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Abstract

Over the past twenty years, technological advances have driven the development of media con-
sumption in both home and mobile contexts. While not ubiquitous, multi-channel audio home cinema
systems have become more prevalent, as has the consumption of broadcast and gaming media on
smartphone and tablet technology via mobile telecommunications networks. This has created new
possibilities and poses new challenges for audio content delivery such as how the same content can
be presented to greatest effect given that it may be consumed via either a surround-sound home
entertainment system or in a mobile context using stereo headphones. This paper outlines research
into the development of strategies to optimise audio delivery for broadcast, gaming and music con-
tent using audio-object theory informed by principles of Auditory Scene Analysis (ASA). The initial
experiment in this project is a listening test that focuses on subject evaluation of audio objects iso-
lated from context. This experiment will explore inherent inter-object hierarchies of importance using
a foreground-background evaluation task. An overview of the experiment will be offered with a sum-
mary of initial findings. We envisage further experiments to investigate how factors such as expec-
tation may influence music scene analysis and how this knowledge might be used in object-based
delivery scenarios.

1 Introduction

Recent research in object-based broadcasting [1] and auditory object categorisation [2] has underlined
a growing interest in this area. ASA involves a constant activity of sound categorisation which Bregman
[3] outlines as both a conscious (schematic or “top-down”) and unconscious (primitive or “bottom-up”)
process of soundscape perception. This can be further illustrated, see Figure 1, by considering ASA
as a constant analysis of the surrounding sound scene which involves continual innate identification of
interesting sounds which may then be consciously analysed for semantic information or further mean-
ing. This unconscious process of background sound monitoring continues while conscious attention is
focused on foreground sounds. When sounds deemed worthy of conscious attention are identified they
cease to be part of the background sound scene and become part of a foreground sound scene. There
is considerable sensory research regarding soundscapes and how such attentional processes affect
our perception of the environment. However, there is little based specifically on the hierarchy of sound
objects in complex auditory scenes and on the movement of sounds from unconscious, background
attention to foreground, conscious attention. With the move towards object-based sound delivery in
visual streaming scenarios, an understanding of how auditory objects are parsed and categorised from
auditory scenes will be useful in the development of strategies for sound file delivery.
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Figure 1: Auditory Scene Analysis

Many factors are known to influence the perception of sound. The physical properties of sounds [4],
[5], the level of attention granted them by listeners [6], volume level [7], [8], proximity [9], sound event
context [10], level of anticipation [11], prior training [12], [13] and experience [14], listening mode [10]
and other senses (sight [15], [16], smell [17], touch [18]) are all known to affect our perception of sounds
to some degree. However, the extent of the interaction of these factors, how they affect any inter-object
hierarchy of importance and how this manifests in auditory scene perception is less well understood.
Given that such factors are known to affect perception it is logical to assume that perception of such
scenes may also differ based on the content type (e.g. music only versus broadcast and gaming
content), or how it is being consumed (e.g. mobile consumption via stereo headphone versus home
consumption via large screen devices with multi-channel audio). It is our hypothesis that perception of
auditory scenes, and therefore any inter-object hierarchy, varies due to these factors.

In order to better understand the nature of these interactions a series of experiments are planned.
Utilisation of stimuli analogous to visual streaming content is proposed as this is the most likely end-
use of object-based audio in media consumption scenarios. As content type is one of the hypothesised
parameters leading to change in perception, it is logical to isolate such a parameter for investigation
where practicable.

In many forms of visual streaming content there is a direct linkage between visual and audio content.
We see a referee blow their whistle on the screen and we hear it sounding from the television speakers.
We see a movie character fire a gun and hear the gunshot. This is distinct from consumption of music
content. Frequently, the only linkages between the music we hear and the visuals we see are imaginary,
unless we happen to be watching a live musical performance where musician gesture is directly linked
to the sounds perceived. However, much music may be heard without a direct visual analogy if listening
on a bus, for instance, without a specifically designed visual accompaniment.

In light of the fact that vision is one of the factors known to affect perception of audio then it is logical
to expect audio object perception of drama or sports content to differ from music perception, given
that one contains direct linkages between visual and audio content and the other may not. We propose
to make a distinction between visual streaming content which consists primarily of speech, sound
effects and non-diegetic music (music whose source is not visible and is not implied to be present from
the activity depicted on screen) and content which consists of music with and without accompanying
visuals. For purposes of clarity we will refer to these divisions as the ’Speech/FX’ and ’Music’ research
tracks respectively. This is illustrated in Figure 2.

For experimental purposes, it is considered that speech and effects predominant scenes which use
primarily non-music stimuli will be analogous to visual streaming content such as drama or sports
broadcasting and much computer game content. Stimuli selection will reflect this concern so as to
maintain ecological validity of experiments.
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Figure 2: Illustration of research tracks

The following sections contain a brief summary of progress and current state of research for both the
Speech/FX and Music tracks. This will entail a review of relevant prior art covering Speech/FX concerns
and a brief description of an initial background versus foreground categorisation experiment. Summary
findings will also be offered. This will be followed by a literature review of relevant research for the Music
research path with details on a proposed experiment. Finally, future research intentions will be outlined.

2 Auditory Scene Analysis

A comprehensive literature review of existing sound taxonomies and soundscape research was under-
taken to establish current practice in complex auditory scene perceptual research and ascertain what
principles could be applied to audio object perception. A general summary of this review will be useful
to frame discussion of salient points.

Bregman [3] has described ASA as the process by which auditory scenes are parsed into individual
sounds which we are referring to as auditory ’objects’. This is a complex task because sounds are
interleaved and overlap in both temporal and frequency domains, and the human auditory system only
has access to an amalgam of all sounds that are presented to the ear at the same time. Bregman
describes processes of sequential and simultaneous grouping where perception is governed by low-
level primitive and high-level schematic structures that parse the sound scene presented to the ear for
individual objects.

Sequential grouping occurs when similarities in sounds from one moment to the next result in them
being grouped to form a ’stream’. This is demonstrable via variations in tempo, frequency, timbre,
spatial direction and duration of exposure (what Bregman describes as ’cumulative effects’ [19]). Si-
multaneous grouping occurs when properties of the sound scene match patterns that tend to be true
when components of sound come from the same source. If a subset of frequencies are detected that
are all multiples of a common fundamental, this suggests that the subset is from a common source.
Sounds which have a different fundamental frequency tend to be segregated and be considered sepa-
rate sounds. Periodic sounds, such as the human voice and many musical instruments, are an example
of this phenomenon. Other factors known to aid sequential grouping are sound onset/offset synchrony,
frequency components that come from the same spatial location, components which have the same
pattern of fluctuation and also, those that are close together in frequency.

Both forms of grouping are functions of primitive and knowledge-based processes (see [20] & [21]).
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We have referred to primitive processes as ”bottom-up”, unconscious processes which are thought to
be innate, have been found in non-human animals [22], in the perception of speech [23] and of music
[3]. We have referred to knowledge-based processes as schematic, or ”top-down” processes which
involve conscious attention or past experience [24].

These functions in and of themselves do not approach the question of foreground/background cate-
gorisation which is central to our research. To this end, an overview of sound categorisation examples
will be illustrative of how sound objects can be organised and how salient such organisations may be
to foreground/background allocation. Central to this is the validity of arbitrary sound categorisation as
such structuring will be intrinsic to planned experiments on inter-object hierarchies.

2.1 Sound Taxonomies

Gaver [25] outlines the taxonomy reproduced in Figure 3, which he presents as a simple map of sound
events distinguished by classes of materials and by interactions whichmay cause them to sound. Gaver
further suggests the thesis, supported by [26], that everyday listening, or “the experience of listening to
events rather than sounds” (pg. 2), focuses on acoustic factors most useful for source identification, as
distinct from musical listening, where the “perceptual dimensions and attributes of concern have to do
with the sound itself” (pg. 1). This separation also supports the division between perception of musical
and non-musical scenes proposed in the introduction. It is interesting to note that this taxonomy is
outined according to qualities of the sounds themselves rather than the objects which produce the
sounds, a facet which is prevalent in more recent similar taxonomies.

Figure 3: Gaver’s simple taxonomy of sound events, reproduced from [25]

R. M. Shafer outlines an extensive catalogue of sound types as used in the World Soundscape Project
in [27]. The organisation used in the catalogue is arbitrary, but also comprehensive, having been built up
over a period of years, and is empirically derived. Regarding the bias inherent in any such organisation
of objects, Shafer makes the point that ‘the only framework inclusive enough to embrace all man’s
undertakings with equal objectivity is the garbage dump’ [ibid., pg. 137]. An illustration of the broadest
categories of sounds is offered in Figure 4.

Figure 4: Categories of sounds used for the World Soundscape Project

A more recent example of such organisations is offered by Gemmeke et al. [28] which consists of a
dataset of sounds1 manually curated from over 2 million YouTube2 videos. These events are organ-
ised using a hierarchically structured ontology of 632 audio classes the top-level structure of which is
outlined in Figure 5.

1https://research.google.com/audioset/ontology/index.html
2http://www.youtube.com
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Figure 5: Top-level organisation of the Audioset dataset

These taxonomies reflect the arbitrary nature of the sound categorisation task but are indicative of the
general principles used in the research and reflect much of the subsequent literature. They illustrate that
multiple approaches are possible, though consistency can be observed. Note the presence of ’human
sound’ and ’natural sound’ categories in both the taxonomy of Shafer and the ontology from Gemmeke
et al. We envisage structures similar to these being useful in content organisation for subsequent
experiments.

2.2 Sound Categorisation & Listening Modes

Concerning the validity of such structures, Thorogood et al. [29] examine the consistency of an arbi-
trary background/foreground categorisation of sounds drawn from the World Soundscape Project Tape
Library (WSPTL) [30]. Subjects’ were asked whether they agreed or disagreed with the categorisation
provided by the WSTPL. Strong levels of consensus were observed between study participants and the
arbitrary tagging of the WSPTL on what constitutes a foreground sample (80%), background sample
(92%) and background with foreground samples (75%).

This supports the view that foreground/background categorisation of a sound can be established with
a reasonable degree of confidence, with the caveat that this could not be considered a universal, un-
changing categorisation and that caution should be exercised. We could further extrapolate from this
data that a consensus on what constitutes a background sound is easier to arrive at than a consen-
sus on what constitutes other categories of sound. We will see subsequently in Section 3 that this
is not necessarily always the case. Foreground/background categorisation, in other words, retains a
somewhat subjective nature, dependant on other factors.
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Thorogood et al. make several further points about the nature of the foreground/background categori-
sation task which are worthy of mention:

• Dependant on context, sounds can be classed either as either foreground or background, an
observation consistent with [31]. A drop of water in a bath tub could be a foreground sound, for
instance, whereas a drop of water in the ocean is more likely to be a background sound.

• Attention is a significant factor in the foreground/background classification task. Sound from the
TV is foreground when the user is paying attention to the program, but shifts to background if the
focus becomes a conversation with a person in the next room.

• Background sounds either seem like they are further away than foreground sounds or are un-
changing to the extent that they blend into the rest of background noise.

• Ubiquitous sound can be thought of as the background quality of a soundscape. As summarised
by [32], sound can seem to come from everywhere and nowhere, from a single source and from
many sources. Urban drones and the sound of insects are two examples of such ubiquitous
sounds.

• Foreground sounds can be said to stand out clearly from the background.

• Listening, as outlined by Truax [10], Chion [33] and Wolvin & Coakley [34] is a dynamic process
of numerous listening modes, which can treat a sound as background or foreground depending
on the amount of attention being paid to the sound. A useful summary of various listening modes
outlined in the literature is adapted from [35] and mapped against a background to foreground
scale in Figure 6.

Figure 6: Summary of listening modes as outlined in [35]
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Truax’s [10] listening modes provide a useful framework of different levels of auditory perception. While
subliminal auditory perception is acknowledged as controversial, Kotzé & Moller [36] note significant
Galvanic Skin Response (GSR) to subliminal auditory stimuli. Dupoux et al. [37] suggest that conscious
and unconscious processing are distinguished by ’high-level perceptual streaming factors’ rather than
stimulus energy and duration. This is distinct from Truax’s description of ’background listening’, which
he posits as a level of sounds which we are aware of, though not actively listening for. Referring to the
Gestalt example of figure/ground perception, sounds that we are actively paying attention to can be
thought of as ’figure’ sounds, while others form the ’ground’. The ’cocktail party effect’ [38] highlights
the ability of the auditory system to pull different auditory objects in and out of focus as required. This
frames background listening as a complex process of constant evaluation and re-evaluation of the au-
ditory scene, where objects are continually evaluated as to whether or not they are worthy of greater
attention. ’Listening-in-readiness’ is described as being an intermediate mode of listening where fa-
miliar sounds, such as the sound of our own name, are continually monitored while primary attention
is focused elsewhere. Truax highlights the classic example of the parent capable of sleeping through
traffic noise who wakes at the sound of their baby crying. ’Listening-in-search’ is when listening is
most analytical, where the sound itself is searched for meaning. This is illustrated by the cocktail party
effect, where a conversation within one group can be focused on to the exclusion of the conversations
of others.

2.3 The Foreground/Background Categorisation Task

Framing our investigation of the foreground/background categorisation task through the listeningmodes
of Truax, this positions the categorisation of auditory objects as fluctuating due to perceived importance
relative to activity in the observed scene. Existing studies of sound categorisation have been reviewed
to establish what consistencies may be observed in subject approach to such a task. Dimensions of
such a categorisation-space will be useful in the formulation of any rule-set to predict sound object
foreground/background ranking.

Lewis et al. [39] present a study where subjects were asked to rank sounds as either ‘object-like’ or
‘scene-like’. In general, mechanical sounds tend to be ranked as more ‘object-like’ than environmental
sounds and vice versa. Additionally, ‘scene-like’ sounds tend to have a more gradual change char-
acteristic, differentiating continuous sounds from those with more abrupt change characteristics. In
a study investigating the categorisation of broadcast audio objects [40], Woodcock et al. identified
three dimensions in sound object categorisation using multidimensional scaling (MDS). One of these
dimensions ranged between continuous and discrete impact sounds. Another was proposed to be
related to the presence of absence of humans. A third dimension progresses from continuous back-
ground sounds to clear speech. The authors maintain that this dimension is related to whether the
sound carries semantic meaning or not, which is mirrored in neuro-cognitive studies such as [41] &
[39]. Interestingly, subjects’ perceived importance of sound objects correlated with this dimension,
suggesting that sound objects which carry semantic information are more important than those which
do not. Collett et al. [42] found that musical and vocal stimuli were easier to categorise than environ-
mental sounds which, supported by [25], [26] & [43] suggests that sound categorisation is easier when
more semantic information is discernible from the sound. Additionally, Guastavino [44] suggests that
people organise sounds and soundscapes in terms of the meaning attached to a sound as a semantic
clue to source identification as opposed to any abstract physical property of the sound.

Gygi & Shafiro [45] demonstrate what they term an incongruency advantage by showing that sounds
perceived as out of place in an auditory scene are more likely to be noticed. This is supported by
Sussman-Fort & Sussman [46], who suggest that the auditory system maintains a representation of
the environment that is only updated when new information indicates that reanalysing the scene is
necessary. This is consistent with Rummukainen et al. [24] who find that humans are attentive to
perceived movement, noisiness and eventfulness when analysing real-life urban environments. They
note that arousal can affect selective attention, increasing focus on certain sounds to the detriment of
attention paid to others.

Salamon et al. [47] present a taxonomy of urban sounds which they have labelled with a saliency
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characteristic, which indicates a subjective labelling of the sound on a foreground/background scale.
A subsequent categorisation experiment found that background sounds were significantly more difficult
to identify than foreground sounds with only one exception – a siren noise. This suggests that subjective
labelling, if done with care, is a robust mechanism for sound categorisation.

Guastavino [20] suggests that sounds are either classified into taxonomic categories (‘car’, ‘truck’,
‘street’, ‘acceleration’) according to low-level features or into script categories (‘doing the groceries’,
‘taking a walk’, ‘having a drink’) according to high-level features concerned with the situation of use or
the end-use purpose of the object. Raimbault & Dubois [48] support the idea that certain noises are
identified in terms of the semantic content the sound suggests, and also outline research that suggests
that psychological and sociological factors can affect sound scene perception. They suggest that street
scenes which look ‘pretty’ will generally be thought to sound more pleasant than those which do not.

2.4 A Framework for Future Investigation

From similarities in groupings observed in these sources, the author has derived a series of axes which
outline relationships between sounds and define the dimensions of a categorisation space for object
classification. These may be of use in investigating the fluctuation of relative importance between
sounds as a function of time and are outlined in Figure 7.

Figure 7: Sound object relationship axes to guide future study

The first of these axes reflects dimensions of sounds which range from those that suggest the presence
of humans, to those that do not. The second axis outlines the difference between sounds which carry
a high degree of semantic information about the object, action or event that caused their creation, and
sounds that do not. This axis could also be referred to as ‘sounds that are often described by the event
that caused them’, and thus easier to identify, versus ‘sounds that are often described using some ab-
stract quality of the sound itself’, which are more difficult to identify. The next axis concerns continuous
sounds (more likely to be background and harder to identify) versus discrete sounds (connected to an
object or event, easier to identify). The final axis outlines pleasant (people, nature, music, harmonic,
lively ambiances) versus unpleasant (traffic, alerts, inharmonic, alert) sounds.

For the initial experiment of the current research it was decided to investigate sound objects in isolation
to determine what hierarchy, if any, exists in this state. The complex nature of auditory scenes means
that many factors have an influence on perception of a scene and the categorisation of objects within it.
The foreground/background nature of isolated sounds can then be used to inform a test set of sounds to
be used in further experiments investigating these factors. The following sections will give an overview
of the experimental design of the initial experiment and will then briefly outline initial results.

3 An Initial Experiment Using Non-Music Stimuli

Listening tests generally focus on one of two broad areas of research. The first of these, which we
will refer to as categorisation experiments, is broad auditory scene analysis – how do we perceive and
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parse sound scenes? The second, which we will term evaluation experiments, generally investigate
the perceived basic audio quality (BAQ) of system components. Compression codecs, loudspeakers
and microphones have all been the subject of such evaluation research.

Methods differ somewhat between these two purposes. The first is generally related to the process
of our perception of sound and has given rise to a variation of experimental design approaches. The
most prominent proponent of this research is Albert Bregman [19], who investigated our perception of
auditory ‘streams’ using a series of experiments that often made use of synthetic tones to establish
the basic principles of auditory scene analysis. See [49] for a review of recent research in the area.
In a similar vein, soundscape research investigates human perception of complex sound scenes to
evaluate how such scenes, and the audio objects that comprise them, are perceived and categorised
by listeners.

Evaluative research, often based around ITU test methods and standards (e.g. BS.1116-3 [50] &
BS.1534-3 (MuSHRA) [51]), is concerned with evaluation of some element of a sound delivery sys-
tem. Such tests are used to rate factors such as headphones, loudspeakers or audio compression
codecs and are generally interested in forensically parsing audio stimuli to detect fractional differences
between the factors under investigation to determine which is superior. The stimuli used in such ex-
periments generally reflect the intended end use of the factor under investigation, so a listening test
comparing headphones, for example, will often use popular music for stimuli.

For the initial experiment, it was decided to use a foreground/background categorisation task with
non-musical, isolated sound objects as stimuli. We hope to gain an insight into what, if any, inherent
hierarchy exists between sounds when they are removed from the context of an auditory scene. As the
forensic level of detail afforded by the BS.1116-3 and MuSHRA standards was deemed inappropriate
in this instance the experiment was conducted online using a purpose-built website where all subjects
were asked to complete the test using headphones in a quiet environment. It has been found that
there is minimal difference between laboratory and online experiments for comparable tests ([52] &
[53], for example). Subjects were required to submit basic demographic information and then rate 40
sounds in a background – neutral – foreground evaluation task. If unsure as to whether a stimulus was
background or foreground subjects were advised to mark the sound as neutral. Stimuli were sourced
from the ESC-50 [54] sound set and presentation was randomised so as to minimise presentation order
effects. A total of 110 complete test results were collected.

Subject scores were collated for each stimulus. It was found that there were several sounds which
subjects deemed strongly foreground or background when isolated from context. Most sounds how-
ever exhibited no clear consensus as to their position on this axis, possessing a slight majority for one
position with a significant minority for the opposite position. Figure 5 shows the proportion of scores
for each stimulus. Four sounds could be said to be strongly foreground; ‘Clock Alarm’, ‘Glass Break-
ing’, ‘Baby Crying’ and ‘Door Knock’. The consensus is not so strong for background sounds, but
the ‘Crickets’, ‘Clock Tick’, ‘Keyboard Tapping’, ‘Fire’ and ‘Birds’ sounds have the highest background
scores.

This suggests that, while some sounds have an inherent property which ranks them firmly either fore-
ground or background, many sounds are capable of being ranked between either extreme, dependant
on other factors. It is expected that by manipulating such factors a map can be created that illustrates
how such foreground to background fluidity may function.

3.1 Summary

The previous sections have outlined general considerations for ASA as they pertain to soundscape
research and sound object categorisation and have detailed an experiment into the foreground back-
ground categorisation task for isolated sound objects. A series of factors which affect auditory percep-
tion were outlined and relevant research reviewed. These factors include loudness, context, attention,
prior experience, training, other senses, expectation and others. The influence and interaction of these
factors on the perception of auditory scenes is complex, as is evident from a consideration of how an-
ticipation and expectation may play a role in our perception of musical stimuli, which will be addressed
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Figure 8: Foreground - Neutral - Background ratings of audio objects

in the next section. An overview will now be offered of considerations relevant to a planned experi-
ment using musical stimuli to investigate how factors such as attention and expectation can affect our
perception of such scenes. Factors relevant to how inter-object importance may change in a musical
context will be reviewed.

4 ASA and Music

In his book ‘Auditory Scene Analysis’, Albert Bregman distinguishes between two distinct forms of
Auditory Scene Analysis (ASA): automatic streaming and schema-based streaming [3]. The former
encompasses processes that are universal and innate, and that occur without conscious effort. The
latter describes processes that are the result of learning, or concentrated attention. Both are involved
in the cognition of music [55], affecting perception of melody, rhythm and emergent properties of these
such as tonality and harmony. Automatic ASA may affect perception of melody via Gestalt principles
of continuity and proximity. Several studies have found that melodic coherence is dependent on the
frequency proximity of melodic tones [56], and how this frequency proximity competes with contour
[57], tempo, and rhythm [58]. These Gestalt principles create innate and automatic expectations for
melodic continuity within particular frequency ranges, or along established trajectories. Rhythm is
affected by automatic streaming in that rhythms tend to emerge within auditory streams, and listeners
have difficulty comprehending rhythms across streams [59]. Listeners may use rhythmic cues in a
top-down manner to differentiate interleaved melodies in order to facilitate streaming [60].

The perception of low-level elements of music may be governed by innate automatic processes, but
comprehension of music as an emergent property of combinations of partials and their temporal organ-
isation involves schema-driven processes, namely the input of knowledge and expectancies acquired
through exposure to a particular musical culture. This is demonstrated by studies that have shown that
listeners’ musical expectancies are primarily derived from the culture with which they are familiar [61]
[62], and evidence from research into musical development showing that although infants demonstrate
melodic and rhythmic expectancies based on Gestalt principles [63], knowledge of harmony and tonal-
ity do not emerge until there has been some exposure to a musical culture [64]. The following section
will discuss a planned experiment exploring how musical analysis of tonality and harmony is performed

10



within this schema-driven ASA process, and how it may affect the foreground/background positioning
of music in an auditory scene.

4.1 Schema-driven ASA and Expectation

Schema-driven, “top-down” attention affects both the streaming of auditory objects [65] and the al-
location of objects into foreground/background categorisations [66]. It has been found that the inte-
gration/segregation of sequential sounds into streams can be affected by how the listener directs their
attention [59] [67]. These findings are corroborated by neuro-physiological studies that have found ERP
enhancement when subjects attend to auditory objects [68] and enhanced neural representation of in-
tended targets when attention is focused on them [69]. Dowling has found that the focus of attention
on musical stimuli may create “expectancy windows” during which musical processing is enhanced
[70]. Woodward et al. and Schröger have found that unexpected auditory objects divert attentional
resources in a “bottom-up” manner, increasing reaction times and lowering performance levels on
concurrent tasks [71] [72].

Several studies have explored this phenomenon within music scene analysis, and have found increased
reaction times and attentional diversion for deviant harmonic and melodic stimuli within music. Reac-
tions to deviant musical stimuli are related to musical expectation, which are themselves dependent on
the listener’s familiarity with a particular musical culture. Trainor and Trehub have found that although
very young infants do not differentiate between tonal and non-tonal melodic violations [63], by age 4,
children have expectations for melodies to continue within a fixed tonality [73]. By the age of 7, chil-
dren can detect melodic violations that imply deviant harmony, suggesting that they have expectations
for particular harmonic patterns within a given diatonic context [64]. In a study by Schellenberg et
al., children’s reaction times in timbre judgement tasks were slower when associated chords violated
Western harmonic conventions [74]. Adults with no musical training have been found to have consid-
erable implicit knowledge of the rules of Western tonality and harmony, and strong expectations that
music will follow these rules. Several studies have found behavioural and neurophysiological reactions
to violations of tonal and harmonic rules in adults with no explicit knowledge of music theory [75] [76]
[13]. These reactions to harmonic deviations demonstrate how important expectation is in our under-
standing of music. Meyer and others have theorised that contextual violations of expectation may even
be linked to aesthetic reactions to music [77] [11].

If violations of musical expectation are indeed related to aesthetic reactions to music, then it could
be assumed that aesthetic enjoyment of a piece would be reduced on repeated exposure, given that
we would be aware of upcoming deviations in advance. However, the opposite appears to be case;
enjoyment of a piece of music tends to increase with repeated exposure [78] [79]. Paradoxically, musi-
cal expectations have been found to be consistently violated even within musical pieces that a listener
may be familiar with [80]. Research has found that repeated exposure to deceptive harmonic cadences
does not significantly diminish the increase in reaction time that is typically found for such deviations,
suggesting that the attentional resources required to process the deviation are not influenced by previ-
ous exposure [81] [82]. This may be because the veridical expectations associated with specific pieces
of music are processed separately to schematic expectations arising from knowledge of a musical
framework.

The experiment in preparation will use a cross-modal paradigm to explore the extent to which atten-
tion is affected by previously untested harmonic deviations commonly found in contemporary music,
such as deceptive resolution of secondary dominants, dominant modulations and modal interchange.
Unexpected harmonic changes are dependent on a listeners’ (implicit) schematic knowledge of con-
temporary Western harmony, while reactions to unexpected changes in loudness, timbre and tempo
derive from more innate, automatic processes. Therefore, reactions to violations of loudness, timbre
and tempo will be examined and compared to reactions to harmonic violations. The results of these
tests may indicate which factors influence foreground/background categorisation of music in an audi-
tory scene. Since musicians’ schematic musical knowledge is likely to be more comprehensive than
non-musicians’, these two groups will be compared to determine if this has any effect on attention.
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The effects of veridical expectations will be studied to determine if repeated exposure affects reac-
tion time to harmonic violations in comparison to tempo/timbre/loudness violations in musicians and
non-musicians.

The results of this experiment may yield information on how attentional resources are dynamically al-
located within a musical auditory scene, and may provide initial guidelines for how bandwidth should
be assigned to music within a broader auditory scene in an object-based audio context.

5 Conclusions

This paper has considered factors relevant to the functioning of auditory objects in auditory scenes
comprising of both non-music and music-only elements. A research review has identified existing
methods and practices which are relevant to currently planned research and which have informed the
design of an initial experiment on the non-music research track. It is intended to use these findings to
further investigate the interaction of the identified factors in complex auditory scenes comprising both
non-music and music content.

6 Future Work

This research will inform the development of a set of rules which will describe how inter-object hierar-
chies of importance within auditory scenes change over time. This rule set will be used to formulate
codecs for use in the generation of audio content for different media forms and for differing consump-
tion paradigms. With regard to predominantly Speech & FX scenes, it is envisaged that audio objects
tagged with appropriate metadata can be used to vary the delivery of audio over time as is deemed
optimal depending on content type (broadcast, game or music audio), end-user configurations (stereo,
headphones or multi-channel) and other factors (varying bandwidth capacities, individual preferences
and differing environments). A test codec will then be validated using an environment which simulates
the consumption of different media forms and delivery modalities.

An experiment investigating background/foreground categorisation of isolated objects has been briefly
described. To further development of a codec for object-based delivery of audio content we envisage
a series of experiments to investigate how audio object importance can change over time. This exper-
iment series will consider music content separately from visual streaming (predominantly speech & FX)
content.

Our goal with the initial experiment in the Speech/FX research track was to establish what, if any, inher-
ent foreground/background ranking is evidenced by single sound objects in isolation. Potential factors
for future investigation include the physical properties of sounds, attention, volume, proximity, context,
anticipation, prior training & experience, & other senses (sight, smell & touch). A similar progression
is envisaged for the Music research track, taking cognisance of the differing factors at play in the per-
ception of music. The influence of anticipation as mediated by schematic and veridical expectations
is only one possible route of enquiry. The insights thus gained will be critical in developing delivery
strategies for broadcast, game, music and other forms of audio content.

Subsequent experiments will seek to build an understanding of these interactions which will inform
development of a matrix that outlines how inter-object importance changes over time. The validity of
this matrix will then be tested by applying it in an environment which investigates subjects’ perception
of auditory scenes which have been manipulated subject to the parameters of the matrix.
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