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Computation of the Stochastic Volatility and Lévy
Index using the Kolmogorov-Feller Equation with

Applications to Carbon Price Data Analysis
Jonathan Blackledge, Marc Lamphiere and Afshin Panahi

Abstract— We derive new algorithms for computing time
variations in the Stochastic Volatility and the Lévy index using a
standard financial price model and a Green’s function solution
to the Kolmogorov-Feller equation. A principal condition upon
which the algorithms are based is the Phase Only Condition which
allows the Power Spectral Density Function of a financial time
series (specifically the log price differences) to be taken to be a
constant. The paper is composed of four component parts: (i)
the Stochastic Volatility is derived and studied numerically; (ii)
the Kolmogorov-Feller equation is studied and solved to provide
a model for the stochastic characteristics of a financial time
series using the Lévy Characteristic Function; (iii) a method
for computing the Lévy index is proposed given price data and
the Stochastic Volatility of the data; (iv) numerical algorithms
are designed and example results presented. Although the models
proposed and the algorithms developed are applicable to financial
time series in general, in this paper, we consider a study of the
Stochastic Volatility and Lévy index for Carbon price data. This
is because of the increasing importance of ‘Carbon trading’ with
regard to climatic control and the emission of Carbon Dioxide
and other green-house gases. The results presented therefore
represent a study of a financial indicator (in particular the Lévy
index) that may be of value for future energy commodities trad-
ing, and, in particular, Carbon price risk assessment modelling.

Index Terms— Kolmogorov-Feller equation, Green’s function
solution, Lévy processes, financial signal analysis, Stochastic
Volatility, Carbon price risk assessment modelling, energy com-
modities trading.

I. INTRODUCTION

The diffusion-type and jump-type properties associated with
the Kolmogorov-FokkerPlanck and Kolmogorov-Feller equa-
tions (e.g. [1]-[4] and references therein) make them suitable
for modelling stochastic functions, and, in particular, the
non-stationary dynamic behaviour of financial time series. In
this paper, we consider a Green’s function solution to the
Kolmogorov-Feller Equation (KFE) which requires an iterative
approach for which a sufficient condition for convergence
is derived. The solution obtained is then investigated with
regard to Lévy processes and a new algorithm considered for
computing the Lévy index from the autocorrelation function
of the input data. This is based on the application of a phase
only condition, a condition that is similar to the ‘white noise
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condition’ used to design digital filters such as the matched
filter, for example. A case study is considered using Carbon
price data for which correlations between the price index,
Stochastic Volatility and the Lévy index are considered.

The material presented in this paper represents an initial
study of financial data relating to energy commodities trad-
ing in general. Energy commodities trading is becoming an
increasingly important source of global trading activitiy given
the rapid growth in the renewable energies industry, emission
reduction schemes to reduce the Carbon footprint (e.g. the
1997 Kyoto protocol and the 2011 Durban Climate Change
Conference agreements) the regulation of the commodities
markets [5].

The structure of the paper is as follows: Section II revisits
the standard price model from which a new (stochastic) volatil-
ity index is derived using the phase only condition. The time
dependent behaviour of this index is then briefly studied for the
purpose of latter applications using recent Carbon price data
traded under the European Union Emissions Trading Scheme
(EU ETS) which is a major pillar of EU climate policy. Section
III revisits the Black-Scholes equation illustrating the rela-
tionship between this equation and Gaussian statistics. Section
IV considers the relationship between Lévy processes and the
fractional diffusion equation. In both cases, the Black-Scholes
equation and the fractional diffusion equation are derived
from the fundamental evolution equation for a random walk
process which is introduced in Section III. Different versions
of the Kolmogorov-Feller equation are introduced in Section
V which is followed by Section VI where a general (Green’s
function based) solution to the (Classical) KFE is derived. A
specific solution is then considered for random processes that
conform to the (symmetric) Lévy Characteristic Function and a
numerical algorithm developed for computing the Lévy index.
The material presented in Section VI represents the principal
original contribution to the field of study and, in Section VII,
is applied to the computation of the Stochastic Volatility and
Lévy index for two example sets of Carbon price data.

II. COMPUTATION OF THE STOCHASTIC VOLATILITY

Price models involve the derivation and solution of a variety
of stochastic differential and partial differential equations. A
standard model for the price of a stock as a function of time
s(t) is

d

dt
s(t) = µs(t) + σs(t)u(t) (1)
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where µ is the ‘Drift’, σ is the ‘Volatility’ and u(t) is a
stochastic function. This model is based on the idea that prices
appear to be the previous price plus some random change
and that these price changes are independent, i.e. asset price
changes appear to be random and independent, prices being
taken to follow some random walk-type behaviour. This is the
basis for including a stochastic function u(t). However the
size of price movements also depends on the size of the price
itself. The model is therefore revised to include this effect,
the stochastic term u(t) being replaced by u(t)s(t) where
σ determines the degree of randomness taken to influence a
price changes. In general, µ and σ vary with time, and, in the
context of equation (1), σ(t) is referred to as the ‘Stochastic
Volatility’, e.g. [6], [7] and [8]. The drift function µ(t) tends
to vary over longer periods of time reflecting the long term
trends associated with a price index.

In principle, u(t) could be any stochastic function with
statistical behaviour conforming to a range of Probability
Density Functions. A conventional model is to assume that
the log price changes are Gaussian distributed so that u(t) is
taken to be a zero-mean Gaussian distributed function. If this
function is taken to have a fixed standard deviation of 1, then
the volatility becomes a measure of the standard deviation,
at least, for a (zero-mean) Gaussian model. The stock price
model given by equation (1) then provides a method for
estimating the volatility σ in terms of a lower bound as we
shall now show.

A. Application of the Phase Only Condition

Let
f(t) = µ+ σu(t)

where
f(t) =

1
s(t)

d

dt
s(t) =

d

dt
ln s(t)

and µ and σ are taken to be constant. We first obtain an
estimate of the Drift which can be done by exploiting the fact
that, if u(t) is taken have a zero mean value over t ∈ [0, T ],
then

T∫
0

f(t)dt =

T∫
0

µdt+ σ

T∫
0

u(t)dt ∼ µT

so that

µ ∼ 1
T

T∫
0

f(t)dt (2)

To obtain an estimate for the Volatility, we now consider the
case when the stochastic function u(t) is a phase only function,
i.e. given that

U(ω) =

∞∫
−∞

u(t) exp(−iωt)dt

where ω is the (angular) frequency,

U(ω) = A exp[iθ(ω)] (3)

the amplitude spectrum A being taken to be a constant for
all values of ω. We also consider u(t) to be a band-limited

function ω ∈ [−Ω/2,Ω/2] with bandwidth Ω and a function of
compact support t ∈ [−T/2, T/2]. Using Minkowski’s identity
for Euclidean norms,

‖f(t)‖2 ≤ ‖µ‖2 + ‖σu(t)‖2

where

‖x(t)‖2 :=
(∫

| x(t) |2 dx
) 1

2

so that we can write

σ‖u(t)‖2 ≥ ‖f(t)‖2 − µ
√
T

where µ is given by equation (2). Using Parseval’s Theorem
(Rayleigh’s Energy Theorem), the condition expressed by
equation (3) allows us to write

T/2∫
−T/2

| u(t) |2 dt =
1

2π

Ω/2∫
−Ω/2

| U(ω) |2 dω =
ΩA2

2π

We can therefore write

σ ≥ 1
A

√
2π
Ω

(‖f(t)‖2 − µ
√
T )

so that

σmin =
1
A

√
2π
Ω

(‖f(t)‖2 − µ
√
T ) (4)

which yields an expression for the lower bound of the Volatil-
ity.

Analysing time variations in the Stochastic volatility pro-
vides an important measure on the dynamics of a financial
signal. To this end, we consider computing the time dependent
Stochastic Volatility σ(x) which, in terms of equation (4), is
given by

σmin(x) =
1
A

√
2π
Ω

(‖f(x+ t)‖2 − µ(x)
√
T )

where

‖f(x+ t)‖2 =

 T∫
0

| f(x+ t) |2 dt


1
2

and

µ(x) =
1
T

T∫
0

f(x+ t)dt

B. Numerical Estimation

Consider a discrete signal denoted by the array fn, n =
1, 2, 3, ..., N where a uniform sampling interval of ∆t is
assumed. In this case, the discrete version of equation (4)
becomes

σmin =
1
A

√
2π
Ω

(
√

∆t‖fn‖2 − µ
√
T )

where we invoke the usual definition for a vector (Euclidean)
norm, i.e.

‖fn‖2 :=

(
N∑
n=1

| fn |2
) 1

2
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and

µ =
∆t
T

N∑
n=1

fn

The sampling interval ∆t of fn is related to the sampling
interval ∆ω of the Discrete Fourier Transform of fn by the
equation

∆t∆ω =
2π
N

and since the bandwidth of the discrete spectrum of fn is
N∆ω is is clear that ∆t = 2π/Ω. Thus, given that the support
of the signal is T = N∆t, we note that

T =
2πN

Ω
and therefore obtain

σmin =
2π
AΩ

(‖fn‖2 −
√
Nµ)

where

µ =
1
N

N∑
n=1

fn

The scaling constant 2π/(AΩ) can then be used to define a
re-scaled Stochastic Volatility given by

σ̂ := σmin
AΩ
2π

thereby yielding the expression

σ̂ = ‖fn‖2 −
√
Nµ

Writing this result explicitly in terms of the price sn we then
have

σ̂ =

(
N−1∑
n=1

∣∣∣∣ln(sn+1

sn

)∣∣∣∣2
) 1

2

− 1√
N − 1

N−1∑
n=1

ln
(
sn+1

sn

)
(5)

To compute the ‘Stochastic Volatility’ σm, N is taken to
determine the size of the data sampling window or ‘look-back’
window which is moved along the time series one element at
a time so that we can write

σ̂m =

(
N−1∑
n=1

∣∣∣∣ln(sm+n+1

sm+n

)∣∣∣∣2
) 1

2

− 1√
N − 1

N−1∑
n=1

ln
(
sm+n+1

sm+n

)
(6)

Equation (5) may be compared with other estimates for the
Stochastic Volatility (e.g. [9] - [12]) such as the Maximum
Likelihood (ML) estimate given by,

σ̂2
ML =

1
N − 1

N−1∑
n=1

(ln sn+1 − ln sn)2

− 1
(N − 1)2

(ln sN − ln s1)2

The phase only condition used to derive equations (5) and (6)
is equivalent to modelling the stochastic function u(t) in terms
of a random walk in the (complex) Fourier domain where the

Fig. 1. A 1000 element zero-mean Gaussian distributed function (top-left)
with unit variance and standard deviation, the phase only function (top-right)
and the 64-bin histograms of each function (bottom-left and bottom-right
respectively).

amplitude of each step is the same. The effect of this condition
on the statistical characteristics of the function (apart from
scaling) is not significant as illustrated in Figure 1. In this
example, a uniformly sampled zero-mean Gaussian distributed
function u1(t) consisting of 1000 elements with a variance
and standard deviation of 1 is generated. A second stochastic
function u2(t) is computed using the phase components θ(ω)
of the Fourier transform of u1(t), i.e. if

U1(ω) = A(ω) exp[iθ(ω)] =

∞∫
−∞

u1(t) exp(−iωt)dt

then

u2(t) = Re

 1
2π

∞∫
−∞

[cos θ(ω) + i sin θ(ω)] exp(iωt)dω


From Figure 1, where the computational tasks have been
undertaken using a Discrete Fourier Transform, it is clear that
the zero-mean Gaussian distributed characteristics of u1(t)
are preserved in u2(t) apart from a reduction in scale (i.e.
‖u2(t)‖∞ < ‖u1(t)‖∞ due to the Fourier amplitude of
u2(t) being unity for all frequency components. A comparison
of the 300 element random walk patterns in the (complex)
Fourier domain associated with u1(t) and u2(t) (i.e. plots
of A(ω) sin θ(ω).v.A(ω) cos θ(ω) and sin θ(ω).v.cos θ(ω), re-
spectively) is given in Figure 2.

C. Carbon Price Data Analysis

The world wide concern over climate change and dwindling
fossil fuel reserves, has resulted in a steady move towards more
stringent Carbon emission and energy targets. Putting a price
on Green-House Gas (GHG) emissions is now a cornerstone
policy of climate change mitigation. It is generally accepted
that without these price measures, it will be significantly
more difficult (and expensive) to implement the economic
transformation required to put the world on track to meet the
Copenhagen Accord goal of limiting temperature rise to 2oC.
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Fig. 2. Fourier domain 300 element random walk patterns for u1(t) (left)
and u2(t) (right).

Delivering a rapid turn-around in energy investment patterns
to meet this target necessitates clear, strong, and sustained
policy measures. In response to this need, many countries have
implemented, or are in the process of developing, emissions
trading schemes. Currently, the largest of these schemes is
that which operates in the EU, namely the European Union
Emissions Trading Scheme, more commonly known as the
EU ETS. The EU ETS currently covers more than 10,000
installations with a net heat excess of 20 MW in the energy
and industrial sectors which are collectively responsible for
close to half of the EU emissions of Carbon Dioxide and 40%
of its total GHG emissions.

The expansion of the EU ETS, along with the predicted
worldwide growth in Carbon trading indicates a global emis-
sions trading market with a turnover in excess of $3 Trillion
by 2020 (Reuters, 2011). This compares with 2010, where
the market for Carbon credits was worth $136 billion (Point
Carbon, 2011) indicating a growth of fourteen fold over the
coming decade alone.

The significance of establishing a financial market place for
Carbon can be observed in terms of the increase of emissions
trading schemes, the growth in volumes traded and through
the wider impacts of Carbon on energy and equity markets.
The emergence of Carbon as a new commodity and asset
class has introduced new interrelationships that reach across
the spectrum of energy commodities such as oil, gas, coal
and power. While early movers have been able to capitalize
on new investment opportunities, the Carbon market has also
introduced a new set of variabilitys to which a traditional
approach to risk management may not necessarily lend itself.
Moreover, it is increasingly challenging to understand the
drivers of Carbon prices, their volatilities and hence risks.
There is therefore, a clear need to develop a specific set of
tools and techniques applicable to Carbon trading, analysis,
and risk management.

Figure 3 shows the time variations in the volatility computed
using equation (6) and a look-back window of 100 elements
for Close-of-Day EUA (European Union Allowance) Carbon
Price Value from 26-11-2008 to 30-03-2011. From this result
it is clear that the Volatility has a downward trend over
the period considered from the latter part of 2009 to March
2011. This result is further compounded in Figure 4 which

shows the time variations in the volatility using a 100 element
look-back window for Close-of-Day CER (Certified Emission
Reductions) Carbon Price Value from 22-04-2009 to 30-03-
2011. In both examples, the downward trend in the volatility
indicates that Carbon prices appear to becoming increasingly
stable. This suggests that, in the long term, and, in addition
to other energy commodities, Carbon trading may provide a
relatively stable environment in which to build an investment
portfolio. The m-code for computing and plotting the data

Fig. 3. Close-of-Day EUA (European Union Allowance) Carbon Price Value
from 05-01-2009 to 30-03-2011 (Blue) and the Stochastic Volatility (Red)
computed using equation (6) for a look-back window of 100 elements.

Fig. 4. Close-of-Day CER (Certified Emission Reductions) Carbon Price
Value from 18-07-2009 to 30-03-2011 (Blue) and the Stochastic Volatility
(Red) computed using equation (6) for a look-back window of 100 elements.

and the Stochastic Volatility given in Figure 3 and Figure 4 is
given in Appendix A.

III. GAUSSIAN STATISTICS AND THE BLACK-SCHOLES
EQUATION

In Gaussian statistical models, the stochastic function u(t)
in equation (1) is chosen to have a Gaussian Probability
Density Function (PDF). The rationale for this is that price
movements are presumed to be an aggregation of smaller
ones and sums of independent random contributions have a
Gaussian PDF due to the Central Limit Theorem. This is
equivalent to arguing that all financial time series used to
construct an ‘averaged signal are statistically independent.
However, this argument is not fully justified because it assumes
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that the reaction of investors to one particular stock market
is independent of investors in other stock markets which,
in general, will not be the case as each investor may have
a common reaction to economic issues that transcend any
particular stock. In other words, asset management throughout
the markets relies on a high degree of connectivity, and, the
arrival of new information sends ‘shocks through the market
as people react to it and then to each others reactions.

The use of Gaussian statistical models relates to the concept
of the Efficient Market Hypothesis (EMH) which states that the
current price of an asset fully reflects all available information
relevant to it and that new information is immediately incor-
porated into the price. Thus, in an efficient market, models for
asset pricing are concerned with the arrival of new information
which is taken to be independent and random. This model is
the basis for the Black-Scholes equation which assumes that
the underlying statistics associated with an economic signal
are Gaussian.

The Black-Scholes equation can be written in terms of the
diffusion equation

1
2
σ2 ∂

2

∂x2
u(x, t)− ∂

∂t
u(x, t) = 0 (7)

subject to an initial condition u0(x) ≡ u(x, t = 0). The
parameter σ is the volatility and u(x, t) = C(x, t) exp(rt)
where C is the Call Option and r is the ‘risk free rate’. Black-
Scholes analysis involves developing solution for u(x, t) and
thereby the call options which depend on obtaining good
estimates for the volatility and risk.

The Black-Scholes equation can be derived from the evolu-
tion equation

u(x, t+ τ) = u(x, t)⊗x p(x) (8)

where p(x) is the PDF and ⊗x denotes the (non-causal)
convolution integral over x, i.e.

u(x, t)⊗x p(x) ≡
∞∫
−∞

u(x− λ, t)p(λ)dλ

This equation describes the concentration of particles in an
interval of time τ that move over a short distance with
a probability p(x) due to some random walk effect. The
statistical evolution associated with this random walk effect
is taken to be characterised by the function p(x).

Using the convolution theorem, equation (8) becomes [13]

U(k, t+ τ) = U(k, t)P (k, τ) (9)

where

U(k, t) =

∞∫
−∞

u(x, t) exp(−ikx)dx,

u(x, t) =
1

2π

∞∫
−∞

U(k, t) exp(−ikx)dk

and

P (k, τ) =

∞∫
−∞

p(x, t) exp(−ikx)dx,

p(x, τ) =
1

2π

∞∫
−∞

P (k, τ) exp(−ikx)dk

If we consider a Gaussian Characteristic Function given by

P (k) = exp(−σ2k2τ/2)

then, under the condition σ2k2τ/2 << 1, we can approximate
the Characteristic Function by

P (k) = exp(−σ2k2τ/2) = 1− σ2k2τ/2

Equation (9) can then be written as

U(k, t+ τ)− U(k, t)
τ

= −U(k, t)σ2k2/2

Thus

lim
τ→0

U(k, t+ τ)− U(k, t)
τ

=
∂

∂t
U(k, t) = −U(k, t)σ2k2/2

(10)
where we note that the limiting condition used to derive this
equation (i.e. τ → 0) is consistent with the condition used
to approximate the characteristic function P (k) to the form
1− σ2k2τ/2. Noting that

∂2

∂x2
u(x, t) = − 1

2π

∞∫
−∞

k2U(k, t) exp(−ikx)dk

inverse Fourier transformation of equation (10) yields equation
(7).

The general solution to equation (7) is well known and given
by [14]

u(x, t) =
1

σ
√

2πt
u0(x)⊗x exp[−x2/(2σ2t)], t > 0

where u0 is the initial condition, i.e. u0 ≡ u(x, t = 0). For a
stochastic source term n(x, t) where equation (7) is extended
to the form

1
2
σ2 ∂

2

∂x2
u(x, t)− ∂

∂t
u(x, t) = n(x, t)

the general solution becomes[14]

u(x, t) =
1

σ
√

2πt
u0(x)⊗x exp[−x2/(2σ2t)]

+n(x, t)⊗x ⊗t
1

σ
√

2πt
exp[−x2/(2σ2t)]

where ⊗t denotes the causal convolution integral, i.e. for two
piecewise continuous functions f(t) and g(t)

f(t)⊗t g(t) ≡
t∫

0

f(t− τ)g(τ)dτ

The purpose of this section has been to show that the Black-
Scholes equation is intimately connected with the assumption
that the stochastic function u(x, t) is characterised by a statis-
tical model that is Gaussian (i.e. the PDF p(x) is a Gaussian
function). This yields a deterministic model that is based on
the classical diffusion equation. The principal problem with
such a model is that it fails to include rare but extreme events
that can occur in real financial times series. In the following
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section, we consider the case when u(x, t) is characterised by
a Lévy distribution which may be viewed as a generalization
of a Gaussian process.

IV. LÉVY STATISTICS AND THE FRACTIONAL DIFFUSION
EQUATION

Many distributions exist where the mean and variance are
finite but are not representative of the process, e.g. the tail of
the distribution is significant, where rare but extreme events
occur. These distributions include Lévy distributions. Lévy’s
original approach to deriving such distributions is based on
the following question: Under what circumstances does the
distribution associated with a random walk of a few steps
look the same as the distribution after many steps (except
for scaling)? This question is effectively the same as asking
under what circumstances do we obtain a random walk that
is statistically self-affine. The characteristic function (i.e. the
Fourier transform) P (k) of such a distribution p(x)) was first
shown by Lévy to be given by (for symmetric distributions
only)

P (k) = exp(−a | k |γ), 0 < γ ≤ 2

where a is a constant and γ is the Lévy index. For γ ≥ 2, the
second moment of the Lévy distribution exists and the sums of
large numbers of independent trials are Gaussian distributed.
For example, if the result were a random walk with a step
length distribution governed by p(x), γ > 2, then the result
would be normal (Gaussian) diffusion, i.e. a Brownian process.
For γ < 2 the second moment of this PDF (the mean square),
diverges and the characteristic scale of the walk is lost. For
values of γ between 0 and 2, Lévy’s characteristic function
corresponds to a PDF of the form (as shown in Appendix B)

p(x) ∼ 1
| x |1+γ

, x→∞.

This type of random walk is called a Lévy flight and is an
example of a fractal walk. Given equation (8), Lévy processes
are consistent with a fractional diffusion equation for the
stochastic function u(x, t) as shown below following a similar
approach to that taken in Section III.

Consider the Characteristics Function

P (k) = exp(−aτ | k |γ)

which, under the condition τ → 0, can be approximated by

P (k) = 1− aτ | k |γ

We can then write the evolution equation - equation (9) - as

U(k, t+ τ)− U(k, t)
τ

= −a | k |γ U(k, t)

which for τ → 0 yields the fractional diffusion equation

∂

∂t
u(x, t) = a

∂γ

∂ | x |γ
u(x, t), γ ∈ (0, 2]

where we have used the Fourier transform based definition of
a fractional derivative,

∂γ

∂ | x |γ
u(x, t) = − 1

2π

∞∫
−∞

| k |γ U(k, t) exp(ikx)dk

A solution to this equation with the singular initial condition
u(x, 0) = δ(x) is given by

u(x, t) =
1

2π

∞∫
−∞

exp(ikx− at | k |γ)dk

which is itself Lévy distributed. This derivation of the frac-
tional diffusion equation reveals its physical origin in terms of
Lévy processes characterising the evolution of the stochastic
function u(x, t), i.e. Lévy’s characteristic function.

For a stochastic source function of the form n(x, t) =
δ(x)n(t), the solution, for x→ 0, to the equation

a
∂γ

∂ | x |γ
u(x, t)− ∂

∂t
u(x, t) = n(x, t)

can be shown to be given by (ignoring scaling constants) [15]

u(t) =
1

t1−1/γ
⊗t n(t), t > 0

For a white noise source n(t) this equation provides describes
a random scaling fractal signal u(t).

V. THE KOLMOGOROV-FELLER EQUATION

The approach used to deriving the Black-Scholes equation
and the fractional diffusion equation given in Section III and
Section IV respectively, is based on applying a condition
to approximate an exponential Characteristic Function. In
this context, the KFE provides a model for the stochastic
function u(x, t) that is independent of a specific PDF or
an approximated form. There is surprisingly relatively little
published material on the Kolmogorov-Feller equation and its
applications, particularly in the area of financial time series
modelling. Thus, in the following sub-sections, we consider
the derivations of the KFE and its various forms [16]-[21].

A. The Classical KFE

For an arbitrary Characteristic Function P (k) with PDF
p(x), the evolution equation is

u(x, t+ τ) = u(x, t)⊗x p(x)

Cosider a Taylor series for the function u(x, t+ τ), i.e.

u(x, t+ τ) = u(x, t) + τ
∂

∂t
u(x, t) +

τ2

2!
∂2

∂t2
u(x, t) + ...

For τ << 1

u(x, t+ τ) = u(x, t) + τ
∂

∂t
u(x, t)

we obtain the ‘Classical KFE,

τ
∂

∂t
u(x, t) = −u(x, t) + u(x, t)⊗x p(x) (11)
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B. The Generalised KFE

Equation (11) is based on a critical assumption which is
that the time evolution of the field u(x, t) is influenced only
by short term events and that longer term (historical) events
have no influence of the behaviour of the field, i.e. the ‘system’
described by equation (11) has no ‘memory’. This statement
is the physical basis upon which we introduce the condition
τ << 1 thereby allowing the Taylor series expansion of the
u(x, t+ τ) to be made to first order. The question then arises
as to how longer term temporal influences can be modelled,
other than by taking an increasingly larger number of terms in
the Taylor expansion of u(x, t+ tau) which is not of practical
analytical value. For arbitrary values of τ ,

τ
∂

∂t
u(x, t) +

τ2

2!
∂2

∂t2
u(x, t) + ... = −u(x, t) +u(x, t)⊗x p(x)

We can model the effect on a solution for u(x, t) of the series
on the left hand side of this equation in terms of a ‘memory
function’ m(t) and write

τm(t)⊗t
∂

∂t
u(x, t) = −u(x, t) + u(x, t)⊗x p(x) (12)

This is the Generalised KFE which reduces to the Classical
KFE when

m(t) = δ(t)

Note that for any memory function for which there exists a
function or class of functions of the type m̂(t), say, such that

m̂(t)⊗t m(t) = δ(t)

then we can write equation (12) in the form

τ
∂

∂t
u(x, t) = −m̂(t)⊗tu(x, t)+m̂(t)⊗tu(x, t)⊗xp(x) (13)

where the Classical KFE is recovered when m̂(t) = δ(t). Also
note that the memory function can be ‘cast’ as follows: Let

u1(x, t) = τ
∂

∂t
u(x, t) and u2(x, t) =

τ2

2!
∂2

∂t2
u(x, t) + ...

so that

m(t)⊗t u1(x, t) = u1(x, t) + u2(x, t)

Taking Laplace transforms of this equation and using the
convolution theorem, we can then write

M(p)U1(x, p) = U1(x.p) + U2(x, p)

and

m(t) =
1

2πi

ε+i∞∫
ε−i∞

[
1 +

U2(x, p)
U1(x, p)

]
exp(pt)dp

where U1 and U2 are the Laplace transforms of u1 and u2

respectively.

C. The Time Fractional KFE

Any solution obtained to the Generalised KFE will be
dependent upon the choice of memory function m(t) used.
There are a number of choices that can be considered each or
which is taken to be a ‘best characteristic’ of the stochastic
system in terms of the influence of its time history. However, it
may be expected that the time history of physically significant
random systems is relatively localised in time. Thus, memory
functions of the type exp(−t), for example, may be expected
to apply. However, there is a class of memory function that
gives rise to the Fractional KFE and, in this sense, is a
relative of the (time) Fractional Diffusion Equation discussed
in Section IV. The memory function in question is the Mittag-
Leffler function

m(t) =
1

Γ(1− β)tβ
, 0 < β < 1

where
m̂(t) =

1
Γ(β − 1)t2−β

given that
∞∫

0

exp(−st)
Γ(β)t1−β

dt =
1
sβ

and

∞∫
0

δ(t) exp(−st)dt = 1

D. The Stochastic KFE

Suppose we write the evolution equation - i.e. equation
(8) after applying a Taylor series expansion of the function
u(x, t+ τ) - in the form

τ
∂

∂t
u(x, t) = −u(x, t) +u(x, t)⊗x p(x) +

τ2

2!
∂2

∂t2
u(x, t) + ...

The second and higher order terms (which are ignored in
the derivation of the Classical KFE) represent a source of
error with regard to a solution of the Classical KFE. Thus
we consider the equation

τ
∂

∂t
u(x, t) = −u(x, t) + u(x, t)⊗x p(x) + n(x, t)

where n(x, t) is a random variable which is taken to be a
result of the combination of errors associated with the neglect
of higher order terms. This idea has a synergy with the appli-
cation of the Born approximation used to solve forward and
inverse scattering problems where higher order terms in the
Born series (which describes double, triple and higher order
scattering processes) are taken to introduce ‘system noise’
into an equation describing single scattering events [22]. The
problem is then reduced to modelling an appropriate stochastic
function which, because of the Central Limit Theorem, is often
chosen to be Gaussian distributed.

VI. SOLUTION TO THE KFE

We now turn our attention to developing a solution to the
Classical KFE, i.e. given equation (11), we seek a solution
for u(x, t) given p(x). We require a general solution that
allows us to investigate the effect of different PDFs p(x) on
the function u(x, t) such that the associated inverse problem is
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practically viable, i.e. where statistical parameter(s) associated
with p(x) can be computed from u(x, t). This condition rules
out an approach based on, for example, the transformation of
equation (11) into Fourier-Laplace space to obtain a solution
of the form

u(x, t) =
1

4π2i

c+i∞∫
c−i∞

∞∫
∞

τU(k, t = 0) exp(ikx) exp(st)
1 + sτ − P (k)

dkds

where

P (k) =

∞∫
−∞

p(x) exp(−ikx)dx

and

U(k, t = 0) =

∞∫
−∞

u(x, t = 0) exp(−ikx)dx

which requires an initial condition u(x, t = 0) to be realised.
Thus, we consider a Green’s function solution to equation (11)
which we write in the form

τ
∂

∂t
u(x, t) + u(x, t) = h(x, t) (12)

where
h(x, t) = u(x, t)⊗x p(x)

The Green’s function g(τ) is then given by the solution of

τ
∂

∂t
g(ξ) + g(ξ) = δ(ξ) (13)

where ξ = t− t0. Taking the Laplace transform of equations
(12) and (13), we have

τ(sū− u0) + ū = f̄ (14)

and
τ(sḡ − g0) + ḡ = 1 (15)

respectively, where

ū(x, s) =

∞∫
0

u(x, t) exp(−st)dt,

ḡ(s) =

∞∫
0

g(ξ) exp(−sξ)dξ,

u0 = u(x, t = 0) and g0 = g(τ = 0). Form equation (14) and
(15), it is clear that

ū(x, s) = ḡ(s)h̄(x, s) (16)

under the condition that u0 = 0 and g0 = 0. Using the
convolution theorem for the Laplace transform, equation (16)
becomes

u(x, t) = g(t)⊗t h(x, t) (17)

The Green’s function, which is the solution to equation (13),
is given by

g(t) =
1
τ

exp(−t/τ)H(t)

where

H(t) =

{
1, t > 0
0, t < 0

From equation (17), it is clear that an iterative solution is
required to solve for the function u(x, t) and we therefore
consider the iteration, for m = 1, 2, 3, ...

um+1(x, t) = g(t)⊗t um(x, t)⊗x p(x) (18)

By transforming equation (18) into Fourier space and using the
convolution theorem for the Fourier transform, we can write

Um+1(k, t) = g(t)⊗t Um(k, t)P (k)

where

Um(k, t) =

∞∫
−∞

um(x, t) exp(−ikx)dx

and

P (k) =

∞∫
−∞

p(x) exp(−ikx)dx

U2(k, t) = g(t)⊗t U1(k, t)P (k)

U3(k, t) = g(t)⊗t U2(k, t)P (k)

= g(t)⊗t g(t)⊗t U1(k, t)[P (k)]2

and so on for m = 4, 5, ...,M , so that, by induction,

UM (k, t) =
M∏
m=1

⊗ gm(t)⊗t U1(k, t)[P (k)]M (19)

where
M∏
m=1

⊗ gm(t) ≡ g(t)⊗t g(t)⊗t g(t)⊗t ...

the condition for convergence being given by ‖P (k)‖ <
√

2τ
as shown in Appendix C. We note that the Laplace transform
of g is given by

∞∫
0

1
τ

exp(−t/τ) exp(−st)dt =
1

1 + τs

and that, using the convolution theorem for Laplace trans-
forms,

∞∫
0

M∏
m=1

⊗ gm(t) exp(−st)dt =
1

(1 + τs)M

Thus, since
∞∫

0

tM

τ
exp(−t/τ) exp(−st)dt =

M !
(1 + τs)1+M

it follows that
M∏
m=1

⊗ gm(t) =
exp(−t/τ)tM−1

τ(M − 1)!
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Finally inverse Fourier transforming equation (19) and using
the convolution for Fourier transforms we can write

uM (x, t) =
exp(−t/τ)tM−1

τ(M − 1)!
⊗t u1(x, t)⊗x

M∏
m=1

⊗ pm(x)

(20)
where it is clear that

lim
t→0

uM (x, t) = 0

and
lim
t→∞

uM (x, t) = 0

If we now define the function

û(x) =

∞∫
0

uM (x, t)dt

then equation (20) can be reduced to the form

û(x) = n(x)⊗x
M∏
m=1

⊗ pm(x) (21)

where

n(x) =

∞∫
0

exp(−t/τ)tM−1

τ(M − 1)!
⊗t u1(x, t)dt

For a PDF p(x) with Characteristic Function P (k), using
the convolution theorem for Fourier transforms, equation (21)
transforms to

Û(k) = N(k)[P (k)]M

If we now take n(x) to be a phase only function, i.e. N(k) =
exp[iθ(k)] then the power spectrum becomes

| Û(k) |2=| [P (k)]M |2= [P (k)]2M

for real P (k). Thus, using the correlation theorem, we obtain
the result

c(x) =
2M∏
m=1

⊗ pm(x) (22)

where c(x) is the correlation function given by, for real û(x),

c(x) =

∞∫
−∞

û(y)û(x+ y)dy (23)

A. Application of Lévy’s Characteristic Function

We consider the case when the Characteristic Function is
given by exp(−a | k |γ) and note that, in this case,

| Û(k) |2= exp(−b | k |γ)

where b = 2aM . Using the result derived in Appendix B, the
correlation function is then given by

c(x) ∼ 1
| x |1+γ

, x→∞ (24)

Thus, we derived a logarithmic scaling relationship between
the Lévy index and the correlation function in terms of the
equation

ln c(x) ∼ −(1 + γ) ln | x | (25)

and a double logarithmic scaling relationship between the
Lévy index and the Power Spectrum

2 ln | ln | Û(k) ||= ln b+ γ ln | k | (26)

Application of equation (26) for characterising a non-
stationary stochastic signal in terms of the Lévy index requires
repeated application of a Discrete Fourier Transform on a
moving window basis where as application of equation (25)
only requires a least squares estimate of γ to be generated on
a similar moving window basis.

B. Numerical Algorithms

Given equations (24) and (26) we consider numerical al-
gorithms for estimating the Lévy index using a least squares
approach. On the basis of equation (24), we consider a model
for the correlation function (positive half space) of the form
(for n = 1, 2, ..., N )

ĉ(xn) = axαn, xn > 0

where a is a constant of proportionality and α = −(1 + γ).
Given the (discrete) correlation function c(xn), where it is
assumed that cn ≡ c(xn) > 0∀xn, we consider estimating the
constants a and α which minimise the error function

e(a, α) = ‖ ln ĉn − ln cn‖22 ≡
N∑
n=1

(ln ĉn − ln cn)2

Differentiating with respect to A = ln a and α it is trivial to
show that

α =

N∑
n=1

ln cn
N∑
n=1

lnxn −N
N∑
n=1

ln cn lnxn(
N∑
n=1

lnxn

)2

−N
N∑
n=1

(lnxn)2

(27)

and

a = exp


N∑
n=1

ln cn − α
N∑
n=1

lnxn

N


Similarly, using equation (26), it is easy to show that, for a
discrete spectrum Un ≡ U(kn), where | Un |> 0∀kn and,
a (discrete) spectral model of the form (for the positive half
space)

2 ln | ln | Ûn ||= ln b+ γ ln kn, kn > 0,

where Ûn ≡ Û(kn) we obtain,

γ =
2N

N∑
n=1

ln | ln | Un || ln kn − 2
N∑
n=1

ln | ln | Un ||
N∑
n=1

ln kn(
N∑
n=1

ln kn

)2

−N
N∑
n=1

(ln kn)2

(28)
and

b = exp

2
N∑
n=1

ln | ln | Un || −γ
N∑
n=1

ln kn

N
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A study of the Lévy index computed via the amplitude
spectrum | Un | as given by equation (28) will be published
elsewhere. In this paper we focus on the computation of the
Lévy index using the correlation function via equation (27).
However, it should be noted that this method is based on an
asymptotic approximation (given that equation (24) is strictly
valid only for | x |→ ∞). Equation (27) will therefore not
necessarily output values for the Lévy index that are within
the bound γ ∈ (0, 2] even for data that is entirely compatible
with the model for û(x) given by equation (21). However, this
approximation does not require the application of a Discrete
Fourier Transform to compute the amplitude spectrum and
is therefore less computationally intensive by the order of
N log2N . Moreover, irrespective of the numerical range out
by equation (27), our focus is on the dynamic performance
of γ (i.e. variations of γ with time that may reflect changes
from diffusive γ > 2 to trending γ < 2 behaviour) and the
potential of this parameter as a financial indicator with regard
to Carbon and other price movements. In this respect, the
output generated by equation (27) is normalized to unity.

VII. COMPUTATION OF THE LÉVY INDEX FOR CARBON
PRICE DATA

The KFE discussed in Section V and the solution considered
has been undertaken in an attempt to model the stochastic
function given in equation (1). We therefore consider the
stochastic function û(x) given by equation (21) to be related
to the price s(x), the Drift µ(x) and the Stochastic Volatility
σ(x) at any point in time x by

û(x) =
∣∣∣∣ 1
σ(x)

(
d

dx
ln s(x)− µ(x)

)∣∣∣∣ (29)

with the discrete form (using a backward differencing scheme)

ûn =
∣∣∣∣ 1
σ̂n

[
ln
(

sn
sn−1

)
− µn

]∣∣∣∣ (30)

where σ̂m is given by equation (6). In this context, we consider
x to represent any value of time that provides an amplitude
û(x) of a financial time series that is the ‘sum’ of inter-sample
trades defined by n(x) in equation (21). The absolute value
given in equation (29) is undertaken to ensure compatibility
with the model for c(x) in equation (25) where it is required
that c(x) ≥ 0∀x which, in turn, requires that û(x) ≥ 0∀x.

Figure 5 shows a plot of ûn for the price and Stochastic
Volatility data used to generate Figure 3. Also shown in
Figure 5 is the associated 100-bin histogram that is illustrative
of the statistical characteristics of ûn. Another important issue
associated with defining û(x) in terms of equation (29) is that
the autocorrelation of the log price differences is relatively
featureless whereas the autocorrelation function of the absolute
log price changes contains correlated features including a
number of short range correlations [23].

Having obtained ûn, n = 1, 2, ..., N , the discrete correla-
tion function is generated using the correlation sum

cn =
N∑
m=1

ûmûm+n

Fig. 5. Example plots of the stochastic function ûn (above) and the 100-bin
histogram (below).

from which the Lévy index is then computed using equation
(27). The process is then repeated on a movig window basis.
This requires two look-back windows to be specified. The
first window is required to compute the Stochastic Volatility,
the Drift and thus ûn and the second window is required
to compute the Lévy index. The size of these windows with
regard to the length of the data stream and their size relative to
each other effects the output in terms of the localised behaviour
of the Stochastic Volatility relative to the price value and the
Lévy index with regard to both price value and volatility. The
windows used to compute the Drift and Stochastic Volatility
should be relatively small compared to that used to compute
the Lévy index. The reasons for this are twofold: (i) we require
the values of the Drift and Stochastic Volatility to be local to
the log price differences used in the computation of equation
(30); (ii) the computation of the Lévy index requires a least
squares fit to be undertaken that yields a statistically significant
output thereby requiring relative large samples of data.

Given the scaling law expressed in equation (25), it is
important to assess the compatibility of Carbon price data
with this law. Figure 6 shows an example log-log plot of the
correlation function for the price data given in Figure 3 and
clearly illustrates that the expected scaling relationship is not
uniform over the entire length of the data. For this reason, only
the first half of the data is considered in the computation of the
Lévy index where, with reference to Figure 6, it is clear that
there is a linear scaling relationship between ln ci and lnxi
which is compatible with that given in equation (25).

On the basis of the issues raised above with regard the
computation of the Lévy index using equations (30) and (27),
Appendix D provide the m-code used to generate the example
results given in Figure 7 and Figure 8 where the data, the
Stochastic Volatility (computed using a look-back window of
10) and the Lévy (computed using a look-back window of 40)
have been normalised to unity.

VIII. DISCUSSION

Compared to the diffusion and fractional diffusion equations
discussed in Sections III and IV, respectively, the Kolmogorov-
Feller equation, derived in Section V, represents a more accu-
rate model for a stochastic field describing random processes
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Fig. 6. A log-log plot of the correlation function obtained using the data
provided in Figure 5.

Fig. 7. Close-of-Day EUA (European Union Allowance) Carbon Price Value
from 24-04-2008 to 30-03-2011 (Blue), the (normalised) Stochastic Volatility
(Red) computed using equation (6) for a look-back window of 10 elements
and the normalised Lévy index (Green) using a look-back window of 40.

Fig. 8. Close-of-Day CER (Certified Emission Reductions) Carbon Price
Value from 08-10-2008 to 30-03-2011 (Blue), the (normalised) Stochastic
Volatility (Red) computed using equation (6) for a look-back window of 10
elements and the normalised Lévy index (Green) using a look-back window
of 40.

compounded in the evolution equation - equation (8). In
this sense, the computation of the Lévy index considered in
this paper, is based on a more fundamental model than the
approaches considered in [23] and [14], for example. However,
the asymptotic approximation used to compute the index from
the autocorrelation function given by equation (24) provides
an estimate that is inevitably limited in accuracy compared to
a spectral estimation method based on equation (26) albeit
with improved computational performance. Thus, a future
computational study should involve application of equation
(28) using equation (30) to compute the discrete amplitude
spectrum | Un |. Further, equation (21) provides the basis for
developing numerical methods that simulate stochastic fields
for different Characteristic Functions P (k) using the result

Û(k) = N(k)[P (k)]M

where N(k) is a white noise spectrum, obtained by taking the
Fourier transform of equation (21).

In terms of the theoretical framework developed in this
paper, a further area of investigation is to consider solutions to
the Generalised and Fractional KFE as discussed in Sections
V(B) and V(C), respectively. A similar Green’s function
approach may be considered in this respect using the methods
of fractional calculus considered in [14], for example. Such
a solution will introduce another parameter with potential
value in the analysis of financial time series data, namely, the
parameter β used to define the Mittag-Leffler function. Within
the context of the Fractional KFE discussed in Section V(C),
this parameter is a measure of the memory associated with a
stochastic process defined by equation (8) and may therefore,
in addition to the Lévy index, be of value in assessing trending
behaviour in financial signals.

Given the algorithms developed in this paper, there are a
number of different signals that can be analysed using the
Lévy index including the price value itself and the Stochastic
Volatility, for example. Further, given the model compounded
in equation (29), there are a range of additional indicators that
may be considered including various combinations involving
the Stochastic Volatility and the Lévy index. For example,
Figure 9 shows the result of cross-correlating (positive half-
space) the Stochastic Volatility with the Lévy index and
computing the absolute value of the gradient (using a forward
differencing scheme) for the Close-of-Day EUA Carbon Price
Value given in Figure 7. A further example is given in
Figure 10 for FTSE Close-of-Data data over a period of 27
years. Examination of this correlation-based measure (as given
in Figure 9 and Figure 10) reveals a prominent relationship
between the amplitude value and those areas of the time series
with significant and predominantly downward trends. It is left
to the interested reader to investigate further this apparent
correlation using the m-code provided in Appendix D and
other financial time series.

APPENDIX A: M-CODE FOR COMPUTING THE STOCHASTIC
VOLATILITY

M-code for implementing the moving window process:

clear;%Clear memory.
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Fig. 9. Close-of-Day EUA (European Union Allowance) Carbon Price Value
from 24-04-2008 to 30-03-2011 (Blue), the Stochastic Volatility (red - using
a look-back window of 20) and the normalised absolute difference of the
correlation function for the Stochastic Volatility and the Lévy index (Green -
using a look=back window of 20.

Fig. 10. FTSE values (close-of-day) from 27-06-1985 to 03-01-2012 (blue),
the Stochastic Volatility (red - using a look-back window of 10) and the
normalised absolute difference of the correlation function for the Stochastic
Volatility and the Lévy index (Green - using a look=back window of 300.

%Read .txt file into data array
%consisting of n elements
fid=fopen(’C:\PATH\Filename.txt’,’r’);
[data n]=fscanf(fid,’%g’,[inf]);
fclose(fid);
%Set length of look-back window
w=100;%where w<n
%Compute working array of length
m=n-w;
%Start process
for i=1:m
%Extract windowed data
%into signal - array s.
for j=1:w

s(j)=data(j+i-1);
end
%Compute the Stochastic Volatility
sigma(i)=volatility(s,w);
end %end process.
%Compute the data for comparative plots.
i=1;
for j=1:m

signal(i)=data(j+w-1);
x(i)=i; i=i+1;

end
%Normalise the data.
signal=signal./max(signal);
%Plot the results
figure(1); plot(x,signal,’b-’,x,sigma,’r-’);

M-code for computing the Stochastic Volatility using function
‘volatility’:

function sigma=volatility(s,n)
%Function to compute the
%Stochastic Volatility.
%
%Compute the log price differences.
for i=1:n-1

ds(i)=log(s(i+1)/s(i));
end
ds(n)=ds(n-1);%Set end point value.
%Compute first and second terms.
term1=sqrt(sum(abs(ds.*ds)));
term2=sum(ds)/sqrt(n);
%Return the volatility.
sigma=term1-term2;

APPENDIX B: EVALUATION OF THE LÉVY DISTRIBUTION

We wish to show that the Characteristic Function

P (k) = exp(−a | k |γ), 0 < γ ≤ 2

is equivalent to a Probability Density Function given by

p(x) ∼ x−(1+γ), x→∞

i.e. we wish to prove the following:

Theorem
1

| x |1+γ
↔ exp(−a | k |γ), 0 < γ ≤ 2, x→∞

where ↔ denotes transformation from real to Fourier space1.

Proof of Theorem
For 0 < γ < 1, and since the characteristic function is
symmetric, we have

p(x) = Re[f(x)]

where

f(x) =
1
π

∞∫
0

eikxe−|k|
γ

dk

=
1
π

[ 1
ix
eikxe−k

γ

]∞
k=0

− 1
ix

∞∫
0

eikx(−γkγ−1e−k
γ

)dk


1The author acknowledges Dr K I Hopcraft, School of Mathematical

Sciences, Nottingham University, England, for his advice in respect of this
result.
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=
γ

2πix

∞∫
−∞

dkH(k)kγ−1e−k
γ

eikx, x→∞

where

H(k) =

{
1, k > 0
0, k < 0

For 0 < γ < 1, f(x) is singular at k = 0 and the greatest
contribution to this integral is the inverse Fourier transform of
H(k)kγ−1. Noting that

F−1

[
1

(ik)γ

]
∼ 1
x1−γ

where F−1 denotes the inverse Fourier transform, and that

H(k)↔ δ(x) +
i

πx
∼ δ(x), x→∞

then, using the convolution theorem, we have

f(x) ∼ γ

iπx

i1−γ

xγ

and thus

p(x) ∼ 1
x1+γ

, x→∞

For 1 < γ < 2, we can integrate by parts twice to obtain

f(x) =
γ

iπx

∞∫
0

dkkγ−1e−k
γ

eikx

=
γ

iπx

[
1
ix
kγ−1e−k

γ

eikx
]∞
k=0

+
γ

πx2

∞∫
0

dkeikx[(γ − 1)kγ−2e−k
γ

− γ(kγ−1)2e−k
γ

]

=
γ

πx2

∞∫
0

dkeikx[(γ−1)kγ−2e−k
γ

−γ(kγ−1)2e−k
γ

], x→∞

The first term of this result is singular and therefore provides
the greatest contribution and thus we can write,

f(x) ' γ(γ − 1)
2πx2

∞∫
−∞

H(k)eikx(kγ−2e−k
γ

)dk

In this case, for 1 < γ < 2, the greatest contribution to this
integral is the inverse Fourier transform of kγ−2 and hence,

f(x) ∼ γ(γ − 1)
πx2

i2−γ

xγ−1

so that

p(x) ∼ 1
x1+γ

, x→∞

which maps onto the previous asymptotic as γ → 1 from the
above.

APPENDIX C: CONVERGENCE CRITERION

Consider the iteration

Um+1(k, t) = g(t)⊗t Um(k, t)P (k) (C1)

and let
Um+1 = U + εm+1

and
Um = U + εm

where εm is the error at iteration m. Substituting these
equations into equation (C1) it is then clear that

εm+1(k, t) = g(t)⊗t εm(k, t)P (k)

since
U(k, t) = g(t)⊗t U(k, t)P (k)

Consider the operator Ĝ = P (k)g(t)⊗t so that we can write

εm+1(k, t) = Ĝεm(x, t)

Then
ε1 = Ĝε0

ε2 = Ĝε1 = ĜĜε0 = Ĝ2ε0

ε3 = Ĝε2 = ĜĜε1 = Ĝ3ε0

and so on. Thus we can write

εm = Ĝmε0

and for global convergence we require that

εm → 0 as m→∞

or
lim
m→0

Ĝmε0 = 0 ∀ε0

This will occur if
‖Ĝm‖ < 1

and since
‖Ĝm‖ ≤ ‖Ĝ‖m

the condition for convergence becomes

‖Ĝ‖ ≤ ‖P (k)‖ × ‖g(t)‖ < 1

Taking Eucliden norms,

‖P (k)‖ =

 ∞∫
−∞

| P (k) |2 dk

 1
2

,

‖g(t)‖ =
1
τ

 ∞∫
0

exp(−2t/τ)dt

 1
2

=
1√
2τ

and the condition for global convergence becomes

‖P (k)‖ <
√

2τ

which completes the proof.
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APPENDIX D: M-CODE FOR COMPUTING THE LÉVY INDEX

M-code for implementing the moving window process re-
quired to compute the Stochastic Volatility (using function
Volatility given in Appendix A), the Drift and the Lévy index.

clear;%Clear memory.
%Read file from txt file into data array.
fid=fopen(’C:\PATH\Filename.txt’,’r’);
[data n]=fscanf(fid,’%g’,[inf]);
fclose(fid);
%Set length of look-back window for
%computing the stochastic function to
w1=10;
%and set length of look-back window for
%computing the Levy Index to
w2=round(w1+30);
%Begin moving window process
%required to compute the
%Stochastic Volatility using
%a working array length of
m=n-w1;
for i=1:m
%Window the data.
for j=1:w1

s(j)=data(i+j-1);
end
%Compute the Stochastic Volatility.
sigma(i)=volatility(s,w1);
mu(i)=drift(s,w1);
u(i)=abs((log(s(w1)/s(w1-1))...

-mu(i))/sigma(i));
end
%Begin the moving window process
%required to compute the Levy
%Index using a working array
%length of
n=m-w2;
for i=1:n
%Window the data.
for j=1:w2

uu(j)=u(i+j);
end
%Compute the autocorrelation function.
c=xcorr(uu,uu);%MATLAB function xcorr.
%Extract the first half of the data
%in the positive half of the
%autocorrelation function.
k=1;
for j=w2+1:2*w2-1

cc(k)=c(j);
k=k+1;

end
%Compute the Levy index.
gamma(i)=Levyindex(cc,w2);
%End the moving window process.
end
%Prepare the original signal and
%the Stochastic Volatility for a

%a comparative plot.
i=1;
for j=1:n

signal(i)=data(j+w1+w2-1);
stochvol(i)=sigma(j+w2);
x(i)=i; i=i+1;%time element

end
%Normalise the data
signal=signal./max(signal);
stochvol=stochvol./max(stochvol);
gamma=gamma./max(gamma);
%and plot the results.
figure(1);
plot(x,signal,’b-’,x,stochvol,’r-’,...

x,gamma,’g-’);
grid on;

M-code for computing the Drift using function ‘Drift’:

function mu=drift(s,n)
%Function to compute the Drift.
%
%Compute the log price differences.
for i=1:n-1

ds(i)=log(s(i+1)/s(i));
end
ds(n)=ds(n-1);%Set end point value
%Compute and return the Drift.
mu=sum(ds)/n;

M-code for computing the Lévy index using function ‘Levyin-
dex’:

function gamma=Levyindex(data,N)
%Computation of the Levy index
%using the least squares algorithm.
%
%Compute the logarithm of the
%data for the first half segment.
N=N/2;
for i=1:N
ydata(i)=log(data(i));
xdata(i)=log(i);
end
%Compute each term of the
%least squares formula.
term1=sum(ydata).*sum(xdata);
term2=sum(ydata.*xdata);
term3=sum(xdata)ˆ2;
term4=sum(xdata.ˆ2);
%Compute and return the Levy index
gamma=(term1-(N*term2))/(term3-(N*term4));
gamma=-gamma-1;
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