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ON THE APPEARANCE OF A POSITIVE REAL POLE IN THE RESULTS OF
GLOTTAL CLOSED PHASE LINEAR PREDICTION

AlanÓ Cinńeide, David Dorran, Mikel Gainza and Eugene Coyle

Audio Research Group, Dublin Institute of Technology
Kevin Street, Dublin 8, Republic of Ireland

phone: + (353) 1 402 4726, email: alan.ocinneide@dit.ie
web: www.audioresearchgroup.com

ABSTRACT
Often when performing glottal closed phase covariance linear pre-
diction, a positive real pole can appear in the resulting filter transfer
function. The commonly adopted approach is to discard this pole,
as it does not fit with the usual model of the all-pole vocal tract
filter. However, this real pole describes some aspect of the speech
signal; this paper provides a novel perspective on its occurrence.
This viewpoint has a useful implication to the speech community,
especially from the perspective of fitting a glottal pulse tothe in-
verse filtered signal, as the real pole describes the return phase of
the glottal flow for certain voice types that adhere to a reasonable
criterion. Tests with synthetic signals are performed to validate this
approach.

1. INTRODUCTION

Glottal closed phase linear prediction [1] is a speech analysis tech-
nique for estimating the parameters of the vocal tract filterbased
on the linear source filter theory of speech production. The method
has been shown to have effective formant tracking abilitieswhen
compared to some other inverse filtering methods [2] and found ap-
plication in voice quality analysis [4], speaker identification [3] and
analysis of spoken prosody [5]. The technique assumes that there
exists a region within the speech signal where the glottis isclosed
and leaks no contribution into the speech signal.

However, in practice the resulting solution rarely yields the vo-
cal tract parameters directly. Following analysis, the filter poly-
nomial is factorized to determine the locations of its poleson the
Z-plane, whereupon any pole that appears on the positive realaxis
is removed [1] [4] [6]. In [6], Alku et al. remark that “[poleson
the positive real axis of theZ-plane are] unrealistic from the point
of view of Fant’s source tract theory of vowel production andits
underlying theory of tube modeling”. Because the theory cannot
rationally associate this pole with the vocal tract, it is discarded
and the remaining poles are recomposed into the vocal tract filter of
reduced filter order. Failure to remove this pole can lead to distor-
tions in the time domain signal around the instant of glottalclosure
called “jags” [1] [6] (see Figure 1). Indeed, the development of DC-
constrained closed phase linear prediction [6] was in part motivated
to increase the likelihood that closed phase analysis will yield pole
locations at more realisticZ-domain coordinates.

Wong et al. [1] offer a number of explanations for the appear-
ance of these real poles. They may appear due to the intrusionof
low frequency recording noise, a non-zero mean in the analysis win-
dows and/or the over-specification of the filter order. In thecase of
an ideal closed phase, these reasons cannot be disputed. However,
this paper will illustrate that for reasons related to the identification
of the location of the glottal closed region, certain voice types will
also cause the appearance of such a pole. While the usual approach
to discard this pole is appropriate when only the parametersof the
vocal tract are desired, it is shown here that the pole has a useful
significance in the parameterization of the glottal source.

This paper is outlined as follows: the following section gives
the necessary background of the acoustic theory of speech produc-
tion, glottal closed phase linear prediction and its implementation.
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Figure 1: A diagram illustrating the “jags” that occur when the
positive real pole remains in the speech signal. Above, glottal
derivative source with “jag” of middle pulse highlighted. Be-
low, glottal source signal without “jag” distortion.

It will be shown that, in practical application, a positive real pole
in closed phase analysis should be expected for certain voice types.
The third section discusses relationship between the Z-plane posi-
tion of the pole and the return phase of glottal models, with specific
focus on the Liljencrants-Fant (LF) model [7]. Experimentswhich
validates the theory are described in the fourth section. The fifth
section discusses the results yielded by these experiments. Con-
clusions are drawn in the final section, which also outlines some
directions for future research.

2. BACKGROUND

2.1 Acoustic Theory of Speech Production

The acoustic theory of speech production [8] views speech asthe
convolution of glottal flow signal with a vocal tract filter which is
then radiated at the lips. In theZ-domain, the process can be repre-
sented as follows:

S(z) = G(z)V(z)L(z)

whereS(z) represents the speech waveform,G(z) the glottal flow,
V(z) the vocal tract filter, andL(z) represents lip radiation.

As lip radiationL(z) is usually modeled as a differentiating fil-
ter and the relationship between the speech chain components as-
sumed linear, it is often combined with the glottal flowG(z) to
form the derivative glottal flowG′(z). This reduces the number of
elements in the speech production process to two:

S(z) = G′(z)V(z) (1)
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Figure 2: The figure above shows a synthetic speech signals(n)
generated by an all-pole filter excited by a derivative glottal
pulse traing′(n). The closed phase of a pulse and the corre-
sponding region in the speech has been highlighted.

2.2 Glottal Closed Phase Covariance Linear Prediction

Closed phase inverse filtering was first theoretically outlined by
Wong [1] and is briefly recapitulated here. During voiced phona-
tion, the build-up of air pressure from the lungs sets the glottis
within the larynx into a quasi-periodic cycle of opening andclos-
ing. Individual pulses of air excite the vocal tract and radiate at the
lips, which generates speech.

During the ideal glottal closed phase condition i.e. between suc-
cessive glottal pulses, there exists no exogenous contribution from
the glottis into the speech signal [1]. Therefore, during this inter-
val, the speech signal results solely from the decaying vocal tract
resonances, as in Figure 2. As these resonances are assumed to be
the result of an all-pole system, the speech signal’s closedphase can
theoretically be fully described by these all-pole coefficients during
this interval.

A suitable method for determining an all-pole filter’s coeffi-
cients from its output is covariance method linear prediction [11].
This technique ascertains the filter parameters over finite intervals
by minimizing the energy of the residual of the analyzed signal.

2.3 Detecting the Closed Phase of the Glottal Cycle

As illustrated in Figure 3 by the LF model, the glottal cycle is often
described in three phases [15]:

• the open phase, during which the glottis opens.
• the return phase, the interval when the glottis proceeds to close.
• the aforementioned closed phase, representing the time during

which the glottis is closed and there is no glottal excitation.

One of the main difficulties with closed phase inverse filtering re-
lates to the determination of this closed phase from the speech sig-
nal [6]. This problem can be overcome by the analysis of the signal
of an electroglottograph (EGG) which has been recorded in tandem
with the speech signal [2]. In the absence of such a signal, estimates
of the glottal closed phase can be determined from the speechsignal
directly by a number of different methods [12] [13] [14].

However, rather than the instant of glottal closure, closedphase
detection methods often search for the instant of greatest excitation
of the speech signal; this instant is sometimes called the speech
epoch and is marked in Figure 3 aste. For those voice types that
exhibit an instantaneous closure, the closed phase of the glottal cy-
cle will indeed begin in the sample following this point. However,
for other voice types, the sample after this point can often signify
the beginning of the glottal cycle’s return phase. Should the return
phase be inadvertently included in the interval for closed phase anal-
ysis, its time domain shape will affect the vocal tract filterparam-

eters and introduce unanticipated elements. In many cases,these
deviations will appear as a positive real pole, as discussedbelow.

3. THE GLOTTAL RETURN PHASE AS A SINGLE POLE
IIR FILTER

The return phase of the cycle is an important perceptual aspect of the
glottal flow [15] as it determines the spectral slope of the source and
thus the amount of high-frequency energy present in the spectrum.
An instantaneous closure would cause the most sudden time domain
clip into the signal, imparting the maximum high frequency content.
Similarly, glottal pulses with more gradual closures exhibit more
attenuated upper harmonics. Many glottal models representtheir
return phases as an asymptotic exponential decay from a negative
maximum to zero; this type of segment is fully parameterizedby
the impulse response of a single pole, low pass filter.

During glottal closed phase analysis, linear prediction does not
differentiate between the source and filter contributions of speech.
The results of any attempt to model the speech signal during an
analysis interval that may also include a portion of the return phase
will be affected in some way by all signal elements. Thus, in the
cases where the return phase of the signal can be modeled as an
asymptotic exponential decay, it is unsurprising to see a positive
real pole appear in the result of the linear predictive analysis.

The real pole describing the return phase of glottal flow can
be used to infer the parameters used in the formulation of glot-
tal models as theZ-plane position of the pole is a direct indica-
tion of the graduality of glottal closure. Section 3.1 will illustrate
the mathematical relationship between the real pole and thereturn
phase whose return phases approximate an exponential function is
described. As an illustrative example, a method for determining
the return phase parameter of the prevalent LF model is also given.
Similar relationships can be established to the return phase param-
eters of other glottal models which obey the same basic premise.

3.1 The Glottal Return Phase as the Impulse Response of a
Positive Real Pole

Exponential type functions are often used to model the return phase
of glottal models, e.g. the LF and the KLGLOTT88 models. Refer-
ring to the time domain formulation of the return phase asg′ret, the
normalized return phase of such a model can be expressed mathe-
matically by the following equation:

g′ret(n) = µnu(n) (2)

whereu(n) represents the unit step function andµ is the base of
the exponential. Arbitrarily beginning the return phase atn= 0, its
Z-transformG′

ret(z) can be shown to be:

G′
ret(z) =

∞

∑
−∞

µnu(n)z−n

= 1+µz−1+µ2z−2+µ3z−3+ · · ·

=
1

1−µz−1 =
z

z−µ

Thus, the return phase of derivative glottal signals where (2) holds
can be modeled as the impulse response of a single pole IIR filter.
The Z-plane amplitude of the poleµ therefore reflects the rate of
exponential decay of the return phase.

The signal amplitude independence of the relationship between
the pole amplitudeµ and the return phase parameters implies the
inclusion of any part of the return phase segment will theoretically
yield the same positive real pole in the analysis results so long as
(2) is valid.

3.2 Method to Determine the Return Phase Parameter of the
LF Model

The LF model [7] represents the general flow shape of the glot-
tal flow derivative over one glottal cycle and whose shape canbe
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Figure 3: An LF model of derivative glottal flow, with timing
parameters(To,Te,Ta,Tc,Tp) and amplitude parameterEe. Also
marked are the different phases of the glottal cycle and the tan-
gent at(Te,−Ee) which definesTa.

uniquely described with four parameters. The mathematicalfor-
mula describing the LF model is a piece-wise function, consisting of
two segments, the evolution of which can be seen in Figure 3. The
first segment is an exponentially increasing sine function,character-
izing the glottal flow derivative from the instant of glottalopening
to, through the time axis attp, to the instant of maximum negative
extreme atte. At this point the second segment of the LF model, of-
ten referred to as the return phase, begins. This portion models the
glottal closure as a modified exponential function which returns to
zero at a rate determined by the steepness of the slope of the tangent
to the function atte. The distance of this tangent’s time axis inter-
cept fromte is calledTa, and is referred to as the effective duration
of the return phase. The total number of samples in the pulse is the
pitch period, referred to asT0.

In order to correctly place the pulse in time, the timing instants
are calculated to be relative to the instant of glottal opening, i.e.
To = 0, Tp = tp − to, Te = te− to andTc = tc − to. Below are the
mathematical equations describing time domain LF model shape
using these parameters:

uLF (n) =











E0eαn sinωgn for 0≤ n< Te
−Ee
εTa

(e−ε(n−Te)−e−ε(Tc−Te)) for Te ≤ n≤ Tc

0 for Tc ≤ n< T0

(3)

The return phase of the model deviates from a true exponential
function in that an offset is added to the value of the exponential
to ensure that the curve reaches null at the pointtc. Depending on
the return phase length and the exponential baseµ, the value of
this offset can be negligibly small such that an exponentialfunction
very closely approximates that the LF return phase. Indeed,Fant
[7] notes that in practice, it is convenient to setTc equal toT0 as the
energy difference between the exponential during this interval and
the ideal closed phase is negligible. In those cases, the general LF
return phase can be assumed to be equivalent to a scaled version of
the exponential function given above in (2).

uLF (n) =−Eeg
′
ret(n) for Te ≤ n< Tc

=−Eeµn (4)

In order to determineTa of such a return phase, calculus and
linear geometry can be used. First, differentiating (4) yields the
slope of the general tangent to the exponential return phase:

m=−Eeµn ln µ

Referring to the time and amplitude axes as thex andy axes respec-
tively, the slope and y-intercept of the tangent at the point(te,−Ee)
can be determined by substituting the values into the line equation.
Arbitrarily setting the value ofte to be 0, the equation of the tangent
line can then be shown to be:

y= (−Ee lnµ)x−Ee (5)

Thus, the value ofTa can be calculated by solving (5) aty = 0,
which yields the following identity:

Ta =
−1
lnµ

(6)

4. EXPERIMENT

An experiment was undertaken to validate the theory that thereturn
phase parameterTa can be accurately estimated from the real pole
which appears in the analysis results of glottal closed phase covari-
ance linear prediction. Using a sampling rate of 10kHz, various
vocal tract filters were convolved with an LF model pulse train of
varied configurations to create voiced synthetic speech segments, in
accord with the acoustic theory of speech production given in (1).
Synthetic speech pulses were used for validating the theorydue to
the inherent lack of reference parameters in actual speech.

The LF model pulses were generated using all parameter com-
binations given in Table 1. The relationships between the utilized
shape parameters and the LF model timing parameters given here:

Oq =
te
T0

, αm =
tp
te
, Qa =

Ta

(1−Oq)T0

whereOq is the open quotient of the pulse,αm its asymmetry coef-
ficient, andQa its return phase coefficient.

Parameter Range
f0 80 : 20 : 200 (Hz)

Oq 0.3 : 0.05 : 0.9
αm 0.67 : 0.05 : 0.9
Qa 0.01 : 0.05 : 1

Table 1: All LF model parameter configurations used for synthetic
testing.

Following the recommendations of [7], when producing the LF
pulses, the return phase spanned fromte to to of the following pulse
such that the instantsto andtc coincide between adjacent pulses.

Covariance linear predictive analysis was performed according
to the guidelines laid down by Wong [1]. Care was taken to ensure
that the interval to be minimized extends from one sample following
the instant of glottal closurenc to one sample before glottal opening
no. The instant of glottal closure in all cases was chosen to be the
point marking the beginning of the return phase. However, unlike
Wong [1], a pre-emphasis operation is not performed for two rea-
sons. Firstly, it was noted in [2] that pre-emphasis makes very little
difference to the derived parameters. Secondly, and more acutely in
the context of this work, a pre-emphasis operation alters the return
phase in such a way that the positive real pole located after analysis
would not bear the same relationship to the return phase as the one
outlined in this paper.

The value ofp is usually chosen by a “rule of thumb” derived
from acoustic tube modeling [9] [11]. This rule follows fromthe
relationship betweenp and the length of the average male vocal
tract, the speed of soundc and sampling frequencyfs:

p=
fs

1000

Thus, for a sampling rate of 10kHz, p is 10. However, as the anal-
ysis is also intended to capture the real pole describing thereturn
phase, thep is incremented by one to 11.
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Figure 4: A 3-dimensional histogram displaying the number
of waveforms determined at a particular percentage error ofTa
against the return phase coefficientQa.

Of the derivative glottal pulse trains generated, some wereex-
cluded from the results for two reasons:

• At leastp linear equations are required to ensure convergence of
the linear prediction equations; any glottal source wave config-
uration that prevented this requirement could not undergo anal-
ysis. This excluded 13.19% of configurations.

• Occasionally the covariance analysis did not yield a singlepos-
itive real pole, meaning thatTa could not be estimated by the
outlined method. This excluded 5.38% of configurations.

In all, a total of 185,260 experiments yielded analyzable results.
The error measured by the signal is the percentage error of the

Ta parameter, calculated according to the formula:

ETa = 100
Test

a −Ta

Ta
(7)

whereTest
a has been calculated according to (6).

The routine utilized to generate the LF model pulses requires
integer period lengths. Because of this, fundamental frequency val-
ues are slightly different than the ones listed: period lengths are
rounded to the nearest integerT0 = int( f0

fs
).

In order to test the relationship in more realistic situations, two
other scenarios were also tested: the case where the system is cor-
rupted by varying levels of amplitude modulated Gaussian noise,
and the scenario where the system is noiseless but the glottal clos-
ing instant is offset by a certain number of samples.

5. DISCUSSION OF RESULTS

The graph shown in Figure 4 shows the distribution of theTa param-
eter percentage error determined by the method described inSection
3.2. The diagram shows that for small return phase coefficients, i.e.
smallTa values, the percentage error is low, with a large number of
cases exhibiting errors near 0%.

The graph indicates that as the return phase coefficient of the
tested pulses increases the percentage error in the estimation of the
Ta coefficient also grows larger. This positive correlation was ex-
pected as the relationship given by (6) was derived from the premise
that the return phase is an exponential function. As previously men-
tioned, this segment is not a true exponential, due do the offset re-
quired for a null value attc. The value of this offset can be directly

calculated from the LF model return phase (3):

LFo f f set=
−Eee−ε(Tc−Te)

εTa
(8)

From (8) above, it can be seen that large offsets occur when the
length of the return phase (calculated as(Tc−Te)) is short in dura-
tion and theTa parameter is large. In these extreme cases, it seems
that the return phase would be more appropriately modeled bysome
other mathematical function, rather than an exponential.

As is evidenced by the diagram, the method outlined in this
work is most successful when parameterizing return phases result-
ing from smallQa values. It has been noted in [16] that, for real
speech, normalTa values tend to be small. In order to support this
claim, theQa values for several voice types were calculated from
the typical parameters values given in [17]. These values were ob-
tained from the analysis of data and speech synthesis experiments
in voice conversion, and can be seen in Table 2.

Voice Qa

modal 0.001
vocal fry 0.08
breathy 0.07
falsetto 0.4
harsh 0.01

Table 2: TheQa coefficients of several voice types, from [17].

Modal, vocal fry, breathy and harsh voice types all have small
Qa parameters; Figure 4 suggests that these values would introduce
little percentage error. Only falsetto voices types, whereQa = 0.4
could errors become significant. Informal perceptual testing per-
formed by the first author confirmed this finding.

Inappropriately modeling the return phase influences the abil-
ity of the model to correctly determine the vocal tract parameters.
In cases where the return phase is significantly different from an
exponential, false poles at very low frequencies (usually less than
200Hz) may appear. This low resonance shifts the estimated vocal
tract formant center frequency and bandwidths values in a manner
that is difficult to predict. This observation seems to contradict the
heuristical rule mentioned in [4] where any root below 250Hzis
removed. In those experimental scenarios where low poles were
observed to occur in this work, the remaining resonances arenot
representative of the vocal tract. Although, as this paper confirms,
it is reasonable to remove a single positive real pole, it is not ob-
vious why removing other low frequency resonances would be rea-
sonable. However, the appearance of such poles may be an indi-
cation that closed phase covariance linear prediction is a technique
unsuited to the analysis of that particular speech period.

The results given in Figures 5 and 6 reflect the sensitivity ofthe
relationship between the real pole and theTa parameter to noise and
location of the analysis interval to the glottal closing instant respec-
tively. As would be expected, the greater the noise level within the
signal the less applicable the method, though still offering reason-
able accuracy for certain voice types with high signal-to-noise ratios
(SNRs). In the cases where the analysis interval is misplaced due
to an inaccurately detected glottal closing instant, the relationship is
fairly robust to any positive offset. However, as can be seenin lower
sub-figures of Figure 6, any misplacement which includes anypor-
tion of the open phase offers renders the method virtually useless:
any real pole detected tends to be quite near the unit circle and not
representative of the slope of the signal. In fact, oftentimes two real
poles or a very low frequency complex conjugate pair appear are
detected - anomalies of this type may be used as an indicationof
misplacement.

6. CONCLUSIONS AND FUTURE WORK

In this work, the issue of the positive real pole that sometimes ap-
pear in the results of closed phase covariance linear prediction is
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Figure 5: The percentage error of theTa estimate predicted
by the real pole found by analysis in the case where Gaussian
noise is added to and modulated by the source signal at different
SNRs.

highlighted. Because this pole is unexpected from the pointof view
of the acoustic theory of speech production, the common approach
to deal with this pole is to simply discard it. Rather than discard the
speech signal information implied by the presence of this pole, this
paper has illustrated that it is an indication of time domainshape of
the return phase of the glottal cycle in the common situationwhere
the phase can be approximated by an exponential function anda
portion of the return phase is wrongly attributed to the glottal closed
region. Specific focus was placed upon the prevalent LF modelof
derivative glottal flow, whoseTa parameter was shown to be mod-
eled by a simple mathematical relationship with the pole position.

In order to validate this theory behind this relationship, various
experiments were undertaken for a diverse set of synthetic voice
types. Due to the difficult nature of applying the theory developed
within this work to real speech, the experiments have been neces-
sarily confined to synthetic speech. However, as the LF modelhas
shown to be a suitable model for realistic derivative glottal source
waveforms [7], the techniques described within this work can theo-
retically be applied to real-world scenarios. Depending onthe char-
acteristics of the voice, it was shown that the return phase of the
underlying glottal model can be parameterized with high accuracy.

The techniques outlined in this work also implies that the glot-
tal return phase can be parameterized by applying a single order
covariance method linear prediction directly. Future workincludes
using the techniques above to develop a novel method of glottal
source parameterization, and to extend the technique in order to
more successfully handle return phases that deviate from anideal
exponential function. This would included an exploration the fail-
ure of closed phase inverse filtering in the cases which produces a
very low frequency pole in the analysis results.
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