure 5.28. It is needed to define the name space used to execute this query,

which is the standard W3C XML Schema. This namespace is defined using the key

word declare. This query pattern has only one variable, p1, of type plan. Using

the variable template, a FOR clause is generated to define the XQuery variable

$p1 that iterates over the the plan, whose domainEntity ID attribute is X and

protocol ID attribute is PID. The function db2-fn:xmlcolumn is used to access the

plans stored in the AIM ESPlan TAB.ESPDOC table.

The template of the first function is used to add the condition that start time of

each retrieved element should be equal to the start time of the plan. As shown in

Figure 6.5, the XQuery generator is aware of the AIM ESPDoc model. Therefore,

the XQuery generator adds sub-FOR clauses, which are required to return the

completed initial plan as one XML document.

5.9 Chapter Summary

This chapter has described and discussed the design and implementation of AIMS,

the prototype system for managing the complex information. AIMS provides a

complete implementation for the AIM language presented in Chapter 4. The main

functionalities of the three planes of the SIM framework, which are presented in

Chapter 3, are implemented by AIMS. These functionalities are the complex infor-

mation formalization, instantiation, realization, execution, manipulation and query.

The AIMS system utilizes the modern DBMSs, which provide a triggering mech-

186

5.9. CHAPTER SUMMARY

anism and XML storage and retrieval support, to realize the SIM framework and

implement the AIM language. In this chapter, the AIMS storage and functionalities

are discussed at three levels of abstractions, conceptual, logical and physical. The

chapter provides a detailed features that should be provided in the DBMS to be

used by AIMS. The AIMS system has been implemented using DB2 and Java.

AIMS developed intermediate models to implement three main components of

the AIM language, which are AIMSL (the specification component), AIM ESPDoc

(the entity-specific plan model), and AIMQL (the query component).

One of these intermediate models is the TRME model, which extends the DBMS

triggering mechanism to support the advanced features, such as time-based ECA

rules, of the AIMSL rule. Using the TRME model, the AIMSL rules are translated

into pure SQL triggers managed by the DBMS. The chapter has discussed the

limitations of AIMS execution mechanism, which is based on translating the AIMSL

rules into triggers, and discussed our solution to these limitations.

The other intermediate model is the TXME model that extends the the XML

support provided by the modern DBMSs to implement the AIM ESPDoc model.

The TXME model is consistent and compatible with both XML Schema and the

XML data model. Using the TXME model, the entity-specific plan documents are

stored and retrieved using the modern DBMSs. Based on the TXME model, the

AIMQL queries are translated into pure XQuery queries, which are executed using

the XQuey engine of a modern DBMS.

The chapter has presented our method to calculate the expire date of an entity-

specific plan and our method for logging the execution history of the plan. The

method used to calculate the expire date is completely implemented using pure

SQL statements.

187

6
Evaluation: A Case Study and Experimental

Results

This chapter presents a case study and the experimental results of evaluating the

SIM approach and framework supported by the AIM language and the AIMS sys-

tem. The case study applies the AIM language and the AIMS system to managing

a clinical test request protocol. The chapter compares the AIMS systems with

another complex information management system, called TOPS. In this chapter,

the experiments focus on evaluating the AIMS system specially the AIMS execution

mechanism, the storage management for the entity-specific plans, and the execution

of AIMQL replay queries.

The chapter is organized as follows: Section 6.1 presents the case study; Section

6.2 compares the AIMS system with the TOPS system; Section 6.3 discusses the

experimental results; and Section 6.4 concludes our evaluation to the SIM approach

and framework supported by the AIM language and the AIMS.

188

6.1. CASE STUDY: APPLYING SIM AND AIMS TO MANAGING A TEST REQUEST
PROTOCOL

6.1 Case Study: Applying SIM and AIMS to Managing a Test

Request Protocol

This section presents a case study that utilizes the AIMS system to manage a clinical

protocol for the diagnosis and treatment of microalbuminuria in diabetes patient.

Capturing the knowledge of the microalbuminuria protocol is outside of the case

study scope.

Microalbuminuria is diagnosed either on 24 hour urine collections (20 to 200

g/min) or more commonly if elevated concentrations (30 to 300mg/L) on at least

two occasions. Albumin levels above these values is called ”microalbuminuria”, or

sometimes just albuminuria. To compensate for the variable possible urine con-

centration on spot check samples, it is more typical in the UK to compare the

amount of albumin in the sample against its concentration of creatinine. This is

termed the Albumin/creatinine ratio (ACR) and microalbuminuria is defined as

ACR 2.5 mg/mmol (male) or 3.5 mg/mmol(female). The reader is referred to Dube

(2004) for more details about the microalbuminuria, which is captured through a

research program spanning the Dublin Institute of Technology, Trinity College, and

St. James’s Hospital.

The case study applies the SIM approach and framework to managing the mi-

croalbuminuria protocol (MAP) that incorporated into the activities related to dis-

ease management. A experimental and simplified version of the MAP protocol pre-

sented in Dube (2004) is formalized and validated using the AIMSL sub-language,

and stored in the AIMS XML repository.

Several patient plans (ES plans) are instantiated from the specified MAP pro-

tocol (skeletal plan). The execution of these patient plans is managed using the

AIMS execution mechanism. The AIM query component, AIMQL, is tested against

189

6.1. CASE STUDY: APPLYING SIM AND AIMS TO MANAGING A TEST REQUEST
PROTOCOL

both the MAP protocol and patient plans, which represent the complex informa-

tion produced from incorporating The MAP test request protocol into the diabetes

disease management.

6.1.1 The Test Request Protocol Used in the Case Study

An experimental and simplified version of the MAP protocol is specified with focus

on covering several cases of events. This experimental version of the MAP protocol

contains one schedule, which consists of six rules. Figure 6.1 shows these six rules.

Rule 1 (static Rule, once-off):
event : 2 hours after patient admission
condition: true
action : send a message ordering an ACR test for the patient.

Rule 2 (static rule, repetitive 10 times):
event : every 3 hours after patient admission
condition: true
action : send an observation message.

Rule 3 (Dynamic Rule)
event : When the first result of the ACR test is received
condition: the result value > 35
action : add Rule 4

Rule 4 (static Rule, repetitive 10 times):
event : every week after patient admission
condition: true
action : send an observation message.

Rule 5 (static Rule, repetitive 10 times):
event : every 12 hours after patient admission
condition: the test result > 55
action : send a message ordering an ACR test for the patient.

Rule 6 (static Rule, once-off):
event : 50 hours after patient admission
condition: true
action : remove rule 5

Figure 6.1: The six rules of the experimental version of the MAP protocol utilized
in the case study.

Rule 1 orders an ACR test for the patient 2 hours after the patient admission.

Rule 2 sends an observation message regarding the patient state every 3 hours after

the patient admission for 10 times. Rule 3 reacts by adding Rule 4 as soon as

the first result of the ACR test is received and the result is greater than 35. Rule

190

6.1. CASE STUDY: APPLYING SIM AND AIMS TO MANAGING A TEST REQUEST
PROTOCOL

4 sends an observation message regarding the patient state every week after the

patient admission for 10 times. Every 12 hours of patient admission, Rule 5 sends

an observation message regarding the patient state if the ACR test result is greater

than 55. Rule 6 removes Rule 1 20 hours after the patient admission. It is assumed

that the ACR test is ordered repeatedly for the patient.

The lifespan of patient plans generated from this protocol ranges from 120 hours

to 10 weeks. The duration 120 hours is required if Rule 4 is not added at the run

time. Rule 4 is to be added if the first result of the ACR test is greater than 35.

Consequentially, the lifespan of the patient plan is to be 10 weeks.

6.1.2 Applying the SIM Approach and Framework to Patient Plan

Management: Dynamic Patient Plan

This section practices the SIM approach and framework in managing the MAP

protocol that is incorporated in the activity of disease management. The SIM

approach models the MAP protocol as a skeletal plan that could be applied to

several patients and adapted to their situations. That means more flexibility in

utilizing the MAP protocol and managing the patients.

The SIM framework consists of three plane, the specification, instantiation, and

maintenance planes. In the specification plane, a formal specification is generated

for the MAP protocol shown in Figure 6.1. The outcome of the specification process

is a formal general specification (skeletal plan) for MAP protocol using the AIM

specification component, AIMSL.

In the instantiation process, patient plans are instantiated for specific patients

form the AIMSL specification of the MAP protocol. These patient plans are realized

in the AIMS system by creating their triggers, which represents the reactive logic

inherited from the MAP protocol. The instantiated patient plan (dynamic patient

191

6.1. CASE STUDY: APPLYING SIM AND AIMS TO MANAGING A TEST REQUEST
PROTOCOL

plan) contains all the computerised information, about how to react to the changes

in the patient conditions. The dynamic patient plan is continuously adjusted to the

changes in the patient state.

The maintenance plane provides several management aspects for the dynamic

patient plan. These management aspects are the execution, manipulation, query,

and dissemination. In the maintenance plane, the dynamic patient plan is:

• dynamically modified and adjusted by its reactive behaviour once one of the

interesting clinical events happens

• continuously monitoring the electronic healthcare record to detect the clinical

events of interest

• is executed as soon as all its conditions are satisfied

That means the clinicians do not need to continuously monitor the patient state

in order to react to the clinical events of interest and adjust the patient plan. The

maintenance plane provides the ability to manipulate, query, and disseminate the

dynamic patient plan and the MAP protocol specification. The clinicians partici-

pating in the disease management will be able to remotely access, manipulate or

query, the dynamic patient plan. Moreover, the dynamic patient plan and the MAP

protocol specification, which represent the complex information in this application,

are subject to traditional and advanced query support, such the replay query sup-

port. The task of point-of-care review of a patient plans is made faster and easier

by using the replay query support, where the clinicians can review the evolution of

a specific patient plan in a particular time period.

192

6.1. CASE STUDY: APPLYING SIM AND AIMS TO MANAGING A TEST REQUEST
PROTOCOL

6.1.3 The AIMSL Specification for the Test Request Protocol

The formal specification of the utilized MAP protocol is made using the AIMSL

sub-language. The outcome of the formal specification process is a well-formed

XML document validated against the AIMSL Schema. Figure 6.2 illustrates a

browsing view for the MAP protocol specification. The view shows that the MAP

protocol has the ID PRO124, and belongs to the category, whose ID is CID124. As

mentioned, it is assumed that each protocol belongs to only one category, and each

category contains only one protocol. The protocol consists of five rules, rule 1, 2,

3, 5, and 6. The rule 4 becomes part of the plan if and only if rule 3 executed

successfully.

-<protocol id=”PRO124”>
<name>microalbuminuria protocol (MAP) </name>
<categoryID>CID124</categoryID>
+<header>
-<Schedules>

-<schedule id=”SIDMAP”>
<name>Basic MAS</name>
+<header>
-<scheduleRules>

+<rule id=”rul1”>
+<rule id=”rul2”>
+<rule id=”rul3”>
+<rule id=”rul5”>
+<rule id=”rul6”>

</scheduleRules>
</schedule>

</Schedules>
</protocol>

Figure 6.2: the AIMSL specification for the used microalbuminuria protocol (MAP).

Rule 5 is a comprehensive rule that covers several features of the rule element

in the AIMSL sub-language. The specification of rule 5 is illustrated in Figure 6.3,

which provides a browsing view focusing on the body of the rule. The rule body

consists of the elements (Terms, event, condition, and action). There are two terms

in rule 5. The first term is value of the ACR test result, which is a term of type

element. Its ID is TO1234 and its value is of integer data type. The second term is

patient admission, which is a term of type event. Its ID is DEPA11. As discussed

in Chapter 4, the term of type element could be used only on the condition or

action element, but the term of type event is used only with the event element.

193

6.1. CASE STUDY: APPLYING SIM AND AIMS TO MANAGING A TEST REQUEST
PROTOCOL

-<rule id=”rul5”>
<name>Rule 5 of MAP</name>
+<properties>
+ <header>
- <body>

-<Terms >
<term id=”TO1234”>

<title>The value of the ACR test Result</ title >
<type>element</type>
<dataType>integer</dataType>
+<mappingToDB>

</term>
<term id=”DEPA11”>

<title>patient admission</ title >
<type>event</type>
+<mappingToDB>

</term>
</Terms >
-<event id=”E1R5”>

<on>
<relativeTime>

<every>
<granularity>hours</granularity>
<timeLength >12</timeLength>
<beforeORafter>

<BAValue>after</BAValue>
<term id=”DEPA11”>patient admission</term>

</beforeORafter>
<for >10</for>

</every>
</relativeTime>

</on>
</event>
-<condition id=”ID36”>

+<description>
<logic>

<simplePredicate>
<operand1>

<termID>TO1234</termID>
</operand1>
<operator>gt</operator>
<operand2>

<value>
<amount>55</amount>
<datatype>integer</datatype>

</value>
</operand2>

</simplePredicate>
</logic>

</condition>
- <action id=”AID36”>

- <do>
-<proceduralAction>

+<sendEMAIL>
</proceduralAction>

</do>
</action>

</body>
</rule>

Figure 6.3: the AIMSL specification for the rule 5.

The event element is a repetitive relative time event that happens every 12 (time

length) hours (granularity) after the term, whose ID is DEPA11 that is the patient

admission term, and the event is repeated 10 times. The condition element is a

simple predicate checking that the value of the term, whose ID is TO1234, is grater

than the integer value 55. The action is to send the doctor an email to order an

ACR test for the patient.

The specification of rule 4 is similar to the specification of rule 5, except that

the granularity of the event is week and the condition element is true, which means

there is no condition element. Also, the specification of rule 2 is similar to the

194

6.1. CASE STUDY: APPLYING SIM AND AIMS TO MANAGING A TEST REQUEST
PROTOCOL

specification of rule 5, except that the time length of the event is 3 and there is

no condition element. The specification of rule 1 and 6 are different from Rule 5

in that their event is once-off event. That means the event element does not need

the for element shown in the specification of rule 5. The specification of rule 3

distinguishes in the event type and the action.

6.1.4 A Simulation for the AIMS Execution

This sub-section discusses the execution process of the complex information. The

sub-section presents the support provided by the AIMS database schema to simu-

late as an electronic healthcare record, and discusses the AIMS execution for the

generated dynamic patient plans.

6.1.4.1 A Simulated Electronic Healthcare Record

The design of AIMS system does not require to have access to the full electronic

healthcare record. The AIMS system has three tables (Domain Information, Do-

main Entity, and Category), in which the information of interest to the MAP pro-

tocol is stored.

The Information Provider provides the domain information to the AIMS system

through messages sent to the AIMS Communication Manager. In this case study,

the Information Provider is the Patient Information System (PIS) that manages the

electronic healthcare record. The Information Provider (PIS) furnishes the AIMS

system with information of interest from PIS electronic healthcare record through

messages. The Information Provider notifies the AIMS system by the changes of

interest.

CATID CATName CATDescription

CAT123 Category 1 This category for diabetes renal screening
CAT124 Category 2 This category for general diabetes patient

Table 6.1: the Category table.

195

6.1. CASE STUDY: APPLYING SIM AND AIMS TO MANAGING A TEST REQUEST
PROTOCOL

DEID CATID DEName DEEmail DEPhone DEType

PID000 CAT124 Jack O’neil jo@gmail.com null PATIENT
PID001 CAT124 Dan O’neil do@gmail.com null PATIENT
PID002 CAT124 Kevin O’neil ko@gmail.com null PATIENT
.
PID119 CAT124 Jane O’neil do@gmail.com null DOCTOR
PID002 CAT124 June O’neil ko@gmail.com null DOCTOR

Table 6.2: the domain entity table.

The Category table has two categories, as shown in Table 6.1. These two cate-

gories are one for the general diabetes patient and the other one for the diabetes

renal screening. In the case stusy, a simulated patients’ contact information is gen-

erated and stored in the Domain Entity table, as shown in Table 6.2. The domain

entity might be a patient, doctor, and nurse.

In this simulation, there are 120 domain entities most of them of type patients.

Each data item, such as ACR test result and patient temperature, which are used

in the skeletal plan (protocol) has a record in the table Domain Information for

each patient. For example, if a protocol uses 10 data items and is applied to 10

patients, then the table Domain Information will have 100 records.

DIID DEID DIName DIValue DIValueNo DIDataType DIDescription

TO1234 PID000 ACR Test Result -99 0 INTEGER this is an ACR test result
TO1234 PID001 ACR Test Result -99 0 INTEGER this is an ACR test result
TO1234 PID002 ACR Test Result -99 0 INTEGER this is an ACR test result
TO1234 PID003 ACR Test Result -99 0 INTEGER this is an ACR test result
.
TO1234 PID050 ACR Test Result -99 0 INTEGER this is an ACR test result
TO1234 PID051 ACR Test Result -99 0 INTEGER this is an ACR test result

Table 6.3: the initial domain information table.

The MAP protocol uses only one data item, which is the ACR Test Result , which

is used in rules 3 and 5. AIMS system initializes he table Domain Information, as

shown in Table 6.3. Assume, the ID of the ACR Test Result is TO1234. The initial

value for the test is -99, which means that no test result has been received for

the patient. Consequentially, the value of DIValueNo is zero, which means no test

result received. This attribute supports the temporal condition, such as first test

result should be greater than 35. The data type of the test result value is integer.

Knowing the data type helps to make a correct evaluation for the condition, where

196

6.1. CASE STUDY: APPLYING SIM AND AIMS TO MANAGING A TEST REQUEST
PROTOCOL

values of same data types are compared with each others.

6.1.4.2 AIMS Execution for the Dynamic Patient Plan

In this case study, 51 patient plans are instantiated from the skeletal plan of the

MAP protocol. The patient plans are generated for the patients, whose ID ranges

from PID000 to PID050. It is assumed that the patient plan is to be registered

30 minutes after its creation time. Registering a patient plan means creating all

its corresponding triggers. After creating the triggers of the patient plan, the plan

is in the active state waiting to react as soon as a clinical event of interest is

detected. That means the Information Provider should furnish the AIMS system

by the changes in the electronic healthcare record.

-<Plan domainEntity ID=”PID050” protocol ID=”PRO124” startTime=”2008-01-18T11:53:24” endTime=”2999-01-01T01:00:00”>
-<state startTime=”2008-01-18T11:53:24” endTime=”2999-01-01T01:00:00”>

<value endTime=”2008-01-18T12:55:25” startTime=”2008-01-18T11:53:24”>generated</value>
</state>
-<schedules startTime=”2008-01-18T11:53:24” endTime=”2999-01-01T01:00:00”>

-<schedule IDREF=”sch1” startTime=”2008-01-18T11:53:24” endTime=”2999-01-01T01:00:00”>
-<scheduleRules startTime=”2008-01-18T11:53:24” endTime=”2999-01-01T01:00:00”>

-<rule IDREF=”rul1” startTime=”2008-01-18T11:53:24” endTime=”2999-01-01T01:00:00”>
<state startTime=”2008-01-18T11:53:24” endTime=”2999-01-01T01:00:00”>

<value endTime=”2008-01-18T12:55:25” startTime=”2008-01-18T11:53:24”>
<status>generated</status>

</value>
</state>
+<triggers>

</rule>
+<rule IDREF=”rul2” startTime=”2008-01-18T11:53:24” endTime=”2999-01-01T01:00:00”>
+<rule IDREF=”rul3” startTime=”2008-01-18T11:53:24” endTime=”2999-01-01T01:00:00”>
+<rule IDREF=”rul5” startTime=”2008-01-18T11:53:24” endTime=”2999-01-01T01:00:00”>
+<rule IDREF=”rul6” startTime=”2008-01-18T11:53:24” endTime=”2999-01-01T01:00:00”>

</scheduleRules>
</schedule>

</schedules>
</Plan>

Figure 6.4: The initial patient plan for patient PID050 generated from protocol
PRO124.

For simulating the role of the Information Provider, a module, which generates

a random ACR test values ranging from 0 to 100, is developed and attached with

the AIMS system. The module generates a value every one hour. Consequentially,

although the 51 plans are created from the same skeletal plan, they will be different

in their execution and evolution history.

The lifespan of the 51 plans range from 120 hours to 10 weeks, as explained

in Sub-section 6.1.1. The lifespan will be 10 weeks only if rule 4 is added to the

197

6.1. CASE STUDY: APPLYING SIM AND AIMS TO MANAGING A TEST REQUEST
PROTOCOL

plan. The plans could be classified into two categories, short lifespan (120 hours)

and long lifespan (10 week). 18 plans belong to the short lifespan category, and 33

plans belong to the long lifespan category.

Replay Query Pattern 2:

REPLAY PLAN p1
SHOW When OF FIRST(p1)
WHERE p1[@domainEntityID = “PID050“ and @protocolID = ‘PRO124“]

The XQuery equivalent to pattern 2:

XQUERY
declare namespace xsd =”http://www.w3.org/2001/XMLSchema”;
for $p1 in
db2-fn:xmlcolumn(’AIM ESPlan TAB.ESPDOC’)//Plan[@domainEntity ID=“PID050“ and @protocol ID=‘PRO124“]
where(
(xsd:dateTime($p1/@startTime) = xsd:dateTime($p1/@startTime))
)
return
<Plan domainEntity ID=”{$p1/@domainEntity ID}” protocol ID=”{$p1/@protocol ID}”
startTime=”{$p1/@startTime}” endTime=”{$p1/@endTime}”>
{for $PState in $p1/state
return <state startTime=”{$PState/@startTime}” endTime=”{$PState/@endTime}”>
{ $PState/value[((xsd:dateTime($p1/@startTime) <= xsd:dateTime(@endTime)) and
(xsd:dateTime(@startTime) = xsd:dateTime($p1/@startTime))
)] }</state> } {for $PSches in $p1/schedules
return <schedules startTime=”{$PSches/@startTime}” endTime=”{$PSches/@endTime}”>
{ for $sch in $PSches/schedule
where (
(xsd:dateTime($sch/@startTime) = xsd:dateTime($p1/@startTime))
)
return <schedule IDREF=”{$sch/@IDREF}” startTime=”{$sch/@startTime}” endTime=”{$sch/@endTime}”>
<scheduleRules startTime=”{$sch/scheduleRules/@startTime}” endTime=”{$sch/scheduleRules/@endTime}”>
{
for $rul in $sch/scheduleRules/rule
where (
(xsd:dateTime($rul/@startTime) = xsd:dateTime($p1/@startTime))
)
return <rule IDREF=”{$rul/@IDREF}” startTime=”{$rul/@startTime}” endTime=”{$rul/@endTime}”>
{for $RState in $rul/state
return <state startTime=”{$RState/@startTime}” endTime=”{$RState/@endTime}”>
{
$RState/value[((xsd:dateTime($p1/@startTime) <= xsd:dateTime(@endTime)) and
(xsd:dateTime(@startTime) = xsd:dateTime($p1/@startTime))
)]
}</state>
}</rule>
}</scheduleRules></schedule>
}</schedules>
}
</Plan>

Figure 6.5: the XQuery script for the AIMQL replay query of pattern 2.

The initial patient plan for patient PID050 generated from protocol PRO124 is

illustrated in Figure 6.4, which provides a browsing view for the initial plan. As

shown in the figure, the value startTime attribute is 2008-01-18T11:53:24, which

means that the plan was generated on January 18, 2008, at 11:53:24. The value of

198

6.1. CASE STUDY: APPLYING SIM AND AIMS TO MANAGING A TEST REQUEST
PROTOCOL

the endTime attribute is 2999-01-01T01:00:00, which is used by AIMS to represents

the NOW value. The AIMS system interprets this value as the current time, at

which the query is being processed. The state of the plan is generated, and also

the state of any sub-element is generated. The value element of the rule state

element distinguishes with more details, such as the actual evaluation of its event

and condition. These details do not appear because no rule has been executed yet.

As shown in Figure 6.4, the initial plan consists of five rules, rule 1, 2, 3, 5, and 6.

6.1.5 AIMQL Replay Queries

The AIMQL replay language provides an essential role for retrieving and reviewing

the complex information. The user does not need to know the details of the complex

information schemas because the AIMQL language is a declarative language. In the

following, the AIMQL replay patterns presented in Chapter 4 are used to retrieve

and review the progress of the complex information (skeletal plans and ES plans).

The replay pattern number 2 is customized to retrieve the initial patient plan

of patient PID050 generated from protocol PRO124, as shown in Figure 6.5. The

equivalent XQuery of this AIMQL query is shown in Figure 6.5, and the result of

the query is similar to the plan shown in Figure 6.4.

REPLAY Rule [@id=’rul5’] R
SHOW When OF count(R.state[value=’executed’]

Figure 6.6: an AIMQL replay query determining how many times rule 5 is executed.

As discussed, the patient plans, which are created from the same skeletal plan,

will be different in their execution and evolution history because of the use of a

random value generator. That is evidenced by reviewing how many times rule 5 is

executed. Rule 5 is executed every 12 hours after patient admission if the ACR test

result is greater that 55. The AIMQL query for determining how many times rule

199

6.1. CASE STUDY: APPLYING SIM AND AIMS TO MANAGING A TEST REQUEST
PROTOCOL

XQUERY
for $Plan in db2-fn:xmlcolumn(’AIM ESPlan TAB.ESPDOC’)//Plan
for $R in $Plan//schedule//rule[@IDREF=’rul5’]
return if ($R/state/value[status/text()=’completed’ or status/text()=’terminated’])
then
<rule IDREF=”rul5” domainEntity=”{$Plan/@domainEntity ID}”
startTime=”{$R/@startTime}” endTime=”{$R/@endTime}”>
<executed>count($R/state/value[status/text()=’executed’])</executed>
</rule>
else
<rule IDREF=”rul5” domainEntity=”{$Plan/@domainEntity ID}”
startTime=”{$R/@startTime}” endTime=”NOW”>
<executed>count($R/state/value[status/text()=’executed’])</executed>
</rule>

Figure 6.7: The equivalant XQuery script for the AIMQL query determining how
many times rule 5 is executed.

5 is executed is shown in Figure 6.6, which defines a variable R of type Rule with

a node test, [@id=’rul5’], to check that the rule ID is rul5, and shows the count of

the state executed. The equivalent XQuery script for this AIMQL query is shown

in Figure 6.7, which:

• translates the variable R of type Rule into the XQuery variable $R defined in

a FOR clause.

• adds a new XQuery variable $Plan in a FOR clause in order to determines the

patient, to who the rule is applied.

• translates the count(R.state[value=’executed’]) into count($R/state/value[sta-

tus/text()=’executed’]). As mentioned, AIMS XQuery generator is aware of the

Schemas of skeletal plan and ES plan.

• converts the AIMS NOW value (2999-01-01T01:00:00) to NOW in order to be

readable for the user. The semantic of doing that is 1) if the rule is terminated

or completed that means the 2999-01-01T01:00:00 value does not exists in

as a value for the endTime attribute. 2) otherwise, the 2999-01-01T01:00:00

value exists and the NOW value is to replace 2999-01-01T01:00:00.

Part of the query result is shown in Figure 6.8. For patient (domain entity)

200

6.2. A COMPARISON BETWEEN AIMS AND TOPS

<rule IDREF=”rul5” domainEntity=”PID000” startTime=”2008-01-14T12:12:57” endTime=”2008-01-19T12:26:07”>
<executed>41</executed>
</rule>
<rule IDREF=”rul5” domainEntity=”PID001” startTime=”2008-01-14T12:13:16” endTime=”NOW”>
<executed>48</executed>
</rule>
<rule IDREF=”rul5” domainEntity=”PID002” startTime=”2008-01-14T12:13:29” endTime=”NOW”>
<executed>8</executed>
</rule>
<rule IDREF=”rul5” domainEntity=”PID003” startTime=”2008-01-14T12:13:42” endTime=”2008-01-19T12:28:10”>
<executed>42</executed>
</rule>
<rule IDREF=”rul5” domainEntity=”PID004” startTime=”2008-01-14T12:14:43” endTime=”NOW”>
<executed>6</executed>
</rule>
<rule IDREF=”rul5” domainEntity=”PID005”startTime=”2008-01-14T12:15:00” endTime=”NOW”>
<executed>48</executed>
</rule>
<rule IDREF=”rul5” domainEntity=”PID006” startTime=”2008-01-14T12:15:16” endTime=”NOW”>
<executed>46</executed>
</rule>
<rule IDREF=”rul5” domainEntity=”PID007” startTime=”2008-01-14T12:16:19” endTime=”NOW”>
<executed>6</executed>
</rule>
<rule IDREF=”rul5” domainEntity=”PID008” startTime=”2008-01-14T12:16:35” endTime=”NOW”>
<executed>7</executed>
</rule>
.....
.....
.....
<rule IDREF=”rul5” domainEntity=”PID048” startTime=”2008-01-18T11:52:25” endTime=”NOW”>
<executed>43</executed>
</rule>
<rule IDREF=”rul5” domainEntity=”PID049” startTime=”2008-01-18T11:52:57” endTime=”NOW”>
<executed>9</executed>
</rule>
<rule IDREF=”rul5” domainEntity=”PID050” startTime=”2008-01-18T11:53:24” endTime=”NOW”>
<executed>40</executed>
</rule>

Figure 6.8: Part of the count query.

number PID000 and PID003, rule 5 is completed or terminated on 2008-01-19 at

12:26:07 and on 2008-01-19 at 12:28:10, respectively. It is mentioned that in this

case study 18 plan are short plans (their lifespan is 120 hours or 5 days) and 33

plan are long plan (their lifespan is 10 weeks).

The patient plan of patients number PID000 and PID003 are short plans. the

plans after 5 days of the creation time are in the complete state; check the difference

between the endTime and startTime attributes.

6.2 A Comparison between AIMS and TOPS

This section compares the AIMS system with the TOPS system developed by Dube

(2004) in an early stage of this research. The TOPS system is based on an active

database management system. This comparison focuses on the complex information

storage, temporal rules execution and replay query support. Table 6.4 shows the

201

6.2. A COMPARISON BETWEEN AIMS AND TOPS

results of this comparison.

Criteria AIMS TOPS
Complex Information Storage as one XML document divided into parts stored into tables
Temporal Rules Execution managed using the DBMS managed at the application layer
Replay Queries supported not supported

Table 6.4: A comparison between AIMS and TOPS.

6.2.1 Complex Information Storage

TOPS maps the complex information specification into several tables, which rep-

resent the TOPS database schema. For the complex information at the generic

level, the TOPS database schema consists of 23 tables. For the complex informa-

tion at the entity-specific level, the TOPS database schema consists of 26 tables.

In the TOPS system, the MAP protocol specification used in this case study is

to be divided into 23 tables, and an instantiated instance of this specification is

to be divided into 26 tables. Consequentially, the complex information retrieval

demands join operations, which are a costly operation. Therefore, re-constructing

the complex information as one document is a very costly operation in TOPS.

AIMS stores the complex information specification as an XML document. In the

AIMS system, the MAP protocol specification and it instantiated instances are to

be stored in only one table that has an attribute of XML data type. The complex

information retrieval does not demand join operations. Therefore, in the AIMS

system there is no need to re-constructing the complex information.

6.2.2 Temporal Rules Execution

TOPS supports the temporal rules execution using a Java based time trigger mech-

anism implemented at the application layer. This mechanism is used to give signals

for the occurrence of the time events that are of interest to the rules of the complex

202

6.2. A COMPARISON BETWEEN AIMS AND TOPS

information. Implementing this mechanism at the application layer means that

TOPS is in charge of managing the temporal rules execution. That restricts TOPS

to execute only primitive temporal rules. Moreover, this mechanism is restricted to

the Java timer capacity.

AIMS temporal rules execution mechanism is based on the TRME model that

is discussed in Chapter 5. The TRME model maps the temporal rules into pure

SQL triggers that are completely managed by the DBMS’s triggering mechanism.

That means all rules of the complex information are managed within the DBMS.

AIMS execution mechanism supports advanced temporal rules, which are based

on several types of temporal events (relative and absolute) with the ability to be

repeated several times.

6.2.3 Replay Queries Support

The TOPS query support is restricted to primitive queries that deal with individual

parts of the complex information, such as rules and schedules. The main reason

for this restriction is the complicated storage mechanism provided by TOPS for the

complex information. To query the complex information as one distinct entity or

document, it is a demand to join more than 20 tables. Therefore, TOPS did not

support the replay queries over the complex information.

AIMS provides a replay query support that plays over again the history of the

complex information to show the in details the actions that cause changes during the

complex information life span. This replay query support deals with the complex

information as a whole or its individual parts. Moreover, the AIMS replay support

is able to deal with several complex information instances, such as replay several

patient plans according to specific condition. The AIMS system maps the replay

queries into pure XQuery queries that are executed using the utilized DBMS.

203

6.3. EXPERIMENTAL RESULTS

6.3 Experimental Results

This section discusses the experimental results that focus on evaluating the AIMS

system specially the AIMS execution mechanism, the storage management for the

entity-specific plans, and the execution performance of AIMQL replay queries.

These experiments are tested on Debian 4, a Linux system, and an Intel Pentium

III processor machine, whose configuration is one Gigabyte RAM and 40 Gigabyte

hard disk.

6.3.1 The Experimental Results of the AIMS Execution Mechanism

The objective of this experiment is to demonstrate the performance of AIMS ex-

ecution mechanism using the time spent for updating the timing event table as

performance metric. This time includes the time required to process all the triggers

fired at the updating time. The minimum granularity supported for the rules used

in this experiment is an hour, and the repetition period of the job scheduler is 30

minutes.

The focus of the experimental results is on the memory and the job schedule task

time. The AIMS execution mechanism utilizes the DBMS job scheduler (task cen-

tre) to periodically update the timing event table of each plan. Once the plan timing

table is updated the triggers are fired and the its conditions are to be evaluated.

Figure 6.9 illustrates the system performance with regard to the number of con-

current triggers using the average elapsed time of executing the job scheduler (task),

which is calculated by the DB2 task centre in DB2. Our empirical results demon-

strate that the performance of our system is exponential in the number of triggers

fired by the system at the update time.

The current system performance is to be improved through system’s resources

204

6.3. EXPERIMENTAL RESULTS

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

650520390260130

ex
ec

ut
io

n
tim

e
(m

in
ut

es
)

number of triggers

The execution time of the tasks according to the average elapsed time

execution time

Figure 6.9: The execution time according to the average elapsed time.

optimization techniques. The main performance factors of the AIMS execution

mechanism are:

(1) The number of concurrent triggers, which are invoked at the same time. The

size of the heap used to managing the concurrent triggers determines the per-

formance of executing concurrent triggers.

(2) The size of the plan. The plan is growing over time. That affects the time

required to log the plan execution history. Consequentially, the elapsed time

time of the task is affected.

6.3.2 The Experimental Results of the ES Plan Document Size

The objective of this experiment is to demonstrate the AIMS storage manage-

ment performance. AIMS manages the complex information (skeletal plans and ES

plans) and the domain information. The complex information is stored as XML

documents. Both the skeletal plans and domain information, which is stored in

relational tables, are non-temporal data. The ES plan is a temporal XML docu-

ment that records all the changes produced by updating the ES plan. Most of these

changes add a new state to an element of the ES plan. For example, executing

205

6.3. EXPERIMENTAL RESULTS

Rule 2 every three hours adds a new executed state under the rule element. These

changes might be also adding a new rule, such as Rule 3 might add a new rule,

Rule 4. Consequentially, The storage management of the ES plans is of critical

importance and the main factor of the AIMS storage management performance.

 102

 104

 106

 108

 110

 112

 114

 116

 118

522 532 544 550 555 559 565

th
e

pl
an

 s
iz

e
(K

B
)

number of updates

The increase in the plan size according to the number of updates happening in the plan

The plan size

Figure 6.10: The correlation between the ES plan growing size and the number of
updates happening in the plan.

This experiment compares the size of ES plans with the number of updates that

take place in them. The growing in the plan size is almost linear to the number of

updates, as shown in Figure 6.10. The linear relationship between the ES plan size

and number of updates assists in estimating the ES plan size after N number of

updates, such that most of the updates are changes on the rule state. The AIMS

storage management is stable to the number of updates.

This linear graph shown in Figure 6.10 aids in illustrating a two dimensional

relationship (equation) between the ES plan size (Y) and the number of updates

(X), where 1) the slope of the line is 0.342 and 2) the y-intercept, which gives the

point of intersection between the graph of the function and the y-axis, is -76.27.

This information represents the equation between the ES plan size (Y) and the

number of updates (X), as the following: Y= 0342X - 76.27. Using this equation,

the storage required for managing a specific skeletal plan with N ES plans is to be

206

6.3. EXPERIMENTAL RESULTS

estimated.

6.3.3 The Experimental Results of the AIMQL Replay Queries

The objective of this experiment is to demonstrate the AIMS query performance.

AIMS translates the AIMQL replay queries into a pure XQuery, which is executed

by the DB2 XQuery engine. DB2 provides different tools, such as db2batch, to

analyse the runtime performance of queries. The db2batch returns the elapsed time

spent for executing the given query. The ES plans is of critical importance and the

main factor of the AIMS query performance because the ES plan documents grow

over time.

 2440

 2460

 2480

 2500

 2520

 2540

 2560

 2580

99.8 105.7 112.8 114.4 116.3

th
e

qu
er

y
el

ap
se

d
tim

e
(m

ill
is

ec
on

d)

the ES plan size (KB)

The query performance according to the ES plan size

the query elapsed time

Figure 6.11: The The correlation between the query execution time and the size of
the ES plan.

This experiment compares the query execution elapsed time with the size of ES

plans, which accessed in the query. The experiment is achieved using a complicated

query, which accesses an ES plan and scans it three time for calculating the number

of executing its rules and returning the recent instance of the plan. The long

lifespan plans are utilized in this experiment. The query runtime performance is

almost linear to the size of the ES plan participating in the query, as shown in

Figure 6.11.

207

6.4. CONCLUDING REMARKS

The equation, Y= 6.9 X + 1760, is formalized from the the linear graph shown

in Figure 6.11, which illustrates a two dimensional relationship between the query

execution elapsed time (Y) and the ES plan size (X). The slope of the line is 6.9.

The y-intercept is 1760. Using this equation, the AIMQL replay queries is to be

estimated.

6.4 Concluding Remarks

The AIMS system with the AIM language and the SIM approach and framework are

evaluated with respect to the following software quality attributes: maintainability,

extensibility, reusability, and performance.

6.4.1 Maintainability

The SIM approach uses a declarative language, AIM, to allow a unified management

to the domain knowledge. The AIM language formalizes the domain knowledge

as skeletal plans at the level of what to do, not how to do it, thus making it

easy to incorporate and maintain the domain knowledge into application activities.

The AIM language facilitates the creation and maintenance of the entity-specific

plans generated from a specific skeletal plan. As shown in the case study, several

patient plans, which are created from the MAP protocol, are to be easily edited

and redeployed. Furthermore, The AIM language allows testing and validating the

changes to the skeletal plans and the ES plans immediately using the AIM XML

Schemas.

6.4.2 Extensibility

Extending the domain knowledge or specific skeletal plans can be deployed easily

using the AIM manipulation operations. That means new skeletal plans, which

208

6.4. CONCLUDING REMARKS

represents the domain knowledge required for a specific activity, can be easily added

to the existing AIMSL specification stored in the AIMS repository. Adding skeletal

plans is easily deployed because it does not required changes in the system, such as

in workflow systems changing the utilized the domain knowledge means changing

the workflow system. The skeletal plans are deployed through generating ES plans,

which are realized in the system by registering its triggers.

6.4.3 Reusability

The domain knowledge is specified as interpretable format using AIMSL. The sim-

ilar application could reuse this AIMSL specification. In the same application do-

mains, the domain knowledge is almost similar. Thus, the AIMSL specification

could be reused. Also, the SIM framework provides the customization process to be

used to adapt the skeletal plans (AIMSL specification) to the organization needs.

6.4.4 Performance

Performance is the main software attribute in evaluating AIMS system. The AIMS

system utilizes the modern DBMSs, and AIMS execution mechanism are based on

the DBMS triggering information retrieval mechanisms. Therefore, AIMS perfor-

mance is correlated with the utilized DBMS. The AIMS execution performance is

exponential to the concurrent triggers, which could be reduced by providing time-

based optimization. In order to reduce the number of concurrent triggers, the

time-based optimization focuses on detecting in advance the triggers that should

not be fired based on the triggers time-based events, which are expressed as pred-

icates in the triggers when clause. The AIMS storage performance is linear to the

number of updates taking place in the ES plans. A linear equation is to be used

to estimate the required storage for executing ES plans of a specific skeletal plan.

209

6.4. CONCLUDING REMARKS

The AIMS query performance is also linear to the ES plans size.

210

Now is not the end.

It is not the beginning of the end.

It is perhaps, the end of the beginning.

Winston Churchill

7
Conclusion

This chapter briefly review this thesis, summarises the thesis contributions, then

presents the future work related to the concepts developed in this thesis.

7.1 Thesis Review

This thesis has investigated the modelling of the complex information and its man-

agement in order to support the day-to-day organization activities. The complex

information consists of two main parts; active and passive. The active part de-

termines the recommended procedure that should be taken as a react to specific

situations. The passive part determines the information that describes these situ-

ations and other descriptive information plus the execution history of the complex

information. In the healthcare domain, the patient plan is an example for complex

information produced during the disease management from specific clinical guide-

lines. For this investigation, the main research questions defined to be answered

211

7.1. THESIS REVIEW

within this thesis are:

• What is a suitable way to model and manage the complex information pro-

duced during the day-to-day organization activities that apply domain knowl-

edge, such as clinical guidelines?

• How to facilitate and realize the model of the complex information and the

management aspects using a unified language?

• How to utilize the modern DBMS, which support XML technologies and trig-

gering mechanism, to realize this language?

This thesis has started by analysing the different ways or approaches proposed for

modelling and managing the complex information. The most related approaches

are proposed in the area of workflow management and the computerised clinical

guidelines. The first part of Chapter 2 aimed at justifying the shortcomings of

these approaches and setting a clear distinction between managing the active part

of the complex information and the complex information itself. The second part of

Chapter 2 aimed at analysing the XML-based ECA rule languages using a compar-

ative framework, called CoAX. The main criteria of the CoAX framework specified

according to the needs of the complex information management. The main find-

ings of Chapter 2 are the need to 1) an approach and framework for managing

the complex information at a domain and high level; and 2) an advanced language

overcomes the shortcomings of the XML-based ECA rule language.

This thesis has presented in Chapter 3 the SIM approach and framework for

managing the complex information. Figure 7.1 shows the SIM approach and frame-

work. The SIM approach provides a conceptual model for the complex information.

This model design the complex information as skeletal plans from which several

entity-specific plans are generated. The skeletal plans and its corresponding entity-

212

7.1. THESIS REVIEW

specific plans represent the complex information produced from incorporating do-

main knowledge into organization activities.

Figure 7.1: SIM: A generic approach and framework for computerising the Complex
Information.

The SIM framework provides comprehensive management aspects for manag-

ing the complex information. In the SIM framework, the complex information

goes through three phases, specifying the skeletal plans, instantiating entity-specific

plans, and then maintain these entity-specific plans during their lifespan. Conse-

quently, these management aspects are classified into three planes, specification,

instantiation, and maintenance. The specification plane includes the capturing and

formalization aspects. The instantiation plane includes the customisation, instan-

tiation, and realization aspects. The maintenance planes includes the execution,

manipulation, query, information mining, and sharing and distribution aspects.

The base of the three planes is a human-computer interaction support, as shown in

Figure 7.1.

Chapter 4 has presented the AIM language, which is developed to support the

SIM approach and framework. It is a high-level, declarative, and XML-based lan-

guage that is divided into three components, AIMSL, AIM ESPDoc model, and

213

7.1. THESIS REVIEW

AIMQL. The AIMSL is the AIM specification component that support the formal-

ization process of the best practice as skeletal plans that is represented as XML

document. The AIMSL model is based on the ECA rule paradigm with extensions

to support temporal events and conditions at the application domain level. The

AIM ESPDoc model is a physical model for the entity-specific plan. This model

represents the entity-specific plan as a temporal XML document, which is at the

same time well-formed XML document. The AIM language specifies the complex

information; the skeletal plans and entity-specific plans as XML document that is to

be stored in any XML database. The third component is the AIMQL, which is the

AIM query component. AIMQL provides support for manipulating and querying

the complex information, and provides special manipulation operations and query

capabilities for the entity-specific.

Chapter 5 has presented the AIMS system, which utilizes the available database

management systems (DBMS) as a base for managing the complex information and

implementing the AIM language. AIMS developed two intermediate models. One of

these intermediate models is the TRME model, which extends the DBMS triggering

mechanism to support the advanced features, such as time-based ECA rules, of the

AIMSL rule. Using the TRME model, the AIMSL rules are translated into pure

SQL triggers managed by the DBMS. The other intermediate model is the TXME

model that extends the XML support provided by the modern DBMSs to implement

the AIM ESPDoc model. The TXME model is consistent and compatible with both

XML Schema and the XML data model. Using the TXME model, the entity-specific

plan documents are stored and retrieved using the modern DBMSs. Based on the

TXME model, the AIMQL queries are translated into pure XQuery queries, which

are executed using the XQuery engine of a modern DBMS.

214

7.2. SUMMARY OF THESIS CONTRIBUTIONS

Chapter 6 has discussed our evaluation to the SIM approach and framework

supported by the AIM language and the AIMS system. Our case study has applied

the AIM language and the AIMS system to managing a test request protocol. Our

experiments focus on evaluating the AIMS system specially the AIMS execution

mechanism based on the TRME model, the AIMS repository based on the TXME

model, and the AIMS queries performance. These experiments are tested on Debian

4, a Linux system, and an Intel Pentium III processor machine, whose configuration

is one Gigabyte RAM and 40 Gigabyte hard disk. The experimental results show

that:

• the AIMS repository utilizes the storage in an efficient way, where the growing

in the entity-specific (ES) plan size is linear to the number of updates;

• the AIMS query performance is linear to the size of the ES plan participating

in the query;

• the performance of the AIMS execution mechanism is exponential in the num-

ber of concurrent triggers. This performance is to be enhanced using resource

optimization techniques to increase the capacity of the used machine and time-

based optimization to reduce the number of concurrent triggers.

7.2 Summary of Thesis Contributions

This thesis contributions are summarised as follows:

• A discussion of the shortcomings of approaches addressing the complex infor-

mation management, and the identification of a need for an empirical approach

to managing the complex information at an application domain and end-user

level.

215

7.2. SUMMARY OF THESIS CONTRIBUTIONS

• A comparative framework, called CoAX, for analysing the available XML-

based ECA Rule languages. The CoAX framework considered the require-

ments demanded to support the complex information management, and aims

at determining shortcomings of these languages.

• The development of the SIM approach for modelling the complex information

as one distinct entity, which consists of two main parts; active and passive. The

active part determines the recommended procedure that should be taken in

specific situations. The passive part determines the information that describes

these situations and other descriptive information plus the execution history

of the complex information.

• The development of the SIM framework for managing the complex informa-

tion through three planes; specification, instantiation, and maintenance. The

SIM framework is a generalized and enhanced version of the SpEM framework

developed in an early stage of this research by (Dube 2004).

• The development of the AIM language that facilitates the main management

aspects of the SIM framework, and provides a computer-interpretable model for

the complex information according to the SIM approach. The AIM language

consists of three components, AIMSL for specifying the complex information,

AIM ESPDoc for modelling the complex information instances and AIMQL

for manipulating and querying the complex information. AIMSL extends the

functionality of PLAN specification language and enriches the rule paradigm

of PLAN, which was developed in an early stage of this research by (Wu and

Dube 2001).

• An implementation of a proof-of-concept systems, called AIMS, to demonstrate

that the method developed in this thesis can be applied in practice. AIMS

216

7.3. FUTURE WORK

develops two intermediates models: a model called TRME for extending the

available DBMS triggering mechanism to support temporal rules defined at a

domain and high level; another model called TXME for extending the XML

database to support temporal data.

• An evaluation to the AIMS system through a clinical case study applied to

a test request protocol. The evaluation focuses on appraising the AIMS ex-

ecution mechanism, storage technique and query performance. The overall

evaluation shows a good support to the test request application.

7.3 Future Work

Several management aspects of the SIM framework shown in Figure 7.1 were out

of the scope of this thesis. These management aspects are capturing, customisa-

tion, information mining, sharing and distribution and the human-computer inter-

action support. These management aspects poses major challenges for data mining

techniques, distributed and mobile information management, and natural language

processing. The main projects required to cover these management aspects and an

extension to the AIM language are summarised below.

7.3.1 AIMQL Visualisation Mechanism

The AIMQL replay queries return a temporal XML document, which represents the

replay of the complex information execution. This replayed information is visualised

as a text that could be browsed using any XML or Web browser. This visualisation

mechanism is very simple and does not provide a domain and high level view to the

replayed information. It is needed to develop an advanced graphical visualisation

mechanism to review the replayed information in a way similar to a movie. This

visualisation mechanism should consider the semantic of the complex information

217

7.3. FUTURE WORK

and provides functionalities similar to the functionalities provided by a movie player.

7.3.2 The Information Mining

The information mining project is to develop a method that provides automatic

discovery of information from an evolution history component of the entity-specific

plan, which represents a real case study. This discovered information can be used

to deploy new best practices or as a feedback tool that helps in auditing, analysing

and improving already enacted best practices.

7.3.3 The Distributed and Mobile Management

The distributed and mobile management is to investigate into supporting the dis-

tributed execution, manipulation, and query, and provide a mobile information

system for the complex information management. The distributed manipulation

and query should overcome the heterogeneity fragmentation of the information.

The distributed execution requires distributed event detection, condition evalua-

tion and action. The time difference between geographically dispersed organization

and users should be taken into account in executing time-based rules. Using the

mobile devices, such as Personal Digital Assistant (PDA), as a client for AIMS sys-

tem facilitates the nature of the modern organization activities, where the users or

stockholders demand a remote access and management for the complex information.

7.3.4 The Human-Computer Interaction support

The Human-Computer Interaction support is to investigate into providing nature

language support for the three planes of the framework. It is difficult to the end

users to understand and review the skeletal plans and the entity-specific plans at

the low level. The nature of the best practice and its complex information as a huge

218

7.3. FUTURE WORK

amount of advanced information should be considered as an essential factor for the

user interface in two directions. The first direction is to translate from a natural

language, in context of best practices, into a formal specification that the system

can process further. The second direction is to translate the complex information

from a physical and low level representation into a human readable and high level

representation model.

219

References

Abiteboul, S., Benjelloun, O., Manolescu, I., Milo, T., and Weber, R., 2002. Active

XML: A data-centric perspective on Web services. In BDA.

Abraham, T. and Roddick, J., 1999. Survey of spatio-temporal databases. Geoin-

formatica, 3(1):61–99. article.

Al-Kateb, M., E., E.-S. M., and Osman, H., 2003. Towards event mining: Rep-

resenting real-world events in temporal databases. In Al-Azhar Engineering 7th

International Conference, Cairo. inproceedings.

Andrew, E. and Melton, J., 2002. SQL/XML is making good progress. SIGMOD

Rec., 31(2):101–108. article.

Arabshian, K. and Schulzrinne, H., 2003. A SIP-based medical event monitoring

system. 5th International Workshop on Enterprise Networking and Computing in

Healthcare Industry, Healthcom, :66– 70. Santa Monica, CA.

Arciniegas, F., 2000. XML Developer’s Guide. McGraw-Hill Companies. book.

Babcock, B., Babu, S., Datar, M., Motwani, R., and Widom, J., 2002. Models and

issues in data stream systems. In PODS, pages 1–16.

Babu, S. and Widom, J., 2001. Continuous queries over data streams. SIGMOD

Rec., 30(3):109–120. article.

Bailey, J., Bry, F., Eckert, M., and Patranjan, P.-L., 2005. Flavours of XChange, a

rule-based reactive language for the (semantic) Web. In RuleML, pages 187–192.

Bailey, J., Poulovassilis, A., and Wood, P. T., 2002a. Analysis and optimisation of

event-condition-action rules on XML. Computer Networks, 39(3):239–259. article.

220

REFERENCES

Bailey, J., Poulovassilis, A., and Wood, P. T., 2002b. An event-condition-action

language for XML. In The 12th International World Wide Web Conference,

www, pages 486–495, Hawaii. inproceedings.

Berglund, A., Boag, S., Chamberlin, D., Fernndez, M. F., Kay, M., Robie, J.,

and Simon, J., 2005. XML path language (XPath) 2.0. Technical report, W3C

Working Draft. techreport.

Bernauer, M., Gerti, K., and Gerhard, K., 2004. Composite events for XML. In the

13th International World Wide Web Conference, WWW13, pages 175–183, New

York, U.S.A. inproceedings.

Boag, S., Chamberlin, D., Fernandez, M., Florescu, D., Robie, J., and Simeon, J.,

2007. XQuery 1.0: An XML query language. Technical report, W3C Recommen-

dation. techreport.

Bonifati, A., 2000. Active behaviors within XML document management. In Work-

Shop EDBT Ph.D., Konstanz (Germany). EDBT Ph.D. WorkShop. inproceed-

ings.

Bonifati, A., 2001. Reactive Services for XML Repositories. PhD thesis, Politecnico

di Milano. phdthesis.

Bonifati, A., Braga, D., Campi, A., and Ceri, S., 2002. Active XQuery. In ICDE,

pages 403–.

Bray, T., Paoli, J., and Sperberg-McQueen, C. M., 1998. Extensible markup lan-

guage (XML) 1.0. Technical report, W3C Recommendation.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., and Yergeau, F., 2008.

Extensible markup language (XML) 1.0 (fifth edition). Technical report, W3C

Proposed Edited Recommendation.

221

REFERENCES

Bry, F., Eckert, M., Patranjan, P.-L., and Romanenko, I., 2006. Realizing business

processes with ECA rules: Benefits, challenges, limits. In Principles and Practice

of Semantic Web Reasoning (PPSWR), pages 48–62.

Caironi, P., Portoni, L., Combi, C., Pinciroli, F., and Ceri, S., 1997. HyperCare: a

prototype of an active database for compliance with essential hypertension ther-

apy guidelines. In Masys, D. R., editor, AMIA Ann Fall Symposium, pages 288–

292, Philadelphia, PA. Hanley and Belfus. inproceedings.

Casteleiro, M. A. and Diz, J. J. D., 2008. Clinical practice guidelines: A case study

of combining owl-s, owl, and swrl. Knowledge-Based Systems, 21(3):247–255.

Cerami, E., 2002. Web Services Essentials. O’Reilly. book.

Ceri, S., Cochrane, R., and Widom, J., 2000. Practical applications of triggers

and constraints: Success and lingering issues (10-year award). In VLDB ’00:

Proceedings of the 26th International Conference on Very Large Data Bases, pages

254–262. Morgan Kaufmann Publishers Inc. inproceedings.

Chamberlin, D., Florescu, D., Robie, J., Simeon, J., and Stefanescu, M., 2001.

XQuery: A Query language for XML. Technical report, W3C Working Draft.

Chandra, R. and Arie, S., 1994. Active databases for financial applications. In

Fourth IEEE Research Issues in Data Engineering: Active Database Systems

(RIDE-ADS), pages 46–52. inproceedings.

Chen, W.-J., Sammartino, A., Goutev, D., Hendricks, F., Komi, I., Wei, M.-P., and

Ahuja, R., 2006. DB2 9 pureXML Guide. IBM Redbooks, first edition edition.

Cho, E., Park, I., Hyum, S. J., and Kim, M., 2002. ARML: an active rule mark-

up language for heterogeneous active information systems. In Proceedings of the

222

REFERENCES

International Workshop on Rule Markup Languages for Business Rules on the

Semantic Web, Sardinia, Italy. inproceedings.

Ciccarese, P., Caffi, E., Boiocchi, L., Halevy, A., Quaglini, S., Kumar, A., and

Stefanelli, M., 2003. The NewGuide project: guidelines, information sharing

and learning from exceptions. the 9th Conference on Artificial Intelligence, in

Medicine in Europe, AIME, :163–167.

Clayton, P., Pryor, A., Wigertz, O., and Hripcsak, G., 1989. Issues and structures

for sharing knowledge among decision-making systems: The 1989 arden home-

stead retreat. In Proceedings of the Thirteenth Annual Symposium on Computer

Applications in Medical Care, pages 116–121. IEEE Computer Society Press. in-

proceedings.

Clercq, P. D., Blom, J. A., Korsten, H. H. M., and Hasman, A., 2004. Approaches

for creating computer-interpretable guidelines that facilitate decision support.

Artificial Intelligence in Medicine, 31(1):1–27.

Curran, T. A., Keller, G., and Ladd, A., 1997. SAP R/3 Business Blueprint: Un-

derstanding the Business Process Reference Model. Enterprise Resource Planning

Series.

Dart, T., Yigang, X., Gilles, C., and Patrice, D., 2001. Computerization of guide-

lines: Towards a ”guideline markup language”. Medinfo, 10:186–190. article.

DeHaan, D., David, T., P., C. M., and Tamer, O. M., 2003. A comprehensive

XQuery to SQL translation using dynamic interval encoding. In SIGMOD, San

Diego, CA. inproceedings.

Dube, K., 2004. A Generic Approach to Supporting the Management of Comput-

223

REFERENCES

erised Clinical Guidelines and Protocols. PhD Thesis. PhD thesis, Dublin Institute

of Technology (DIT). phdthesis.

Dube, K., Wu, B., and Grimson, J., 2002. Using ECA rules in database systems to

support clinical protocols. In 13th International Conference on Database and Ex-

pert Systems (DEXA 2002), pages 226–235. inproceedings DBLP:conf/dexa/2002.

Elmasri, R. and Navathe, S., 2003. Fundamentals of Database Systems. Addison

Wesley, 4 edition.

Fallside, D. C. and Priscilla, W., 2004. XML schema part 0: Primer second edition.

Technical report, W3C Recommendation. techreport.

FAO, 2003. Development of a framework for good agricultural practices. Techni-

cal report, Food and Agriculture Organization of the United Nation (F A O),

http://www.fao.org/docrep/meeting/006/y8704e.htm.

Field, M. J. and Lohr, K. N., 1992. Guidelines for Clinical Practice: From Devel-

opment to Use. National Academy Press, Washington, DC. book.

Florescu, D. and Donald, K., 1999. Storing and querying XML data using an

RDMBS. IEEE Data Eng. Bull., 22(3):27–34. article.

Georg, G. and Jaulent, M.-C., 2007. A document engineering environment for

clinical guidelines. In DocEng ’07: Proceedings of the 2007 ACM symposium on

Document engineering, pages 69–78, New York, NY, USA. ACM.

Golab, L. and Tamer, O. M., 2003. Issues in data stream management. SIGMOD

Rec., 32(2):5–14. article.

Goralwalla, I. A., U., T. A., and Tamer, O. M., 1995. Experimenting with temporal

relational databases. In CIKM ’95: Proceedings of the fourth international con-

224

REFERENCES

ference on Information and knowledge management, pages 296–303, New York,

NY, USA. ACM Press. inproceedings.

Gottschalk, F., van der Aalst, W. M. P., and Jansen-Vullers, M. H., 2007. Sap

webflow made configurable: Unifying workflow templates into a configurable

model. In Business Process Management, pages 262–270.

Graham, S., Niblett, P., Chappell, D., Lewis, A., Nagaratnam, N., Parikh, J.,

Patil, S., Samdarshi, S., Tuecke, S., Vambenepe, W., et al., 2004. Web services

notification (ws-notification). Technical report, The University of Chicago.

Greenes, R. A., Peleg, M., Boxwala, A., Tu, S., Patel, V., and Shortliffe, E., 2001.

Sharable computer-based clinical practice guidelines: Rationale, obstacles, ap-

proaches, and prospects. In Medinfo 2001, pages 201–5, London, UK. inproceed-

ings.

Grimshaw, J. M. and Russell, I., 1993. Effect of clinical guidelines on medical

practice: a systematic review of rigorous evaluations. Lancet, 342:1317–22.

Grimson, W., Berry, D., Grimson, J., Stephens, G., Felton, E., Given, P., and

O’Moore, R., 1998. Federated healthcare record server - the synapses paradigm.

International Journal of Medical Informatics, 52:3–27.

Grust, T., Sakr, S., and Teubner, J., 2004. XQuery on SQL hosts. In Proceedings

of the 30th VLDB Conference, Toronto, Canada. inproceedings.

Halamka, J. D., Osterland, C., and Safran, C., 1998. CareWeb TM, a Web-based

medical record for an integrated healthcare delivery system. Medinfo 98, . article.

He, H., Haas, H., and Orchard, D., 2004. Web services architecture usage scenarios.

Technical report, W3C Working Group Note. techreport.

225

REFERENCES

Hors, A. L., Hogaret, P. L., Wood, L., Nicol, G., Robie, J., Champion, M., and

Byrne, S., 2000. Document object model (DOM) level 2 core specification. Tech-

nical report, W3C Recommendation. techreport.

Hripczak, G., Clayton, P. D., Jenders, R. A., Cimino, J. J., and Johnson, S. B.,

1996. Design of a clinical event monitor. Comput. Biomed. Res., 29(3):194–221.

Janssens, G. K., Verelst, J., and Weyn, B., 2000. Techniques for modeling workflows

and their support of reuse. In Business Process Management, Models, Techniques,

and Empirical Studies, pages 1–15, London, UK. Springer-Verlag.

Jenders, R. A., Huang, H., Hripcsak, G., and Clayton, P. D., 1998. Evolution of a

knowledge base for a clinical decision support system encoded in the arden syntax.

In AMIA Symp, pages 558–562. inproceedings.

Jones, B., Abidi, S. S. R., and Ying, W., 2005. Using computerized clinical prac-

tice guidelines to generate tailored patient education materials. In Proceedings

of the Proceedings of the 38th Annual Hawaii International Conference on Sys-

tem Sciences (HICSS’05), page 139.2, Washington, DC, USA. IEEE Computer

Society.

Kappel, G., Rausch-Schott, S., and Retschitzegger, W., 1998. Coordination in

workflow management systems - a rule-based approach. In Coordination Technol-

ogy for Collaborative Applications - Organizations, Processes, and Agents [ASIAN

1996 Workshop], pages 99–120, London, UK. Springer-Verlag.

Kappel, G., Rausch-Schott, S., and Retschitzegger, W., 2000. A framework for

workflow management systems based on objects, rules and roles. ACM Comput.

Surv., 32:27.

226

REFERENCES

Keller, G. and Teufel, T., 1998. SAP R/3 Process Oriented Implementation: Iter-

ative Process Prototyping. Addison-Wesley Professional.

Khanda, A., Gemmellb, I., Rankina, A., and Cleland, J., 2000. Clinical events

leading to the progression of heart failure: insights from a national database of

hospital discharges. European Heart Journal, 22(2):153–164.

Kiepuszewski, B., ter Hofstede, A. H. M., and van der Aals, W. M. P., 2003.

Fundamentals of control flow in workflows. Acta Informatica, 39(3):143–209.

Kiyomitsu, H., Atsunori, T., and Katsumi, T., 2001. Activeweb: XML-based active

rules for Web view derivations and access control. :31–39. article.

Knolmayer, G., Endl, R., and Pfahrer, M., 2000a. Modeling processes and workflows

by business rules. In Business Process Management, Models, Techniques, and

Empirical Studies, pages 16–29, London, UK. Springer-Verlag.

Knolmayer, G., Endl, R., and Pfahrer, M., 2000b. Modeling processes and workflows

by business rules. Business Process Management, 1806/2000:201–245.

Kulkarni, K. G., Nelson, M., and Roberta, C., 1999. Active database features in

SQL3. In Active Rules in Database Systems, pages 197–219. incollection.

Lu, R. and Sadiq, S., 2007. A survey of comparative business process modeling

approaches. In Business Information Systems (BIS), volume 4439/2007, pages

82–94. Springer Berlin / Heidelberg.

Manola, F. and Eric, M., 2004. RDF primer. Technical report, W3C Recommen-

dation. techreport.

Mansour, E., 2003. Applying Temporal Database Storage and Retrieval Techniques

to XML Data. PhD thesis, the Faculty of Computers and Information Cairo

University. mastersthesis.

227

REFERENCES

Mansour, E., Dube, K., and Wu, B., 2007. AIM: An XML-based temporal and ECA

rule language for managing complex information. In International RuleML Sym-

posium on Rule Interchange and Applications (RuleML 2007), Orlando, Florida.

Mark Scardina, B. C. J. W., 2004. Oracle Database 10g XML & SQL: Design,

Build, & Manage XML Applications in Java, C, C++, & PL/SQL. McGraw-Hill

Osborne Media. book emansour.

McCarthy, D. and Umeshwar, D., 1989. The architecture of an active database

management system. In ACM SIGMOD international conference on Management

of data, pages 215–224, New York, NY, USA. ACM Press. article.

McDonald, C., 1976. Use of a computer to detect and respond to clinical events:

its effect on clinician behavior. Ann Intern Med., 84(2):162–167.

Mller, A. and Schwartzbach, M. I., 2006. An Introduction to XML and Web Tech-

nologies. Addison Wesley.

Müller, D., Reichert, M., and Herbst, J., 2006. Flexibility of data-driven process

structures. Business Process Management Workshops, 4103/2006:181–192.

Müller, R., 2002. Event-Oriented Dynamic Adaptation of Workflows: Model, Ar-

chitecture and Implementation. PhD thesis, Department of Computer Science,

University of Leipzig.

Müller, R., Greiner, U., and Rahm, E., 2004. Agentwork: a workflow system

supporting rule-based workflow adaptation. Data & Knowledge Engineering,

51(2):223–256.

Nicola, M. and Linden, B. V. d., 2005. Native XML support in DB2 universal

database. In VLDB, pages 1164–1174, Trondheim, Norway.

228

REFERENCES

Orriëns, B., Yang, J., and Papazoglou, M. P., 2003. A framework for business rule

driven service composition. In Technologies for E-Services (TES), pages 14–27.

Papamarkos, G., Alexandra, P., and T., W. P., 2003. Event-condition-

action rule languages for the semantic Web. In Workshop on Semantic

Web and Databases (SWDB), at VLDB’03, pages 309–327. inproceedings

DBLP:conf/semweb/2003swdb.

Paton, N., 1999. Active Rules in Database Systems. Springer. book.

Paton, N. W. and Diaz, O., 1999. Active database systems. ACM Computing

Surveys, 31(1):63–103. article.

Pattison-Gordon, E., Cimino, J. J., Hripcsak, G., Tu, S. W., Gennari, J. H., Jain,

N. L., and Greenes, R. A., 1996. Requirements of a sharable guideline repre-

sentation for computer applications. Technical Report SMI-96 -0628, Stanford

University. techreport.

Rinderle, S. and Reichert, M., 2007. A formal framework for adaptive access con-

trol models. Journal on Data Semantics IX, 4601/2007:82–112. LNCS 4601,

Springer.

Rosa, M. L., Gottschalk, F., Dumas, M., and van der Aalst, W. M. P., 2007. Linking

domain models and process models for reference model configuration. In Business

Process Management Workshops, pages 417–430.

Rosemann, M. and van der Aalst, W., 2007. A configurable reference modelling

language. Information Systems, 32(1):1–23.

Schrefl, M. and Bernauer, M., 2001. Active XML schemas. In International Work-

shop on Conceptual Modeling Approaches for e-Business, eCOMO, Yokohama,

Japan. inproceedings.

229

REFERENCES

Shahar, Y., 2002. Automated support to clinical guidelines and care plans: the

intention-oriented view. Technical report, Ben Gurion University, Beer Sheva,

Israel. Commissioned by OpenClinical, 2002.

Shao, F., Antal, N., and Jayavel, S., 2004. Triggers over XML views of relational

data. Technical report, Cornell University Technical Report. techreport.

Sistla, A. P. and Wolfson, O., 1995. Temporal conditions and integrity constraints

in active database systems. In SIGMOD ’95: Proceedings of the 1995 ACM

SIGMOD international conference on Management of data, pages 269–280. ACM

Press. inproceedings.

Snodgrass, R. T., Ahn, I., Ariav, G., Batory, D., Clifford, J., Dyreson, C. E.,

Elmasri, R., Grandi, F., Jensen, C. S., Käfer, W., et al., 1994. Tsql2 language

specification. SIGMOD Rec., 23(1):65–86.

Sql/Xml, 2003. the first edition of the SQL/XML standard. Technical report, pub-

lished by the ISO as part 14 of the SQL standard: ISO/IEC 9075–14. techreport

emansour.

Tansel, A. U., Clifford, J., and Gadia, S., 1993. Temporal Databases: Theory,

Design, and Implementation. Benjamin-Cummings Pub Co, 1st edition edition.

Tatarinov, I., Ives, Z. G., Halevy, A. Y., and Weld, D. S., 2001. Updating XML. In

SIGMOD Conference, pages 413–424.

Terenziani, P., Fabrizio, M., Gianpaolo, M., and Mauro, T., 2000. Executing clinical

guidelines: temporal issues. In AMIA, pages 848–852. inproceedings.

EAMA, 2002. Best execution: Executing transactions in securities markets on

behalf of investors. European Asset Management Association (EAMA), 65

Kingsway, London WC2B 6TD, United Kingdom.

230

REFERENCES

van der Aalst, W. M. P. and ter Hofstede, A. H. M., 2005. YAWL: yet another

workflow language. Information Systems, 4:245–275.

van der Aalst, W. M. P., ter Hofstede, A. H. M., and Weske, M., 2003. Busi-

ness process management: A survey. In Business Process Management, volume

2678/2003. Springer Berlin / Heidelberg.

van der Vlist, E., 2002. XML Schema. O’Reilly, 1 edition.

van Dongen, B. F., Jansen-Vullers, M. H., Verbeek, H. M. W., and van der Aalst,

W. M. P., 2007. Verification of the SAP reference models using EPC reduction,

state-space analysis, and invariants. Computers in Industry, 58(6):578–601.

Verbeek, H. and van der Aalst, W., 2006. On the verification of EPCs using t-

invariants. Technical report, BPM Center Report BPM-06-05, BPMcenter.org,.

Votruba, P., Miksch, S., and Kosara, R., 2004. Facilitating knowledge mainte-

nance of clinical guidelines and protocols. World Congress of Medical Informatics

(MedInfo), .

Wainer, J., Billa, C. Z., and Dantas, M. P., 2008. ST-guide: a framework for the

implementation of automatic clinical guidelines. In SAC ’08: Proceedings of the

2008 ACM symposium on Applied computing, pages 1325–1332, New York, NY,

USA. ACM.

Walmsley, P., 2007. XQuery. O’Reilly, first edition edition.

Wang, Y., Li, M., Cao, J., Li, Y., Chen, L., Lin, X., and Tang, F., 2006. An ECA-

rule-based workflow approach for advance resource reservation in shanghaigrid. In

APSCC ’06: Proceedings of the 2006 IEEE Asia-Pacific Conference on Services

Computing, pages 421–426, Washington, DC, USA. IEEE Computer Society.

231

REFERENCES

Weber, B., Wild, W., Lauer, M., and Reichert, M., 2006. Improving exception

handling by discovering change dependencies in adaptive process management

systems. In Business Process Management Workshops, pages 93–104.

Widom, J. and Ceri, S., 1996. Active Database Systems: Triggers and Rules For

Advanced Database Processing. Morgan Kaufmann. book.

Wu, B., 1998. A test protocol description language: PLAN. Technical report,

KCamp, Dublin Institute of Technology (DIT).

Wu, B. and Dube, K., 2001. PLAN: A framework and specification language with

an event-condition-action (ECA) mechanism for clinical test request protocols. In

Hawaii International Conference on System Sciences (HICSS-34), page 140, Los

Alamitos, California. IEEE Computer Society. inproceedings.

Yoshikawa, M. and Amagasa, T., 2001. XRel: a path-based approach to storage

and retrieval of XML documents using relational databases. ACM Trans. Inter.

Tech., 1(1):110–141.

Zaniolo, C., Stefano, C., Christos, F., and T., S. R., 1997. Advanced Database

Systems. Morgan Kaufmann. book.

Zeng, L., Flaxer, D., Chang, H., and Jun-Jang, J., 2002. PLMflowdynamic business

process composition and execution by rule inference. Technologies for E-Services,

2444/2002:51–95. Springer Berlin / Heidelberg.

Zhen Hua Liu, M. K. V. A., 2005. Native XQuery processing in oracle XMLDB.

In SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD international confer-

ence on Management of data, pages 828–833, New York, NY, USA. ACM Press.

inproceedings.

232

REFERENCES

Zoumboulakis, M., George, R., and Alexandra, P., 2004. Active rules for sensor

databases. In VLDB, Toronto, Canada. inproceedings.

233

Appendix

234

A
The XML Schema of the AIM Specification

Component

The AIM specification component consists of:

• Protocol Library

– Global Rules

– Protocol

∗ Protocol Rules

∗ schedule

· schedule Rules

235

In AIM specification component, the rule consists of:

• Rule

– Terms

– Event

– Condition

– Action

* The XML Schema definition for the protocol library

<xsd:element name=”protocolLibrary”>
<xsd:complexType>

<xsd:sequence>
<xsd:element name=”protocols”>

<xsd:complexType>
<xsd:sequence>

<xsd:element ref=”pxsd:protocol” maxOccurs=”unbounded”/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name=”globalRules” minOccurs=”0”>

<xsd:complexType>
<xsd:sequence>

<xsd:element ref=”rxsd:rule” minOccurs=”0”/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

* The XML Schema definition for the protocol

<xsd:element name=”protocol”>
<xsd:complexType>

<xsd:sequence>
<xsd:element name=”name” type=”xsd:string”/>
<xsd:element name=”categoryID” type=”xsd:token”/>
<xsd:element ref=”hxsd:header”/>
<xsd:element name=”schedules”>

<xsd:complexType>
<xsd:sequence>

<xsd:element ref=”sxsd:schedule” maxOccurs=”unbounded”/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name=”protocolRules” minOccurs=”0”>

<xsd:complexType>
<xsd:sequence>

<xsd:element ref=”rxsd:rule” maxOccurs=”unbounded”/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
<xsd:attribute name=”id” type=”xsd:ID”/>

</xsd:complexType>
</xsd:element>

236

The XML Schema definition for the header

<xsd:element name=”header”>
< xsd:complexType>

< xsd:sequence>
< xsd:element name=”releaseInfo”>

< xsd:complexType>
< xsd:sequence>

< xsd:element name=”version” type=”xsd:integer”/>
< xsd:element name=”institution” type=”xsd:string”/>
< xsd:element name=”author” type=”personDT” minOccurs=”0”/>
< xsd:element name=”specialist” type=”personDT” minOccurs=”0”/>
< xsd:element name=”lastModeficationDate” type=”xsd:date”/>
< xsd:element name=”validation” type=”validationDT”/>

< /xsd:sequence>
< /xsd:complexType>

< /xsd:element>
< xsd:element name=”didacticInfo”>

< xsd:complexType>
< xsd:sequence>

< xsd:element name=”purpose” type=”xsd:string”/>
< xsd:element name=”explanation” type=”xsd:string”/>
< xsd:element name=”keyWords” type=”xsd:string”/>
< xsd:element name=”citation” type=”xsd:string”/>
< xsd:element name=”links” type=”xsd:string”/>

< /xsd:sequence>
< /xsd:complexType>

< /xsd:element>
< /xsd:sequence>

< /xsd:complexType>
< /xsd:element>

* The XML Schema definition for the person and validation datatype

<xsd:complexType name=”personDT”>
<xsd:sequence>

<xsd:element name=”name”>
<xsd:complexType>

<xsd:sequence>
<xsd:element name=”firstname” type=”xsd:string”/>
<xsd:element name=”surname” type=”xsd:string”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name=”email” type=”xsd:string”/>
<xsd:element name=”contactNumber” type=”xsd:token”/>

</xsd:sequence>
</xsd:complexType>
<xsd:simpleType name=”validationDT”>

<xsd:restriction base=”xsd:token”>
<xsd:enumeration value=”production”/>
<xsd:enumeration value=”research”/>
<xsd:enumeration value=”test”/>
<xsd:enumeration value=”expired”/>
</xsd:restriction>

</xsd:simpleType>

237

* The XML Schema definition for the schedule

< xsd:element name=”schedule”>
< xsd:complexType>

< xsd:sequence>
< xsd:element name=”name” type=”xsd:string”/>
< xsd:element ref=”hxsd:header”/>
< xsd:element name=”scheduleRules” minOccurs=”1”>

< xsd:complexType>
< xsd:sequence>

< xsd:element ref=”rxsd:rule” maxOccurs=”unbounded”/>
< /xsd:sequence>

< /xsd:complexType>
< /xsd:element>

< /xsd:sequence>
< xsd:attribute name=”id” type=”xsd:ID”/>

< /xsd:complexType>
< /xsd:element>

* The XML Schema definition for the rule

<xsd:element name=”rule”>
<xsd:complexType>

<xsd:sequence>
<xsd:element name=”name” type=”xsd:string”/>
<xsd:element name=”properties”>

<xsd:complexType>
<xsd:sequence>

<xsd:element name=”ruleScope” type=”ruleScopeDT”/>
<xsd:element name=”ruleType” type=”ruleTypeDT”/>
<xsd:element name=”priority” type=”xsd:integer”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element ref=”hxsd:header”/>
<xsd:element name=”body”>

<xsd:complexType>
<xsd:sequence>

<xsd:element ref=”tsxsd:terms”/>
<xsd:element ref=”exsd:event”/>
<xsd:element minOccurs=”0” ref=”cxsd:condition”/>
<xsd:element ref=”axsd:action”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>
<xsd:attribute name=”id” type=”xsd:ID”/>

</xsd:complexType>
</xsd:element>

238

* The XML Schema definition for the term

<xsd:element name=”terms”>
<xsd:complexType>

<xsd:sequence>
<xsd:element name=”term” maxOccurs=”unbounded”>

<xsd:complexType>
<xsd:sequence>

<xsd:element name=”title” type=”xsd:string” minOccurs=”1”/>
<xsd:element name=”type” type=”termTypeDT” minOccurs=”1”/>
<xsd:element name=”mapping2DB” minOccurs=”0” >

<xsd:complexType>
<xsd:choice>

<xsd:element name=”mapEvent” type=”mapEventDT”/>
<xsd:element name=”mapElement” type=”mapElementDT”/>

</xsd:choice>
</xsd:complexType>

</xsd:element>
</xsd:sequence>
<xsd:attribute name=”id” type=”xsd:ID”/>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

* The XML Schema definition for the event

<xsd:element name=”event”>
<xsd:complexType>

<xsd:sequence>
<xsd:element name=”on”>

<xsd:complexType>
<xsd:choice>

<xsd:element name=”absoluteTime” type=”xsd:dateTime”/>
<xsd:element name=”relativeTime” type=”relativeTimeDT”/>
<xsd:element name=”episode” type=”episodeDT”/>

</xsd:choice >
</xsd:complexType>

</xsd:element>
</xsd:sequence>
<xsd:attribute name=”id” type=”xsd:ID”/>

</xsd:complexType>
</xsd:element>

239

* The XML Schema definition for the event types

<xsd:complexType name=”episodeDT”>
<xsd:simpleContent>

<xsd:extension base=”xsd:string”>
<xsd:attribute name=”term” type=”xsd:IDREF”/>

</xsd:extension>
</xsd:simpleContent>

</xsd:complexType>
<xsd:complexType name=”relativeTimeDT”>

<xsd:choice>
<xsd:element name=”onceOff” type=”baseRelativeTimeDT”/>
<xsd:element name=”every”>

<xsd:complexType>
<xsd:complexContent>

<xsd:extension base=”baseRelativeTimeDT”>
<xsd:sequence>

<xsd:element name=”for” minOccurs=”0”>
<xsd:complexType>

<xsd:sequence>
<xsd:element name=”granularity” type=”granularityDT”/>
<xsd:element name=”timeLength” type=”xsd:integer”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
</xsd:element>

</xsd:choice>
</xsd:complexType>

* The XML Schema definition for the event base Relative Time DT

<xsd:complexType name=”baseRelativeTimeDT”>
<xsd:sequence>

<xsd:element name=”granularity” type=”granularityDT”/>
<xsd:element name=”timeLength” type=”xsd:integer”/>
<xsd:element name=”beforeORafter”>

<xsd:complexType>
<xsd:sequence>

<xsd:element name=”BAValue”/>
<xsd:element name=”episode”>

<xsd:complexType>
<xsd:simpleContent>

<xsd:extension base=”xsd:string”>
<xsd:attribute name=”id” type=”xsd:IDREF”/>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>
<xsd:simpleType name=”granularityDT”>

<xsd:restriction base=”xsd:token”>
<xsd:enumeration value=”second”/>
<xsd:enumeration value=”minute”/>
<xsd:enumeration value=”hour”/>
<xsd:enumeration value=”day”/>
<xsd:enumeration value=”week”/>
<xsd:enumeration value=”month”/>
<xsd:enumeration value=”year”/>

</xsd:restriction>
</xsd:simpleType>

240

* The XML Schema definition for the condition

<xsd:element name=”condition”>
<xsd:complexType>

<xsd:sequence>
<xsd:element name=”description” type=”xsd:string” minOccurs=”0”/>
<xsd:element name=”logic” minOccurs=”1”>

<xsd:complexType >
<xsd:sequence>

<xsd:element name=”simplePredicate” type=”simplePredicateDT” minOccurs=”1”/>
<xsd:element name=”compositePredicate” type=”compositePredicateDT” minOccurs=”0”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>
<xsd:attribute name=”id” type=”xsd:ID”/>

</xsd:complexType>
</xsd:element>

* The XML Schema definition of the simple and composite predicate datatypes

<xsd:complexType name=”simplePredicateDT”>
<xsd:sequence>

<xsd:element name=”operand1” type=”operandDT”/>
<xsd:element name=”operator” type=”logicalOperatorDT”/>
<xsd:element name=”Operand2” type=”operandDT”/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name=”compositePredicateDT”>

<xsd:sequence>
<xsd:element name=”junction” type=”junctionDT” minOccurs=”1”/>
<xsd:element name=”predicate” type=”simplePredicateDT” minOccurs=”1”/>
<xsd:element name=”morePredicate” type=”compositePredicateDT” minOccurs=”0”/>

</xsd:sequence>
</xsd:complexType>

* The XML Schema definition of the operand1 and operand2 datatypes

<xsd:complexType name=”operandDT”>
<xsd:choice>

<xsd:element name=”termID” type=”xsd:IDREF”/>
<xsd:element name=”getValue” >

<xsd:complexType>
<xsd:sequence>

<xsd:element name=”of” type=”xsd:IDREF”/>
<xsd:element name=”number” type=”xsd:integer”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name=”value” >

<xsd:complexType>
<xsd:sequence>

<xsd:element name=”amount” type=”xsd:string”/>
<xsd:element name=”datatype” type=”valueDT”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:choice>

</xsd:complexType>

241

* The XML Schema definition of the simple datatypes

<xsd:simpleType name=”logicalOperatorDT”>
<xsd:restriction base=”xsd:token”>

<xsd:enumeration value=”eq”/>
<xsd:enumeration value=”neq”/>
<xsd:enumeration value=”lt”/>
<xsd:enumeration value=”lteq”/>
<xsd:enumeration value=”gt”/>
<xsd:enumeration value=”gteq”/>

</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name=”junctionDT”>

<xsd:restriction base=”xsd:token”>
<xsd:enumeration value=”and”/>
<xsd:enumeration value=”or”/>

</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name=”valueDT”>

<xsd:restriction base=”xsd:token”>
<xsd:enumeration value=”string”/>
<xsd:enumeration value=”integer”/>
<xsd:enumeration value=”float”/>

</xsd:restriction>
</xsd:simpleType>

* The XML Schema definition for the action

<xsd:element name=”action”>
<xsd:complexType>

<xsd:sequence>
<xsd:element name=”description” type=”xsd:string” minOccurs=”0”/>
<xsd:element name=”do”>

<xsd:complexType>
<xsd:sequence>

<xsd:element ref=”AIMQLxsd:AIM-QLAction” minOccurs=”0”/>
<xsd:element name=”proceduralAction” type=”proceduralActionDT” minOccurs=”0”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>
<xsd:attribute name=”id” type=”xsd:ID”/>

</xsd:complexType>
</xsd:element>

242

* The XML Schema definition for the procedural action

<xsd:complexType name=”proceduralActionDT”>
<xsd:sequence>

<xsd:element name=”SendSMS” minOccurs=”0” maxOccurs=”unbounded”>
<xsd:complexType>

<xsd:sequence>
<xsd:element name=”mobileNo” type=”xsd:integer”/>
<xsd:element name=”content” type=”xsd:string”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name=”sendEMAIL” minOccurs=”0” maxOccurs=”unbounded”>

<xsd:complexType>
<xsd:sequence>

<xsd:element name=”from” type=”xsd:string”/>
<xsd:element name=”to” type=”xsd:string”/>
<xsd:element name=”subject” type=”xsd:string”/>
<xsd:element name=”content” type=”xsd:string”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name=”invokeMethod” minOccurs=”0” maxOccurs=”unbounded”>

<xsd:complexType>
<xsd:sequence>

<xsd:element name=”name” type=”xsd:string”/>
<xsd:element name=”parameters” type=”xsd:string” minOccurs=”0” />

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>

243

B
The Author’s Publications Related to this Ph.D.

• Wu, B., Dube, K., and Mansour, E., 2008. The motion picture paradigm

for managing information: a framework and approach to supporting the play

and replay of information in computerised information systems. In 10th Inter-

national Conference on Enterprise Information Systems (ICEIS), Barcelona,

Spain. Springer.

• Mansour, E., Dube, K., and Wu, B., 2007. AIM: An XML-based temporal

and ECA rule language for managing complex information. In International

RuleML Symposium on Rule Interchange and Applications (RuleML 2007),

Orlando, Florida.

• Wu, B., Mansour, E., and Dube, K., 2007. Complex information management

using a framework supported by ECA rules in XML. In International RuleML

Symposium on Rule Interchange and Applications (RuleML 2007), Orlando,

Florida.

244

• Mansour, E., Dube, K., and Wu, B., 2007. Managing complex information in

reactive applications using an active temporal XML database approach. In 9th

International Conference on Enterprise Information Systems (ICEIS), Funchal,

Madeira - Portugal. Springer.

• Mansour, E., Wu, B., Dube, K., and Li, J. X., 2006b. An event-driven approach

to computerizing clinical guidelines using XML. In In the First International

Workshop on Event-driven Architecture, Processing and Systems (EDA-PS06),

In conjunction with ICWS 2006 / SCC 2006., Chicago, USA. IEEE Computer

Society.

• Dube, K., Mansour, E., and Wu, B., 2005. Supporting collaboration and

information sharing in computer-based clinical guideline management. In 18th

IEEE Symposium on Computer-Based Medical Systems (CBMS 2005), Dublin,

Ireland. IEEE Computer Society.

245

Index

Active Database

ECA rule paradigm, 5, 6, 11, 12, 15, 16, 22

SQL triggering language, 16

triggering mechanism, 16

AIM

AIM, 86, 138

AIM ESPDoc, 86, 87, 112–116, 119, 138–140, 175, 187

AIMQL, 87, 107, 109, 120–122, 132, 133, 139, 140, 187

AIMQL Replay, 121, 131, 132, 134–137

AIMSL, 86–92, 95, 96, 98, 109, 111, 112, 120, 121,

127, 129, 131, 138, 139, 143, 168, 172, 187

AIMSL ECA Rule, 89, 95, 98, 153, 154, 157–159, 161

execution mechanism, 142, 163, 164

TRME, 153, 154, 157, 187

TXME, 168–170, 173, 175, 177, 187

AIMS

AIMS, 141–149, 151, 163, 165, 175, 176, 186

clinical guidelines, 2, 3, 7, 8, 11–13, 16–20, 59

CoAX, 13, 25, 37–39, 51, 60

complex information

CI management, 3–6, 9–11

complex information, 1–4, 6–9, 64–67, 69, 70, 73–76,

78, 80–82, 84–86, 88, 113, 120, 121, 131, 136,

139, 142

entity-specific plan, 64, 66, 67, 69, 70, 75–81, 84, 86,

112, 119, 122, 123, 138, 187

skeletal plan, 64–67, 69–71, 73–77, 79–81, 84, 86, 88,

89, 91, 92, 113, 114, 120, 122, 131, 132, 139, 150,

185

data stream, 40

database systems, 3, 5–7, 10

ECA rule paradigm, 22

modern DBMS, 141, 145–147, 151, 168, 169, 175, 186, 187

patient plan, 2, 4, 8, 11, 64, 78, 79, 117

SIM

SIM, 63, 82, 84–86, 138

The SIM approach, 63, 64, 66, 67, 70, 73, 80, 81, 83,

84, 87, 142, 149

The SIM framework, 64, 72, 74, 80–84, 86, 142, 186,

187

Temporal Active XML

active XML, 25, 38, 40, 50, 56, 115

Temporal Active XML, 5, 63, 82–85

Temporal XML, 44, 49, 118, 119, 141

temporal XML document, 175

XML-based ECA rule, 11, 37, 49

XQuery trigger, 147

Workflow

Adaptive Workflow, 21, 22

adaptive workflow, 23

business process, 23

Business Process Management (BPM), 21

business process modelling, 21

Event-driven Process Chain (EPC), 21

graph-based languages, 21

rule-based languages, 21

workflow, 7

workflow approaches, 23

workflow management, 21

workflow systems, 23

XML

FLWOR expression, 15

SQL/XML, 117, 146, 147

SQL/XML language, 16

Well-formed document, 14

well-formed document, 175

XML, 3, 5, 10–14, 16, 19, 25, 27, 28, 37, 40, 43, 46,

54, 56–60, 88, 120, 144, 145

XML data model, 7

XML database, 30, 50, 117, 119

246

INDEX

XML document, 14, 29, 31, 34, 37, 40, 41, 55, 56, 87,

111, 120, 143, 146, 186

XML Schema, 14, 26, 50, 87, 91, 92, 96, 98, 100, 132,

145, 168, 187

XML schema, 14

XQuery, 15, 50, 117

247

	A Generic Approach and Framework for Managing Complex Information
	Recommended Citation

	tmp.1226064860.pdf.6Cb6r

