
Technological University Dublin Technological University Dublin 

ARROW@TU Dublin ARROW@TU Dublin 

Articles School of Tourism & Hospitality Management 

2006-01-01 

Process Modeling for Simulation Process Modeling for Simulation 

John Ryan 
Technological University Dublin, john.ryan@tudublin.ie 

Cathal Heavey 
University of Limerick 

Follow this and additional works at: https://arrow.tudublin.ie/tfschhmtart 

 Part of the Industrial Engineering Commons, Operational Research Commons, and the Other 

Operations Research, Systems Engineering and Industrial Engineering Commons 

Recommended Citation Recommended Citation 
Ryan, J., Heavey, C.:Process Modeling for Simulation. Computers in Industry, Volume 57, Issue 5 
(2006)pp. 437-450. doi:10.1016/j.compind.2006.02.002 

This Article is brought to you for free and open access by the School of Tourism & Hospitality Management at 
ARROW@TU Dublin. It has been accepted for inclusion in Articles by an authorized administrator of ARROW@TU 
Dublin. For more information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie, 
vera.kilshaw@tudublin.ie. 

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/tfschhmtart
https://arrow.tudublin.ie/tfschhmt
https://arrow.tudublin.ie/tfschhmtart?utm_source=arrow.tudublin.ie%2Ftfschhmtart%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/307?utm_source=arrow.tudublin.ie%2Ftfschhmtart%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/308?utm_source=arrow.tudublin.ie%2Ftfschhmtart%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/310?utm_source=arrow.tudublin.ie%2Ftfschhmtart%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/310?utm_source=arrow.tudublin.ie%2Ftfschhmtart%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie


School of Hospitality Management and Tourism

Books / Book chapters

Dublin Institute of Technology Year 

Process Modeling for Simulation

John Ryan Dr.∗ Cathal Heavey Dr.†

∗DIT, john.ryan@dit.ie
†University of Limerick, cathal.heavey@ul.ie

This paper is posted at ARROW@DIT.

http://arrow.dit.ie/tfschhmtbook/1



— Use Licence —

Attribution-NonCommercial-ShareAlike 1.0

You are free:

• to copy, distribute, display, and perform the work

• to make derivative works

Under the following conditions:

• Attribution.
You must give the original author credit.

• Non-Commercial.
You may not use this work for commercial purposes.

• Share Alike.
If you alter, transform, or build upon this work, you may distribute the
resulting work only under a license identical to this one.

For any reuse or distribution, you must make clear to others the license terms
of this work. Any of these conditions can be waived if you get permission from
the author.

Your fair use and other rights are in no way affected by the above.

This work is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike License. To view a copy of this license, visit:

• URL (human-readable summary):
http://creativecommons.org/licenses/by-nc-sa/1.0/

• URL (legal code):
http://creativecommons.org/worldwide/uk/translated-license



Process Modeling for Simulation

John Ryan b Cathal Heavey a,∗

aDepartment of Manufacturing and Operations Engineering, University of
Limerick, Limerick, Ireland. Email: cathal.heavey@ul.ie

bSchool of Hospitality Management and Tourism, Faculty of Tourism and Food,
Dublin Institute of Technology, Cathal Brugha Street, Dublin 1, Ireland. Email:

john.ryan@dit.ie

Abstract

This paper discusses shortfalls in relation to the requirements gathering phases
of simulation. While many developments have taken place around supporting the
model coding task of simulation, there are few tools available to assist in the re-
quirements gathering phase. This is surprising as it has been reported by several
researchers that the requirements phase can absorb twice as much resources as the
coding phase. There are numerous process modeling tools available (over 100) that
can and have been used to support the requirements phase of simulation. This paper
provides a selective review of some of the most important in relation to simulation.
A conclusion from this review is that none of the tools available adequately supports
the requirements gathering phase of simulation. It is proposed that a process mod-
eling tool be developed specifically to support simulation requirements gathering.
The design objectives in the development of the tool are: (1) It should be capable of
capturing a detailed description of a Discrete Event System; (2) It should have a low
modeling burden and therefore be capable of being used by non specialists; (3) It
should present modeling information at a high semantic level so that manufacturing
personnel can rationalize with it; (4) It should have good visualization capabilities;
(5) It should support project teamwork. Based on these design objectives a pro-
posed simulation process modeling tool called Simulation Activity Diagrams (SAD)
is presented.

Key words: Process Modeling, Simulation.

∗ Corresponding author.



1 Introduction

Most systems can be viewed as Discrete Event Systems (DES) e.g. manufac-
turing systems, business processes, supply chains. These systems are complex
and difficult to both understand and operate efficiently. Because of its great
versatility, flexibility, and power, simulation is one of the most widely used
operations research techniques (Shannon et al. 1980). While simulation, in
theory, has great potential to assist in the understanding and efficient op-
eration of these systems, several studies show that there is a low usage of
simulation by industry. An extensive study of the penetration and use of dis-
crete event simulation in the UK manufacturing industry identified only 11%
of sites out of a sample of 431 which were currently utilizing simulation as a
decision support tool (Hollocks 1992). The ESPRIT working group on Simula-
tion in Europe (SiE) subsequently expressed the view that this general picture
of proliferation was reflected across Europe (Kerckhoffs et al. 1995). This view
of the penetration of simulation into industry is also supported by a more re-
cent survey covering non-academic members of INFORMS (Abdel-Malek et al.
1999).

One possible difficulty is the current way simulation is implemented, with
simulation modeling very often becoming a heavy programming task with the
inner workings of a system being lost in the detailed programming code and
only visible to those intimately involved in the programming task. There are
several problems with this current situation:

(1) Very valuable information concerning the operation of a system is lost in
the detailed simulation code. While simulation will provide quantitative
information a lot of insight can be obtained by studying in-depth how a
DES operates;

(2) Managing a DES is a team activity. Simulation modeling is a very poor
tool for communication and supporting teamwork. While it provides quan-
titative information and provides a certain level of visualization through
animation, it is too specialized an activity to facilitate modeling by teams,
consensus building, group understanding and visualization.

This paper presents initial research into developing support for the pre-coding
activities of a simulation project and argues for increased research into this
area.

2



2 The Process of Simulation

When conducting a simulation project it is recommended that a structured
systematic approach be carefully planned and rigidly adhered to. The “40-20-
40” rule is a widely quoted rule in simulation texts. The rule states that, in
developing a model, an analyst’s time should be divided as follows (Sheppard
1983):

(1) 40% to requirements gathering such as problem definition, project plan-
ning, system definition, conceptual model formulation, preliminary ex-
periment design and input data preparation;

(2) 20% to model translation;
(3) 40% to experimentation such as model validation and verification, fi-

nal experimental design, experimentation, analysis, interpretation, im-
plementation and documentation.

Fig. 1. The Life cycle of a simulation Study (Pidd 1989).

3



It is rare for these phases to be totally independent. For example, in the re-
quirements gathering phase one would consider programming implications.
The model developer would also make an effort to program the simulation
model in such a way as to allow for easy and accurate experimentation. Fig-
ure 1 shows in more detail the tasks involved in simulation modeling. A lot
of these tasks take place prior to the coding phase of a project and may
be repeated at different stages of the project depending on model revisions.
Many developments have taken place around supporting the “model coding or
translation task” of a simulation model with highly developed modeling envi-
ronments now available. But there has been very little research into develop
support for tasks prior to coding (Robinson 2004).

Process modeling tools have been used to support tasks prior to coding in a
simulation project. However, none of these tools have been developed specifi-
cally to support simulation. The next section briefly reviews a number of these
tools highlighting their limitations in supporting simulation.

3 A Brief Review of Process modeling for Simulation Support

There are numerous process modeling tools available to aid in the modeling
of a system. Kettinger et al. (1997) listed over 100 in a survey that was not
exhaustive. These tools are capable of modeling many different aspects of a
system to varying levels of detail. Some of these tools allow simulation of
process models developed within the tool (i.e., Scheer (1998), Mayer et al.
(1995)) and INCOME Process Designer (2005)) and a number have been used
to support simulation.

Nethe and Stahlmann (1999) suggest that the development of a high-level
process model of an actual production system prior to the development of the
simulation model could greatly help in the collection of relevant information
on the operation of the system (i.e. data collection) and, therefore, reduce
the effort and time consumed to develop a simulation model. A number of
researchers have shown that methods from the IDEF approach could be used
to support simulation. For instance, Jeong (2000) used both IDEF0 and IDEF3
to develop an optimized simulation-based scheduling system, while Perera and
Liyanage (2000) used IDEF0 and IDEF1X to address the rapid collection of
input information for the simulation of manufacturing systems. Also, other
researchers such as van Rensburg and Zwemstra (1995) and Al-Ahmari and
Ridgway (1999) have demonstrated the use of IDEF0, IDEF1X and IDEF3
to support simulation for manufacturing and system design. Furthermore, it
has been suggested by van Rensburg and Zwemstra (1995) that the use of
a processing modeling tool in simulation modeling enhanced the quality of
simulation models and helped to reduce the time needed to generate simulation

4



models.

This section provides a selective review of process modeling tools. We focus
on methods/tools that have been used to support simulation and that exhibit
characteristics desirable in a dedicated process modeling tool for simulation.
For example, we include Role Activity Diagrams (RAD) because they model
the interaction of users within a system and the GRAI method as it models
decision making. There are numerous ways of categorizing the methods/tools.
We use the categorization:

Formal Methods: These are methods that have a formal basis and there
are numerous software implementations of these methods;

Descriptive Methods: Methods that have none or very little formal basis
and are primarily software implementations.

3.1 Formal Methods

3.1.1 Petri Nets

Petri nets are a mathematical formalism based on a few simple objects, rela-
tions and rules capable of representing very complex systems. Petri nets have
been used to support simulation, (Ratzer et al. 2003) and (Ceric and Paul
1992). The formalism also forms the basis of a number of process modeling
tools, (Prabhu 2003) and has been used in the area of workflow / business
process management (van der Aalst 2002, 2003). Petri nets are capable of
very accurately modeling and representing a real system. However, Petri nets
of realistic systems are very often large and complex making it difficult for
a non-expert to reason with the logic contained within a model. Therefore,
while Petri nets can accurately represent a complex discrete event system, the
technique does not have the ability to communicate the detailed information
in a manner that could allow both a model developer and system users to use
it as a communication medium to reach a common understanding with regard
to system operational issues.

3.1.2 Discrete Event System Specification (DEVS)

The DEVS formalism described by Zeigler (1984) is a means of specifying a
mathematical object called a system, with a time base, inputs, states, outputs,
and functions for determining next states and outputs from current states and
inputs. Zeigler (1984) proposed that discrete event systems represent certain
collections of such parameters just as continuous systems do. He also proposed
that there should be a separation between a model that describes a system
and the mechanism used to simulate that system. This formalism has been

5



used to support the design and simulation of computer architectures, com-
munications networks, and manufacturing systems (Rozenblit et al. 1990),
(Thomasma and Ulgen 1988). It provides a formal representation of discrete
event systems. However, the proposed mathematical representation is difficult
to comprehend without a detailed knowledge of the formalism. So while the
DEVS formalism is capable of accurately modeling a complex discrete event
system the technique does not lend itself to communicating such complex in-
formation in a manner that facilitates its use as a means for model developers
and non specialists to build a consensus view of system issues.

3.1.3 State Charts

Statecharts are based on the notation introduced by Harel (1987). A statechart
diagram is made up of a number of basic elements, states and transitions.
These statechart diagrams are used to show the flow of control or sequences
of states that a system can proceed through as a result of discrete events
(Borger et al. 2000). Such statecharts are used in the specification of dynamic
systems and provide a means of mapping the various states through which
a discrete system can transition and have been used in system simulation
(Richter and Marz 2000, Hu and Shatz 2004). However the statechart diagram
does not allow for the capture or modeling of either resource interactions or the
activities that cause the change of states within a discrete system. Therefore,
statecharts do not fully lend themselves to the visual representation of all
detailed interactions that may occur within a complex discrete event system
and as a result do not have the ability to communicate all such interactions
and system issues in a visual manner.

3.1.4 Activity Cycle Diagrams

The Activity Cycle Diagram (ACD) is a technique for representing the in-
teraction of entities within a system and is based on stochastic gearwheels
as presented by (Tocher 1963). In an ACD, entities cycle through alternating
states of activity and waiting (Chwif et al. 1999).

ACDs have been used in the development of STROBOSCOPE, a simulation
language that can be used to express the logic of complex simulation models for
construction (Martinez and Ioannou 1995). ACDs have also been proposed as
a method for simplifying the modeling process of construction simulation (Shi
1997). While ACDs are capable of being used to model information a number
of weaknesses have been noted including difficulties in capturing complex logic,
along with models becoming cumbersome when modeling a complex system
(Chwif et al. 1999).

6



3.1.5 Event Driven Process Chains

Event driven process chains (EPCs) of MERISE (Tardieu et al. 1983) as used in
the ARIS ToolSet (Scheer 1992, 1998) and which form the basis of a number of
process modeling tools (Kettinger et al. 1997), is a graphical business process
description language. EPCs consist of sequences of functions and events. A
function, being the basic building block of an event driven process chain,
corresponds to an activity that needs to be executed, while an event describes
the situations both before and after a function is executed. In this way an EPC
consists of the capturing, representation and sequencing of activities that are
to be executed in the progressing of a process.

EPCs are capable of accurately representing the flow of activities that are
associated with the execution of tasks within a discrete event system. However,
the technique does not allow for the modeling of the change of state of a
discrete event system or the control of discrete systems. Therefore, while the
EPC technique is capable of accurately representing certain areas of a complex
discrete event system, it lacks the ability to capture and represent all of the
aspects that would allow it to function as a communicative and representative
technique for use by a model developer and system personnel during the initial
requirements gathering or conceptual modeling phases of a simulation project.

3.2 Descriptive Methods

3.2.1 IDEF

As described earlier in this section IDEF has been used to support simulation
development and was specifically developed to capture process knowledge.

The IDEF0 functional modeling method was developed from the SADT (Struc-
tured Analysis and Design Technique), to allow the analysis and communica-
tion of the functional aspect of a system (NIST 1993). The approach adopted
in IDEF0 is to describe each process (or activity) as a combination of processes,
inputs, controls and mechanisms in a hierarchical model. At the highest level
the representation may be of an entire process. This representation may then
be subdivided down into several more activity boxes or sub-processes. In such
a fashion, the breakdown continues until the point is reached where sufficient
detail is at hand to make the changes that might be needed. IDEF0 allows
for the visual modeling of the decisions and activities in a system. However,
the technique again lacks the ability to model the various other aspects of a
complex discrete event system, such as the workflow and control flow, that
are necessary to capture and communicate during the conceptual modeling or
requirements gathering phase of a simulation project. The technique also lacks
the capability to graphically represent the division of a system into multiple

7



processes.

The IDEF3 technique forms the basis of the ProSim modeling tool (Whitman
et al. 1997). There are two IDEF3 description modes: process flow and object
state transition network. A process flow description captures knowledge of
“how things work” in an organisation, e.g. the description of what happens to
a part as it flows through a sequence of manufacturing processes. The object
state transition network description summarises the allowable transitions an
object may undergo throughout a particular process. Both the process flow
and object state transition descriptions contain units of information that make
up the system description. These model entities, as they are called, form the
basic units of an IDEF3 description (Mayer et al. 1995).

The IDEF3 process modeling technique allows for the capture and graphical
representation of both the transition of states through a discrete event system
and the activities associated with such state transitions. However, the mod-
eling of the control of a discrete system is not graphically represented. This
technique also does not allow for the graphical representation of resources
within either the process flow description or the Object State Transition Net-
work (OSTN) views. Such resources are often very important in the modeling
and simulation of a discrete event system, as are queues, which again are not
graphically represented. The IDEF3 elaboration language does allow for the
capture and representation of resource interactions and queuing situations.
However, the language is abstract in nature and does not lend itself to the
communication of information to untrained users. As a result while the IDEF3
technique is capable of capturing certain aspects of a complex discrete event
system, it lacks the ability to represent a number of important issues such as
resource interactions and queuing. Therefore, the technique is not fully suited
to the capture, representation and communication of all discrete system issues
between a process model developer and system personnel in the early phases
of a simulation project.

3.2.2 UML

Within UML, (Unified Modeling Language) statecharts (see subsection 3.1.3)
are commonly used with UML activity diagrams. Such a diagram represents
the execution of a process as a sequence of steps grouped sequentially as
parallel control flow branches. An activity diagram consists of a series of ac-
tivities (represented by rounded rectangles), decision points (represented by a
diamond), synchronisation bars (represented by bars), and transitions (repre-
sented by lines). These diagrams may also be split into swim lanes to show the
various responsibilities within an organisation (Muller 1997). These elements
give the user a notation, which can be used to model both data and work-
flow. Activity diagrams have been used in this regard to model or assist in

8



the modeling and simulation of business systems (Barjis and Shishkov 2001).
UML activity diagrams have been proposed as a pre-simulation technique
(Barjis and Shishkov 2001) and have also been used as part of the FUJABA
environment which has been used to test and simulate production control sys-
tems (Niere and Zundorf 1999). While UML activity diagrams are capable of
representing workflow and dataflow within a discrete process they do not vi-
sually account for detailed interactions or the complex use of resources within
a detailed simulation model. A technique that can visually represent the in-
teractions between resources, system activities and the flow of work would, it
is felt, be more capable of communicating detailed simulation logic to a non
simulation expert.

3.2.3 Integrated Enterprise modeling (IEM)

The business process and relevant information, which is represented in one
integral model, forms the core element of the Integrated Enterprise modeling
(IEM) (Mertins et al. 1997, Mertins and Jochem 1999). To this core model,
the organisational structure, quality management system, cost structure, con-
trol system and information system are represented by means of user views,
which are directly related to the core elements in the model. The IEM method
uses the object-oriented modeling approach and is based around three generic
object classes, Product, Resource and Order.

The IEM technique is capable of modeling discrete processes. The technique
also accounts for the interaction of both control and resource elements in the
execution of activities. However, it is limited in its three modeling constructs
and lacks the inclusion of a queue element which would be vital to the mod-
eling of a discrete event system when gathering requirements or building a
conceptual model for the purposes of a simulation project. As a result, the
technique, while being capable of modeling discrete systems is not capable
of capturing and representing such detailed interactions as those inherent in
complex discrete event systems. Therefore, it is not ideally suited to the pur-
pose of communicating system issues between model developers and system
personnel involved in a simulation project.

3.2.4 Role Activity Diagrams

The technique of Role Activity Diagrams (RADs) as introduced by Ould
(1995), attempts to model a process in terms of the roles present within the
process, their component activities and their interactions, together with exter-
nal events and the logic that determines what activities are carried out when
and by whom. Although RADs have been used in software engineering they
are not primarily directed at modeling the information flows within an organ-

9



isation, a feature that distinguishes them from many other notations in the
field (Murdoch and McDermid 2000). As a result, RADs can, and have been
used, to express the organisation of design activities, communication between
various groups involved and the links between these and the evolving project
(Murdoch and McDermid 2000). RADs have also been proposed as an aid to
the modeling of a safety process for the purposes of building a safety case for
new systems (Dawkins 1998)

While RADs lack the ability to model the change of state of a discrete event
system they do attempt to model a process in terms of roles that have to be
carried out within that process. This modeling approach, while not explicit
in terms of the logical execution of tasks, as is the case with simulation, does
place the interactions or roles of a person within a process more to the fore
(Heavey and Ryan 2002). Such an approach lessens the cognitive jump that a
user has to make to visualise their interactions within the model and in turn
the real process. Conseqently, the user’s ability to understand information
contained within the model improves.

3.2.5 GRAI Method

GRAI borrows concepts from control and systems theory allowing both the
structure and control of a system (primarily manufacturing systems) to be cap-
tured (see (Doumeingts 1985)), (Chen et al. 1997) and (Zülch et al. 2001)).
This GRAI model, along with five other elements, constitutes the GRAI In-
tegrated Methodology (GIM) (Chen et al. 1997). The GRAI model, which is
relevant to the discussion here, is made up four subsystems. These are the
physical, operational, decisional, and information systems. The physical sys-
tem is used to model the process of transforming input objects into output or
finished objects by means of a flow of these objects through a model of the
physical elements of the system. The physical model contains the resources
which are needed to fulfill the operations represented in the operational model,
which is on the next level of the GRAI approach ((Doumeingts et al. 1998)).
Over the physical and the operational models, the decisional model is layered,
and this is split into two levels: (i) The higher level which represents the gen-
eral decisional structure and is modeled by a decisional matrix (GRAI-grid);
(ii) The lower or operational level describes in detail the single-decision cen-
tres of the GRAI-net. GRAI has been used in the modeling and simulation of
production systems (Ducq et al. 2001), (Al-Ahmari and Ridgway 1999). The
GRAI method primarily focuses on the decisional structure of a manufactur-
ing system. It does not adequately model the flow of work for the purposes of
capturing and aiding in the communication of system issues in the pre-coding
stages of a simulation project. The modeling of the decisional structure of a
discrete event system is, however, important as modern systems rely heavily
on such decisional systems for control and regulation. As a result, it is felt that

10



the graphical representation of such a decisional system and its interactions
with the flow of work through a discrete event system would be vital to aid
in the communication of system issues between a model developer and system
personnel.

3.3 Discussion

Section 3 presented a review of different process modeling techniques applica-
ble to pre-coding activities within a simulation project. This review was carried
out with a view to ascertain each technique’s ability to capture, represent and
communicate the various aspects of a complex discrete event system. While
there are many process modeling techniques and software tools available that
may be used to support the requirements gathering phases of a simulation
project, none of the techniques reviewed are capable of capturing, represent-
ing and communicating the various aspects of discrete event systems and their
interactions within a complex process in such a way as to fully support the
transmission of detailed simulation information to a non simulation expert.
No technique reviewed was capable of representing all of the following aspects
of a discrete event system within a single process model:

• The flow of work, or change of state of a discrete event system;
• The flow of information associated with the control of a discrete event

system;
• The activities that are associated with the execution of the flow of work

and information within a discrete event system;
• The resources necessary and their usage in carrying out the activities

associated with the execution of both work and information within a
discrete event system;

• The modeling of a discrete event system from the perspective of the user
and their interactions with the system in the execution of activities within
the system;

• The separation between the process modeling tool and the simulation
engine to allow for the capture, representation and communication of
detailed interactions at a high level during the requirements gathering
phase as opposed to purely at the low level code stage of a project;

• The access to a means of elaborating graphical models to facilitate the
communication of detailed information associated with such graphical
representations.

To overcome these shortfalls the following sections outline a process modeling
technique, Simulation Activity Diagrams (SADs), which has been developed
to specifically support the pre coding phases of a simulation project. This tech-
nique has been developed with a view to overcoming the shortfalls outlined

11



above and in doing so, it is argued, is well placed to support a model devel-
oper in the requirements gathering phases and conceptual model development
within the process of a simulation project.

4 Simulation Activity Diagrams (SAD)

The technique proposed here (Simulation Activity Diagrams (SAD)) aims to
overcome the shortfalls discussed in the previous section. The technique aims
to be highly visual and aid in the process of communication between the
model developer and system users, while still aiding the model developer in
the gathering of data for the creation of a simulation model.

As well as supporting the requirements gathering phase of a simulation project,
another important function of the technique proposed here is to act as a knowl-
edge repository. Figure 2 depicts the situation where no technique is used for
requirements gathering in a simulation project and where one is used. In Fig-
ure 2(a) system information contained in a simulation model cannot be easily
queried by non-specialists. Simulation, while providing quantitative informa-
tion, is a poor communication tool. Essentially, valuable system knowledge is
lost. In Figure 2(b) requirements collection is supported but more importantly
system knowledge that is gathered can be stored. If it is stored in a format
that is easily accessed by a range of personnel it should be a valuable resource
for system design tasks, i.e. provide support for continuous improvement pro-
grams.

4.1 Design Objectives

In developing SAD a number of design objectives were adhered to. These were:

• The technique has to be capable of capturing a detailed description of a
discrete event system;

• The technique should have a low modeling burden and therefore be ca-
pable of being used by non specialists;

• The technique should present modeling information at a high semantic
level so that personnel can rationalize with it;

• The technique should have good visualization capabilities;
• The technique should support project teamwork.

In addressing these design objectives the technique developed uses a set of
modeling elements that allows both a simulation model developer and a non-
expert to reach a common understanding of the system being modeled. The

12



(a) Difficulties with simulation models as
a communicative tool.

(b) Proposed use of the SAD
technique.

Fig. 2. Present situation and proposed use of the SAD technique.

technique allows the construction of a detailed and highly visual model of a
system. This model can then be used as a common representation and a focal
point for discussion through which both system personnel and the developer
can reach a common understanding of the operation of the system and the
data requirements. In this way the technique allows the user high level access
to knowledge contained in the simulation code that would otherwise be lost
due to its low level nature.

To achieve this effectively there are a number of functional requirements that
are central to the proper development of a SAD model:

• In instances where a system’s complexity makes reasoning difficult the
method is capable of breaking the system into partial models and hierar-
chically structuring these models. These models allow users to compre-
hend complex data;

• The user is presented with a core set of high-level elements that allow the
construction of a fully detailed model;

13



A brief overview of the Simulation Activity Diagram (SAD) is now presented.

4.2 SAD Action List

A discrete event system consists of a series of discrete events, the outcomes of
which when grouped together ultimately decide the progress of a particular
system. In a simulation engine these events are stored in an event list and
executed in order of their time of occurrence. The SAD technique graphically
represents every event in a simulation model of an activity.

An activity is any event that causes the change of state of a discrete event
system.

However an event in a simulation model can often represent more than one
event or task. Often model developers group such events together to lessen
the programming burden. This can often lead to difficulties in relation to non
simulation personnel understanding simulation models. To overcome this an
activity can be subdivided into a series of what are defined as actions.

An action element represents the individual task or tasks that have to be
performed to execute an activity.

This approach allows an activity or event to be further subdivided into its
various individual elements or tasks. In other words an activity in a SAD
model can be considered to be a list of actions that have to be executed
in order for the activity to be fully completed. Figure 3 shows an activity
consisting of three actions, which are executed as follows.

Fig. 3. SAD Actions.

The system is in state 1. Before it can transition to state 2, all actions, 1,2 and
3 must be executed. In this way an individual activity is considered a separate
mini event list or action list within the SAD model. These actions are executed
in a time ordered sequence from top to bottom and from left to right ensuring
that each criterion is satisfied. Only when each action has been executed, can
the full activity be executed and the system transition successfully to state
2. Taking this approach a SAD becomes a graphical representation of the
various events in a simulation model. Each event is represented in a SAD by
an activity. This activity is then further graphically represented by an action

14



list. This will be further developed in the following section by the introduction
of a series of modeling primitives that may be used in the detailing of such an
activity.

Fig. 4. SAD Branching elements.

4.3 SAD Modeling Primitives

Within most systems, actions such as those in Figure 3 are rarely executed
without a number of other types of resources being used. These resources are
briefly introduced below:

Primary resource element: A primary resource element represents any re-
source within a discrete event system which facilitates the transformation
of a product, physical or virtual, from one state of transition to another;

Queue resource element: A queue modeling element represents any phase
of a discrete event system where a product, virtual or physical, is not in an
active state of transformation within the system;

Entity element: An entity element represents any product, physical or vir-
tual, that is transformed as the result of transitioning through a discrete
event system;
Entity state element: An entity state represents any of the various states

that a physical object or component explicitly represented within a system
transitions through during physical transformation

Informational element: An informational element represents any informa-
tion that is used in the control or operation of the process of transition by
a product through a discrete event system.
Informational state element: An informational state represents any of

the various states that information used in the operation or control of
a discrete event system transitions through during the support of the
operation of the physical transformation

Auxiliary resource element: An auxiliary resource represents any resource
used in the support of a Primary Resource.

15



Actor auxiliary resource: An actor auxiliary resource represents any aux-
iliary resource used in the direct support of the execution of an action
or actions within the process of transitioning a system from one state to
another.

Supporter auxiliary resource: A supporter auxiliary resource represents
any auxiliary resource used in the direct support of an actor auxiliary
resource in the execution of an action or actions within the process of
transitioning a system from one state to another.

Branching Elements: Most discrete event systems are complex in nature
and are rarely, if ever, linear. To account for the representation of such
situations the SAD technique uses a number of branching elements. Figure
4 shows the various types of branching elements used in the SAD modeling
technique.

Link Types: Links are the glue that connects the various elements of a SAD
model together to form complete processes. Within the SAD technique there
are three link types introduced known as entity links, information links and
activity links. The symbols that represent each type are shown in Figure 5.

SAD Frame Element: The SAD frame element provides a mechanism for
the hierarchical structuring of detailed interactions within a discrete event
system into their component elements, while also showing how such elements
interact within the overall discrete event system.

Fig. 5. SAD Link Types.

4.4 SAD Model Structure

A SAD model is executed in time sequenced ordering from left to right and
from the center auxiliary resource area to the extremities of the model and is
structured as follows (see Figure 6). At the center of the model are located the
actors and supporters also known as auxiliary resources. These are the sup-
porters for both the information and physical models. This is advantageous for
the purposes of communication during the requirements gathering phase of a
simulation project as the persons with whom the simulation model developer
will be communicating will generally be a supporter within the process. There-
fore, each SAD model will be developed from the perspective of the persons
interacting with the system.

The interconnecting areas between both models contain the actions to be
executed. A series of these actions and the associated interactions with other

16



Fig. 6. SAD Model structure.

SAD modeling elements make up an action list. A series of these activities
in turn make up a sequence of transition for physical or information entity.
Figure 7 shows a simple SAD model for both a physical and informational
system.

In this simple example there are two auxiliary resource elements, namely,
supporter auxiliary resource element, “Supporter 1” and the actor auxiliary
resource element “Actor 1”. In the case of the information model (top of Figure
7) only the actor auxiliary resource element “Actor1” is used. This aspect of
the model captures the flow of information required to operate a system.

The physical model, shown at the lower extremity of the extended SAD, shows
the possible physical states that the system can transition through. Such tran-
sitions only take place as a result of the execution of all necessary actions,
which are executed from left to right within the SAD model. In this case the
physical system can transition from state 1 to either state 2 or state 3 as a
result of the actions carried out on the primary resource element, “Machine
X”. The auxiliary resources section again details what resources are used in
the execution or in the support of the execution of each of the actions. In
this case the supporter auxiliary resource, “Actor 1” is used in the execution
of each of the three actions A, B and C. However, again, in this case, the
supporter auxiliary resource, “Supporter 1”, is used only in the execution of
action A. Therefore, both of the auxiliary resources “Actor 1” and “Supporter
1”, denoted by the synchronous And, “AND(S)” fan in branch element, have
to be present at the same instance for the successful execution of “Action A”.
All three actions are executed on the primary resource element “Machine X”.

17



As a result of the execution of these three actions the physical system can
undergo a transition from state 1 to either state 2 or state 3.

Fig. 7. A Simple SAD.

4.5 Elaboration of SAD Models

Thus far, the modeling elements used to develop a SAD model have been
introduced to provide a means of visually modeling discrete event systems.
However, such graphical models are capable of only representing a certain
amount of detailed information and knowledge. Often, complex discrete event
systems contain detailed information and knowledge related to process inter-
actions that cannot be captured well by such graphical representations. To
provide a means of making such information available to a model user the
SAD technique also makes use of an elaboration language with which each
individual SAD diagram can be described in greater detail. This structured
language makes use of a number of different reserved words to allow the de-
scription of SADs (see Table 1).

18



Keyword Description

USES The supporter resource may at times make use of
auxiliary resources to execute an action or actions, in
other words a supporter USES auxiliary resources.

TO Details the action or actions that are executed by use
of an auxiliary resource by a supporter resource.

AT Specifies the Locations where the action or actions
are executed.

ON Specifies the primary resources that are used to
transform entity states.

TRANSITIONS TO Specifies the change of state of entity or information
from one state to another

Table 1
Structured language

These words are used to describe the various interactions that take place in
a SAD diagram. While such interactions are represented by various branches,
which show the convergence or divergence of a system at certain points within
the visual model, such branches may have a different semantic meaning to a
user based on where within the model they are used. Branch statements are
also used in the structured language, e.g., AND.

4.6 Process modeling for Simulation Software

A prototype software application called the PMS (Process Modeling Soft-
ware) has been developed using Microsoft Visual C++ to implement the SAD
methodology. The focus of the application has been to represent the SAD
technique and to demonstrate the technique’s ability to capture and visually
communicate detailed system information in a user-friendly manner. Using
this software several systems have been modeled using PMS with the aim of
validating the SAD technique. Systems modeled were: (i) A Small Medium
Enterprise (SME) that produce precision components; (ii) A manufacturing
system that implements Kanban production control; (iii) A batch flow-shop;
(iv) A production line. To further illustrate the PMS software and the SAD
technique, part of the SAD model for (i) above is described in the next section.

5 Sample SAD Application

This section takes the modeling constructs introduced previously in section
4 and uses them to develop a SAD model of a discrete event system. The

19



graphical representations of each SAD modeling element that were introduced
in section 4 are shown in Figure 8. Along with these modeling elements the
SAD elaboration for each diagram will be provided to demonstrate the SAD
approach to communicating operational information at a semantically high
level.

Fig. 8. SAD modeling elements

5.1 SAD model – Overall System

The system modeled in this section is based on the results of a series of system
interviews conducted with a number of workers in the precision component
manufacturing facility. In the early stages of any simulation project, indeed
any project, it is necessary to gain a detailed understanding of the operation of
the system being studied. The shop-floor layout of the manufacturing consists
of six separate areas of processing. Each of these areas will be modeled using
the SAD modeling technique. Figure 9 shows the highest level of this system
modeled in this case. Here, the various actions carried out by the produc-

20



tion manager are shown, as are the various flows of information and entities
through the manufacturing facility. The bottom portion of Figure 9 models
the flow of the physical part through the system. The part is accompanied
by documentation which needs to be updated as it flows through the system.
The top portion of Figure 9 models this flow of information. In this instance
it is an exact parallel flow of the physical part, but this may not always be
the case. An elaboration language description of this highest level diagram is
shown in Table 2.

Table 2
Elaboration description of overall system

A part and accompanying documentation enters the system in an entity state
and information state, respectively. During its time in the system the following
actions are executed.

Production Manager

USES Computer

TO Monitor Production

AT Delivery area AND Drilling AND Milling AND Inspection AND Pack-
aging AND Warehouse

AND Production Manager

USES Computer

TO Oversee orders AND Monitor quality

AT Delivery area AND Drilling AND Milling AND Inspection AND Pack-
aging AND Warehouse

THEN

Delivered entity state TRANSITIONS TO Shipped entity state

AND

Delivered information state TRANSITIONS TO Shipped information state

The high level SAD presented in Figure 9 consists of a number of frame ele-
ments, which are used to allow for the hierarchical decomposition of a SAD
diagram or particular system into more detailed SAD diagrams or subsys-
tems. In this instance the frame elements are used to represent the following
sub systems or work areas; Delivery area, Drilling, Milling, Inspection, Pack-
aging and Warehousing. The following section presents the SAD diagram and
elaboration associated with the Inspection frame element. In other words this
SAD diagram is used to represent more detailed information associated with
the Inspection subsystem of the system being modeled.

21



F
ig

.
9.

SA
D

m
od

el
ov

er
al

l
sy

st
em

22



5.2 SAD Model of Inspection Area

The inspection area consists of an inspection table where one operator inspects
every part passing through the station. If the parts pass the inspection of the
operator they are placed directly on a pallet for transfer to the packaging area.
If the parts are found to be oversized for drilling or undersized for milling they
are placed on a pallet for disposal. If the parts are found to be under sized for
drilling or oversized for milling they are placed on pallets for transfer to their
respective rework sections of the delivery holding area. The inspection area is
modeled as shown in Figure 10, with the elaboration language description of
this area being contained in Table 3. Similar to the SAD shown in Figure 9
the bottom portion of Figure 10 models the phyical flow of the part and the
top portion models the documentation that accompanies the part.

6 Conclusions

A very important task in a simulation project is requirements gathering and
conceptual model development. This paper highlights the fact that there is
inadequate support currently available for this task. While numerous process
modeling techniques are available and several have been used to support the
requirements gathering of a simulation project, the paper argues that the
techniques available do not provide adequate support. Several deficiencies of
current tools were highlighted. The design objectives of a modeling method
that would overcome these deficiencies were presented. Results of a research
effort into developing such a technique is reported.

The SAD technique endeavours to model complex interactions such as those
that take place within an actual detailed simulation model of a real system. To
achieve this the modeling method uses the various SAD modeling primitives
to represent the events in a simulation model. To also represent more complex
interactions the SAD method introduces the concept of an action list, which
is used to represent detailed actions that collectively can make up any event
within a simulation model. The SAD method also allows for the modeling
of both a physical and informational system that may make up a discrete
event system along with interactions between both. The use of elaborations
using structured text within the SAD method is proposed to allow a user to
understand and validate a SAD model. Currently, the method is being further
developed and validated.

Requirements gathering and conceptual model development is a very impor-
tant task in the simulation modeling process (Law 1991). It is claimed that
50% of the benefit is obtained in many simulation projects just from the re-

23



F
ig

.
10

.
SA

D
m

od
el

in
sp

ec
ti

on
ar

ea

24



Table 3
Elaboration description of Inspection Area

A pre-inspect entity state enters the inspection area in batches of 100 accompanied by a pre inspect
information state for the following actions to be executed.

Inspection Operator

Picks part

AT Inspection buffer

The Inspection buffer treats parts in a First In First Out (FIFO) manner.

AND

USES Height Gauge OR Vernier calipers

TO Check critical dimensions

The setup times for this operation average 1.36 mins and the details of this are recorded in the
attached document(Dimension test setup.xls). The average time taken for this operation is 5.8 mins,
with the details contained in the attached document (Dimension Op Times.xls)

AND

USES Surface tester

The details of the Surface finish tests performed on the parts in the Inspection area are contained in
the attached document (Surface tests.doc)

TO Check surface finish

The setup times for this operation average 2.56 mins and the details of this are recorded in the
attached document(Surface test setup.xls). The average time taken for this operation is 3.2 mins,
with the details contained in the attached document (surface Test Times.xls). The Mean Time to
Failure (MTF) and the Mean Time to Repair (MTR) for this operation are attached in the following
documents respectively(Surface test MTF.xls)

AT Inspection table

AND Inspection Operator

Check operations card

AT Inspection buffer

AND

Fill operations card

AT Inspection table

THEN

Pre-Inspection entity state TRANSITIONS TO EITHER Rework entity state OR Prepack
entity state OR Reject entity state

This transition is based on the results of the tests carried out on the parts by the inspection operator.

AND

Pre Inspection information state TRANSITIONS TO EITHER Rework information state OR
Reject information state

The transition here represents the transition of the operations card, which details each operation
and in the case of the inspection operation, the outcome of the operation, which accompanies each
batch of parts through the system.

quirements and conceptual model development task (Robinson 2004). Due to
its importance the lack of research into this area is surprising. SAD is one
possible solution to developing support for this area. Many avenues of future
research exist in this area.

25



References

Abdel-Malek, L., Johnson, F. and Spencer III, T.: 1999, Or practice: Survey
results and reflections of practising informs members, Journal of Operational
Research Society 50(10), 994–1003.

Al-Ahmari, A. M. A. and Ridgway, K.: 1999, An integrated modelling method
to support manufacturing systems analysis and design, Computers in Indus-
try pp. 225–238.

Barjis, J. and Shishkov, B.: 2001, UML based business systems modeling and
simulation, 4th International Eurosim 2001 Congress, Delft, The Nether-
lands.

Borger, E., Cavarra, A. and Riccobene, E.: 2000, Modeling the dynamics of
UML state machines, International Workshop on Abstract State Machines
(ASM’2000), Springer, pp. 223–241.

Ceric, V. and Paul, R.: 1992, Diagrammatic representations of the conceptual
simulation model for discrete event systems, Mathematics and Computers
in Simulation 34, 317–324.

Chen, D., Vallespir, B. and Doumeingts, G.: 1997, GRAI integrated method-
ology and its mapping onto generic enterprise reference architecture and
methodology., Computers in Industry 33, 387–394.

Chwif, L., Paul, R. J. and Barreto, M. R. P.: 1999, Combining the best of
the two: An activity cycle diagram/condition specification approach, Fourth
National Conference of the UK Simulation Society, Nottingham Trent Uni-
versity, Nottingham, UK., pp. 93–98.

Dawkins, S.: 1998, Role activity diagrams for safety process definition., 16th
International System Sefety Conference., Seattle, WA, USA.

Doumeingts, G.: 1985, How to decentralize decisions through GRAI model in
production management, Computers in Industry 6(6), 501–514.

Doumeingts, G., Vallespir, B. and Chen, D.: 1998, Decisional modelling using
the GRAI grid, in P. Bernus, K. Mertins and G. Schmidt (eds), Handbook
on Architectures of Information Systems, Springer, Berlin, pp. 313–338.

Ducq, Y., Vallespir, B. and Doumeingts, G.: 2001, Coherence analysis methods
for production systems by performance aggregation., International Journal
of Production Economics 69, 23–37.

Harel, D.: 1987, Statecharts: A visual formalism for complex systems, Science
of Computer Programming 8(3), 231–274.

Heavey, C. and Ryan, J.: 2002, Process modelling for simulation, International
Manufacturing Conference, Queens University Belfast, pp. 509–518.

Hollocks, B.: 1992, A well kept secret? simulation in manufacturing industry
reviewed, OR Insight 5(4).

Hu, Z. and Shatz, S.: 2004, Mapping uml diagrams to a Petri net notation for
system simulation, International Conference on Software Engineering and
Knowledge Engineering (SEKE), Banff, Canada.

INCOME Process Designer: 2005.
URL: http://www.get-process.com/ - Last accessed 09/08/2005

26



Jeong, K.-Y.: 2000, Conceptual frame for development of optimized
simulation-based scheduling systems, Expert Systems with Applications
18(4), 299–306.

Kerckhoffs, E., Vangheluwe, H. L. and Vansteenkiste, G.: 1995, Interim report
of ESPRIT basic working group 8467, Technical Report ESPRIT DG-XIII.

Kettinger, W. J., Teng, J. T. C. and Guha, S.: 1997, Business process change:
A study of methodologies, techniques, and tools, MIS Quarterly 21(1), 55–
80.

Law, A. M.: 1991, Simulation model’s level of detail determines effectiveness,
Industrial Engineering 23(10), 16–18.

Martinez, C. J. and Ioannou, G. P.: 1995, Advantages of the activity scan-
ning approach in the modeling of complex construction processes, Winter
Simulation Conference, Arlington, Virginia, US.

Mayer, R. J., Menzel, C. P., deWitte, P. S., Blinn, T. and Perakath, B.: 1995,
Information integration for concurrent engineering (IICE) IDEF3 process
description capture method report., Technical report, Knowledge Based sys-
tems Incorprated (KBSI).

Mertins, K. and Jochem, R.: 1999, Quality-oriented design of business pro-
cesses., Kluwer Academic.

Mertins, K., Jochem, R. and Jakel, F. W.: 1997, A tool for object-oriented
modelling and analysis of business processes., Computers in Industry.
33, 345–356.

Muller, P. A.: 1997, Instant UML, Wrox Press.
Murdoch, J. and McDermid, J. A.: 2000, Modelling engineering design pro-

cesses with role activity diagrams, Transactions of the SDPS 4(2), 45–65.
Nethe, A. and Stahlmann, H. D.: 1999, Survey of a general theory of process

modelling, International Conference on Process Modelling, Cottbus, Ger-
many, pp. 2–16.

Niere, J. and Zundorf, A.: 1999, Testing and simulating production control sys-
tems using the fujaba environment, AGTIVE 1999, Kerkrade, The Nether-
lands.

NIST: 1993, Integration definition for function modeling (IDEF0), Technical
Report FIPS 183, National Institute of Standards and Technology.

Ould, M. A.: 1995, Business processes: Modeling and analysis for the re-
engineering and improvement, Wiley.

Perera, T. and Liyanage, K.: 2000, Methodology for rapid identification and
collection of input data in the simulator of manufacturing systems, Simula-
tion Practice and Theory pp. 645–656.

Pidd, M.: 1989, Computer Modelling for Discrete Simulation, John Wiley &
Sons Ltd.

Prabhu, V.: 2003, Scalable Enterprise Systems: An Introduction To Recent
Advances, Kluwer Academic.

Ratzer, A. V., Wells, L., Lassen, H. M., Laursen, M., Qvortrup, J. F., Stissing,
M. S., Westergaard, M., Christensen, S. and Jensen, K.: 2003, CPN tools for
editing, simulating, and analysing coloured Petri nets, in W. van der Aalst

27



and E. Best (eds), Applications and Theory of Petri Nets 2003: 24th Inter-
national Conference, ICATPN 2003, Lecture Notes in Computer Science,
Springer-Verlag Heidelberg, Eindhoven, The Netherlands, pp. 450–462.

Richter, H. and Marz, L.: 2000, Toward a standard process: the use of UML for
designing simulation models, Winter Simulation Conference 2000, Orlando,
Florida, USA.

Robinson, S.: 2004, Simulation: The practice of model development and use,
John Wiley & Sons.

Rozenblit, J. W., Hu, J. F., Kim, T. G. and Zeigler, B. P.: 1990, Knowledge
based design and simulation environment (KBDSE): Foundation concepts
and implementation., Journal of Operational Research Society 41(6).

Scheer, A.-W.: 1992, Architecture of Integrated Information Systems: Foun-
dations of Enterprise Modelling, Springer-Verlag New York, Inc., Secaucus,
NJ, USA.

Scheer, A. W.: 1998, ARIS, in P. Bemus, K. Mertins and G. Schmidt (eds),
Handbook on Architectures of Information systems, Springer- Verlag, Berlin.

Shannon, R., Long, S. and Buckles, B.: 1980, Operations research methodolo-
gies in industrial engineering, AIIE .

Sheppard, S.: 1983, Applying software engineering to simulation, Simulation
Practice and Theory 10(1), 13–19.

Shi, J.: 1997, A conceptual activity cycle-based simulation modeling method,
Winter Simulation Conference, Atlanta, GA, USA.

Tardieu, H., Rochfeld, A. and Colletti, R.: 1983, La Méthode Merise, Principes
et Outils, Les Editions des Organisations.

Thomasma, T. and Ulgen, O.: 1988, Hierarchical, modular simulation model-
ing in icon-based simulation program generators for manufacturing, Winter
Simulation Conference, San Diego, California, USA.

Tocher, K. D.: 1963, The art of simulation, English Universities Press.
van der Aalst, W. M. P.: 2002, Making work flow: On the application of Petri

nets to business process management, in J. Esparza and C. Lakos (eds),
Application and Theory of Petri Nets 2002, volume 2360 of Lecture Notes
in Computer Science, Springer-Verlag, Berlin, pp. 1–22.

van der Aalst, W. M. P.: 2003, Challenges in business process management:
Verification of business processes using Petri nets, Bulletin of the EATCS
80, 174–198.

van Rensburg, A. and Zwemstra, N.: 1995, Implementing IDEF techniques
as simulation modelling specifications, Computers & Industrial Engineering
29(1-4), 467–471.

Whitman, L., Huff, B. and Presley, A.: 1997, Structured models and dynamic
systems analysis : The integration of the IDEF0/IDEF3 modelling meth-
ods and discrete event simulation, Winter simulation conference, Atlanta,
pp. 518–524.

Zeigler, B. P.: 1984, Multifacetted Modelling and Discrete Event Simulation,
Academic Press, London.

Zülch, G., Rinn, A. and Strate, O.: 2001, Dynamic analysis of changes in

28



decisional structures of production systems., International Journal of Pro-
duction Economics 69, 239–252.

29


	Process Modeling for Simulation
	Recommended Citation

	tmp.1308220979.pdf.8XtRn

