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ABSTRACT 

Meaning making of the mathematics involved in engineering problems can boost 
students’ learning, in general. Zooming in to a particular engineering course in signal 
processing, called Estimation, Detection, and Classification, given to 3rd-year 
students at NTNU, the potential for meaning making has been investigated using a 
mix of directed and summative content analysis methods for the specific content 
Linear models. The findings show that an attempt is made to present the linear 
model-based estimators in reduced complexity, i.e., without detailed, rigorous proofs 
that demand solid prior knowledge and concept image from the learner. The 18-page 
chapter is dominated by advanced mathematical symbols from different 
mathematical concepts with higher cognitive demanding tasks and activities, which 
can increase complexity in meaning making. Four types of representations (context, 
verbal, symbols, and graphs) and multimodal approaches (writing and mathematical 
symbols) are used to create the potential for meaning making to the user. Symbolic 
representation dominates the pages creating a higher extraneous cognitive load on 
the learner. Whereas examples and contexts contribute to lowering the complexity in 
the potential for meaning making of the mathematics in the chapter. This preliminary 
study does not include the instructors' and students’ active meaning making 
processes yet.    
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1 INTRODUCTION 

Mathematics is viewed, in general, as a service subject for engineering fields [1]. 
Understanding mathematical contents like algebra, calculus, partial differential 
equations, and other mathematical concepts could facilitate success in engineering 
studies [2, 3]. [2] investigated what engineering faculty members meant about 
“mathematical maturity” to get their desired outcomes from core mathematics 
courses.They found out that “the mathematically mature” student would have strong 
mathematical modeling skills supported by the ability to extract meaning from 
symbols and the ability to use computational tools as needed” p. 97. However, many 
engineering students perceive mathematics instrumentally and think of it as a subject 
of many rules and procedures [1,5] and struggle to make meaning of mathematical 
content in their various engineering studies [4]. Such belief and attitude could lead to 
perceiving the subject as an obstacle to engineering study [2, 4]. 
 
Guided by three research questions, [1] reviewed research journals, books, and 
proceedings to understand the recent state-of-the-art overview of the emergent field 
of mathematics in engineering. They aimed to develop a deeper understanding of 
the characteristics of “the current teaching and learning practices in mathematics 
that can inform the design and implementation of future innovative practices in 
engineering education” p.163. One of the research questions is about the ‘resources’ 
used and if they are well suited for innovative practices. The term ‘resource’ is 
defined as anything that can ‘re-source’ the learning activity of learners, in this case, 
engineering students [1, 6]. Hence, resources include textbooks, educational 
technologies, and others. This preliminary study focuses on a textbook used by 
engineering students. 
 
[7] conceptualized a textbook as a learning tool embedded in a tertiary educational 
setting. For Randahl, “by a learning tool mean a cognitive tool that promotes 
cognitive processes related to meaningful learning of mathematics” p. 34. Meaning 
making of the mathematics involved in a textbook could be one aspect of boosting 
students’ learning and innovative skill [8, 9], for engineering students as well.  We 
are especially interested in textbooks as learning tools for the student's potential 
meaning making of the given curriculum [7, 9,10]. As a cognitive tool, textbooks can 
facilitate or hinder students’ meaning making process, which can also be explained 
via the concepts of cognitive load and cognitive demand. 
 
Using a particular engineering course in signal processing, and specific content in a 
textbook, Linear models, the potential for meaning-making has been investigated. 
Linear models is one of the most critical classes of models that represents a more 
complex phenomenon in a simplified abstraction. Several service courses in 
mathematics and statistics cover this content. Meaning making of this model is 
expected from the students in several engineering problems. Hence, the potential for 
the meaning of the textbook on the linear models of this textbook is investigated. The 
data is analyzed using directed and summative content analysis methods [11]. The 
aim is to investigate the possible meaning in the student textbook used for teaching 
the linear models-based estimator in the engineering course guided by the research 
questions: how is the linear model-based estimator presented in the given course 
material? And what are the potentials for meaning making of the mathematical 
contents in connection to the content linear model-based signal processing 
estimation problems? 



2 THEORETICAL FRAMEWORK 

2.1 Meaning making in Mathematics 

By defining meaning making as “ the process by which people interpret situations, 
events, objects, or discourses, in the light of their previous knowledge and 
experience” [12:1809], asserts learning as a meaning making process in light of the 
different educational, psychological and philosophical perspectives which includes: 
cultural-historical psychology, pragmatism, constructivism, and social 
constructionism. From the standpoint of these perspectives, “to learn something 
means to establish a meaningful relation to the subject matter so that it makes sense 
to the learner” [12:1809]. [13] claimed, from a social-cultural perspective, “Meanings 
of concepts are not necessarily conceived of as referring to something “objective” in 
the world but as something embedded in the social and cultural practices in which 
they evolve” p. 150. Hence, meaning making is a dynamic process, and mediating 
artifacts, such as textbooks, can facilitate learning [8, 9].  
 
For [5], understanding mathematical concepts can provide two different meanings: 
instrumental and relational. The learners make instrumental meaning, i.e., learning 
an increasing number of fixed plans, by which they can find their way from particular 
starting points to required finishing points. While relational meaning, according to 
[12], consists of building up a conceptual structure (schema) from which its 
possessor can produce unlimited plans for getting from any starting point within his 
schema to any finishing point making meaning making is a complex process. [8] 
expressed the difficulty of discerning students’ conceptual understanding and 
preferred to investigate students’ mathematical meaning making. To characterize the 
process, [8] connected the study of students meaning making with the SEFI/Niss 
competence framework, which has eight subcategories [14]. 

2.2 Potential Meaning Making of textbooks 

In a doctoral study, [15] investigated learners’ meaning making as a combination of i) 
their prior knowledge, ii) the information they access as they progress with the 
content, iii) the resource available to support their learning, and iv) the constraints 
imposed on that content by the wider environment. Textbooks are one of the 
resources that provide opportunities to facilitate the meaning making process. In 
another doctoral study titled, ‘Engineering students approaching the mathematics 
textbook as a potential learning tool – opportunities and constraints’, [7] 
conceptualized the textbook as a learning tool embedded in a tertiary educational 
setting. For [7], there are three perspectives on the process of approaching the 
textbook as a learning tool, that is, as potentially as a meaning making tool: the 
epistemological perspective referring to the nature of mathematical knowledge; the 
cognitive perspective focusing on the individual student ability to engage in the 
making process which can be related to the prior knowledge of the student as well as 
the concept definition and concept image; and didactic perspective focusing on the 
way the textbook is embedded in the institution. The assumption is that the learners 
are expected to use the textbook as a cognitive tool that promotes cognitive 
processes related to the meaningful learning of the mathematical content.  
 
In general, textbooks facilitate the student’s meaning making process at different 
stages of learning. Intending to explore the role of the textbook in a Swedish 
classroom as the teacher-student interaction, [16] used three theoretical 



perspectives: the choice of educational content and contextualization, interaction to 
negotiate meaning making, and the use of the textbook as a potentially implemented 
curriculum. According to [17], meaning is a difficult concept, but it can come to 
presence through signs or semiotics. [9] used a multimodal approach to learning, 
where meaning making is central to textbook research. Assuming that modes 
(Writing, images, mathematical symbols, speech, moving images, etc.) carry the 
potential for meaning making, [9] investigated the potential for enabling 
communication between a Year 1 child Swedish and textbooks. The study showed a 
great complexity in the potential for meaning making in children’s work with 
mathematics textbooks. Another study by [7], focusing on teachers’ and students’ 
interaction as influenced by textbooks in a grade eight classroom in Sweden, claims 
that textbooks are designed in a certain way with a guiding view of learning, stated 
explicitly or not. [7] questions if textbooks may be a source for meaning making by 
themselves without a teacher or facilitator/tutor, i.e., the textbook might not have a 
potential for meaning making, and the student can ignore it. However, one can argue 
that meaning making is directly related to prior knowledge of the learner, and much 
is expected from a tertiary-level student to make meaning by interacting with the 
book’s author. 
 
At a tertiary level, as noted above, [7] situated the study in the context of the basic 
mathematics course taken by first-year engineering students to identify and explore 
the factors that might influence the role of the textbook proposed to first-year 
engineering students. In other words, the study focused on the potential of meaning 
making of the textbook embedded in the educational setting offering the basic 
mathematics course. Since engineering students are more mature than the learners 
at primary or secondary school, they can engage in the meaning making process 
individually or in a group with and without a facilitator or teacher. The problem, at this 
level, could be that different mathematical contents might show up in a single 
mathematical task, like in the linear model, a  case considered in this study. 

2.3 Cognitive load and Cognitive demand 

[18] reconceptualized mathematical cognition as a process of ascribing meaning to 
the mathematical objects of one’s thinking and claimed that “mathematics cognition 
does not merely involve the attempt to recognize a previously unnoticed meaning of 
a concept but the attempt to ascribe meaning to the objects of one’s thinking,” 
[18:1234]. Instead, mathematics cognition evolves due to contextualization, 
complementizing, and complexifying. Such a complex process is a cognitively 
demanding activity. [19] characterized the cognitive demand of mathematical tasks 
(activities) into four levels: memorization, procedures without connection, procedures 
with connection, and doing mathematics. In light of these, an advanced meaning 
making process demands higher cognitive levels. John Sweller developed a 
cognitive load theory (CLT) in 1988. Cognitive load refers to a user's total amount of 
information the working memory can hold at any given time [20]. Hence working 
memory has a limited capacity. There are three types of cognitive load: Intrinsic, 
Extraneous, and Germane. Intrinsic load refers to the inherent difficulty level 
associated with a specific instructional topic that can vary from the learner's prior 
knowledge and experience [21]. At the same time, extraneous cognitive load refers 
to how information is presented to the learners to engage in working memories [20, 
21]. Germane cognitive load is the learners' processing, construction, and 
automation to comprehend the content (material). Only these Germane cognitive 



load is seen as favorable for learning [20]. Textbooks as cognition tool can create 
different cognitive loads. 

2.4 Linear Models 

This research focuses on the case of linear models. A large number of signal-
processing estimation problems can be represented by a linear model [22]. This data 
model allows us to easily determine the estimator and its performance for both the 
classical and Bayesian approaches.The classical general linear model assumes that 
the data to be described as given in Eq. (1).   

 𝐱 = 𝐇𝛉 + 𝐰                                     (1). 

where 𝐱 is an 𝑁 × 1 vector of observations, 𝐇 is a known 𝑁 × 𝑝 observation matrix  
𝑁 × 𝑝 of rank 𝑝, 𝛉 is a vector of 𝑝 × 1 vector of parameters to be estimated, and 𝐰 is 

a 𝑁 × 1 noise vector with a Gaussian Probability Distribution Function (PDF) with 
mean zero vector and covariance matrix 𝐂, 𝓝(𝟎, 𝐂).  The PDF of 𝐱 is 

 𝑝(𝐱; 𝛉) =
𝟏

(𝟐𝝅)𝑵/𝟐 𝒅𝒆𝒕𝟏/𝟐 (𝐂) 
 𝐞𝐱𝐩 [−

𝟏

𝟐
 (𝐱 −  𝐇𝛉)𝑻𝐂−𝟏(𝐱 −  𝐇𝛉)] (2). 

The Bayesian linear model further assumes that 𝛉 is a 𝑝 × 1 random vector with 
Gaussian PDF, 𝓝(𝝁θ, 𝐂θ), independent of 𝐰. When assuming the linear model, it is 

possible to determine the optimal estimator 𝛉̂. The performance of any estimator 
obtained is critically dependent on the PDF assumptions. 

3 METHODOLOGY 

3.1 Context and Selected Textbook 

This study is conducted in the Norwegian University of Science and Technology 
(NTNU) context. The author, a former doctoral candidate in the signal processing 
group, took the initiative to investigate the textbook used in a course in Statistical 
Signal Processing. The book Fundamentals of Statistical signal processing, Volume 
I, by [22], is one of the main course materials used in the mentioned course. It is 
selected to study the potential meaning making of the mathematics in engineering for 
convenience (convenience sampling): the researcher has taken the course and 
assisted it for two years during the doctoral study a decade ago. The textbook is 
heavily influenced by different mathematical contents, a natural candidate to start 
studying about meaning making of the mathematics in engineering. It consists of 15 
chapters. According to the author, the book is intended as a graduate one-semester 
course with several student tasks (including the explanation, worked examples, and 
problems). For the present study, only chapter four, Linear Models, is considered as 
a key model used for several signal-processing problems  in areas like estimation, 
detection, system identification, pattern recognition, machine learning, etc.    

3.2 Framework for analysis 

Qualitative content analysis is "a strict and systematic set of procedures for the 
rigorous analysis, examination, replication, inference, and verification of the contents 
of written data" [23]. In this case, it can be used to study the potential for meaning 
making a document or textbook. According to [11], there are three kinds of content 
analysis: conventional, directed, and summative. Conventional content analysis is 
used when researchers try to avoid using preconceived categories; directed content 
analysis is guided by existing theory or prior research by identifying key concepts or 
variables as initial coding categories; and in summative content analysis, keywords 



are selected based on previous research or the researchers' interests [11, 20]. This 
study follows a mix of the second and the third approaches since Keywords derived 
from the researcher's interest based on the literature review are used for analysis. In 
this preliminary study, neither the engineering student's engagement in the meaning 
making process nor the teachers' work to facilitate the meaning making process is 
not included. Rather a mere look at the textbook used for an engineering course and 
the potential for meaning making is investigated. Table 1 summarizes the 
researcher's choice to analyze the contents of the chapter selected from the 
mentioned textbooks. 

Table 1. The framework for textbook analysis. 

Literature Meaning Making in mathematics Keywords 

[15] 

As a combination of i) their prior knowledge, ii) the information 
they access as they progress with the content, iii) the resource 
available to support their learning, and iv) the constraints 
imposed on that content by the wider environment. 

Prior 
knowledge, 
progress with 
the content, 
resource 

[8] 

In light of the eight mathematics competencies: thinking 
mathematically, Reasoning mathematically, Posing and solving 
mathematical problems, Modelling mathematically, Representing 
mathematical entities, Handling mathematical symbols and 
formalism, Communicating in, with, and about mathematics, and 
Making use of aids and tools. 

Representing, 
Modelling,  
mathematical 
symbols and 
formalism 

[9] 
A textbook with a multimodal approach, broadening mathematics 
representation, provides an individual potential for meaning 
making.   

A multimodal 
approach 

[7] 

The epistemological perspective, including conceptual and 
procedural knowledge. The cognitive perspective, including the 
notions of previous knowledge, concept image, concept 
definition, and the didactical perspective, characterizes the 
educational setting that creates teaching-learning environments. 

Conceptual and 
procedural 
knowledge 

[5] 
Three types of understanding: Instrumental understanding, and 
Relational understanding 

Understanding 

[19] 
The cognitive demand of mathematical tasks (activities) into four 
levels: memorization, procedures without connection, 
procedures with connection, and doing mathematics 

Cognitive 
demand 

[20, 21] 
There are three types of cognitive load: Intrinsic, 
Extraneous, and Germane. 

Cognitive load 

 

4 ANALYSIS AND DISCUSSION  

4.1 Minimum Variance Unbiased (MVU) estimator for the Linear Model 

Linear models allow us to model several signal-processing problems like estimation, 
detection, pattern recognition, machine learning, etc. In Chapter 2, [22] provided the 
minimum variance unbiased (MVU) estimator, which produces values close to the 
truth most of the time. In Chapter 3, for its easiness, the Cramer-Rao Lower Bound 
(CRLB) is presented as a bound on the variance of any unbiased estimator. In 
Chapter 4, [22] assumed a linear model, defined in equation (1). Steven M. Kay 
argues that a significant number of signal processing estimation problems can be 
represented by a data model that allows us to determine the MVU estimator quickly. 



The chapter first provides an introduction and summary section and then provides 
the development of the MVU estimator for the Linear Model. Given the linear model 
in Eq. (1), a key model with PDF of 𝐱 given in Eq. (2), then 𝛉̂ = 𝐠(𝒙) will be the MVU 
estimator if: 

 
∂ 𝐥𝐧 𝑝(𝐱;𝛉)

∂𝛉 
 =  𝐈(𝛉)(𝐠(𝐱) − 𝛉)  (3) 

for some function 𝐠 and 𝐈(𝛉), which is the Fisher information matrix that determines 
the characteristics of statistical estimation. The linear model Eq. (3) 

 
∂ 𝐥𝐧 𝑝(𝐱;𝛉)

∂𝛉 
 =  

∂ 

∂𝛉 
 [−𝒍𝒏 (2πσ2)

𝑵

𝟐 −
𝟏

2σ2
(𝐱 − 𝐇𝛉)𝑻(𝐱 − 𝐇𝛉)]    (4). 

             = − 
𝟏

2σ2  
∂ 

∂𝛉 
 [𝐱𝑻𝐱 − 𝟐𝐱𝑻𝐇𝛉 +  𝛉𝑻𝐇𝑻𝐇𝛉 ] (5). 

Further using identities,  

  
∂ 𝐛𝑻𝛉 

∂𝛉 
= 𝐛  (6). 

 
∂ 𝛉𝑻𝐀𝛉 

∂𝛉 
= 𝟐𝐀𝛉 (7). 

for 𝐀 a symmetric matrix,  

 
∂𝐥𝐧 𝑝(𝐱;𝛉)

∂𝛉 
 = − 

𝟏

σ2  [𝐇𝑻𝐱 − 𝐇𝑻𝐇𝛉]   (8). 

Assuming that 𝐇𝑻𝐇 is invertible  

 
∂𝐥𝐧 𝑝(𝐱;𝛉)

∂𝛉 
 =

 𝐇𝑻𝐇

σ2  [(𝐇𝑻𝐇)−1 𝐇𝑻𝐱 − 𝛉] (9). 

Which is exactly in the form of Eq. (3). Hence the MVU estimator of 𝛉 is given by 

 𝛉̂ =  (𝐇𝑻𝐇)−1 𝐇𝑻 (10). 

and its covariance matrix is: 

 𝐂𝛉̂ =  𝐈−𝟏(𝛉) =  σ2(𝐇𝑻𝐇)−1. (11). 

The details of reflections on each step is attached in Appendix. Further, [22] provides 
three examples based on the problem contexts: curve fitting, Fourier analysis, and 
system identification, before presenting another subsection that extends (1) to a 
general linear model where the nose is not white. Therefore, it first deals with the 
whitening approach, and then the above procedure is repeated to develop a new 
estimator with the same form. In addition, the chapter provides two other practical 
examples, i.e., on Direct Current (DC) level in colored noise and DC level and 
exponential in white noise, to assimilate the material on parameter estimation 
effectively. In the end, there are 14 problems, either signal processing estimation 
problems or pure mathematics tasks, as [22] calls homework related to basic 
concepts. To reduce complexity for the learners, the two estimators, one for the 
white and another for the colored noise, are presented as theorems without rigorous, 
detailed proofs. 

4.2 Impact of Prior knowledge and Understanding of Meaning Making 

[24] extended instrumental and relational meaning making of mathematical concepts 
of [5] to  advanced mathematical concepts. Instrumental understanding of a concept 
refers to the ability to state the definition of the concept, is aware of the important 
theorems associated with that concept, and can apply those theorems in specific 



instances. While a relational understanding includes to understand the informal 
notion this concept was created to exhibit, why the definition is a rigorous 
demonstration of this intuitive notion, and why the theorems associated with this 
concept are true. Looking at the steps from Eq. (3) to (11), the textbook provides 
opportunities for the two different meaning making in light of [24] definitions of 
understanding. Those who have an instrumental understanding meaning making 
may remember the rules and procedures applied at each step while those with a 
relational understanding meaning making can connect the mathematics why those 
mathematical concepts are working as such: For example, understanding why Eq. 
(3) and (9) are connected demands intuitive understanding of the different concept 
as a basis for constructing a formal argument. In turn, it demands a sold prior 
knowledge (Huthali, 2014) in the basic mathematical concepts like partial 
differentiation, which could be a difficult concept for many. In fact, [24] has extended 
a relational understanding of a concept as somewhat akin to Tall and Vinner’s 
concept image [25]. In this case, the concept image of the partial derivative 
procedure is a total cognitive structure that is associated with this concept, which 
includes all the mental pictures and associated properties and processes. As an 
example, why the partial derivative is employed can be seen as an extension of the 
experience that when we derivate a function and set up the result to be zero, it is 
possible to get the extremum values of the function. As we are looking for the 
minimum variance estimator, it gives a sense of meaning to the learner. Concept 
image is “built up over the years through experiences of all kinds, changing as the 
individual meets new stimuli and matures” [25:152], which in turn has huge impact 
on the meaning making process. 

4.3 Impact of Representation and Multimodal on Meaning making 

Most parts of the pages of Chapter 4 in [22] are highly dominated by advanced 
mathematical symbols, very brief texts and few diagrams, no real-life related images.  
According to [9], different modes like  writing, images, mathematical symbols, 
speech and moving images carry potential for meaning making. The textbook is 
highly populated with advanced mathematical symbols, which can contribute to the 
complexity in the meaning making process for learners. In [8] and [26], one finds 
mathematical competency model connected to mathematical meaning making. One 
of the elements mathematical competences is dealing with different representations 
of mathematical entities [26, 27]. In Chapter 4, one finds four types of 
representations: verbal, symbolic (most dominating ones), diagram (three figures) 
and context (like system identification, curve fitting, a fading noise, and so on). 
These four can assist the ability to interpret as well as translate and move between 
the different representations [27], boosting the meaning making process. However, 
the dominating advanced mathematical symbols used can be problematic. 

5 SUMMARY AND ACKNOWLEDGMENTS 

Linear models allow us to model several signal-processing problems in estimation, 
detection, system identification, pattern recognition, machine learning, etc. It is 
undoubtedly one of the most critical classes of models that represents a more 
complex phenomenon in a simplified abstraction. Several service courses in 
mathematics and statistics cover this content. Meaning making of this model is 
expected from the students in several engineering problems. The findings show that 
Chapter 4 of the course material [22] provides different aspects of meaning making 
in mathematics for engineering students. The linear model-based estimator is 



presented in a reduced complexity, i.e., without rigorous, detailed proofs that 
demand a solid prior knowledge of many of the mathematical concepts that are 
involved. The 18-page chapter is highly dominated by advanced mathematical 
symbols from different mathematical concepts with higher cognitive demanding tasks 
and activities, which can increase complexity in the meaning making process by the 
learner, further reducing the opportunity for learning. Four types of representations 
(context, verbal, symbol, and graphs), as well as multimodal approaches (writing and 
mathematical symbols), are used, creating potential for meaning making by the user. 
However, symbolic representation dominates the pages creating a higher extraneous 
cognitive load on the learner. Where as examples and contexts contribute for 
lowering the complexity in the potential for meaning making in engineering students 
with the mentioned textbook.  
 
 
Finally, I acknowledge the contributions of Professor Lars Lundheim at the 
Department of Electronic Systems, NTNU, in the preparation of this paper. 
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