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Abstract 

This project was a collaborative project between the Marine Institute (MI) in Galway and 

Radiation and Environmental Science Centre (RESC) in the Dublin Institute of Technology 

(DIT).  In Ireland at present, sediment quality assessments are generally reliant on chemical 

analysis alone with limited bioassay techniques available to further characterise the 

sediment.  Some causative agents of toxicity to biological organisms are below analytical 

detection limits.  Integration of bioassay data with chemical analysis is essential in order to 

complete a full ecotoxicological assessment of the quality of the marine environment.  This 

project describes the chemical analysis of marine sediment for persistent pollutants from 

selected locations around the coast of Ireland. A novel analytical technique is developed for 

extraction and quantification of organotins (OTCs) from sediment and for subsequent 

exposure onto two fish cell lines.  Fish cell cultures are additionally exposed to a range of 

reference OTC chemicals.  The method for organotin extraction is additionally utilised in a 

Toxicity Identification Evaluation study whereby a crude solvent extract is assayed on two 

biological organisms namely the Microtox® (employing the marine bacterium Vibrio 

fischeri) and the marine copepod Tisbe battagliai and chemically analysed.  A further 

fractionation of the extract is then performed and further testing conducted on the 

organisms, therefore potentially pinpointing the source of toxicity.  An in-situ study using 

caged Nucella lapillus and Crassostrea gigas to monitor TBT induced bioeffects in Irish 

harbours was also developed which was correlated with stable isotope ratios, condition 

indices and measurement of OTCs in the various biota tissues and sediment samples.  This 

short term exposure method showed a rapid development of imposex in gastropod species 

and shell abnormalities in oysters at a TBT polluted location. 
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Scope of this thesis 
 

The presence of anthropogenic pollutants throughout all compartments of the marine 

environment has been of national and international concern for a number of decades.  A 

great number of regional and international contaminant monitoring programs currently exist 

with primarily goals to: identify pollutants of immediate concern and to assess temporal 

and spatial aspects of contamination, usually with the ultimate aim to reduce contaminant 

inputs and to minimise impacts of pollution on the marine environment.   

 

Sediments play an important role for the distribution and dynamics of pollutants in the 

aquatic environment.  They ultimately can act as a sink for anthropogenic pollutants.  In 

Ireland, when an application for disposal of dredged material is made, a chemical 

assessment of sediment must be performed.  At present, sediment quality assessments rely 

on chemical analysis alone with limited bioassay techniques available to further 

characterise the toxicity of the sediment.  Some causative agents of toxicity are below 

analytical detection limits.  Integration of bioassay data with chemical analysis is essential 

for full ecotoxicological assessment of the quality of the marine environment.  

Organisations such as the Oslo and Paris Commission (OSPAR) and International Council 

for the Exploration of the Sea (ICES) support integrated approaches for monitoring 

persistent pollutants and their effects in the marine environment and open-sea areas.   

 

This was a three and a half year collaborative project between the Marine Institute (MI) in 

Galway and Radiation and Environmental Science Centre (RESC) in the Dublin Institute of 

Technology (DIT).  The aim of this particular thesis was to implement the chemical 

assessment component and ultimately to integrate chemical results with biological data. 
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Chapter 1 introduces the need for an integrated approach and outlines the current 

monitoring programmes in place by organisations supporting integrated approaches such as 

OSPAR/ICES.  Other legislative frameworks are described such as the Water Framework 

Directive under which there is a requirement for substantial monitoring of priority and 

relevant pollutants in transitional and coastal waters to achieve “good ecological status by 

2015”.  The ecotoxicological significance of marine sediment monitoring is discussed in 

addition to the role of biomarkers and sediment toxicity bioassays.  Pollutants relevant to 

this thesis are further discussed including their sources, chemical properties and 

ecotoxicological relevance.  Toxicity Identification Evaluations (TIEs) are briefly 

overviewed and discussed.  The evaluation of sediment quality using the United States 

Environmental Protection Agency (US-EPA), OSPAR and Irish Sediment Quality 

Guideline (ISQ) approaches including the development of effects range levels and 

derivation of background assessment criteria are described for use in subsequent chapters.  

This chapter includes an introduction to normalisation procedures which are utilized 

throughout this thesis.  A sediment assessment approach known as the “Fullmonti” which is 

currently being developed at OSPAR is also described. 

 

The selection of sites for determinations of concentrations of organic and inorganic 

contaminants in surficial sediments from three coastal locations around Ireland i.e. at 

Dublin Port and the inner Dublin Bay, Dunmore East and Omey Island is described in 

Chapter 2 of this thesis.  This analysis was completed to classify extent of contamination 

at sites selected for cell line assaying, imposex determinations, genotoxicity, and for the 

bioassay test battery employed.  It was also completed to demonstrate some spatial aspects 

at the sites for example, to see if pollution levels differed upstream, but mainly to assess the 
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level of contamination from urban inputs/industrial activities etc.  The chemical assessment 

of sites is performed by comparing dry weight and normalised concentrations of 

contaminants with OSPAR background assessment criteria, NOAA ERL/ERM levels and 

Irish Sediment Quality (ISQ) guideline upper and lower action levels.  The data generated 

in this chapter shall contribute and be the basis of an integrated assessment.  Integration of 

this data with a selected battery of bioassays and biomarkers is further addressed in later 

chapters.   

 

The sources, physical and chemical properties, endocrine disrupting properties, analytical 

methods as well as legislation of organotins are further discussed in Chapter 3.  This 

chapter describes the optimisation and validation for a method which extracts organotin 

compounds in their chloride form for subsequent exposure to biological organisms and for 

separation and quantification of organotin species in marine sediment.  Validation of 

methodology is discussed including the following parameters: accuracy, precision, 

specificity, linear range, repeatability, reproducibility and limits of detection/quantification.   

 

Chapter 4 reports on the toxicity evaluation of four organotin compounds in the rainbow 

trout gonad cell line (RTG-2) and toxicity of a solvent extract to both the RTG-2 cell line 

and the topminnow hepatocellular carcinoma cell line (PLHC-1) integrated with chemical 

analysis.  The extraction of organotin compounds (OTCs) in their salt form from marine 

sediments for exposure to fish cell cultures is reported.  Organotin compounds 

derivatisation followed by gas-chromatography-pulse-flame-photometric-detection (GC-

PFPD) and quantitation is described.  Prior to sediment extract exposure, the toxicities of 

four individual organotin compounds were established with the RTG-2 cells as this data 

was not previously available in the peer reviewed literature. 
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Chapter 5 reports on an in-situ study using transplanted Nucella lapillus and Crassostrea 

gigas species to monitor TBT-induced biological effects and the integration of the resulting 

data with chemical concentrations in the tissues of the biotic species and in sediment.  The 

degree of imposex in the gastropod as measured by the vas deferens sequence index (VSDI) 

and Relative Penis Size Index (RPSI) and the extent of shell thickening in the oysters was 

investigated at t=0 and t=18 weeks.  Stable isotope ratios of carbon δ13C and nitrogen δ15N 

are also reported in this study to provide information on predator/filter feeding activities 

and relative trophic status for the caged species.  The application of cost effective caging 

techniques in potential organotin/TBT hotspot locations to complete integrated biological 

effects and chemical measurements in the absence of resident gastropod populations is 

discussed.  

 

In Chapter 6 metal uptake rates and rapid biotic accumulation of metal levels as 

demonstrated in the test species is discussed.  This study is further described as a valid tool 

for bio-monitoring in metal impacted areas.   

 

In Chapter 7 of this thesis, a bioassay directed fractionation procedure is developed and 

described whereby organotins and other anthropogenic compounds are extracted from the 

bulk sediment, fractionated and analysed using a variety of analytical techniques, and these 

solvent extracts are exposed to two test organisms namely Vibrio fischeri and Tisbe 

battagliai.  The analytical and biological procedures and results are further described 

including analytical methodology employed for the identification of toxic fractions.  

Mixture toxicity is discussed in terms of species sensitivity differences to both crude 

contaminant extracts and fractionated extracts.  An insight into the contaminants present in 
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the sediment is provided and discussed and concluded to be a very useful technique for 

sediment quality assessments. 

 

Chapter 8 of this thesis reports on the use of a scoring system developed with indices 

which allows for comparison of bioassay, biological effects, biotic and sediment chemistry 

data from a number of sites described in previous chapters.  Generation of an integrated 

biomarker response “IBR” type index is described for use in future sediment quality 

assessments. 

 

In summary this thesis reports on a wide range of integrated techniques developed to 

expand Ireland’s capacity for integrated monitoring. 
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1.1 General Introduction 

 

The marine environment receives inputs of hazardous substances from polluted rivers, 

direct discharges and atmospheric deposition (amongst others), becoming the ultimate 

repository for a variety of persistent chemicals.  In environments where organisms are 

exposed to a cocktail of potentially harmful substances, increases in disease prevalence and 

potentially adverse effects on population growth, reproduction and survival may often 

result.  Thus there is an increasing requirement for the availability of analytical (and 

biological assessment) methodologies that allow for the detection of anthropogenically-

induced changes to individual compartments of our marine ecosystem. 

 

Sufficiently sensitive, selective, and robust analytical and assessment “tool-kits” need to be 

in place in order for scientists and policy makers to advise on appropriate remedial 

responses and choose regulatory action to further protect the marine environment and its 

resident organisms.  Difficulties can often arise in the development of techniques that allow 

for the ‘health’ of the marine environment and of its individual components to be assessed, 

however a number of such tool-kits are either routinely utilised or are under development in 

a variety of fora; these are discussed in greater detail below.  Few data are available for 

integrated monitoring in Ireland.  At present, assessment and monitoring of sediment 

quality in Ireland is predominantly reliant on chemical analysis, as limited biological 

techniques are available to further characterise the sediment. 

1.1.1 Monitoring and assessment - the need for an “integrated” approach 

 

Biological responses to chemical exposure may be observed when the causative substance 

is below current chemical analytical detection limits; e.g. the development of imposex in 
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gastropods due to tributyltin (TBT).  In this case the development of appropriate tools 

ultimately has led to mandatory monitoring of TBT-specific biological effects under the 

Oslo Paris Commission (OSPAR) Coordinated Environmental Monitoring Programme 

(CEMP). 

 

OSPAR has obligations to monitor the quality of the marine environment and its 

compartments (water, sediments, and biota), the activities and inputs that can affect that 

quality, and to assess impacts of contaminants on the marine environment as a basis for 

identifying priorities for action.  OSPAR, together with the Helsinki Commission 

(HELCOM), has agreed on an ecosystem approach to managing the marine environment, 

and to understanding and assessing impact of human activities. 

 

The original OSPAR Joint Assessment Monitoring Programme (JAMP) guidelines for 

monitoring contaminants in biota and sediment or biological effects do not provide 

guidance for the optimum approach to monitoring to support the “integrated” assessment of 

concentrations and effects of contaminants across the OSPAR Maritime Area.  However, 

the guidelines do contain references to supporting measurements (chemical data, physical 

data, biological data) which aid the interpretation of monitoring data.  Consequently, 

chemical and biological effects data have usually been collected, reported and assessed 

separately by individual Contracting Parties (CPs).  Contracting parties are countries or 

states which are involved in the mandatory monitoring of contaminants/biological effects as 

agreed by OSPAR. 
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Integrated monitoring and assessment of contaminants and their effects will contribute 

more effectively to the integrated assessment of the full range of human impacts on the 

quality status of the marine environment as part of such an ecosystem approach. 

 

1.1.1.1 The OSPAR Hazardous Substances Strategy 

 
The objective of the OSPAR Hazardous Substances Strategy (OSPAR Commission, 2003) 

is to prevent pollution of the maritime area by continuously reducing discharges, emissions 

and losses of hazardous substances, with the ultimate aim of achieving concentrations in the 

marine environment near background values for naturally occurring substances and close to 

zero for man-made synthetic substances.  The Hazardous Substances Strategy further 

declares that the Commission will implement this Strategy progressively by making every 

endeavour to move towards the target by the year 2020 (OSPAR Commission, 2003). 

 

OSPAR has developed a Joint Assessment and Monitoring Programme (JAMP) providing 

the basis for the monitoring activities undertaken by Contracting Parties to assess progress 

towards achieving OSPAR objectives (Figure 1.1).  In relation to hazardous substances, the 

JAMP seeks to address the following questions: 

1) In marine environments, what are the concentrations and effects of hazardous substances 

on the OSPAR List of Chemicals for Priority Action ("priority chemicals")? 2) Are they at, 

or approaching, background levels for naturally occurring substances and close to zero for 

man made substances? 

3) Are there problems emerging related to the presence of hazardous substances in the 

marine environment? In particular, are any unintended/unacceptable biological responses, 

or unintended/unacceptable levels of such responses, being caused by exposure to 
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hazardous substances? OSPAR uses the Coordinated Environmental Monitoring 

Programme (OSPAR, 2005) which requires temporal and spatial monitoring of quality 

assured data for a range of contaminants, and effects measurements, to answer the above 

questions.  

 

OSPAR is involved in the ongoing development of criteria such as Background 

Concentrations (BCs), Background Assessment Concentrations (BACs), and 

Environmental Assessment Criteria (EACs) for contaminants in sediments, biota and sea-

water OSPAR is also developing assessment criteria for TBT-specific biological effects; 

this effort will provide “tool-kits” by which the “health status” of the ecosystem can be 

assessed.  A number of the OSPAR developed assessment criteria are relevant to this 

project and will be discussed throughout the thesis. 

 

1.1.1.2 Legislative frameworks 

 
It is widely accepted that chemical monitoring is no longer sufficient to assess pollution 

impacts in the marine environment. Both chemical and biological monitoring are 

recommended by OSPAR, the Workshop on Integrated Monitoring of Contaminants and 

their Effects in Coastal and Open-Sea Areas (WKIMON) and within the Water Framework 

Directive (WFD).  The WFD (WFD2000/60/EC) has a requirement for monitoring of 

priority and relevant pollutants in transitional and coastal waters to achieve “good 

ecological and chemical status” by 2015.  While compliance of priority substances with 

Environmental Quality Standards (EQS) will be the basis of assessing chemical status 

compliance, integrated monitoring will be an extremely important tool in assessing water 

quality, for instance in investigative monitoring, to ensure effective management decisions 
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are taken.  Integrated chemical and biological effects monitoring will be an essential 

assessment approach within the Marine Framework Directive (MFD), and will build on the 

activities of the International Council for the Exploration of the Sea (ICES, 2004) and 

OSPAR. 

 

To further support the OSPAR goals outlined above, integrated approaches to monitoring 

contaminants in the marine environment and the biological responses to the presence of 

hazardous substances are required.  Such approaches provide greater interpretative power in 

assessments of the state of the OSPAR Maritime Area with respect to hazardous substances 

and an improved assessment of progress towards achieving the objectives of the OSPAR 

Hazardous Substances Strategy. 

 

Figure 1.1: The basis of OSPAR integration (reproduced from WKIMON, 2007) 

 

In recent years International HELCOM, OSPAR, the Arctic Monitoring and Assessment 

Program (AMAP) and the United Nations Environment Program Mediterranean Action 

Plan (UNEP-MAP) have increased their focus on the integration of both chemical 
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measurement and biological effects monitoring as an important element in linking 

contaminants and ecological responses and in assessing the overall quality of the marine 

environment in accordance with advice of ICES.  The ICES WKIMON working groups’ 

primary aims are to provide guidance on integrated chemical and biological effects 

monitoring within the OSPAR area, with special reference to the Coordinated 

Environmental Monitoring Programme (CEMP) issues and the list of OSPAR priority 

chemicals.  

 

WKIMON initiatives, e.g. the integration of datasets, the development of analytical and 

biological effects capabilities, and the application of assessment criteria to analytical data 

form a major focus for this thesis and will be described in detail throughout. 

1.1.2 “Integration approaches” 

 

An integrated approach to monitoring is based on the simultaneous measurement of 

contaminant concentrations (in biota, sediments and/or water), biological effects 

(species/population/individual) parameters, and a range of physical and other water quality 

measurements (e.g. TOC and temperature) so as to permit data normalisation and ultimately 

enable assessment against criteria.  The availability of enhanced datasets provides assessors 

with information on measurements of related concentrations and effects and on the 

environmental variables which influence the effects measurement. 

 

Integration of chemical and biological effects measurements increases the interpretive value 

of the individual measurements and assists in the assessment of the significance (and 

potentially of “hot-spot” locations).  Combining such surveys can additionally be more cost 
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effective as greater datasets are concurrently collected and can be directly compared using 

tools to provide integrated assessments.  

 

Selected parameters/methodologies must be able to separate contaminant-related effects 

from other factors (e.g. natural variability).  The methods used should ideally have an 

ability to predict effects on “ecosystem health”.  They should be sensitive to contaminants, 

i.e. provide “early warning”. 

 

In order to develop an integrated approach, measurements from a number of individual 

assessments must be simultaneously collected and then resulting datasets assessed together.  

A wide range of compartments (fish disease status, benthic community analysis, in-vitro 

bioassays, in-vivo biological effects studies, tissue and/or water/sediment contaminant 

levels etc.) may all provide information useful in describing the health status of an 

ecosystem.  This thesis is primarily focused on the latter four compartments, each of whose 

significance is further discussed below and/or throughout the thesis. 
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1.1.2.1 Sediments and ecotoxicological significance 

 
Sediment is an integral component of aquatic ecosystems, providing habitat, feeding, 

spawning, and rearing areas for many aquatic organisms.  Depending on their physico-

chemical properties as well as geochemical and hydrodynamic conditions, sediments can 

act as a contaminant source or sink.  Dredging or other recirculation operations can disturb 

sediments and thus mobilise contaminants.  Sediment can also serve as a reservoir for 

pollutants and therefore may become a potential source of pollutants to the water column, 

organisms, and ultimately human consumers of those organisms. 

 

All pollutants can arise from a number of anthropogenic sources, including municipal and 

industrial discharges, urban and agricultural runoff, atmospheric deposition, port 

operations, sewage discharges and poor environmental management ultimately ending up in 

sediments in harbours and ports.  Contaminated sediment can cause lethal and sub-lethal 

effects in benthic (sediment-dwelling) and other sediment-associated organisms.  Sediments 

provide essential habitat for many freshwater, estuarine, and marine organisms.  

Furthermore, some sediment pollutants can bioaccumulate through the food chain and pose 

health risks to wildlife and human consumers even when sediment-dwelling organisms are 

not themselves impacted (US-EPA, 2007). 

 

Sediments are particulate matter which can be transported by fluid flow and are eventually 

deposited on the bottom of seas, oceans and lakes over time.  Sediments can act as an 

ultimate sink for recalcitrant pollutants which reside in the marine ecosystem.  They play an 

important role for the distribution and dynamics of pollutants in the aquatic environment.  
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Chemicals in sediments can be responsible for ecotoxicological and adverse ecological 

effects (Ho et al. 2002).  Since sediment is a heterogeneous medium, organisms living 

within the sediment can be affected by different degrees of contamination when in contact 

with different compartments.  The various phases which are biologically tested include 

whole sediment, interstitial water, elutriate and organic extracted contaminants the latter 

being the ‘worst case scenario’.  In general, the chemical analysis for the suite of 

contaminants is conducted on the < 2 mm and < 0.063 mm fractions of sediment.  The < 2 

mm fraction is often deemed to be indicative of the bioavailable fraction of contaminants 

however some contaminants have an affinity for smaller particles and the investigation of 

the differences in concentrations of pollutants in both fractions would be a more 

informative approach. 

 

Assessments of sediment quality commonly include analyses of anthropogenic 

contaminants, benthic community structure, physicochemical characteristics, and direct 

measures of whole sediment and pore water toxicity with a variety of approaches to overall 

assessment in use or under development, two assessment approaches are further described 

in section 1.4. 

 

At present, in Ireland, limited techniques are available to undertake a complete bio-

monitoring programme.  Through this project, skills in both the chemical and biological 

analysis are developed, enabling measurement of the impact of various contaminants on the 

marine environment.  As no single bioassay can detect all potential biological hazards, a 

test battery approach which incorporates a multi-trophic, multi-exposure phase assessment 

approach is used in this project in order to characterise Irish Marine sediments.  In addition 
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selective and sensitive analytical chemistry methodology needs to be in place to determine 

environmental concentrations of a wide variety of contaminants.   

 

1.1.2.2 A role for “bio-markers/bioanalysis” 

 
The production and use of chemicals has historically led to contamination of the marine 

environment.  Typically, monitoring and assessment of contaminant residues in the marine 

environment has focused on chemical concentration measurement of a limited number of 

contaminants (e.g. hydrocarbons, pesticides, heavy metals and various other pollutants etc.) 

with the specific aim of determining their spatial distribution and temporal trends.  It is now 

recognised that chemical analysis is time consuming and expensive and therefore timelines 

and budgets limit the true chemical characterisation of the sediment.  Also, chemical 

analysis of pollutants, provide information on ecosystem health and rarely address the 

actual impacts of contamination on ecosystems.  Additionally, the interaction of complex 

factors, such as bioavailability and the combined effects of cocktails of chemicals are not 

adequately assessed by such approaches. 

 

Any suite of monitoring techniques must span the range of ecological complexity from sub-

organism level to populations and ecosystems.  Measurement of biochemical markers or 

‘biomarkers’ (biochemical and /or physiological changes in organisms exposed to 

contaminants) in individual organisms in situ can provide sensitive and specific early 

warning signs of biological stress in response to pollution.  In contrast, measurements at a 

broader ecosystem scale may be insufficiently sensitive or unable to discern contributory 

cause-effect relationships.   
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“Bioanalyses” are tools that establish the ecological relevance of aquatic pollution, as they 

enable the effects of complex mixtures to be monitored.  Bioanalyses can measure 

combined effects (additive, synergistic, antagonistic) and assist in identification of 

problems and risks relating to incidents.  Bioanalyses can thus establish a relationship 

between pollutants and ecological effects.  Additionally bioanalyses provide data for the 

precautionary principle approach of the WFD, which is monitoring of priority and relevant 

pollutants in transitional and coastal waters to achieve “good ecological and chemical 

status” by 2015, and also for other legislative requirements to be put into practice. 

 

Few data exist in Ireland to complete an integrated chemical and biomonitoring programme 

in accordance with our OSPAR commitments.  Selecting and improving the capacity to 

complete such a programme is the primary focus of this thesis.  This project integrates 

sediment toxicity testing using a suite of standardised bioassays (Macken, 2007) with 

chemical analysis of sediment and biological samples for a suite of inorganic and organic 

contaminants.  This project proposes the use of biomarkers using an in situ study with 

caged Nucella lapillus and Crassostrea gigas to monitor bio effects but also a multi-trophic 

range of bioassays covering the range of bio-complexity and which in addition, offer the 

potential by which specific contaminants can be identified. The ecotoxicological tools used 

by Macken (2007) in this project are outlined in Table 1.1. 
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Table 1.1 Summary of battery of bioassays implemented for the ecotoxicological evaluation of Irish marine sediment (Macken, 

[PhD thesis] 2007)  

 

Trophic level Species Test Duration Endpoint Sediment Assessed Phase Reference

PW AE OS WS
Bacteria V. fischeri Microtox Acute test 5, 15, 30min Reduction in bioluminescence *      *     * Stronkhorst et al., 2003

V. fischeri Microtox Basic SPT/SPT 5/20 min                     * Kwan and Dutka, 1992

Microalgae T. suecica Growth inbibition 72h *      *     Walsh et al., 1985

Copepoda T. battagliai Acute Test 24h & 48 h Mortality *      *     Thomas et al., 2003

Amphipoda C. volutator Acute Test 10d Mortality                     * Bat and Raffaeli, 1998

Cell culture RTG-2 AB/NR 24 and 96h Reduction in fluorescence *      *     Davoren et al., 2005
PLHC-1 AB/NR 24 and 96h Reduction in fluorescence *      *     Davoren et al, 2005

PW= Porewater, AE= Aqueous Elutriate, OS= Organic Solvent, WS= Whole Sediment, SPT= Solid Phase Test, AB= Alamar Blue, NR= Neutral Red  
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1.2 Pollutants relevant to this study 

It is not the purpose of this thesis to conclusively review the physico-chemical and/or 

toxicological potential of the vast array of pollutants that may occur in the marine 

environment.  “Key/priority” pollutants and those identified through WKIMON and 

OSPAR priority pollutants listings, provide the primary focus of this study.  Summary 

reviews of contaminant groupings relevant to this study are presented below and are further 

described within individual chapters in the thesis as appropriate.   

1.2.1 Toxic elements 

Heavy metals exist naturally in sediment and some are essential elements for living 

organisms however mining, industrial and agricultural anthropogenic inputs can elevate 

concentrations above natural background levels (Saari et al 2007; Osán et al., 2007; Ghrefat 

and Yusuf 2006; Osher et al., 2006; Ip et al., 2004 ).  Heavy metals in bottom sediments 

form a potential hazard to water quality and aquatic life (Förstner, 1979).  Elements of 

concern include mercury, lead, cadmium, copper, zinc, arsenic, nickel and chromium.  

Ionic mercury has been found to have immunotoxic effects on the blue mussel (Mytilus 

edulis) (Duchemin et al., 2008); a toxic effect was also observed from methylmercury and 

mercury chloride at various concentrations exposed to Crassostrea gigas haemocytes 

(Gagnaire et al., 2004).  Inorganic copper compounds have been found to elicit toxicity to 

rainbow trout gill cells (Bopp et al., 2008).  A variety of elements have been found to be 

toxic to the bacteria Vibrio fisheri in the following order: copper > chromium (VI) > 

mercury > cadmium > zinc > chromium III > nickel > lead > arsenic (Hsieh et al., 2004).  

Dissolved metals in porewaters are more bioavailable and toxic than particulate metals 

(Atkinson et al., 2007).   
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1.2.2  Organochlorine compounds 

 

Halogenated compounds such as polychlorinated biphenyls (PCBs) and organochlorine 

compounds (OCs) are persistent man made compounds and are of specific concern due to 

there toxicological and carcinogenic properties (Galanopoulou et al. 2005).  PCBs consist 

of 209 congeners differing in the number and position of chlorine atoms on the two coupled 

phenyl rings.  Their commercial use in dielectric fluids in capacitors and transformers, 

hydraulic fluids, lubricating and cutting oils, additives in paints, adhesives, sealants and 

plastics was based mainly on properties such as chemical stability, low flammability, and 

electrical insulating properties (El-Kady et al., 2007).  Polychlorinated biphenyls have 

entered the marine environment by leakage, discharge, recycling, transboundary influx via 

major rivers and long-range atmospheric transport (Van Wezel et al., 2000).  PCBs possess 

a low water solubility, a high n-octanol/water partition coefficient, and a high persistence 

(Geyer et al., 1984), particularly those which are highly chlorinated.  Many toxic responses 

have been found with the co-planar dioxin-like PCBs as well as the non co-planar PCBs 

(Van Wezel et al., 2000).  Within the 209 PCB congeners, the number and location of the 

chlorine atoms attached to the biphenyl molecule determine the potency and nature of 

toxicity of each PCB (Fadhel et al., 2002).  Multiple ortho- substituted PCBs (non co-

planar PCBs) have effects such as reproductive toxicity, promoter activity, neurotoxicity, 

effects on vitamin A metabolism and alterations in thyroid hormone levels (Van Wezel et 

al., 2000).  The chlorinated pesticide, Dichloro-Diphenyl-Trichloroethane (DDT), was used 

as an insecticide and its use is now banned in Ireland however this pesticide is still in use in 

some countries.  Environmental problems from the use of many halogenated chemicals 

such as DDT began to surface during the 1950s and 1960s (Carson, 1967; Pikkarainen, 
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2007).  Although use of these compounds has been banned for many years, their resistance 

to degradation makes them prone to persist for years in marine sediment in Ireland and in 

other nations (Geyer et al., 1984). 

 

1.2.3 Polycyclic aromatic hydrocarbons 

 

Polycyclic aromatic hydrocarbons (PAHs) are another group of chemicals that can be 

present in marine sediment.  They are hydrocarbons composed of two or more fused 

benzene rings and almost never occur alone and are usually present as complex mixtures 

having a wide range of toxicological effects on aquatic organisms.  PAHs originate from 

three main anthropogenic sources: fossil fuels (petrogenic), burning of organic matter 

(pyrogenic) and conversion of natural organic precursors in the environment by rapid 

chemical/biological processes (biogenic) (Neff et al., 2005).  These compounds can enter 

the marine environment from industrial sources, adsorb to sediments and persist (Grundy et 

al., 1996).  Some PAHs and their derivatives effect Deoxyribonucleic Acid (DNA) by 

inducing mutation effects and have carcinogenic properties (Bihari et al., 2006), some 

PAHs have also been found to elicit toxicity in the green algae Scenedesmus subspicatus 

(Djomo et al., 2004).  Many PAHs are acutely toxic to fish and other aquatic organisms in 

the presence of environmentally realistic intensities of solar ultraviolet radiation (Choi and 

Oris, 2003).  However aliphatic hydrocarbons may also be a potential hazard to aquatic 

species, and it has been reported that low aromatic content oil can be more toxic than oil 

containing high concentrations of PAHs.  Polycyclic aromatic hydrocarbons are not 

necessarily always the cause of major toxicity (Barron et al., 1999) from petroleum oil 

exposure. 
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PAHs are of interest to this study as the sampling strategy included sites within port areas 

(Dublin and Dunmore East) potentially subject to PAH pollution pressures. 

1.2.4 Organotin compounds  

Organotin compounds (OTCs) enter the marine environment through a number of sources 

such as biocides, fungicides, insecticides, polyvinylchloride (PVC) stabilisers, industrial 

catalysts and wood preservatives (Díez et al., 2005).  Tributyltin (TBT) being one of the 

most toxic contaminants found in the marine environment is used as a paint additive to 

prevent biofouling ( growth of aquatic organisms on ship hulls) TBT leaches from the paint 

resulting in pollution of harbours, ports and coastal areas (Fent, 1989).  The degradation 

products of TBT, dibutyltin (DBT) and monobutyltin (MBT) are used as stabilisers in PVC 

production (Fent, 1989).  In 1987, Ireland banned the use of all organotin containing 

compounds on vessels less than 25m being one of the first countries to do this (Minchin, 

2003). 

Organotin compounds are organic derivatives of tetravalent tin and may be represented by 

the general formula RpSnX(4-p) where R is an alkyl or aryl group (e.g. methyl-, butyl-, ethyl-

, phenyl-) and X is an anionic group such as a halide, oxide or hydroxide (Hoch, 2001).  

TBT exists in seawater as three species, hydroxide, chloride and carbonate (WHO, 1990).  

The nature of the anionic group, pH, temperature, and ionic strength influences the 

physico-chemical properties and more relevantly the solubility in water and non-polar 

solvents.  In general, the solubility of OTCs in water increases as the number and length of 

the organic substitutes decrease.  In aqueous solution, OTCs exist as cations below pH 4 or 

as neutral hydroxides above pH 5 (Weidenhaupt et al., 1997). 

The clay fraction of sediment particulate matter plays a key role in the distribution and fate 

of OTCs in the marine environment.  The absorption of OTCs to sediments occurs 
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primarily by reversible formation of complexes between the tin atom and carboxylate and 

phenolate ligands present in Particulate Organic Matter (POM).  If undisturbed, the release 

of OTCs from deeper sediments is slow, however storms or dredging activities can increase 

the potential of these contaminants being distributed in the overlying water column (Berg et 

al., 2001).  The presence of OTCs in sediment and overlying water makes OTCs available 

to multi-trophic organisms residing in the various compartments of the marine 

environment.  Aquatic organisms accumulate OTCs through bioconcentration and 

biomagnification pathways (WHO, 1990).  Bioconcentration is the accumulation of OTCs 

in an organism by absorption from the sediment or water phase irrespective of any intake 

with food, whereas biomagnification is the increase of the level of OTCs that occurs within 

an organism as the result of consuming other OTC contaminated species. 

 

Degradation of OTCs occurs through successive losses of organic groups from the tin atom.  

For example, TBT is debutylated to its di- and mono- metabolites, DBT and MBT.  Strong 

ultraviolet radiation has been shown to be the fastest route of degradation of OTCs in 

water; microorganisms such as bacteria or microalgae are also capable of degrading TBT.  

The kinetics of biodegradation depends on conditions such as temperature, dissolved 

oxygen, pH, the level of mineral elements, and the presence of easily biodegradable organic 

substances.  Biodegradation also depends on the concentration of TBT being lower than the 

toxic threshold for the bacteria (WHO, 1990). 
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Table 1.2 Physical and chemical properties of organotin compounds 

 TBT-Cl DBT-Cl2 MBT-Cl3 TPT-Cl DPT-Cl2 

CAS name 

Tributyltin 
chloride 

Dibutyltin 
chloride 

Butyltin 
trichloride 

Triphenyltin 
chloride 

Diphenyltin 
dichloride 

CAS number 1461-22-9 683-18-1 1118-46-3 639-58-7 1135-99-5 

Molecular formula C12H27ClSn C8H18Cl2Sn C4H9Cl3Sn C18H15ClSn C12H10Cl2Sn 

Molecular weight 325 303.8 282.2 385.5 343.8 

Appearance Liquid-clear 
Solid-

colourless Liquid-clear 
Solid faintly 

beige Solid white 

Boiling point (ºC) 140 135 93 240 333-337 

Melting point (ºC) -16 37 ** 103 41-43 
Relative density g/cm3 

(20ºC) 1.2 1.37-1.4 1.693 ** ** 
Solubility in water 

(20ºC) ** soluble ** 40 mg/litre * ** 

*: pH not given 

**: data not available 
 

TBT has been linked to reductions in meat weight, increased shell thickness and distortion.  

In Pacific oysters (Minchin, 2003), TBT has been linked to imposex in the dogwhelk 

Nucella lapillus at concentration levels as low as 1ng/L with severe cases resulting in 

sterilisation of the organism (Bryan et al., 1986; Gibbs and Bryan, 1986; Bryan et al., 

1987).  TBT has also been found to be toxic to marine molluscs and copepods have been 

reported to show an LC50 from 0.6 to 2.2µg l-1 (WHO, 1990).  OTCs are of interest in this 

study as the sampling strategy included Port based sites, potentially subject to OTCs 

pollution pressures. 

 

1.3 Toxicity Identification Evaluation (TIE) 

 

Toxicity Identification Evaluation (TIE) procedures attempt to identify the class of 

chemical which is responsible for toxicity by applying a combination of toxicity testing and 

chemical manipulations which narrows down and pinpoints the source(s) of toxicity.  
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Another type of TIE approach is bioassay directed fractionation (BDF) whereby a solvent 

extraction of the sediment is performed and transferred to a suitable medium for bioassay 

testing.  Should this elicit toxicity, a further fractionation of the extract is performed to 

separate compounds/groups of compounds and each fraction is further tested on the 

organism thereby pinpointing the potential cause of toxicity. 

 

TIEs and BDFs represent a worst case scenario of contaminant exposure to organisms and 

are not representative of the bioavailable fraction, however, they can be used to compare 

with exposure of other aquatic system compartments such as porewater and elutriates and 

have an important role to play in assessments of sediments.  TIE/BDF approaches have an 

important role in this thesis and are further described in Chapter 8. 

 

1.4 Evaluation of sediment quality using sediment assessment criteria 

 
As previously discussed, a number of methodologies exist for the assessment of 

contaminant levels in sediments.  Such criteria are important in monitoring toxic effects 

and ensuring appropriate guidelines are put in place for regulating dumping of dredged 

materials.  A number of criteria exist but those relevant for this study are a) US-EPA, b) 

OSPAR Background Assessment Criteria and c) Irish Sediment Quality (ISQ) guidelines 

which are discussed below. 
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1.4.1 Summary of the US-EPA approach to effects level assessment criteria 

 

The US-EPA has developed Effects Range Low and Effects Range Median (ERL and ERM 

respectively) concentrations for marine sediments which can be used to identify relatively 

non-contaminated/contaminated samples which pose a risk of limited toxicity/toxicity.  

This effective multi-factorial approach is routinely utilised for the assessment of the quality 

of coastal and estuarine environments.  ERM is defined as the median concentration (50th 

percentile) of a contaminant observed to have adverse biological effects in literature 

studies.  A more protective indicator of contaminant concentrations is the ERL criterion, 

which is the 10th percentile concentration of a contaminant, represented by studies 

demonstrating adverse biological effects in the literature.  Ecological effects are not likely 

to occur at contaminant concentrations below the ERL criterion (Long et al., 1998).  ERL – 

ERM values (See Table 1.3) are based on the composition of sediments in which biological 

effects have been observed, although it should be noted a lack of clear causality may lead 

to false positives in the datasets.  

 

The approach uses a multi-factorial assessment for estuarine quality covering water, 

sediment and aspects of biota.  A “traffic light” style assessment is performed for each 

parameter in each estuary based on assessment criteria and then combines assessments 

across determinands, estuaries and regions to produce national scale assessments.  The 

approach makes a consistent comparison of four primary indices of estuarine condition 

(water quality index, sediment quality index, benthic index, and fish tissue contaminants 

index). 
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The water quality index is made up of five component indicators: dissolved inorganic 

nitrogen, dissolved inorganic phosphorus, chlorophyll a, water clarity, and dissolved 

oxygen.  The development of indices for water quality is based on rating criteria for each 

sampling site. 

 

The sediment quality index is based on three component indicators of sediment condition: 

direct measures of sediment toxicity, sediment contaminant concentrations, and the 

sediment total organic carbon (TOC) concentration.  Chemical characterisation is 

performed on the sediment through chemical analysis; sediment toxicity is evaluated by 

measuring the survival of the marine amphipod Ampelisca abdita following 10-day 

exposure to the sediments in the laboratory; and the sediment TOC concentration is 

measured on a dry-weight basis.  Benthic community attributes are included in this 

assessment of estuarine condition as an independent variable rather than as an indicator of 

sediment quality.  Once all three sediment quality component indicators (sediment toxicity, 

sediment contaminants, and sediment TOC) are measured for a given site, a sediment 

quality index rating is calculated for the site.  The site is rated “good” if none of the 

component indicators are rated poor, and the sediment contaminants indicator is rated 

“good” when no ERM values are exceeded, and less than five ERL values are exceeded.  

The site is rated as “fair” if none of the component indicators are rated poor, and the 

sediment contaminants indicator is rated fair i.e. five or more ERL values are exceeded; and 

finally the site is rated as “poor” if one or more of the component indicators are rated poor 

i.e. an ERM value is exceeded for one or more contaminants.   
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Worms, clams, and crustaceans are creatures that inhabit the bottom of an aquatic 

environment and are collectively called benthic macro invertebrates, or benthos.  Indices 

produced for the benthic community reflect changes in range and abundance of pollution-

tolerant and pollution sensitive species.  A high benthic index rating means that samples 

which are taken from an estuary’s sediments contain a wide variety of species, a low 

proportion of pollution tolerant species, and a high proportion of pollution sensitive 

species.  A low benthic index rating indicates that the benthic communities are less diverse 

than expected, are populated by more pollution-tolerant species than expected, and contain 

fewer pollution sensitive species than expected. 

 

A marine organism can uptake contaminants in a variety of different pathways including 

direct uptake from contaminated water, consumption of contaminated sediment, or 

consumption of previously contaminated organisms.  Pollutants can be bioaccumulated in 

organisms and can be biomagnified through the food chain through the consumption of 

these organisms resulting in elevated quantities in the higher trophic levels.  Chemical 

analysis data is assessed with the use of guidance values for whole body fish contaminants.  

A good rating is given if all chemical concentrations fall below the guidance levels; a fair 

rating is given if at least one chemical contaminant’s concentration falls within the range of 

the guidance criteria and a poor rating is given if at least one chemical contaminant 

concentration exceeds the maximum value in the range of the guidance criteria. 

 

Overall condition for each region is calculated by summing the scores for the available 

regional indices and dividing by the number of available indices. 
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Table 1.3 ERM and ERL [Long et al., 1998] Guidance Values in Sediments (µg kg-1 dry 

sediment)  

Analyte
b ERL ERM Metal

a ERL ERM

Acenaphthene 16 500 Arsenic 8.2 70

Acenaphthylene 44 640 Cadmium 1.2 9.6

Anthracene 85.3 1,100 Chromium 81 370

Fluorene 19 540 Copper 34 270

2-Methyl naphthalene 70 670 Lead 46.7 218

Naphthalene 160 2,100 Mercury 0.15 0.71

Phenanthrene 240 1,500 Nickel 20.9 51.6

Benz(a)anthracene 261 1,600 Silver 1 3.7

Benzo(a)pyrene 430 1,600 Zinc 150 410

Chrysene 384 2,800

Dibenzo(a,h)anthracene 63.4 260

Fluoranthene 600 5,100

Pyrene 665 2,600

Low molecular-weight PAH 552 3,160

High molecular-weight PAH 1,700 9,600

Total PAHs 4,020 44,800

4,4’-DDE 2.2 27

Total DDT 1.6 46.1

Total PCBs 22.7 180  

 

1.4.2 Summary of the OSPAR approach to effects level assessment criteria 

 

OSPAR are currently developing Environmental Assessment Criteria (EACs) based on 

available ecotoxicological information, however these are currently not sufficiently refined 

to contribute usefully to assessments of OSPAR monitoring data.  In the absence of clear 

OSPAR/ICES ecotoxicological assessment criteria, the US-EPA ERL – ERM values were 

compared to the contaminant data derived, (it should be noted that the ERL – ERM approach 

does not require the application of sediment normalisation criteria, as described in section 

1.5, to correlate for differences in sediment composition between locations).  OSPAR 

contracting parties often derive sediment ecotoxicological quality and/or contaminant 

temporal/spatial information using chemical monitoring data combined with statistical 
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comparison to established threshold/evaluation criteria, these techniques are further 

described. 

 

OSPAR approaches to the assessment of monitoring data of contaminants in marine 

sediment and biota lies in the application of two types of assessment criteria: Background 

Concentrations (and associated Background Assessment Concentrations) and 

Environmental Assessment Criteria (formerly Ecotoxicological Assessment Criteria).  The 

former are chemical expressions of quality, but are linked to the ultimate objective of the 

OSPAR hazardous substances strategy of achieving “concentrations in the marine 

environment near background values for naturally occurring substances and close to zero 

for man-made synthetic substances”.  The primary function of EACs is to identify potential 

areas of concern, to identify unintended/unacceptable biological responses, or 

unintended/unacceptable levels of such responses, being caused by exposure to hazardous 

substances.  OSPAR EACs and the US-EPA ERL – ERM (Effects Range Low and Median 

respectively) system for the interpretation of the potential ecological significance of the 

contaminant concentrations in sediments will be utilised in subsequent chapters in this 

project. 

 

In order to create comparability between data within and between stations, and to allow 

comparison with assessment criteria, it is necessary to complete a number of processes 

namely: a) select the appropriate basis for comparison purposes, b) derive appropriate 

“background” and statistical “background assessment concentrations” for data comparison 

purposes, c) complete appropriate contaminant normalisation techniques, each of which is 

further discussed below, d) complete a statistical assessment. 
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1.4.2.1 Selection of basis for contaminant comparisons 

 
The choice of an appropriate basis primarily needs to meet several considerations: scientific 

validity, uniformity for groups of contaminants for particular matrix; and a minimum loss 

of data.  Dry weight (dw) conversions are deemed to be the most appropriate basis for 

sediment determinations for both organic and metals analyses (OSPAR Commission, 

2006).  

 

1.4.2.2 Determination of Background Concentrations (BCs) for sediments 

 

Background concentrations (BCs) are an established assessment criterion within OSPAR 

and can be defined as,   

The concentration of a contaminant at a “pristine” or “remote” site based on 

contemporary or historical data. 

(OSPAR, 2004) 

Background concentrations are needed to assess progress towards the OSPAR objective of 

achieving background/near background concentrations of contaminants, and in assessing 

the anthropogenic contribution to the observed concentrations of contaminants in the 

environment.  

 

Background Reference Concentrations (BRCs) (now BCs) for contaminants in sea water, 

sediment and biota, and EACs for trace metals, PCBs, PAHs, TBT and some 

organochlorine pesticides, were originally adopted by OSPAR in 1997 as assessment tools 

for use in preparing the previous CEMP assessment and the Quality Status Report 2000 

(OSPAR Commission, 2000). 
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In 2004, the ICES Working Group on Marine Sediments in Relation to Pollution (WGMS, 

2004) and the Working Group on Statistical Aspects of Environmental Monitoring (ICES, 

2004) constructed draft background concentrations for OSPAR Coordinated Environmental 

Monitoring Programme (CEMP) for metals (cadmium, mercury and lead) and PAHs in 

sediments.  These BACs have been utilised in Chapter 2 of this thesis. 

 

OSPAR calculated background concentrations by taking median concentrations of 

contaminants measured in core (pristine) samples in appropriate regions.  Data sets 

potentially impaired by anoxic conditions or possibly anthropogenic contamination were 

excluded.  Metal concentrations were normalised to 5.0 % aluminium (and lithium) [see 

section 1.5] and the BC was statistically derived.  The BC for PCBs, PAHs, OTs and OCs 

was set at zero and precision of analytical measurements evaluated prior to normalisation to 

2.5% organic content.  Details of how BCs were calculated are reported in CEMP 2005 

assessment report. 

1.4.2.3  Use of BCs in the derivation of BACs 

 

Statistical tests are required to determine whether concentrations of a contaminant, derived 

from monitoring data, comply with background concentrations as discussed above, i.e. 

ultimately assisting in achievement of the OSPAR policy objective for hazardous 

substances namely: 

“achieving concentrations in the environment near background values for naturally 

occurring substances and close to zero for man-made synthetic substances.” 

(OSPAR, 2004) 
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The OSPAR method uses derived background concentrations and adopts a precautionary 

statistical approach to the comparison of monitoring data with the BCs.  The method 

requires the establishment of a secondary concentration level, the Background Assessment 

Concentration (BAC).  The BAC is a concentration near to the background whose value is 

contaminant specific and is dependent on the residual variation within data at the BC.  The 

BC for xenobiotics (PAH, OCs and PCBs etc) has been set at zero, and in these cases the 

variance used to derive BACs was the variance at a low concentration that is small but 

detectable by common analytical methods. 

 

The use of BACs is considered: a) statistically sound and based on a precautionary 

approach; b) having potential for wide applicability covering all contaminants, natural and 

man-made in all regions of the OSPAR Convention Area (providing BCs are available); c) 

applicable to sediment and biota, and also potentially to water, d) having application as a 

strategic management tool by countries wishing to assess the status of their marine 

environments allowing OSPAR to test its policy objectives. 

1.4.2.4 Technical method for deriving BACs 

 

BACs are used to make precautionary tests of whether observed concentrations are near 

background.  The BAC is a concentration greater than the BC that quantifies what is meant 

by near background or close to zero. The test assumes that the mean concentration [c] is 

above background (i.e., [c] > BAC) unless there is statistical evidence to show that it is 

near background (i.e., [c] ≤ BAC).  Formally, the null and alternative hypotheses are:  

H0: [c] > BAC  (i.e., concentrations above background) 

H1: [c] ≤ BAC  (i.e., concentrations near background) 
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and H0 is rejected in favour of H1 if the upper confidence limit on [c] is below the BAC.  

BACs should be both low enough to reflect near background concentrations and high 

enough that we are likely to conclude that concentrations are near background when [c] = 

BC.  In the absence of other objective means of setting the BAC, the precision of data can 

be used to set a provisional BAC. Specifically, the BAC can be set to give a 90 % 

probability of concluding that concentrations are near background when [c] = BC. Details 

on BAC construction are presented in the OSPAR CEMP report 2005. 

 

1.4.3 Summary of Irish Sediment Quality Guidelines for sediment assessment 

 

Irish guidelines have recently been published for the assessment of dredged material for 

disposal in Irish waters (Cronin et al., 2006).  The purpose of these guidelines is to 

establish a comprehensive national framework for assessing the quality of dredged material 

and in particular, for assessing likely impacts arising from the dumping at sea of 

contaminated sediments.  For metals, upper level guidance values were derived from 

samples collected from reference sites around the Irish coast whereas lower level values 

were derived using the 95 percentile of remaining background data.  For OCs, PCBs and 

PAHs, 95 percentiles of background data were used to derive the lower level guidance 

values.  In the absence of matching chemical and ecotoxicological data derived on Irish 

sediment samples, upper guidance values are based on available ecotoxicological datasets 

i.e. Effects Range Median/ Probable Effect Level (ERM/PEL).  Data for organics data in the 

< 2 mm sediment was not normalised for TOC content.  The upper and lower level Irish 

quality guidance figures are presented in Table 1.4 below.  For dredged material 

assessment, sediments can be classified into three categories: class one where contaminant 

concentrations are below the lower action level and no biological effects are likely, class 
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two where sediments are marginally contaminated and concentrations fall between the 

upper and lower action levels; and class three where sediments are heavily contaminated 

and very likely to induce toxicity in marine organisms.  In the case of class 3 sediments, it 

is unlikely that dumping at sea will be permitted and alternative management and disposal 

of material would take place (Cronin et al., 2006). 
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Table 1.4 Proposed upper and lower level Irish Sediment Quality guidance levels 

Parameter 

Units 

(dw) 

Proposed lower 

level 

Proposed upper 

level
1
 

Arsenic mg kg-1 92 70 

Cadmium mg kg-1 0.7 4.2 

Chromium mg kg-1 120 370 

Copper mg kg-1 40 1103 

Lead mg kg-1 60 220 

Mercury mg kg-1 0.2 0.7 

Nickel mg kg-1 212 60 

Zinc mg kg-1 160 410 ∑ TBT & DBT mg kg-1 0.1 0.5 γ- HCH (Lindane) µg kg-1 0.3 1 

HCB µg kg-1 0.3 13 

PCB (101, 118, 138, 153, 180, 28, 52)
4
 µg kg-1 1 180 

PCB ∑ 7
5
 µg kg-1 7 1260 

PAH (∑ 16) µg kg-1 4000   
1 ERM (rounded up) 
2 ERL (rounded up)- no background Irish data available 
3 Probable effects level (PEL) used as ERM considered high 
4 PCB (individual congeners of ICES 7) 
5 PCB Σ ICES 7 
 

1.5  Normalisation of sediment data 

Contaminant fate and transport in marine sediments is primarily driven by the energy of the 

system at the test site.  In high energy environments, sediments tend to be relatively coarse 

grained with low cohesion, contaminant binding capacity, and low depositional rates while 

in lower energy environments, greater deposition of fine grained sediments occurs resulting 

in higher adherence capacity for contaminants.  As a consequence, contaminant 

concentrations tend to be generally more elevated in clay rich sediments compared to those 

from sandy regions, where granulometric dilution effects result in lower and more variable 

contaminant concentrations in the sediment, therefore spatial variance in pollutant levels 

may be related to variance in the systems ambient energy (Birch et al., 2001). 
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Assessments are often completed on site-specific contaminant background levels from 

sediments of different origins, textural, physicochemical, and compositional characteristics.  

Without correction for variable contaminant background levels and uptake capacity, such 

comparisons can be biased, even where only fine-grained sediments are analyzed, such 

background values have been reported to span two orders of magnitude for individual 

metals (Chapman et al., 1999). 

 

Normalisation has been defined by Kersten and Smedes (2002) and others as a procedure to 

correct both background and contaminant concentrations for the influence of the natural 

variability in sediment granulometry and mineralogical composition mediated by the 

ambient energy of the aquatic system (Loring, 1991; Loring and Rantala, 1992; Daskalakis 

and O’ Connor, 1995) with a primary aim being the capacity to differentiate between 

natural variability and anthropogenic inputs.  

 

Several normalisation methods are commonly used including, sieving, (granulometric) or 

geochemical normalisation techniques.  After normalisation of equally contaminated, pre-

treated and analysed sediments with different grain-size distributions, the normalised 

contaminant concentrations should be similar and should show no correlation with the 

concentration of the normaliser itself.  A number of normalisation approaches and their 

application in the determination of different contaminant types are further described below. 

 

1.5.1 Granulometric normalisation 

 

It is generally accepted that the clay portion of sediments tend to have the highest 

affinity/binding capacity for contaminants.  Clay minerals naturally contain metals and in 
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general the natural contaminant burden increases with the clay content (< 0.002 mm) thus 

clay content is considered as a primary normaliser.  Separation of the clay fractions is 

laborious, and contaminant information from larger mesh sizes (< 0.016 mm < 0.020mm, < 

0.125 mm and < 0.150 mm) including the silt fraction is often utilised in international 

monitoring programmes.  In principle the < 0.063 mm fraction separates silt from sand, 

with the silt fraction being primarily composed of quartz particles.  Positive correlations to 

the clay content have been reported particularly where loses occurs in the watershed.  

Consequently, sieving has been utilised for primary normalisation of heavy metals in 

addition to organic contaminants (Klamer et al., 1990). 

 

1.5.1.1  Sieving quality assurance 

 
The EU project Quality Assurance of Sample Handling (QUASH) determined that wet 

sieving can reduce the between-laboratory variability in the sieving yield (sieving error) to 

lower than that of the analytical variability (analytical error), and of the compositional 

variability at individual sampling sites (field error) (Krumgalz et al., 1989).  Agitation of 

sediments is recommended followed by homogenization of the sieved sample 

(www.quasimeme.marlab.ac.uk/QUASH/quash.htm).  A further interlaboratory comparison 

exercise (Smedes, 1997) found there was a strong correlation between the clay content and 

the < 0.016 mm fraction, however the clay content in the < 0.063 mm fraction showed a 

range of a factor of four implying that sieving does not result in mineralogically 

homogeneous samples, thus grain-size separation alone does not necessarily reduce the 

differences between the composition of the sieved samples.  It was concluded that sieving 

alone is insufficient as a final normalisation procedure (Smedes et al., 2000) especially in 



- 43 - 

areas of different mineralogical composition, where further geochemical normalisation is 

recommended. 

 

1.5.2 Geochemical normalisation (metals) 

 

In a two-component linear mixing model, with both a primary metal-bearing component 

and quartz, a geochemical normalisation model can be formulated.  Such models require 

that elements, (e.g. aluminium) are present as they represent proxies for the clay portion of 

the sediment.  Accordingly, silicon, representing a metal-devoid quartz grain content, 

exhibits a strong negative correlation to that of other elements.  

 

Both Al and Si, may, in principle, be used as geochemical normalisers or ‘‘co-factors’’ for 

grain-size/compositional variation, for metals analysis.  Even though site dependent 

aluminium contents of the clay fraction (< 2 µm) may vary between 2 % and 10 %, Al is 

primarily used as a normaliser in estuarine/coastal monitoring programmes (Windom et al., 

1989; Hanson et al., 1993; Summers et al., 1996; Balls et al., 1997; Covelli & Fontolan, 

1997; Weisberg et al., 2000).  Additionally organic matter (OM) and Fe/Mn oxides can also 

bind contaminants but do not contain silicon or aluminium.  Elements representing these 

components therefore exhibit a similar strong negative correlation to Si and a strong 

positive correlation to the clay fraction, and hence to the metal content (Helz and Sinex, 

1986; Rule, 1986).  Particular care is advised where historic pollution events and/or 

diagenetic processes may artificially or in the case of the latter, naturally enrich sediments 

(Gobeil et al., 1997) potentially introducing elements suitable for use as a normalising co-

factor.  Other elements including, lithium (Loring, 1990; Rowlatt & Lovell, 1990; 
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Miseroccchi et al., 2000), Sc, Cs, Rb and Y (less frequently) have also been utilised as 

normalising co-factors (Ackermann, 1980; Grant and Middleton, 1998; Prokisch et al., 

2000) while care is advised where TOC is used as it is also a reactive component in early-

diagenetic processes. 

 

1.5.3 Geochemical normalisation (organic contaminants)  

 

Organic contaminants such as polychlorinated biphenyls and polycyclic aromatic 

hydrocarbons have a strong affinity to organic matter (OM) due to their hydrophobic nature 

(Schwarzenbach et al., 1993).  Consequently, environmental partitioning of organic 

contaminants has generally been predicted based on their partitioning rate into the bulk 

organic carbon in the sediment.  There is no conclusive consensus as to which parameter 

best represents the OM content (total organic carbon, TOC; elemental organic carbon, 

EOC; particulate organic carbon (POC); loss on ignition (LOI); at different temperatures, 

etc.).  A study of 23 European estuaries (Kersten and Smedes 2002) revealed that the EOC 

co-factor (equal to the TOC) seems to be preferable due to its much stronger correlation to 

OM.  TOC was the method chosen in the course of this study. 

 

1.5.4 Normalisation procedures 

 

Kersten and Smedes (2002) recommended a two-tiered normalisation approach including 

both sieving and co-factor measurement as preferable to single normalisation techniques.  
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Figure 1.2: Regressions between different primary normalisers analyzed in sediments from 

23 representative estuaries in Europe (reproduced from Kersten and Smedes 2002). 

 

The general model for normalisation based on a geochemical component mixing model 

from Kersten and Smedes (2002) is reproduced in Figure 1.2.  CX and NX (pivot values for 

the co-factor and the contaminant respectively) which essentially are contents possibly 

present in the coarse material (e.g., Al in feldspar or EOC in charcoal grains) and have been 

estimated from samples without fines.  The regression line between the contaminant and 

co-factor will originate from that point.  Regressions of co-genetic data sets but with 

different contamination levels will have this point in common but tend to develop different 

slopes from this ‘‘turning point’’.  In principle therefore, only one additional sample is 

required to estimate the slope for a co-genetic sample set if this turning point is known.  
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The slope for this sample with a contaminant content “CS” and a co-factor content “NS” 

can be expressed and contaminant concentrations normalised as follows: 

Equation of the line: ( )
X

XM

XSS

XMSS C
NN

NN
CCC +

−

−
−=  (1) 

where: 

CSS  Normalised concentration 

CM  Measured concentration of contaminant 

CX  Pivot value for the contaminant 

NX  The pivot value for the cofactor 

NM  The measured concentration of the cofactor 

NSS  Reference composition of the sediment as represented by cofactor content 

 

The constants CX and NX (i.e. the pivot values for contaminant and cofactor) have been 

discussed in Annexes 8 and 9 to the 2002 report of the ICES Working Group on Marine 

Sediments in Relation to Pollution (WGMS).  The report describes how to estimate pivot 

values for contaminants and co-factors.  

 

Regression lines drawn for samples from different areas may thus be used to compare their 

degree of contamination.  The steeper the gradient, the more contaminated an area is 

considered to be (Kersten & Kröncke, 1992; Fukue et al., 1999).  Positive residuals (i.e. 

points above the regression line) are greater than would be predicted from the 

contaminant/co-factor relationship, and thus may represent hot-spot samples.  An important 

prerequisite for the regression approach is that sufficient co-factor variability data are 

available. 
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1.6 Summary of integrated assessment approaches 

Sediment pollution is a global problem.  In order to identify substances which have an 

adverse effect on organisms, an approach integrating chemical and bioassay data in 

monitoring and assessment is necessary.  A wide range of international organisations use 

sediment assessment techniques however, no universal decision making framework is used.  

Current methods used by ICES and OSPAR include the “FullMonti” approach and is 

further described. 

 

1.6.1 FullMonti approach 

 

The FullMonti is a weight-of-evidence approach which derives scores for contaminants, 

biological effects, and biology, and then combines these three scores into an overall 

assessment indicating the health status of the system.  The score of biological effect is 

weighted from top to bottom with the most significant effects (i.e. reproduction, growth, 

behaviour, survival) weighted with a value of 10.  Subcellular biomarkers are weighted 

with lower values, ethoxyresorufin-O-deethylation (EROD) induction for instance is 

assigned a value of 3.  In addition, the response level is scored according to suggested 

intervals in the assessment criteria (green, amber and red having values of 1, 5 and 10 

respectively).  An overall score for biological effects is derived by mean value of total 

score multiplied with weighted values.  For contaminants, the scores for each pollutant are 

integrated into single scores for sediment, shellfish and fish tissue, which again can be 

integrated into one overall score for contaminants.  In the end a final integrated score can 

be extracted based on the overall scores for contaminants, biology and biological effects. 

 



- 48 - 

1.7 Project Description 

The project was a collaborative project between the Marine Institute (MI) in Galway and 

Radiation and Environmental Science Centre entitled “An Integrated Approach to the 

Toxicity Evaluation of Irish Marine Sediment”.  Funding for this research was provided by 

the Technology Sector Research: Strand III: Core Research Strengths and from Dublin 

Institute of Technology’s Capacity Building Scheme (CaBS) for Strategic Research. 

. 

Two simultaneous projects were conducted, one dealing with ecotoxicological evaluation 

of sediment [Ailbhe Macken (RESC)] and the other dealing predominantly with the 

sampling and chemical analysis [Michelle Giltrap (MI)].  The aim of the project was to 

design and implement an integrated programme for ecotoxicological evaluation by 

integrating results of both bioassays and chemical analysis.  The RESC component dealt 

predominantly with the optimisation of a multi-phase and multi-trophic battery of bioassays 

for ecotoxicological assessment.  The MI component concurrently investigated the 

development of a sampling strategy and the chemical characterisation of the sediment. 

 

The final aim was to integrate all results from bioassays and chemical analysis and 

performing an integrated assessment by using a weight-of-evidence approach currently 

being developed by OSPAR.  The approach developed in this thesis complements other 

techniques such as benthic diversity monitoring, biomarker techniques and comprehensive 

chemical analysis that are part of a full integrated assessment approach.  

 

The overall objective of this project is to design and implement an integrated programme 

for ecotoxicological evaluation of Irish sediments by correlating results from biotests and 

chemical analysis and link sediment contamination with ecotoxicity measurements by 
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examining the relationship between observed toxicity and key contaminants.  This shall 

enable Ireland to contribute to the valuable work undertaken by organisations such as ICES 

and OSPAR who are currently tending towards integrated approaches.  This current study 

wishes to report contaminant levels and ultimately to integrate this data with the 

ecotoxicological assessment of sediments at selected sites. 
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CHAPTER 2 THE DISTRIBUTION OF PERSISTENT 

POLLUTANTS IN IRISH SEDIMENTS FROM THREE CASE 

STUDY SITES AROUND IRELAND 
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2.1 Introduction 

Global industrial and agricultural processes, marine traffic, sewage discharges, industrial 

wastewater, and poor environmental management can all contribute to the widespread 

contamination of the marine environment.  Marine sediments can act as an ultimate sink for 

recalcitrant pollutants.  These pollutants tend to be persistent in the environment (Clark, 

1992) and can reach levels that are toxic to resident marine organisms.  

 

Heavy metals exist naturally in sediment and some are essential for living organisms 

however mining, industry and agricultural anthropogenic inputs can raise concentrations 

above natural background levels (Ghrefat and Yusuf, 2006; Osán et al., 2007; Saari et al., 

2007).  Elements such as mercury, lead, cadmium, copper, arsenic, nickel and chromium 

have previously been reported to elicit toxicity in aquatic species at various concentration 

levels (Spehar and Fiandt, 1986).  

 

Organotin compounds enter the marine environment through a number of sources such as 

biocides, fungicides, insecticides, polyvinylchloride (PVC) stabilizers, industrial catalysts 

and wood preservatives (Díez et al., 2005).  Tributyltin (TBT) being one of the most toxic 

contaminants found in the marine environment is used as a paint additive to prevent 

biofouling and its leaching from paints results in pollution of harbours, ports and coastal 

areas (Fent, 1989).  Ireland was one of the first countries to ban the use of all organotin 

containing compounds on vessels < 25m in length in 1987 (Minchin, 2003).  However, this 

compound may still enter the marine environment through other sources via wastewater 

since TBT is used as a biocide in preserving wood, textiles, paper and stonework.  Its 

degradation products namely dibutyltin (DBT) and monobutyltin (MBT) are used as 

stabilizers in PVC production (Fent, 1989) these derivatives having in some cases been 
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found to be less toxic than their parent but reported to elicit toxicity in some aquatic species 

(Huang et al., 2004; Cooney, 1995; Bouchard et al., 1999).  TBT has been linked to 

reductions in meat weight, increased shell thickness and distortion in Pacific oysters 

(Minchin, 2003) and has been shown to cause imposex, the imposition of male 

characteristics on the female gastropod, the dogwhelk Nucella lapillus, following exposure 

to concentration levels as low as 1 ng/l with severe cases resulting in sterilisation of the 

organism (Bryan et al., 1986; Gibbs and Bryan, 1986; Bryan et al., 1987).  The degradation 

of TBT follows the pattern TBT < DBT < MBT (Hoch, 2001).  In contrast to degradation 

of TBT in seawater which is highly variable depending on pH, temperature, turbidity and 

light and its half life ranging from days to weeks (Díaz et al., 2007), degradation of TBT in 

sediments is slow with a half life of between 1 and 5 years in oxic marine sediments (Hoch, 

2001).  Decreasing concentrations of TBT with depth of sediment core has also been 

reported, indicative of debutylation of TBT (Hwang et al., 1999).  

 

Polycyclic aromatic hydrocarbons originate from pyrolytic processes, but they may also 

originate via petrogenic sources such as crude oils or refinery products, atmospheric 

deposition, industrial discharges and through oil spills (Webster et al., 2001) or via natural 

processes.   

 

Halogenated compounds such as PCBs and OCs are persistent man made compounds and 

are of specific concern due to their toxicological and carcinogenic properties 

(Galanopoulou et al., 2005).  PCBs consist of 209 congeners differing in the number and 

position of chlorine atoms on the two coupled phenyl rings.  They were commercially used 

in dielectric fluids in capacitors and transformers, hydraulic fluids, lubricating and cutting 

oils, additives in paints, adhesives, sealants and plastics and their use was based mainly on 
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properties such as chemical stability, low flammability, and electrical insulating properties 

(El-Kady et al., 2007) and can enter the marine environment by leakage, recycling, 

transboundary influx via major rivers and long-range atmospheric transport (Van Wezel et 

al., 2000).  Within the 209 PCB congeners, the number and location of the chlorine atoms 

attached to the biphenyl molecule determine the potency and nature of toxicity of each PCB 

(Fadhel et al., 2002). 

 

Thousands of chlorinated compounds such as DDT, chlordanes, toxaphene, heptachlor etc. 

have historically been used (and many in some cases are still applied) as pesticide controls 

in agriculture.  Although use of a number of these compounds has been banned for many 

years, they have been reported to persist in sediment (Doong et al., 2002).  Some PAHs and 

their derivatives have been found to cause DNA inducing mutation effects and have 

carcinogenic properties (Bihari et al., 2006).  PAH compounds have previously been shown 

to cause undesirable toxic effects in organisms (Hatch and Burton, 1999; Djomo et al., 

2004).  Further physico-chemical and toxicological information for pollutants of interest in 

this study are presented in chapter 1. 

 

2.1.1 Sediment quality assessments 

 

Sediments may act as an ultimate sink for certain pollutants, therefore a number of 

worldwide conventions (e.g., London Convention 1972 (LC) 

(www.Londonconvention.org); Oslo/Paris Convention (OSPAR) (www.ospar.org) and, the 

Helsinki and Barcelona Conventions have all produced guidelines for the chemical and 

ecotoxicological assessment of sediment quality.  Different assessment methodologies are 

suggested ranging from physico-chemical and/or biological approaches, to the management 
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of different routes of disposal or use of dredged materials.  Most conventions propose 

methods based on ‘weight-of-evidence’ (WOE) approaches which can consist of initial 

screening approaches (e.g. particle-size characteristics of the sediment), collation of local 

and historic information, (e.g., surrounding industries, pollution sources, and collectors) 

and in some cases biological screening tests, progressing where appropriate to more 

detailed assessments (e.g. chemical characterisation of the material).  Where sediment 

quality assessment is not possible from initial and primary assessments, direct 

measurements of toxicity, comparison to appropriate assessment criteria and/or other case-

specific studies as described throughout this thesis may be required. 

 

2.1.1.1 Summary 

 
OSPAR background assessment criteria (BACs) have been established for 10 parent PAHs, 

8 metal compounds and a number of OCs in marine sediment as part of the OSPAR 

Coordinated Environmental Monitoring Programme (OSPAR, 2007).  Data in this current 

study were additionally compared to Effects Range (ER) values established by the US 

National Oceanic and Atmospheric Administration (NOAA) as sediment quality guidelines.  

The ER-low (ERL) value is defined as the lower ten percent of the effect concentration and 

the ER-Median (ERM) as the median of effects concentration. The ERL and ERM are 

generated from biological effects data and pollutant modeling systems and in general 

predict a level of contamination of each pollutant where toxicity may occur.  Adverse 

effects on organisms are rarely observed when concentrations fall below the ERL value 

(Long et al., 1998).  
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Irish guideline upper and lower action levels have also been recently derived using Irish 

sediment data (Cronin et al., 2006).  These guidelines were established in order to assess 

impacts of dumping at sea of contaminated sediments.  Sediment concentrations in this 

study are compared to these upper and lower levels.  The assessment methodologies 

utilised in this study are further described later. 

 

Concentrations of heavy metals, organotin compounds (TBT and DBT), polyaromatic 

hydrocarbons (acenaphthene, acenaphthylene, anthracene, benzo[a]anthracene, 

benzo[a]pyrene, benzo[b]anthracene, benzo[b]fluoranthene, benzo[e]pyrene, 

benzo[ghi]perylene, benzo[j]fluoranthene, benzo[k]fluoranthene, chrysene, 

dibenzo[a,h]anthracene, dibenzothiophene and isomers C1-C3, fluoranthene, fluorine, 

indeno [1,2,3-cdpyrene, naphthalene and isomers C1-C3, perylene, phenanthrene and 

isomers C1-C3), hydrocarbons, polychlorinated biphenyls (PCB-28, -52, -101, -105, -118, -

128, -138, -153, -156, -170, -180), and organochlorines ( 1,2,3-trichlorobenzene, 1,2,4-

trichlorobenzene, 1,3,5-trichlorobenzene, aldrin, cis-chlordane, trans-chlordane, o, p’-DDE, 

p, p’-DDE, o, p’-DDT, p, p’-DDT, p,p’-TDE, dieldrin, endosulfan A, endosulfan B, endrin, 

hexachlorobutadiene, alpha-HCH, beta-HCH, delta-HCH, gamma-HCH, 

hexachlorobenzene, isodrin) were measured in sediment collected from selected locations 

around the Irish coast.  Sites were selected as they were utilised in an integrated chemical 

analysis and biological effects project to assess the chemical and ecotoxicological quality 

of sediments at these locations.  The data collected provide a “snapshot” of persistent 

pollutant levels in surficial sediments at selected sites and thus provide essential 

contaminant information to assist in completion of integrated ecotoxicological assessments.  

Data is compared to OSPAR BAC, NOAA ERL/ERM and Irish guideline upper and lower 

action levels for various contaminants. 
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The selection of sites was based on three different studies within the project.  Table 2.1 

below demonstrates which sites were chosen for each study.  The Dublin Bay [inner port 

site ] (DB1) located in the West Alexandra basin, the Bull Lagoon site (DB6) in the north 

of the bay and the Dunmore East site (DE1) in County Waterford were selected for full 

ecotoxicological and chemical evaluation.  Ecotoxicological testing of the sediments are 

presented elsewhere (Macken et al., 2008 accepted manuscript).  A caging study (reported 

in chapter 5) was also conducted using caged Nucella lapillus and Crassostrea gigas to 

assess bio-effects in Irish coastal waters.  Three sites were selected for this study which 

were Dublin port site (DB6), Dunmore East site (DE2) and Omey Island (OI1) and are 

detailed below in Table 2.1.  Pollutant data are described for metals, organotins, polycyclic 

aromatic hydrocarbons, hydrocarbons and organochlorine compounds at these 

ecotoxicological and caging study sites but in addition to this, other locations were selected 

in Dublin port and surrounds, from Omey Island on the West Coast of Ireland and from 

Dunmore East (see Table 2.1 and Figure 2.1), thus providing a means of assessing spatial 

contaminant influences within the test sites.  
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Table 2.1: Summary of sampling information and TOC values for sites selected for 

ecotoxicological, caging, and spatial monitoring study locations. 

TOC : Total Organic Carbon 
DB: Dublin Bay; DE- Dunmore East; OI- Omey Island 
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Alexandra Basin West 
 

 
DB1 ●  ● MSC/07/1002 6.2187 53.3485 3.70 3.11 

 
Alexandra Basin West 
 

 
DB2   ● MSC/07/1064 6.2163 53.3484 1.89 0.85 

 
Alexandra Basin West 
 

 
DB3   ● MSC/07/1065 6.2146 53.3464 1.07 1.74 

 
Alexandra Basin East 
 

 
DB4   ● MSC/07/1066 6.2114 53.3465 1.22 1.63 

 
North Bank Lighthouse 
 

 
DB5  ● ● MSC/06/1074  6.1700 53.3500 0.60 1.30 

 
Bull Lagoon 
 

 
DB6 ●  ● MSC/05/1037 6.1300 53.3480 0.28 1.50 

 
Dunmore East  
 

 
DE1 ●  ● MSC/06/1038 6.9921 52.1477 1.52 < 0.40 

 
Dunmore East  
 

 
DE2  ● ● MSC/07/1068 6.9922 52.1475 2.30 1.42 

 
Dunmore East  
 

 
DE3   ● MSC/07/1069 6.9920 52.1477 1.31 1.29 

 
Omey Island  
 

 
OI1  ● ● MSC/07/1070 10.170 53.5300 22.6 30.3 
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2.2 Materials and Methods 

2.2.1 Site selection and sediment sampling 

 

Dublin port is Ireland’s premier port handling 50 % of all of Ireland’s imports and exports.  

In 2006 throughput amounted to 29.3 million tonnes (Dublin Port Authority, 2006) and an 

estimated 8000 vessels pass through it annually (Buggy and Tobin, 2006).  The relatively 

industrialised and urban surroundings make it a major potential source for pollution.  

Sampling sites in Dublin port and inner bay were selected around the west inner Alexandra 

Basin (DB1, DB2, DB3), east inner Alexandra Basin (DB4), and in the vicinity of the main 

marine traffic channel and at a fixed navigation mark under the North Bank lighthouse 

(DB5) (site used for caging study in chapter 5) at the entrance to the estuary which is 

sheltered by two breakwaters (the North and South Bull Wall) extending into Dublin Bay.  

Additionally a site located in the Bull Lagoon (DB6), to the North of Dublin port at the 

inner Dublin Bay was selected as it has fewer industrial influences/inputs than that of 

Dublin port itself.  The site at the inner Alexandra Basin (DB1) and the Bull Lagoon site 

(DB6) were selected for full ecotoxicological evaluation which is described in detail by 

Macken et al. (2008). 

 

Dunmore East harbour is in County Waterford in the South East of Ireland and is protected 

by a breakwater on an exposed coast.  Elevated organotin levels have previously been 

reported in the inner harbour of this fishing port (Enterprise Ireland 2002) therefore three 

sites were selected in the inner Dunmore East harbour (DE1, DE2 and DE3) near the dry 

dock operation lift, the DE2 site was also selected for the caging study in chapter 5.  The 

inner Dunmore East Harbour site (DE1) was selected for full ecotoxicological evaluation 

(Macken et al., 2008) including in-vitro cell line testing which is described in chapter 4 and 
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was also selected for a Toxicity Identification Evaluation (TIE) which is later described in 

chapter 8. 

 

Omey Island (OI1) is an island off County Galway in the West of Ireland with no 

industrialised and very few urban surroundings.  Omey Island was selected as a potentially 

low level contaminated site on the west coast of Ireland and is only accessible at low tide.  

This site was also selected as a control location for the caging study described in chapter 5.  

A map of the sampling locations can be seen in Figure 2.1 below.  Sampling was performed 

spatially with multiple grabs combined.  This coupled with dual normalisation where 

appropriate (< 0.063 mm and to TOC etc) is suitable for OSPAR reporting and is fit for 

purpose.  
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Figure 2.1: Map of sampling locations in the Dublin Bay, Dunmore East and Omey Island regions 
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The upper 0-5 cm of sediment was collected with a Van Veen Grab sampler at high tide 

in the Dublin Port area (Site Nos. 1-5) while all other locations were sampled under low 

tidal conditions.  Clean sampling equipment was prepared including jars, spatulas and 

the grab sampler washed in hexane: acetone 1:1 (v/v) for organics analysis and acid 

washed  by soaking in 30 % v/v nitric acid for metals analysis.  Sediments were placed 

into solvent washed jars for organics analysis and acid washed jars for metals analysis.  

Prior to analysis the sediments were homogenised, wet sieved to the < 2mm and < 0.063 

mm fractions, frozen to -20 ºC and subsequently freeze dried at -30 ºC. 

 

Representative aliquots were then analysed under sub-contract by the Environment 

Agency (EA) laboratory, UK for metals, PCBs, OCs, PAHs and total organic carbon 

(TOC %).  OTC analysis was performed at the Marine Institute (MI) and the National 

Environmental Research Institute (NERI) in Roskilde Denmark. 

 

2.2.2 Analytical methodology 

 

2.2.2.1  Metals analysis 

 
The freeze dried samples for metals analysis were initially digested with a mixture of 

nitric, perchloric and hydrofluoric acids.  The digest was subsequently evaporated to 

dryness and re-dissolved in hydrochloric acid, with metals measured using Inductively 

Coupled Plasma Optical Emission Spectroscopy (ICP-OES) and Inductively Coupled 

Plasma Mass Spectrometry (ICP-MS). 
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2.2.2.2 Polycyclic aromatic hydrocarbon analysis 

 
Samples for PAH analysis were initially extracted with an Accelerated Solvent Extraction 

(ASE) system using a dichloromethane: acetone (1:1) solvent mixture.  The extract was 

cleaned up with Gel Permeation chromatography (GPC) and Silica gel prior to analysis 

by GC/MS-SIM on a J & W Scientific, HP-5MS, 30m column. 

 

2.2.2.3  Organochlorine analysis 

 
For the analysis of PCBs and OCs, sediments were initially spiked with representative 

surrogate standards prior to extraction with a mix of Dichloromethane/Acetone using 

Accelerated Solvent Extraction (ASE).  Solvent extracts were reduced in volume and 

interfering organic compounds of high molecular weight, elemental sulphur and mineral 

oils were removed using High Resolution Size Exclusion Chromatography (SEC/GPC) 

followed by further clean up on Florisil and Silica columns for the isolation of PCBs.  

The cleaned up extract was concentrated to low volume prior to injection onto a SGE 

HT-8 50m GC column with Mass Spectrometric detector operating in selective ion 

monitoring mode.  

 

2.2.2.4  Organotin analysis 

 
Organotin speciation was performed in the Marine Institute and is described briefly 

below (a detailed method is outlined in chapter 4).  The sediment was digested with  

dilute HCl and shake extracted with dichloromethane and the organic layer centrifuged 

and collected.  This was solvent exchanged to methanol for derivatisation with sodium 

tetraethylborate (10% w/v in methanol solution).  The ethylated OT compounds were 

then back extracted into hexane and the organic layer concentrated.  Sulphur was 
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removed using tetrabutylammonium (TBA) sulphite.  The organotin speciation method 

was optimised to extract OT compounds in their chloride form for subsequent exposure 

of extracts to various biological organisms for ecotoxicological testing.  No recovery 

correction standard was employed during the course of this study to ensure it did not 

effect the cell line toxicity as described in chapter 4.  Finally, tetrapropyltin was added to 

the analytical extract (approx 1 ml hexane) as an instrumental internal standard prior to 

analysis by gas chromatography pulsed flame photometric detection (GC-PFPD). 

 

The < 0.063 mm fraction of three sediment samples (DB1, DB3 and DB4) were analysed 

for OTCs at NERI, Roskilde in Denmark.  The analytical method used for the organotin 

determination is previously described in Strand (2003) with the following modifications.  In 

brief, the sediment fraction of less than 2 mm, was spiked with tri-n-propyltin as a recovery 

standard, hydrochloric acid added and treated with ultrasound, followed by pH adjustment 

(pH = 5 ± 0.5), in situ ethylation and extraction with pentane as the organic solvent.  

Solvent extract clean-up procedures were performed using silica gel in order to minimize 

GC column contamination.  The quantification of organotin was performed using a 

modified Varian 3500 gas chromatograph and dual channel pulsed flame photometer 

detector (GC–DC-PFPD). 

 

2.2.2.5  Total organic carbon analysis 

 
Total organic carbon was determined in the < 2 mm and the < 0.063 mm freeze dried 

sample fractions by an ISO 17025 accredited flash combustion method using a Thermo 

flash Elemental Analyser as described below.  Sediment samples were weighed, treated 

with sulphurous acid for removal of inorganic carbonates and heated to 900 ºC under a 
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constant flow of helium and introduction of oxygen.  Flash combustion followed by 

quantitative combustion was completed.  The individual components were separated and 

eluted in the order, N2-CO2-H20 and measured using a thermal conductivity detector. 

 

2.2.3  Quality Assurance of analysis  

 

Quality control for all analyses was evaluated by the use of appropriate laboratory and/or 

certified reference materials with individual analytical batches.  Organotin recoveries 

were determined utilising the butyl- and phenyltin certified freshwater reference material 

BCR646 run alongside analytical batches.  Recoveries of TBT ranged from 63.3-68.1 % 

and DBT from 79.2-84.2 %.  The HISS-1, MESS-3 and PACS-2 marine sediment 

reference materials were used to evaluate recoveries of metals and the NIST SRM 1944 

CRM was used to evaluate PCB/OC and PAH recoveries.  All certified reference 

materials were found to be within acceptable [Z] score limits.  No recovery correction 

was applied for any of the data reported herein. 

 

Quality control of total organic carbon measurements was ensured by analysing two 

QUASIMEME laboratory proficiency materials (QTM080MS and QOR090MS), which 

returned acceptable |Z| score limits (-0.6 and -0.2 respectively).  Additional QC criteria 

including analysis of blanks, assessment of duplicate sample analysis and repeat analysis 

were also included on a per batch basis performed.  All QA data was deemed acceptable 

with the exception of analysis of PCBs/OCs where limits of detection for analytes were 

higher than expected and therefore QA was not deemed acceptable for these analyses 

which is described later in this chapter. 
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2.3 Results and Discussion 

In this study, OSPAR Background Concentrations (BCs) are used to assess the levels of 8 

elements (arsenic, cadmium, chromium, copper, mercury, nickel, lead and zinc), 10 parent 

PAHs (anthracene, fluoranthene, phenanthrene, naphthalene, pyrene, benzo[a]anthracene, 

benzo[a]pyrene, benzo[ghi]perylene, chrysene, indeno1, 2, 3-cdpyrene), 7 PCBs (PCB-28, -

52, -101, -118, -138, -153, -180) and 3 OCs (HCB, γ-HCH, o, p’-DDD, o, p’-DDE, p, p’-

DDE, p, p’-DDT).  In general, BCs for naturally occurring compounds such as PAHs are 

typically in the range of concentrations found in un-contaminated areas of the OSPAR 

maritime area.  The concentration is described as ‘near background’ if the mean 

concentration detected is below the corresponding BAC.  BACs are normalised to 2.5 % 

TOC for organic compounds and 5 % aluminium for metal compounds and are expressed in 

either mg kg-1 or µg kg-1 as previously described.  The mean normalised concentration and 

an approximate upper 95 % confidence interval was generated [mean + (td,f 0.95 x SE) where 

the SE is estimated at 15% to account for analytical error] (CEMP guidelines) to allow for 

comparison with BCs (Webster et al., 2007). 

 

2.3.1 Data treatment and evaluation 

 
Sediment contaminant data are discussed in a dry weight basis by normalising to 2.5 % 

TOC for organic contaminants and normalising to 5 % aluminium content for inorganic 

contaminants (in accordance with OSPAR BAC).  
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2.3.2 Physico-chemical characterisation of sediments 

 

Hydrophobic persistent pollutants such as PAHs, PCBs/OCs, and OTCs accumulate in 

marine sediments to different degrees as a function of the sediment characteristics.  

Sediments with high organic carbon content and/or with smaller particle sizes tend to 

accumulate persistent organic pollutants (POPs) to a greater extent than coarse, sandy 

sediments.  TOC values in sediment from this study ranged from 0.28 to 1.89 % (DB6 and 

DB2 respectively) in the < 2mm fraction and < 0.4 to 3.11 % (DE1 and DB1 respectively) 

in the < 0.063mm fraction. 

The sampling location at Omey Island which had a very high TOC (30.3 %) is inter-tidal 

and may be subject to terrestrial peat/soil based influences and thus may not be truly 

representative of general marine sediments in the surrounding area.  Therefore data at this 

site cannot be compared directly for all contaminant groups. 

 

 

2.3.3 Assessment of metals in sediments 

 

Table 2.3 displays the metal concentrations in various sites in both the < 2 mm and < 0.063 

mm fractions (dry weight only).  Normalised concentrations are presented graphically.  All 

values are determined on a dry weight and normalised basis.  The lowest levels of metals 

were found in the DB5 site in the < 0.063 mm fraction.  The Omey Island site was 

determined to have the second lowest levels however based on TOC content, this site is 

unrepresentative of a marine sediment sample.  From Figures 2.2 and 2.3 it can be seen that 

on a dry weight basis, the highest levels of metals were displayed in the < 2 mm fraction of 

the DB1 site with elevated levels of lead (265 mg kg-1) and zinc (755 mg kg-1) however, 
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when normalised to 5 % aluminium, the highest levels were shown in DB5 with elevated 

levels of copper, lead and zinc (2301, 2771 and 26780 mg kg-1 respectively).  When data 

was normalised, all sites showed elevated levels of metals in both fractions. 

 

The most elevated level of copper was determined at the Dunmore East site (DE2) in the < 

2 mm and < 0.063 mm dry weight fractions (317 and 464 mg kg-1 respectively).  These 

levels were similar to those of a previous report by Enterprise Ireland indicating high levels 

of copper (290 mg kg-1 of copper in the < 2mm fraction) at this site.  Levels of zinc were 

also elevated at the DE sites, the highest level shown in DE2 (345 mg kg-1 dry weight). 

 

On a dry weight basis, the metal concentrations in the < 2 mm and < 0.063 mm fractions of 

the sediment in the outer Dublin Bay area near the North Bank Lighthouse, DB5 (Figure 

2.2) were found to be lower for all metals compared to the < 2mm fraction in the inner port 

(west Alexandra Basin DB1).  On a dry weight basis, this inner port site (DB1) had the 

most elevated level of zinc (755 mg kg-1).  The enclosed environment of the Alexandra 

Basin has reduced marine flushing, increased sediment deposition and thus high residence 

of contaminants in surface sediment in the surrounding marine environment.  The industrial 

impacts and shipping activity alone is a major source of pollution to this area.  The export 

of lead and zinc ores contribute to the significant concentrations in the Alexandra Basin 

(Davoren et al, 2005).  A history of heavy metal contamination has been previously shown 

to be a concern in North Dublin Bay (McBreen and Wilson, 2005). 

 

Levels of lithium, arsenic, chromium, and nickel were similar in the dry weight < 2mm 

fraction of the Bull Lagoon (DB6) compared with the other Dublin Port sites.  Mercury, 

cadmium, copper, lead and zinc values at the Bull Lagoon site were lower than the inner 
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Dublin Port site (DB1) (see Table 2.3).  When these data were normalised to 5 % 

aluminium, the DB5 showed the highest levels of metal contamination.  Anthropogenic 

influence in North Dublin Bay has been shown to reduce rapidly with distance from the 

port.  Buggy and Tobin (2006) found similar levels of metals in Dublin Bay as those 

determined in this present study. 

 

Table 2.4 presents metal concentrations normalised to 5 % aluminium as per Kersten and 

Smedes (2002) methodology discussed in chapter 1, section 1.5.4 of this thesis.  Data is 

presented for the < 0.063 mm fraction in DB5 and DE2 for comparison with BAC data and 

OSPAR assessment criteria.  Table 2.4 additionally presents comparison of < 2 mm dry 

weight fraction concentrations with ERL/ERM and Irish Sediment Quality Guideline (SQG) 

upper and lower levels in accordance with methodology set in chapter 1.  It can be observed 

that concentrations of metals in the Dublin Port and Dunmore East exceed OSPAR BAC 

criteria where available.   

 

The ERL represents a chemical concentration below which the probability of toxicity is 

minimal (Long et al., 1998).  In DB1, all metal concentrations with the exception of 

chromium were above both the ERL and lower Irish SQG value.  In DB5 however, copper, 

lead and zinc values exceeded both the ERL and lower Irish SQG level.  At the Bull Lagoon 

site (DB6) arsenic, nickel and lead were elevated above the ERL and Irish lower level 

guideline level however zinc was not above the lower Irish SQG level.  At DE1, copper and 

zinc were above ERL and lower Irish SQG level.  At DE2, copper, zinc, arsenic, nickel and 

lead concentrations were above ERL and lower Irish SQG level.  Concentrations for zinc 

and lead at the DB1 site, lead at the DB5 site, and copper at the DE2 site were above the 

ERM and upper Irish SQG levels therefore adverse effects are potentially expected upon 
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exposure to contaminants at these sites.  Concentrations of copper, zinc, manganese and 

vanadium were higher in DE2 compared to the DE1 site, which indicates that DE2 may be 

closer to the pollution source.  This further stresses the importance of representative 

sampling even in locations of close proximity. 

 

It was concluded as expected, that industrial areas showed more elevated levels of metals 

than areas which had little industrial/ urban influences, for example, the inner Alexandra 

Basin site (DB1) showed a more elevated level of zinc than the outer Dublin Port site at the 

navigation point of the Northbank lighthouse and to a lesser extent at Dublin Bay (DB6).  

Anthropogenic inputs and localised current flow which decreases the potential of marine 

flushing are potentially the causative factors in the elevated levels of metals in these areas.  

The potential for adverse effects on resident organisms, as evidenced by assessment criteria 

being exceeded, was demonstrated in sites DB1, DB5 and DE1. 
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Table 2.3: Concentrations of metals (dry weight mg kg-1) in < 2mm and < 0.063mm (in 

parenthesis) fractions of sediments from selected Irish coastal locations.  Aluminium 

concentrations are in g kg-1. 

DP 1 DP 5 DP 6 DE 1 DE 2 OI 1* 

Aluminium 

 
19.2 (NA) 

 
3.54 (14.7) 

 
20.3(NA) 

 
12.8 (NA) 

 
26.9 (12.7) 

 
15.4 (74.5) 

 

   Mercury 

 

0.28 (NA) 
 

< 0.05 (< 0.05) 
 

0.08 (NA) 
 

0.05 (NA) 
 

nd (0.09) 
 

 
nd (<0.05) 

 

   Lithium 

 

33.7 (NA) 
 

8.44 (28.8) 
 

 
36.6 (NA) 

 
29.4 (NA) 

 
33.5 (28.3) 

 
9.65 (4.55) 

 

   Arsenic 

 

11.7 (NA) 
 

2.62 (9.6) 
 

 
15.4 (NA) 

 
7.05 (NA) 

 
12.4(11.5) 

 
2.52 (1.68) 

 

   Cadmium 

 

3.23 (NA) 
 

0.19 (0.19) 
 

 
0.37 (NA) 

 
0.48 (NA) 

 
0.38 (0.41) 

 
0.42 (0.19) 

 

   Chromium 

 

41.7 (NA) 
 

12.5 (37.1) 
 

 
55.5 (NA) 

 
41.7 (NA) 

 
51.0 (51.8) 

 
31.3 (30.3) 

 

   Copper 

 

78.8 (NA) 
 

51.0 (32.1) 
 

 
33.3 (NA) 

 
76.8 (NA) 

 
317 (464) 

 
23.9 (15.1) 

 

   Lead 

 

265 (NA) 
 

62.2 (46.1) 
 

 
68.2 (NA) 

 
45.4 (NA) 

 
53.4 (68.2) 

 
18.0 (11.1) 

 

   Nickel 

 

28.4 (NA) 
 

10.9 (24.3) 
 

 
35.6 (NA) 

 
18.6 (NA) 

 
21.1 (24.8) 

 
10.3 (13.3) 

 

    Zinc 

 

755 (NA) 
 

590 (175) 
 

 
154 (NA) 

 
242 (NA) 

 
345 (308) 

 
13.2 (8.21) 

 
 

Manganese 

 

nd (nd) 
 

nd (nd) 
 

 
nd (nd) 

 
nd (nd) 

 
333 

 
43.7 (nd) 

 
 

Vanadium 

 

nd (nd) 
 

nd (nd) 
 

nd (nd) 
 

nd (nd) 
 

46.1 
 

35.8 (nd) 
 

nd = not detected 
NA = not analysed 
* High TOC therefore data at this site used for comparison purposes only
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Figure 2.2: Concentrations of metals (dry weight mg kg-1) in < 2 mm and < 0.063 mm fractions of sediments from selected Irish 

coastal locations. 
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Figure 2.3: Concentrations of metals (mg kg-1) normalised to 5 % aluminium in < 2 mm and < 0.063 mm fractions of sediments 

from selected Irish coastal locations.

26,780 mg kg
-1
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Table 2.4: Concentrations of 8 elements (mg kg-1) from various locations in the < 0.063 

mm fraction normalised to 5 % aluminium compared to available BACs as derived by 

OSPAR CEMP 2004 and dry weight concentrations in the < 2 mm fraction compared to 

NOAA ERL/ERM values derived by Long et al., 1998 and Irish sediment quality guidelines 

(SQGs) upper and lower levels (Cronin et al., 2006) derived from whole sediment (< 2mm) 

data which are not normalised and are therefore compared to dry weight whole sediment 

concentrations.  The concentrations in brackets are the < 0.063 mm normalised upper 95 % 

upper confidence limit and values above the BACs are in bold black, concentrations above 

ERL and ERM, bold blue and bold red respectively.  

 

 

 

Site 

 

As 

 

Cd 

 

Cr 

 

Cu 

 

Hg 

 

Ni 

 

Pb 

 

Zn 

 

Provisional 

BAC 

 

  
25 

 
0.31 

 
81 

 
27 

 
0.07 

 
36 

 
38 

 
122 

 

ERL 

 

  
8.2 

 
1.2 

 
81 

 
34 

 
0.15 

 
20.9 

 
46.7 

 
150 

 

ERM 

 

  
70 

 
9.6 

 
370 

 
270 

 
0.71 

 
51.6 

 
218 

 
410 

 

Irish SQG lower 

level 

  
9 

 
0.7 

 
120 

 
40 

 
0.2 

 
21 

 
60 

 
160 

 

Irish SQG Upper 

level 

  
70 

 
4.2 

 
370 

 
110 

 
0.7 

 
60 

 
220 

 
410 

 

c 

 

 
DB1 

 

 
11.7 

 
3.23 

 
41.7 

 
78.8 

 
0.28 

 
28.4 

 
265 

 
755 

 

a 

b 

c 

 
DB5 
DB5 
DB5 

 

 
31.4 

36.1 
2.62 

 

 
0.72 

0.83 
0.19 

 
116 

134 
12.5 

 
134 

154 

51.0 

 
0.21 

0.25 
<0.05 

 
96.2 

110 
10.9 

 
191 

220 

62.2 

 
725 

834 

590 

 

c 

 

 
DB6 

 
15.4 

 
0.37 

 
55.5 

 
33.3 

 
0.08 

 
35.6 

 
68.2 

 
154 

 

c 

 
DE1 

 
7.05 

 

 
0.48 

 
41.7 

 
76.8 

 
0.05 

 
18.6 

 
45.4 

 
242 

 

a 

b 

c 

 

 
DE2 
DE2 
DE2 

 
47.9 

55.1 
12.4 

 
2.0 

2.4 
0.38 

 
218 

250 
51.0 

 
2449 

2816 

317 

 
0.48 

0.55 
nd 

 
120 

138 

21.1 

 
352 

404 

53.4 

 
1594 

1833 

345 

 
a 

b 

c 

 
OI1 
OI1 
OI1 

 
2.14 
2.46 
2.52 

 
0.13 
0.15 
0.42 

 
24.3 
27.9 
31.3 

 
10.2 
11.7 
23.9 

 
0.03 
0.04 
nd 

 
9.55 
11.0 
10.3 

 
7.94 
9.13 
18.0 

 
8.14 
9.36 
13.2 

 
a- < 0.063 mm fraction concentration normalised to 5 % aluminium for BAC assessment  
b- Upper confidence limit of < 0.063 mm fraction concentration normalised to 5 % aluminium for BAC 
c- < 2 mm fraction dry weight concentration for comparison to SQGs and ERL/ERM data 
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2.3.4 Assessment of organotin compounds in sediments 

 

The dry weight concentrations of the butyltin compounds TBT and DBT at the various sites 

are presented in Table 2.5.  As observed in Figure 2.4, dry weight levels of organotin 

compounds (OTCs) were found to be highest at the DE2 in the inner harbour and lowest at 

DP5 at the outer Alexandra basin in the < 2mm fraction.  The high TOC % values of 22.6 

and 30.3% in the < 2mm and < 0.063mm fractions respectively of the Omey Island site 

could be due to terrestrial peat based influences.  This site contained relatively elevated 

levels of OTCs (∑TBT and DBT 244 and 787 µg kg-1 in dry weight < 2 mm and < 0.063 

mm fractions respectively) however this site cannot be used as a direct comparison to other 

marine sediments as it was more terrestrial based. 

 

In general, the levels of OTCs were elevated (TBT was found to be in the range of 2125 – 

22,707 µg kg-1 dry weight) in the three Dunmore East Harbour sites.  The three sites at 

Dunmore East (DE1, DE2 and DE3) differed significantly in concentration demonstrating 

the importance of spatial sampling even within close proximity more significantly when 

monitoring TBT concentrations since a single paint fleck from a boat hull can elevate the 

concentration substantially.  A study undertaken by Enterprise Ireland (consulting 

company) in 2002 determined similar levels of OTCs in spatial sediments from Dunmore 

East harbour.  Levels of DBT were also found to be elevated compared to the levels 

outlined in the Enterprise Ireland report (Enterprise Ireland, 2002).  Observed levels may 

potentially be related to the dry dock operations in close proximity to the sampling sites at 

Dunmore East.  These observed levels could potentially threaten the surrounding marine 

ecosystem considering that TBT has been linked to imposex in 116 gastropod species at 

levels as low as 0.5 ng Sn/L (Birchenough et al., 2002, Santos et al., 2002).  Elevated OTCs 
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pose an undesirable effect on surrounding ecosystems since strong correlations between 

concentrations of TBT in sediment and the marine mollusc N. pernula has been previously 

reported indicating transfer of this toxic substance into the marine food chain (Strand et al., 

2003).  It has been shown that levels of OTCs in harbours are higher than levels in estuarine 

and coastal sediments (Díaz et al., 2007).  Chapter 5 describes a caging study utilising 

Nucella lapillus and Crassostrea gigas to monitor TBT induced bioeffects on organisms 

and demonstrates adverse effects at DE2 after an 18 week exposure. 

                                                                                                                                                                                                             

Despite the concentration of TBT differing by an order of magnitude among Dunmore East 

samples (concentration of TBT at DE2 is 10.3 times higher than at DE1), TBT was found 

to be the dominating OTC species in the < 2 mm fraction of the three Dunmore East sites 

following the pattern as decribed by Hoch (2001).  TBT domination was also evident for 

DB1 and DB2, however Dublin Bay locations DB3, DB4 and DB5 showed an equal or 

higher ratio of DBT than TBT indicating other inputs of DBT.  On a dry weight basis DB1 

in the west Alexandra Basin showed the most elevated OTC concentrations in the < 2mm 

fraction of all the Dublin Port sites analysed with a TBT level of 6621 µg kg-1.  A toxic 

effect on inhabiting gastropods has previously been reported by Wilson (2003).  Also in 

this area, Buggy and Tobin (2006) showed levels of 0.1-1.5 µg kg-1 of TBT in sediments in 

the Tolka Estuary in Dublin, which is in the mid region of the Alexandra basin and the 

North Bull Island.  These levels are low compared to the inner port and Bull Lagoon values 

in this study. 

 

No comparison was made to OSPAR BACs as there is no available BAC for any of the 

OTCs however values are compared to NOAA ERL/ERMs and Irish SQGs.  The sediment 

quality guidelines have upper and lower action levels of 100 and 500 µg kg-1 for the sum of 
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TBT and DBT.  Irish guideline values are based on information from the US-EPA 

comprising chemical and biological effects data for more than 1000 sediment samples using 

the Effects range low/ Effects range median approach however more accurate guidance 

values would be derived from Irish chemical and ecotoxicological data (Cronin et al., 

2006).  Levels of OTCs exceeded the Irish guideline values at all of the Dunmore East sites 

and at DB1 thus very strong evidence of adverse effects on marine organisms in particular 

at the Dunmore East site inducing imposex in the gastropod Nucella lapillus and shell 

thickening in the Pacific oyster Crassostrea gigas which is described later in chapter 5. 

 

Overall, elevated levels of organotins were found in areas of high level boating activity.  

Dunmore East harbour (DE2) showed the highest concentrations of organotins whereas 

lowest levels were observed in the < 0.063 mm fraction of the inner Alexandra Basin 

(DB3).  Despite the ban of TBT on boats less than ten metres in length, it is still present in 

harbours and ports at relatively elevated levels which may potentially pose a risk for the 

surrounding ecosystems. 
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Table 2.5 Concentrations of OTCs (dry weight µg kg -1) in < 2 mm and < 0.063 mm (in 

parenthesis) fractions of sediments from selected Irish coastal locations. 

 

DB 1 

 

DB 2 

 

DB 3 

 

DB 4 

 

DB 5 

 

 

DB 6 

 

DE 1 

 

DE 2 

 

DE 3 

 

OI 1 

 

Tributyltin 

(TBT) 

 

 
6621 

(1934) 
 

95.4 
(75.5) 

 

9.10 
(16.9) 

 

39.1 
(18.5) 

 

nd 
(109) 

 

42.4 
(NA) 

 

2125 
(NA) 

 

22707 
(6182) 

 

11772 
(NA) 

 

192 
(742) 

 
 

Dibutyltin 

(DBT) 

 

1362 
(770) 

 

72.4 
(64.2) 

 

53.1 
(12.1) 

 

39.3 
(11.7) 

 

36.2 
(64.9) 

 

75.9 
(NA) 

 

790 
(NA) 

 

7362 
(965) 

 

3555 
(NA) 

 

52.1 
(45.6) 

 
nd = not detected 
NA = not analysed 
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Figure 2.4: Concentrations of organotins (dry weight µg kg-1) in < 2mm and < 0.063mm fractions of sediments from selected 

Irish coastal locations 
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2.3.5 Assessment of polycyclic aromatic hydrocarbons in sediments 

 

Dry weight based oncentrations of PAHs detected in sediments are presented in Table 2.6.  

PAHs were detected in all samples analysed, the sum of all PAHs being 461– 12297.8 µg 

kg-1 dry weight in < 2mm fractions in Bull Lagoon (DB6) and Dunmore East (DE2) 

respectively and 3203- 9161 µg kg-1 dry weight in < 0.063 mm fractions at locations Dublin 

Bay (DB5) and Dunmore East (DE2) respectively.  Higher PAHs levels were found in the < 

0.063mm fraction indicating a correlation between PAHs and TOC content.  The % TOC 

was found to be variable i.e. 0.28-1.89 % (DB6-DB2) in the < 2mm fractions and < 0.4- 

3.11 % (DB5- DB1) in the < 0.063 mm fractions.  TOC values were highest at the Omey 

Island site (OI1) however this is due to this site being more terrestrial based than all other 

sites and cannot be used for comparison of data.   

 

On a dry weight basis the highest concentrations of PAHs were found in the < 2mm 

fraction of the Dunmore East (DE2) site and the lowest concentrations found at the Bull 

Lagoon site (DB6) (12297 and 461 µg kg-1 respectively).  Levels of PAHs at the Omey 

Island site in the < 0.063 mm fraction was determined to be 11993 µg kg-1 for the ∑ 

21PAHs however, results for this site are not further discussed due to a high TOC % at this 

site.  Elevated levels of ∑ 21PAH in the dry weight < 2mm fraction were also present in the 

inner Alexandra Basin (DB1) (6357 µg kg-1).  Concentrations decreased at the outer 

Alexandra Basin site at the North Bank lighthouse (DB5) (1270 µg kg-1) and even lower 

levels observed at North Dublin Bay in the Bull Lagoon site (DB6) (461 µg kg-1).  

However, normalisation of results to 2.5 % TOC demonstrated levels to be elevated to 5290 

and 4117 µg kg-1 at DB5 and DB6 respectively.  Potential geochemical differences could 

account for the normalisation differences however particle size distribution (PSD) data was 
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unavailable. Concentrations of hydrocarbons, PAHs and metals have been previously 

reported to be more elevated in the inner Dublin harbour and Tolka estuary but not elevated 

in the Bull Lagoon (Wilson, 2003).  In general, on a 2.5 % TOC normalised basis, the 

lowest concentrations were found in the < 2 mm fraction of the DE1 site and the highest 

levels were found in the < 0.063 mm fraction at DE2 site, ∑ 21PAHs being 1992 and 13367 

µg kg-1 for DE and OI respectively. 

 

A wide range of PAH compounds were found in the < 2mm fractions of Dublin Port sites 

(DB1 and DB5) and the < 0.063 mm fraction of Dunmore East sites (DE1 and DE2) 

compared to the Bull Lagoon site (DB6).  Alkylated isomers of dibenzothiophene, 

naphthalene and phenanthrene were measured in two sites in the < 0.063 mm of the Dublin 

Port site (DB5) and in both fractions of the Dunmore East site (DE2). 

 

Levels of PAHs in all sites on a dry weight and 2.5 % normalised basis are presented in 

Figures 2.6 and 2.7 respectively.  In general, the levels of PAH contamination at the sites 

analysed in this study were higher than literature values from Cork harbour which 

presented results of ∑ 21PAHs in the range of 170- 795 µg kg-1 dry weight in the < 0.063 

mm fractions and 528 - 2878 µg kg-1 dry weight in the < 2mm fractions  (Kilemade et al., 

2004).  The levels of the PAHs in this present study however were higher in the < 0.063 

mm fraction than the < 2mm fraction which was not evident in data from Cork Harbour.  

Levels of PAHs in other areas such as the coastal areas in the Shetland and Orkney Islands 

have been previously reported to be in the range < LoD to 22619 µg kg-1 (Webster et al., 

2001).  These concentrations reported by Webster (2001) are higher than levels found at 

Dunmore East and Dublin Port locations despite the highly industrialised inputs into the 

areas.  
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2.3.5.1 Polycyclic aromatic hydrocarbon ratios in sediment 

 
Petroleum contains lower molecular weight PAHs such as phenanthrene and anthracene. 

Due to its higher stability phenanthrene is higher relative to anthracene.  PAHs of 

petrogenic origin are generally characterised by high phenanthrene: anthracene P/A ratios 

(>10) (Kilemade et al., 2004).  Pyrogenic or petrogenic sources of the PAHs can be 

identified by evaluating compositions of the PAHs (Kilemade et al., 2004) and ratios of 

parent to alkyl-substituted PAH congeners.  Ratios of the priority pollutants phenanthrene 

to anthracene (P/A) and fluoranthene to pyrene (FL/PY) are commonly used (Neff et al., 

2005).  Other ratios such as methylphenanthrene to phenanthrene (MP/P) and fluoranthene 

+ pyrene to methylfluoranthene+ methylpyrene (FL+PY)/ (MFL+MPY), (Webster et al., 

2001), chrysene to benzo[a]anthracene  (Chry/BaA) and benzo[a]pryene to 

benzo[ghi]perylene (B(a)P/B[ghi]P) can be used to differentiate between sources.   

 

Where data were available, ratios discussed above were determined and are presented in 

Table 2.6.  The low (P/A), (FL/PY) and (Chrys/BaA) ratios in the < 2 mm sediments (Table 

2.6) suggest pyrogenic sources.  High (B(a)P/B[ghi]P) ratios i.e. > 0.8 are indicative of 

stationary source combustion emissions [e.g. power plants, gas stations etc.] (Kilemade et 

al., 2004). 

 

From Table 2.6 it is observed that the Bull Lagoon site (DB6) , Dublin Port locations DB1 

and DB5 and Dunmore East (DE1)  all contained high B(a)P/B[ghi]P ratios indicating that 

stationary source combustion emissions may be potential sources of PAHs at these sites.  

To support this, it has also been previously established that by plotting the FL/PY ratio 
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against either P/A ratio or the MP/P ratio, a petrogenic or pyrogenic source can be 

predicted.  In general, high FL/PY ratios and low P/A or MP/P ratios are characteristic of 

pyrogenic PAHs. (Webster et al., 2001)  Two sites at Dublin Port (DB1 and DB5), one at 

Dublin Bay (DB6) and two Dunmore East sites (DE1 and DE2) were the only sites with 

concentrations of these compounds greater than the limit of quantification (> LoQ).  A plot 

of the FL/PY ratio against the P/A ratio is presented in Figure 2.5 indicating PAHs from 

these sites are primarily from pyrogenic origin.  

 

Comparison to OSPAR background assessment criteria for 10 PAHs (not exclusively 

priority PAHs) monitored in sediment in the < 0.063 mm fraction normalised to 2.5 % 

organic carbon (µg kg-1) is presented in Table 2.7.  These background concentrations are 

compared to normalised concentrations of PAHs from two sites (DB5 and DE2 with OI1 

also included).  It is shown that in the DB5 and DE2 sites, concentrations of all PAHs are 

above background levels.  At the OI1 site however, all levels are near background level 

however, the high TOC % at this site deem it unrepresentative of a marine sediment 

sample.  The figures in brackets are the 95 % upper confidence limit and values above the 

BACs are in bold.  

 

The NOAA effects range low/ effects range medium data [ERL/ERM] and Irish guideline 

lower level (µg kg-1 dry weight) are also presented in Table 2.7 for these 10 PAHs and sum 

16 PAHs and compared to the dry weight concentrations in the < 2 mm fraction of all sites 

analysed. At the DB1 site, all PAHs with the exception of fluoranthene, pyrene and benzo-

[ghi]-perylene exceeded the ERL.  At DB6 and DE2 only naphthalene exceeded the ERL 

level however volatility of this compound makes it very difficult to measure accurately in 

freeze dried samples.  All PAH levels in the < 2mm fraction were below the ERL level at 
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the DE1 site.  No concentration levels of PAHs exceeded the ERM at any of the sites and 

therefore adverse effects, from PAH pollutants on aquatic species would potentially not be 

expected at these sites.  

 

Irish SQGs for PAHs were derived from 95 percentile data of background values, from 

Marine Institute data, 2002-2003 (Cronin et al., 2006).  These values were not normalised 

for organic carbon and the guidance lower level was based on the sum of 16 PAHs.  From 

Table 2.7 it is shown that the lower level guidance value is set as 4000 µg kg-1.  This lower 

level Irish guideline value was exceeded at one site only (DB1) in the inner Alexandra 

Basin.  
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Table 2.6: Concentrations of PAHs (dry weight µg kg-1) in both < 2 mm and < 0.063 mm 

fraction (in parenthesis) in sediments from various sites around the coast of Ireland 

 

 

 
DP 1 

 

DP 5 

 

DP 6 

 

DE 1 

 

DE 2 

 

OI 1 

 

Acenaphthene 75.1 NA) 30.0 (13.5) <10.0 (NA) <10.0 (NA) <12.0 (13.8) NA(<10.0) 

Acenaphthylene nd (NA) 0.00 (27.9) nd (NA) nd (NA)  31.8(14.1) NA(<5.0) 

Anthracene 168 (NA) 37.7 (35.9) <10.0 (NA) 29.4 (NA)  82.8(79.1) NA(<10.0) 

Benzo[a]anthracene 382 (NA) 72.5 (86.1) 13.5 (NA) 63.6 (NA)  84.7(71.7) NA(<6.0) 

Benzo[a]pyrene 432 (NA) 72.0 (89.0) 14.1 (NA) 62.8 (NA)  70.8(70.4) NA(<5.0) 

Benzo[b]anthracene 306 (NA) <10.0 (40.6) <10.0 (NA) <10.0(NA) <10.0 (156) NA(<10.0) 

Benzo[b]fluoranthene 431 (NA) 69.7 (138) 17.5 (NA) 88.6 (NA)  136.0(152) NA(<10.0) 

Benzo[e]pyrene 495 (NA) 78.0 (109) 20.3 (NA) <89.1(NA)  99.8(95.2) NA(<10.0) 

Benzo[ghi]perylene 374 (NA) 48.7 (112) 14.3 (NA) 64.1 (NA)  86.6(94.9) NA(<10.0) 

Benzo[j] fluoranthene 351 (NA) 48.3 (62.2) 11.7 (NA) <54.7 (NA)  53.2(36.2) NA(<10.0) 

Benzo[k] fluoranthene 202 (NA) 38.5 (49.1) <10.0 (NA) <43.5 (NA)  41.2(43.3) NA(<10.0) 

Chrysene 435 (NA) 87.6 (139) 18.1 (NA) 129 (NA)  183(202)  NA(13.9) 

Dibenzo[ah]anthracene 106 (NA) 11.0 (26.6) <10.0 (NA) 15.2 (NA) 19.6(<10.0) NA(<10.0) 

Dibenzothiophene nd (NA) nd (22.8) nd (NA) nd (NA)  <14.0(23.6) NA(<10.0) 

DiBzThiphenes C1 nd (NA) nd (61.5) nd (NA) nd (NA)  262(182) NA(<10.0) 

DiBzThiphenes C2 nd (NA) nd (114) nd (NA) nd (NA)  1110(649) NA(17.6) 

DiBzThiphenes C3 nd (NA) nd (97.0) nd (NA) nd (NA) 1480 (884)  NA(16.4) 

Fluoranthene 561 (NA) 164 (164) 27.0 (NA) 117 (NA)  164(150) NA (24.0) 

Fluorene 173 (NA) 48.8 (29.3) 12.6 (NA) 30.0 (NA)  34.6(23.1) NA(<10.0) 

Indeno1,2,3-cdpyrene 472 (NA) 59.8 (102) 17.3 (NA) 91.3 (NA)  107.0(83.0) NA(<5.0) 

Naphthalene 192 (NA) 44.9 (143) 189 (NA) < 43.1(NA)  239(24.2) NA(<15.0) 

Naphthalenes C1 nd (NA) nd (117) nd (NA) nd (NA)  <10.0(22.4) NA(<10.0) 

Naphthalenes C2 nd (NA) nd (185) nd (NA) nd (NA)  nd(149)  NA(13.0) 

Naphthalenes C3 nd (NA) nd (138) nd (NA) nd (NA)  595(580)  NA(19.0) 

Perylene 166 (NA) 27.3 (35.9) <10.0 (NA) <51.6 (NA)  48.7(54.1)  NA(11,600) 

Phenanthrene 419 (NA) 171 (137) 17.6 (NA) 65.4 (NA)  112(130) NA(<10.0) 

Phenanthrene C1 nd (NA) nd (219) nd (NA) nd (NA)  945(873)  NA(19.2) 

Phenanthrene C2 nd (NA) nd (333) nd (NA) nd (NA)  2720(1,940)  NA(31.3) 

Phenanthrene C3 nd (NA) nd (221) nd (NA) nd (NA)  3310(2,140)  NA(46.0) 

Pyrene 617 (NA) 150 (155) 28.1 (NA) 153 (NA)  235(215)  NA(16.8) 

Sum 16 PAHS 5039 (NA) 1106 (1350) 409 (NA) 1006 (NA) 1640 (1381) NA (171) 

Sum all PAHs 6,165 (NA) 1,260 (3,203) 401 (NA) 909 (NA)  12297(9,151)  NA(11,817) 

P/A Ratio 2.49 (NA) 4.54 (3.81) 1.76(NA) 2.22 (NA) 1.35(1.64) (1) 

FL/PY Ratio 0.91 (NA) 1.09 (1.05) 0.96 (NA) 0.77 (NA) 0.70(0.70) (1.43) 

Chry/B[a]A 1.14 (NA) 1.21(1.61) 1.34 (NA) 2.03 (NA) 2.16 (2.82) (2.31) 

B[a]P/B[ghi]P 1.16 (NA) 1.48 (0.79) 0.99 (NA) 0.98 (NA) 0.82(0.74) (0.5) 

TOC % 3.70 (3.11) 0.60 (1.30) 0.28 (1.50) 1.52 (<0.4) 2.30 (1.42) 22.6 (30.3) 
nd: not detected 
NA: not analysed 
P/A: Phenanthrene: Anthracene; FL/PY: Fluoranthene: Pyrene; Chry/BaA: Chrysene/Benzo-[a]- anthracene; B(a) P/B[ghi]P: Benzo-[a]-
pryene/Benzo[ghi]perylene 
DiBzThiphenes C1,C2 and C3: Mono-, di and tri methyl-dibenzothiophene, Phenanthrene C1,C2 and C3: Mono-, di and tri methyl- 
phenanthrene, Naphthalenes C1, C2 and C3: Mono-, di and tri methyl-naphthalene 
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Figure 2.5: Ratios of PAHs P:A versus FL:PY for Dublin Port locations 1, 5 and site 6 

(North Dublin Bay) and Dunmore East sites 1 and 2 for the < 2 mm fraction.  Pyrogenic 

and petrogenic zones based on Webster et al. 2001. 
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Table 2.7: Provisional Background Assessment criteria (BACs) for 10 PAHs monitored in the < 0.063 mm fraction under the OSPAR CEMP (µg kg-1 dry weight) normalised to 2.5 % 

organic carbon.  The figures in brackets are the 95 % upper confidence limit and concentrations above the BACs values are in bold.  The NOAA ERL/ERM values and Irish guideline lower level 

are presented for these 10 PAHs and sum 16 PAHs respectively. Exceedences above ERL, ERM and Irish SQG lower level are in blue, red and green respectively. 

 

Location 

 

 

Site 

 

Anthracene 

 

Fluoranthene 

 

Phenanthrene 

 

 

Naphthalene 

 

pyrene 

 

Benzo[a] 

anthracene 

 

Benzo[a]p

yrene 

 

Benzo[ghi] 

perylene 

 

Chrysene 

 

Indeno123 

cdPyrene 

 

Sum 16 

PAHs * 

 

Provision

al BAC 

  
5 

 
39 

 
32 

 
8 

 
24 

 
16 

 
30 

 
80 

 
20 

 
103 

 

 

ERL 

  
85.3 

 
600 

 
240 

 
160 

 
665 

 
261 

 
430 

 
 

 
384 

 
690 

 

 

ERM 

  
1100 

 
5100 

 
1500 

 
2100 

 
2600 

 
1600 

 
1600 

  
2800 

 
2600 

 
 

 

Irish SQG 

lower 

level 

            
4000 

 

a 

 

DB1 

 

168 

 

561 

 
419 

 
192 

 
617 

 
306 

 
432 

 
374 

 
435 

 
472 

 
5039 

 

a 

b 

c 

 

DB5 

DB5 

DB5 

 

69.3 

79.4 
37.7 

 

315 

363 
164 

 
264 

303 
171 

 
275 

316 
44.9 

 
298 

343 
150 

 
166 

190 
72.5 

 
171 

197 
72.0 

 
215 

248 
48.7 

 
267 

307 
87.6 

 
196 

226 
59.8 

 
 
 

1106 
 

a 

 

DB6 

 
<10.0  

 
27.0 

 
17.6 

 
189 

 
28.1 

 
< 10.0 

 
14.1 

 
14.3 

 
18.1 

 
17.3 

 
409 

 

a 

 

DE1 

 
29.4 

 
117 

 
65.4 

 
< 43.1 

 
153 

 
63.6 

 
62.8 

 
64.1 

 
129 

 
91.3 

 
1006 

 

a 

b 

c 

 

DE2 

DE2 

DE2 

 

139 

160 
82.8 

 

264 

304 
164 

 
229 

263 
112 

 
42.6 

49.0 

239 

 
379 

435 
235 

 
126 

145 
84.7 

 

 
124 

143 
70.8 

 
167 

192 
86.6 

 
356 

409 
183 

 
146 

168 
107 

 
 
 

1640 

a 

b 

c 

OI1

* 

OI1

* 

OI1

* 

0.83 
0.95 
NA 

1.98 
2.28 
NA 

0.83 
0.95 
NA 

1.24 
1.42 
NA 

1.39 
1.59 
NA 

0.50 
0.57 
NA 

0.41 
0.47 
NA 

0.83 
0.95 
NA 

 

1.15 
1.32 
NA 

 

0.41 
0.47 
NA 

 
 
 

a- < 0.063 mm fraction concentration normalised to 2.5 % TOC 
b- Upper confidence limit of < 0.063 mm fraction concentration normalised to 2.5 % TOC 
c- < 2 mm fraction dry weight concentration    
*Note: Sum 16 PAHs include anthracene, acenaphthylene, fluoranthene, phenanthrene, pyrene, benzo-[a]-anthracene, benzo-[a]-pyrene, benzo-[ghi]-perylene, acenaphthene, chrysene, dibenzo-
[ah]-anthracene, benzo-[k]-fluoranthene, benzo-[b]-fluoranthene, naphthalene, fluorene and indeno-[1, 2, 3-cd]-pyrene 
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Figure 2.6: Dry weight concentrations of PAHs (µg kg-1) in order of increasing molecular weight in < 2 mm and < 0.063 mm 

fractions of sediments from selected Irish coastal locations. 
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Figure 2.7: Concentrations of PAHs (µg kg-1) in order of increasing molecular weight normalised to 2.5 % TOC in < 2 mm and 

< 0.063 mm fractions of sediments from selected Irish coastal locations. 
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2.3.6 Assessment of hydrocarbons in sediment 

 

Gas Chromatography Flame Ionisation Detection (GC-FID) and Gas Chromatography 

Mass Spectrometry (GC-MS) have been found to be very useful tools in hydrocarbon 

profiling of sediment extracts and gives an indication of source identification (Webster et 

al., 2001 ).  For sediments containing long-chain odd carbon alkanes (nC21-nC33) it is 

assumed that they have no petrogenic contamination (Webster et al., 2001).  When crude 

oils degrade, the n-alkanes are lost initially and eventually all n-alkanes disappear and the 

so called “hump” appears when analysed with GC-FID.  This “hump” is known as an 

unresolved complex mixture (UCM) and is composed of the more persistent compounds in 

the oil such as branched and cyclic compounds and is characteristic of petrogenic pollution.  

 

Sediments from North Dublin Bay site at the Bull Lagoon (DB1), Dublin Port inner 

Alexandra Basin (DB1) and Dunmore East (DE1) sediment samples which were also used 

for ecotoxicological testing, were analysed for hydrocarbons with GC-FID in the < 2mm 

fraction.  A number of reference oils and an n-alkane mix (C10-C40) were analysed with the 

samples.  Figure 2.8 presents the various overlayed chromatograms of the various reference 

oils and oil products and an n-alkane mix analysed as reference standards. 

 

The < 2mm Bull Lagoon (DB6) sample is not further discussed as there was a low level of 

hydrocarbon pollution evident.  It can be seen in Figure 2.9 that the Dublin Port (DB1) 

location sample showed a profile of hydrocarbons, which showed similar characteristics to 

the petroleum standard hydrocarbon profile (Figure 2.8).  In the Dunmore East sample 

(DE1) GC-FID chromatogram however (Figure 2.10) it can be observed that a number of 

long chain hydrocarbons C20-C38 are present in the sample.  These hydrocarbons have a 
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similar profile to that of the spilt/degraded crude oil which can be seen in Figure 2.8 

however in this reference crude oil chromatogram there are no dominating alkanes and in 

the DE sample the C28-C32 are the dominating n-alkanes.  The dominating odd carbon n-

alkanes C29 and C31 could potentially be an indication that these hydrocarbons originate 

from biogenic processes and there is no petrogenic influences at this site correlating well 

with the PAH results which have previously been discussed.  Interestingly, the Bull Lagoon 

sediment (DB6) which was observed to have a low hydrocarbon profile which correlated 

with a low TOC value (0.28 %) at this site compared with the other two samples, DB1 and 

DE1 which were observed to have hydrocarbon profiles and contained higher TOC content 

(3.70 and 1.52 % respectively). 
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Figure 2.8: GC-FID overlayed chromatogram of (a) lubricating oil (green), (b) marine lubricating oil (light blue), (c) alba oil 

(black), (d) spilt/degraded crude oil (purple)(e) petroleum (dark blue) and (f) a long chain hydrocarbon mix C10-C40 (red).
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Figure 2.9: GC-FID chromatogram of the < 2 mm fraction of a Dublin Port (DB1) sediment sample. 
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Figure 2.10: GC-FID chromatogram of the < 2 mm fraction of Dunmore East (DE1) sediment sample. 
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2.3.7 Assessment of organochlorine compounds in sediments 

 

PCBs are persistent and hydrophobic pollutants due to their low rates of degradation, low 

water solubility, and high degree to which they partition to particles and organic carbon 

(Kilemade et al., 2004).  Therefore sediments serve as a sink for these recalcitrant 

compounds.  The sediments which were analysed in this study did not show elevated levels 

of PCBs and OCs while limits of quantification were relatively high (approximately 3 µg 

kg-1dry weight) for each compound for these samples primarily as a result of small sample 

size and also as a result of small sample size and analytical interference however, potential 

for indoor background interference resulting in elevated LoDs for certain contaminants 

cannot be discounted.   

 

Tables 2.8 and 2.9 display the concentrations of PCBs and OCs in both the < 0.063 and < 2 

mm fractions in various sediments analysed for the dry weight determination.  In some 

cases the detection limits were raised due to interference (e.g. for endosulfan B and aldrin 

in sites DB1 and DE 1).  On a dry weight basis, the highest upperbound (i.e. where < LoQ 

the LoQ has been used) levels of PCBs were determined in the DE1 site (∑PCBs 36 µg kg-

1) and lowest levels were determined to be in the < 2 mm fraction of the DE2 site (∑PCBs 

0.9 µg kg-1).  Where concentrations are < LoQ, normalization has been completed for 

indicative purposes only.  On a 2.5 % TOC normalised basis however, the highest 

concentrations of PCBs were shown in the Bull Lagoon (DB6) (∑PCBs 295 µg kg-1) in the 

< 2mm fraction and the lowest concentrations were found in the < 2 mm DE2 site (∑PCBs 

1.00 µg kg-1).  The highest levels of OCs are in the < 2mm fraction of Dublin Port (DB1) 

(∑OCs 229 µg kg-1) on a dry weight basis and in < 2mm fraction of the Bull Lagoon site 

(DB6) (∑OCs 589 µg kg-1) on a normalised basis.  The lowest values were shown in the 
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DE2 site on both a normalised and dry weight basis.  Levels of PCBs and OCs at the Omey 

Island site were low in comparison to other sites but the high TOC % in this sample 

suggests that this is not marine sediment and concentrations cannot be compared to other 

sites data. 

 

The limits of quantification in this study were found to be quite high compared to other 

studies in Ireland.  Kilemade (2004) determined levels in Cork Harbour to be detected at or 

below the detection limit also however the detection limits ranged from nd to 0.2 µg kg-1 

for PCBs and nd to 0.2 µg kg-1 for OCs so therefore a direct comparison cannot be made.   

 

While the majority of sites showed levels > LoQ, a comparison to Background Assessment 

Criteria (BACs) for 7 PCBs and hexachlorobenzene (HCB) monitored in sediment under 

the OSPAR CEMP (µg kg-1) normalised to 2.5 % organic carbon was completed on 

upperbound levels and is presented in Table 2.10.  The figures in brackets are the 95 % 

upper confidence limit (t0.95 ± SE @ 15%) and values above the BACs are in bold.  These 

BACs are compared to < 0.063 mm normalised data in two sites (DE2 and OI1).  

 

The DE2 site contains levels that exceed the background level with the exception of PCBs 

153 and 180.  The OI1 site however contains low levels which are below the background 

assessment criteria and therefore the levels of these contaminants are near background at 

this site.  However this site was determined to have a high TOC % and therefore cannot be 

directly compared with other site data. 

  

The ERL /ERM levels (µg kg-1 dry weight) are also presented for these 7 PCBs and 4 

organochlorine pesticide compounds.  In all sites, levels of PCBs do not exceed the ERL or 



- 108 - 

ERM level and therefore are unlikely sites for ecotoxicological concern with these specific 

contaminants.  The limits of quantification for the PCB and OC compounds however are 

elevated and therefore a comparison cannot be made with ERL /ERM or Irish sediment 

quality guideline data. 

 

It was concluded that as a result of the high LoQs (primarily due to small sample size) with 

the exception of the DE2 site that data for PCBs and OCs are of limited use for integrative 

purposes. 
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Table 2.8: Concentrations of PCBs (dry weight µg kg-1) in both < 2 mm and < 0.063 mm 

fraction (in parenthesis) in sediments from various sites around the coast of Ireland 

 DB 1 DB 5 DB 6 DE 1 DE 2 OI 1* 
 

PCB-028 

 

<3.60(NA) 
 

< 3.00(NA) 
 

<3.00(NA) 
 

<3.00(NA) 
 

<0.10(NA) 
 

nd(nd) 
 

PCB-052 

 

 

<3.50(NA) 
 
 

 
< 3.00(NA) 

 
 

 
< 3.00(NA) 

 
 

<3.00(NA) 
 
 

<0.10(<0.20) 
 
 

nd(<0.1) 
 
 

 

PCB-101 

 

4.00(NA) 
 

< 3.00(NA) 
 

< 3.00(NA) 
 

3.90(NA) 
 

<0.10(<0.30) 
 

nd(<0.1) 
 

 

PCB-105 

 

<3.00(NA) 
 

 <3.00(NA) 
 

 <3.00(NA) 
 

<3.00(NA) 
 

nd(<0.10) 
 

nd(<0.1) 
 

PCB-118 

 

3.40(NA) 
 

 <3.00(NA) 
 

 
 <3.00(NA) 

 
3.40(NA) 

 
<0.3(nd) 

 
nd(nd) 

 

PCB-128 

 

<3.00(NA) 
 

 <3.00(NA) 
 

 
 <3.00(NA) 

 
<3.00(NA) 

 
nd(<0.10) 

 
nd(<0.10) 

 

PCB-138 

 

4.30(NA) 
 

< 3.00(NA) 
 

 
< 3.00(NA) 

 
4.70(NA) 

 
<0.10(nd) 

 
nd(nd) 

 
 

PCB-153 

 

<3.00(NA) 
 

< 3.00(NA) 
 

 
< 3.00(NA) 

 
<3.00(NA) 

 
<0.10(<0.30) 

 
nd(<0.1) 

 

PCB-156 

 

<3.00(NA) 
 

 <3.00(NA) 
 

 <3.00(NA) 
 

<3.00(NA) 
 

nd(<0.20) 
 

 
nd(<0.1) 

 
 

PCB-170 

 

<3.00(NA) 
 

 <3.00(NA) 
 

 <3.00(NA) 
 

<3.00(NA) 
 

nd(nd) 
 

nd(nd) 
 

PCB-180 

 

 
<3.00(NA) 

 
 <3.00(NA) 

 
 <3.00(NA) 

 
<3.00(NA) 

 
<0.10(nd) 

 
nd(nd) 

 
nd: not detected 
NA: Not analysed 
* For reference only 
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Table 2.9: Concentrations of OCs (dry weight µg kg-1) in < 2 mm fraction in sediments 

from various sites around the coast of Ireland 

  DP 1 DP 5 DP 5 DE 1 DE 2 OI 1* 

 

1,2,3-Trichlorobenzene 

 
<3.00 

 
<3.00 

 
<3.00 

 
<3.00 

 
nd 

 
NA 

 
1,2,4-Trichlorobenzene 

 
<4.80 

 
<3.00 

 
<3.00 

 
<3.80 

 
nd 

 
NA 

 
1,3,5-Trichlorobenzene 

 
<3.00 

 
<3.00 

 
<3.00 

 
<3.00 

 
nd 

 
NA 

 
Aldrin 

 
** 

 
<3.00 

 
<3.00 

 
** 

 
<1.0 

 
NA 

 
cis-Chlordane 

 
<3.00 

 
<3.00 

 
<3.00 

 
<3.00 

 
nd 

 
NA 

 
Trans-Chlordane 

 
<3.00 

 
<3.00 

 
<3.00 

 
<3.00 

 
nd 

 
NA 

 
o, p’-DDE 

 
<3.00 

 
<3.00 

 
<3.00 

 
<3.00 

 
nd 

 
NA 

 
p, p’-DDE 

 
<3.00 

 
<3.00 

 
<3.00 

 
<3.00 

 
<1.0 

 
NA 

 
 o, p’-DDT 

 
<14.5 

 
<3.00 

 
<3.00 

 
<25.8 

 
<1.0 

 
NA 

 
p, p’-DDT 

 
<18.5 

 
<3.00 

 
<3.00 

 
<22.5 

 
<1.0 

 
NA 

 
p, p’-TDE 

 
<5.30 

 
<3.00 

 
<3.00 

 
<3.00 

 
<1.0 

 
NA 

 
Dieldrin 

 
<7.30 

 
<3.00 

 
<3.00 

 
<3.00 

 
<1.0 

 
NA 

 
Endosulfan A 

 
<23.9 

 
<3.00 

 
<3.00 

 
<3.00 

 
nd 

 
NA 

 
Endosulfan B 

 
<94.6 

 
<4.6 

 
< 3.00 

 
** 

 
nd 

 
NA 

 

Endrin 
 

<12.9 
 

<3.00 
 

<3.00 
 

<3.00 
 

<1.0 
 

NA 
 

Hexachlorobutadiene 

 
<3.00 

 
<3.00 

 
<3.00 

 
<3.00 

 
<1.0 

 
NA 

 α-HCH 

 
<3.30 

 
<3.00 

 
<3.00 

 
<5.50 

 
<1.0 

 
NA 

 β-HCH 
 

<3.00 
 

 
<8.80 

 

 
<3.0 

 

 
<3.00 

 

 
<1.0 

 

 
NA 

 δ-HCH 
 

<3.00 
 

 
<3.00 

 

 
<3.00 

 

 
<3.00 

 

 
<1.0 

 

 
NA 

 γ-HCH 
<11.2 

 
<3.00 

 
<3.00 

 
<3.00 

 
<1.0 

 
NA 

 

Hexachlorobenzene 
<3.00 

 
<3.00 

 
<3.00 

 
<3.00 

 
<1.0 

 
NA 

 

Isodrin 
 

<3.00 
 

 
<3.00 

 

 
<3.00 

 

 
<3.00 

 

 
<1.0 

 
NA 

nd: not detected 
NA: Not analysed 
* For reference only 
** Interference raised for this sample
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Table 2.10: Provisional Background Assessment criteria (BACs) for 7 PCBs monitored in sediment under the OSPAR CEMP 

(µg kg-1) normalised to 2.5 % organic carbon.  The figures in brackets are the 95 % upper confidence limit and values above the 

BACs are in bold.  Comparisons to NOAA ERL and ERM levels are completed in (c) and Irish sediment quality guideline values 

are also presented for various organochlorine compounds.  

 

 

 

 

PCB 

101 

 

PCB 

118 

 

PCB 138 

 

PCB 

153 

 

PCB 180 

 

PCB  

28 

 

PCB 

 52 

 

HCB 

 γ-HCH 

 

o, p’ 

DDD 

 

o, p’ 

DDE 

 

p, p’ DDE 

 

p, p’ DDT 

 

BAC 

 
0.14 

 
0.17 

 
0.15 

 
0.19 

 
0.10 

 
0.22 

 
0.12 

 

 
0.16 

     

 

ERL 

 
22.7 

 
22.7 

 
22.7 

 
22.7 

 
22.7 

 
22.7 

 
22.7 

 
 

  
1.58 

 
2.2 

 
2.2 

 
1.6 

 

ERM 

 
180 

 
180 

 
180 

 
180 

 
180 

 
180 

 
180 

   
27 

 
27 

 
27 

 
27 

 

Irish SQG 

lower level 

 
1.0 

 
1.0 

 
1.0 

 
1.0 

 
1.0 

 
1.0 

 
1.0 

 
0.27 

 
0.21 

    

 

Irish SQG 

Upper level 

 
180 

 
180 

 
180 

 
180 

 
180 

 
180 

 
180 

 
230 

 
1 

    

DP 1 

c 

 
4.00 

 
3.40 

 
4.30 

 
< 3.00 

 
< 3.00 

 
< 3.60 

 
< 3.50 

 
< 3.00 

 
< 3.00 

 
nd 

 
< 3.00 

 
< 3.00 

 
< 18.0 

DP5 

c 

 
< 3.00 

 
< 3.00 

 
< 3.00 

 
< 3.00 

 
< 3.00 

 
< 3.00 

 
< 3.00 

 
< 3.00 

 
< 8.80 

 
nd 

 
< 3.00 

 
< 3.00 

 
< 3.00 

DP6 

c 

 
< 3.00 

 
< 3.00 

 
< 3.00 

 
< 3.00 

 
< 3.00 

 
< 3.00 

 
< 3.00 

 
< 3.00 

 
< 3.00 

 
nd 

 
< 3.00 

 
< 3.00 

 
< 3.00 

DE1 

c 

 
3.90 

 
3.40 

 
4.70 

 
< 3.00 

 
< 3.00 

 
< 3.00 

 
< 3.00 

 
< 3.00 

 
< 3.00 

 
nd 

 
< 3.00 

 
< 3.00 

 
< 22.5 

DE 2 

a 

b 

c 

 

 
0.18 

(0.20) 
< 0.10 

 
0.18 

(0.20) 
< 0.30 

 
0.18 

(0.20) 
< 0.10 

 

 
0.18 

(0.20) 
< 0.10 

 

 
0.18 

(0.20) 
< 3.00 

 
0.35 

(0.40) 
< 3.00 

 

 
0.53 

(0.61) 
< 3.00 

 
 
 

< 1.00 

 
 
 

< 1.00 

 
 
 

nd 

 
 
 

nd 

 
 
 

< 1.00 

 
 
 

< 1.00 

OI 1 

a 

b 

c 

 

 
0.01 
0.01 
nd 

 
0.01 
0.01 
nd 

 
nd 

 
nd 

 
nd 

 
nd 

 

 
nd 

 
nd 

 

 
0.01 
0.01 
nd 

 

 
0.01 
0.01 
nd 

 

 
 
 

NA 

 
 
 

NA 

 
 
 

NA 

 
 
 

NA 

 
 
 

NA 

 
 
 

NA 

a- < 0.063 mm fraction concentration normalised to 2.5 % TOC for BAC comparison 
b- Upper confidence limit of < 0.063 mm fraction concentration normalised to 2.5 % TOC for BAC comparison 
c- < 2 mm fraction dry weight concentration  for comparison to SQG and ERL/ERM criteria
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2.4 Conclusion 

Chemical analysis was performed on sediments from a range of selected locations 

around the coast of Ireland.  Levels of metals, PAHs, and organotins were found to be 

elevated in the inner harbours as opposed to the sites with less significant industrial 

inputs.  The most detrimental and toxic compound TBT was determined to be dominant 

in all sites and was found in elevated levels at Dunmore East Harbour.  Ratio profiling 

of PAHs proved to be a useful tool in determining the source however this was 

questioned in some cases with oil fingerprinting techniques.  Even with elevated LoQs, 

levels of OCs were relatively low in all locations in both < 2mm and in < 0.063 mm 

sediment fractions.  Comparison of chemical data with OSPAR background assessment 

criteria, NOAA ERL/ERM levels and Irish guideline upper and lower action levels was 

useful in determining whether adverse effects could be expected at specific sites.     

Chemical analysis alone however, is not sufficient and very limited in providing 

information on ecosystem health and does not address the actual impacts of the 

contamination on ecosystems.  The data generated in this chapter shall contribute and be 

the basis of an overall assessment and integration of this data with a selected battery of 

bioassays and biomarkers.  Elevated pollution levels (especially for TBT at Dunmore 

East sites) and the potential for associated biological effects are further discussed in 

chapter 4 (cell line study), chapter 5 (nucella study) and overall in chapter 8 (integration 

of all data). 
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CHAPTER 3 OPTIMISATION AND VALIDATION OF A 

METHOD FOR SPECIATION OF ORGANOTINS IN 

MARINE SEDIMENT 
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3.1 Introduction 

 

3.1.1 Organotin usage patterns 

 

Worldwide usage of organotin compounds (OTCs) in a variety of marine related 

applications has increased in the past 50 years.  As a consequence of such applications, 

considerable quantities of organotins have entered the marine environment.  Organotin 

compounds such as tributyltin (TBT) have been used in marine environments as 

effective antifouling agents in marine paints for shipping and for fish culture (Minchin, 

2003).  TBT has been shown to degrade to its di- and mono- metabolites (Tsunoi et al., 

2002) however these degradation metabolites dibutyltin (DBT) and monobutyltin 

(MBT) have been used previously as stabilisers in polymers such as poly vinyl chloride 

(PVC) (Ikonomou et al., 2002) and can enter the marine environment from leaching of 

PVC pipes (Leroy et al., 1998). 

 

3.1.2 Summary of biological effects of organotin compounds 

 

In general, the higher substituted organotins have been found to be the most toxic to 

marine organisms.  TBT being one of the most toxic compounds, has been found to 

cause chronic and acute poisoning in aquatic organisms for example, the development  

of  the  motile  spores  of  a green macroalga  was  the stage  most  sensitive to  TBT  

(5-day EC50: 0.001 µg L-1).    There was also reduced growth of a marine angiosperm 

observed at TBT concentrations of 1 mg/kg in sediment but no effect at 0.1 mg/kg 

(World Health Organisation, 1990).  Nucella lapillus are recognised internationally as a 

bioindicator of TBT contamination.  Exposure of TBT to Nucella lapillus causes 

imposex in the dogwhelk, this condition manifesting itself as the imposition of male 
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characteristics on the female dogwhelk following exposure to concentration levels as 

low as 1ng L-1 with severe cases resulting in sterilisation of the organism (Bryan et al., 

1986; Gibbs and Bryan, 1986; Bryan et al., 1987).  TBT has also been linked to 

reductions in whole soft tissue weight, increased shell thickness and shell deformation 

in Pacific oysters (Alzieu et al., 1982).  As organotin compounds are recognised 

pollutants of priority concern both biological and chemical monitoring of these 

compounds in Ireland is mandatory within the OSPAR and ICES (WKIMON) 

framework.  Many countries have restricted the use of TBT but Ireland was one of the 

first countries to ban the use of all organotin containing compounds on vessels less than 

25m in 1987 (Minchin, 2003). 

 

3.1.3 Nomenclature and physico-chemical properties of OTCs 

 
Organotin compounds are organic derivatives of tetravalent tin and may be represented 

by the general formula RpSnX(4-p) where R is an alkyl or aryl group (e.g. methyl-, butyl-, 

ethyl-, phenyl-) and X is an anionic group such as a halide, oxide or hydroxide (Hoch, 

2001).  TBT exists in seawater as three species: hydroxide, chloride and carbonate 

which remain in equilibrium.  At pH values less than 7.0 the predominant forms are the 

hydroxide and chloride and at pH 8 are the chlorides, hydroxides and carbonates and 

above pH 10 the hydroxide and carbonate predominate (World Health Organisation, 

1990).  In general OTCs existing as neutral ion pairs and complexes or as cations in the 

aquatic system have low water solubility (Rüdel, 2003) however, di and mono- butyltin 

have a higher solubility in water (Hoch, 2001).  The log Kow for TBT-Cl and TPT-Cl 

has been reported to be in the ranges 2.3-4.4 and 2.0-4.1 respectively (Rüdel, 2003), 

thus OTCs are strongly bound to the particulate phase and have been found to bind to 

oxides, hydroxides and organic material (Hoch, 2002).  The bioavailability of organotin 

compounds is greatest at neutral and slightly alkaline pH values and is reduced in the 
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presence of dissolved organic carbon.  Bioconcentration of TBT and TPT in marine 

aquatic systems has been shown to decrease with increasing concentrations of humic 

acids (Rüdel, 2003). 

 

Butyltin compounds are strongly bound to particulate matter.  Tributyltin is bound by 

hydrophobic forces whereas monobutyltin is bound by a high electrical charge (Smedes 

et al., 2000).  The affinity of these compounds for the particulate phase makes them 

liable to enter the food chain through sediment dwelling organisms.  Therefore it is 

essential that determination of the individual OTCs is completed and that sensitive and 

reproducible analytical methodologies are developed to quantitate these compounds.  

This study reports the optimisation and validation for speciation of OTCs in marine 

sediment.  The relevance of sediments in terms of ecotoxicological potential is 

addressed in Chapter 2 of this thesis. 

 

3.1.4  Analytical methods 

 

Analytical methods for the speciation of OTCs in sediment samples can often be 

complex.  Difficulties arise in setting up single methods that are capable of extracting 

and quantifying all OTCs in a matrix, this primarily being a result of the wide range of 

hydrophobicities of OTCs.  This chapter concentrates on the validation of a method for 

the determination of OTCs within the OSPAR framework and concurrently a method 

suitable for the extraction of OTCs into a media suitable for ecotoxicological bioassay 

use. 

 

3.1.4.1 Extraction 
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A wide variety of extraction procedures have been reported for sediment OTC 

speciation analyses including leaching with acid followed by shaking (Bravo et al., 

2004), leaching with acid followed by sonication (Millán et al., 2000) and pressurised 

fluid extraction (Wasik et al., 2007).  The most common method of extracting OTCs 

from the sediment particles is leaching with strong acids [e.g. hydrochloric acid (HCl)].  

Using this method, a solvent may be added to enhance the extraction of tributyltin 

species (e.g. methanol).  The OTCs are therefore present in a methanolic environment 

and ready for derivatisation.  Other methods of extraction include leaching under acidic 

conditions with simultaneous extraction into an organic phase using various acids and 

solvents and in situ derivatisation with simultaneous extraction into an organic phase. 

 

In this study, leaching with a high concentration of HCl was chosen followed by 

extraction to the organic phase using dichloromethane (DCM) which is immiscible with 

water.  Subsequent solvent exchange to methanol was required for the derivatisation 

reaction.  Extraction into DCM prevents the problems associated with high acid 

concentration used in derivatisation processes as discussed below.  The method as 

described in this chapter allows for the extraction of the organotin salts in their chloride 

form for subsequent testing on a cell line which is discussed in Chapter 4 entitled  

Toxicity Evaluation of Irish Marine Sediment using two fish cell lines Integrated with 

Chemical Analysis (submitted manuscript 2008). 

 

3.1.4.2 Derivatisation 

 
Derivatisation reactions applied to organotin analysis are generally hydride generation 

with sodium borohydride (NaBH4), ethylation with sodium tetraethylborate (NaBEt4) 

and alkylation with Grignard reagents.  In this study, ethylation with NaBEt4 was 

chosen. Derivatisation with NaBEt4 must take place in an aqueous/methanolic 
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environment and this reagent can be used directly in contact (in-situ) with the sample or 

after extraction into an organic extract (post extraction derivatisation). For in-situ 

derivatisation, a simultaneous derivatisation/extraction is performed which reduces the 

number of analytical steps compared to a post extraction derivatisation method and 

hence reduces potential sources of error.  The optimum pH for carrying out this reaction 

has been proven to be 4-5 (Quevauviller et al., 2000).  At lower pH values the 

conversion of NaBEt4 to NaBH4 was observed (Quevauviller et al., 2000) and the 

reagent decomposes faster as it reacts with protons (Smedes et al., 2000).  The time of 

reaction proved to be the most important for the stripping efficiency of the organotin 

species (Quevauviller et al., 2000) as the derivatising reagent can degrade in 

approximately 60 secs.  This reagent is not stable in the presence of strong acids and 

decomposes therefore the pH is crucial in organotin derivatisation.  Ethylation with 

NaBEt4 presents high yields of derivatisation in comparison to hydride generation.   

 

Hydride generation is also suitable for aqueous samples however this type of reaction is 

hindered by interferences with humic acids, low yields, and poor reproducibility for 

sediments with high organic carbon content.  Grignard reactions are performed on the 

organic extract rather than the aqueous phase.  These reagents react violently with acids, 

water, alcohols, ketones and more steps are needed in the method creating potential 

sources of error such as contamination risks, decomposition and losses.  Also, using the 

Grignard technique with sediments containing a high quantity of sulphur is hindered as 

elemental sulphur is co extracted and alkylated causing interferences on GC-MS and 

GC-FPD (Quevauviller et al., 2000). 

 

3.1.4.3  Clean up of organotin compounds 
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Leaching followed by extraction to an organic phase will potentially co-extract a variety 

of other compounds from the sediment sample.  Sulphur and sulphur containing 

compounds, oil, and many other anthropogenic and natural compounds can potentially 

be co-extracted.  Also, by-products from ethylation with sodium tetraethylborate such as 

boroxin, diethylsulphide and diethyltrisulphide will be present in large quantities 

(Wasik et al., 2007).  Various desulphurisation methods have been used previously 

including the use of deactivated copper, tetrabutylammonium sulphite (TBA) and 

mercury which eliminate elemental sulphur in the extract. TBA was utilised for sulphur 

removal during this project. 

 

Silica (SiO2), alumina (Al2O3) and florisil column clean ups have been used previously 

to remove interfering polar compounds for sediment extracts.  In this study, alumina 

was chosen as a clean up reagent and was deactivated with 5% water (highly 

deactivated materials [> 5 % water] are not recommended, as OTCs can potentially 

degrade during elution).  Hexane washed sodium sulphate has been previously used for 

removal of water from the organic extract. 

 

There was no significant toxicity observed when method blank extracts (in suitable 

substrate media) were exposed to Vibrio fisheri, Tisbe battagliai or Onchorynchus 

mykiss RTG-2 cell line (see chapter 4).  These method blanks incorporating the use of 

tetrabutylammonium sulphite for the removal of sulphur, alumina 5 % deactivated with 

water and sodium sulphate for removal of water were deemed to be suitable for 

proceding to the cell line study as outlined in Chapter 4. 

 

3.1.4.4  Separation and Quantification of organotin compounds 
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Methodologies for separation and quantification of organotin species generally involve 

gas chromatography (GC) coupled to an element selective detector.  Commonly used 

detectors include atomic absorption spectrometry (AAS), microwave-induced plasma 

atomic emission spectrometry (MIP-AES), inductively coupled plasma-optical emission 

spectrometry (ICP-OES), inductively coupled plasma- mass spectrometry (ICP-MS), 

mass spectrometry (MS), flame photometric detection (FPD) and more recently pulsed 

flame photometric detection (PFPD) (Bravo et al. 2004).  In this study, GC coupled to 

PFPD was used for separation and quantification of OTC species.  PFPD has been 

shown to have detection limits for organotin compounds 25 to 50 times lower than those 

obtained with conventional FPD (Bravo et al., 2004).  The PFPD sensitivity is attributed 

to the reduction of flame background and chemical noise due to its filtration in time, 

dark current reduction due to its current gating, higher signal brightness due to lower 

combustible gas flow rate and smaller combustor volume as well as the use of broad 

band colour glass filters. The possible separation in time of the signal from unwanted 

hydrocarbon emission results in a significant improvement of the selectivity and 

therefore the PFPD is a specific detector with total intolerance against hydrocarbon 

compounds (http://www.tau.ac.il/chemistry/amirav/pfpd.shtml). 

 

3.1.4.5 Quality assurance of methodology 

 
Addition of a recovery standard is crucial for quality assurance as the extraction and 

derivatisation can easily be incomplete.  Tripropyltin chloride has been used extensively 

as a recovery standard for OTC analysis but could not be used in this study as the 

method was optimised for cell culture exposures (as described in chapter 4) as this 

compound has been found to be toxic to cells at a very low concentration (Brüschweiler 

et al., 1995).  The freshwater sediment certified reference material BCR646 was 

analysed with every batch to further ensure compliance with internal quality control 
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procedures and recoveries of analytes were based on a long term reproducibility study 

using this material.  This was the only CRM available with certified values of the butyl- 

and phenyl-tin compounds and was used extensively in the literature with anlaysis of 

marine samples.  Blanks were analysed with every batch to ensure no contamination 

was present. 

 

In summary the purpose of this chapter was to develop a method for the extraction of 

OTCs (and co-extracts) from sediment into a form suitable for both the quantitation of 

OTC concentrations and for transfer of extract to media suitable for use in cell line 

assays and toxicity identification evaluation as described in chapters 4 and 6 

respectively. 

 

3.2 Materials and methods 

3.2.1 Materials 

 

Tributyltin chloride (CAS No. 1461-22-9), dibutyltin dichloride (CAS No. 683-18-

1), monobutyltin trichloride (CAS No.1118-46-3), triphenyltin chloride (CAS 

No.639-58-7) and external standard tetrapropyltin were obtained from LGC 

Promochem (UK). Diphenyltin dichloride (CAS No.1135-99-5) was obtained from 

Sigma-Aldrich (Ireland). Stock solutions of ethylated standards and the external 

standard tetrapropyltin were prepared in hexane and stock solutions of the chlorides 

were prepared in methanol.  The freshwater sediment certified reference material, 

BCR646 and OTC quantification external standard tetrapropyltin were obtained from 

LGC Promochem (UK).  Hydrochloric acid (33%) was obtained from AGB, Ireland.  

The solvents, dichloromethane, propan-2-ol, hexane, acetone and methanol (all 

pestiscan grade) were obtained from Labscan, Ireland.  Tetrabutylammonium 

hydrogen sulphate, sodium sulphite, sodium acetate, sodium hydroxide, sodium 
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sulphate and the derivatising agent sodium tetraethylborate 97% (STEB) were 

obtained from Sigma-Aldrich (Dublin, Ireland).  The ethylated organotin standards in 

hexane were obtained from the Quality Assurance of Information for Marine 

Environmental Monitoring in Europe (QUASIMEME) project office (Wageningen, 

The Netherlands). 

 

3.2.2 Gas chromatographic analysis-separation, detection and quantification 

 

GC allows the separation of volatile and semi-volatile compounds through gas phase 

molecular interactions with a stationary phase.  As compounds travel through the 

capillary column to the detector they are separated by differences in their boiling point, 

solubility, adsorption and molecular structure.  Compounds are separated by their 

partition via sorption processes on a high boiling point liquid stationary phase bonded to 

the walls of a narrow bore capillary column. The GC is coupled to a PFPD detector for 

detection of analytes. The details of the GC conditions are detailed below.  This method 

was based on an in-situ method by Strand et al. (2003) and modified to be a post 

extraction derivatisation of OTCs for cell culture exposure. 

3.2.2.1  GC conditions employed for the analysis of organotins in sediment 

 
For analysis of OTCs, a Varian Gas Chromatograph equipped with an 8400 autosampler 

and a pulsed flame photometric detector fitted with a BG12 filter was used.  Separation 

of ethylated OTCs was performed using a ZB-1 capillary column 30m x 0.32mm 

(Phenomenex) coated with 100% dimethyl polysiloxane (PDMS 0.25µm thickness). 

Helium was used as carrier gas (flow rate: 2.0ml min-1).  The column was held at 70 ºC 

for 3 min and subsequently increased to 220 ºC at a rate of 5 ºC min-1 and held for 7 

min.  The injector was maintained at a temperature of 240 ºC in split/splitless mode.  A 

high transmission band filter (390 nm ID) and interference filter (610 nm) was used to 
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observe the emission corresponding to the Sn-C and Sn-H molecular bonds.  The signal 

acquisition was carried out with a gate delay of 3.0 ms and a gate width of 2.0 ms after 

each flame ignition. An air- hydrogen flame was used.  The compressed air is divided 

into two flows: The first one “Air 1” is mixed with hydrogen and carries the effluent 

from column to the detector. The second one “Air 2” is added to the mixture in the 

detector to control the ignition rate of the pulsed flame.  The flow rates of the three 

gases were as follows: Air 1 flow 22.0 ml min-1, H2 flow 25.0 ml min-1, Air 2 flow 30.0 

ml min-1.  The composition of the fuel gas mixture can influence the emission profile. 

 

3.2.2.2 Stationary phase selection 

 
The ZB-1 column or equivalent has been used for organotin separation in the literature 

(Bravo et al., 2004).  This low polarity column is composed of 100 % dimethyl-

polysiloxane and has a temperature limit of 370 º C. The DB-5 column (5 % phenyl-95 

% dimethylpolysiloxane) has been more extensively used in the literature (Jacobsen et 

al., 1997; Ikonomou et al., 2002; Wasik et al., 2007). 

3.2.2.3 Optimisation of injection temperature 

 
The optimisation of injection temperature was carried out using one standard 

(approximately 360 ng g-1).  A temperature range of 240 – 280 ºC was tested (range 

taken from literature) for optimal injection conditions. The optimum peak height for all 

ethylated OTCs was obtained with an injection temperature of 240 ºC. 

 

3.2.2.4  Repeatability of injection type using an ethylated organotin mixture  

 
The repeatability of the injection type was tested using standard on-column, 

split/splitless, and pressure pulse injection by analysis of an ethylated standard mixture 

(n=15).  The ratio of peak heights tributyltin: tetrapropyltin was measured for each 
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injection type and relative standard deviations % RSD values were found to be 8.6, 5.5 

and 4.3 % for on-column, split/splitless and pressure pulse respectively.  Therefore 

pressure pulse was chosen as injection type for this method. 

 

 

 

3.2.2.5 Repeatability of instrumental internal standard tetrapropyltin 

 
The repeatability of the instrumental internal standard tetrapropyltin was tested by 

running a tetrapropyltin standard (concentration 595.9 ng g-1) in hexane (n=14).  

Measurement of peak height for the 14 standard analyses showed a mean peak height of 

4322 ± 222 and a % RSD of 5.1 %.  

 

3.2.2.6 Optimisation of external standard  

 
The concentration of external standard to be added to each sample as an injection 

correction standard was decided using the concentration range of organotins found in 

the literature and the GC calibration curve.  Figure 3.1 below demonstrates the 

concentration of external standard versus peak height response.  Three different 

concentrations (313.3, 595.9, 1164 ng g-1) of tetrapropyltin were analysed (n=3).  The 

highest concentration, 1164 ng g-1 did not show overloading but had greater error 

associated with it compared to the lower concentrations tested.  The concentrations of 

butyltins found in various sediments in the Irish marine environment have been found to 

range from 0.01 ng g-1 (unpublished Irish data) to 2000 ng g-1 (Enterprise Ireland, 2002) 

therefore an external standard concentration of approximately 300 ng g-1 was chosen as 

an instrumental internal standard concentration. 
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Figure 3.1: Concentration instrumental internal standard versus mean peak height 

response. 

 

3.2.2.7 Optimisation of pH for derivatisation  

 
The pH dependency on derivatisation yield of five organotin compounds was tested by 

derivatising an organotin chloride mix containing tributyltin chloride (TBT-Cl), 

dibutyltin dichloride (DBT-Cl2), monobutyltin trichloride (MBTCl3), triphenyltin 

chloride (TPT-Cl) and diphenyltin dichloride (DPT-Cl2) in methanol using a pH range 

from pH 3-6.  Analysis was completed on these samples in order to determine the 

optimal pH conditions.  

 

3.2.2.8  Methodology for pH dependency study 

 
Approximately 1ml of the organotin mixture was spiked onto 10 mls of 0.4M HCl in an 

acid washed glass centrifuge tube.  After pH adjustment, (pH range 3-6) one ml of 

sodium tetraethylborate in methanol (10 % w/v) was added and the mixture was 

immediately vortexed for 5 mins.  The derivatisation step was repeated on the extract in 

triplicate for maximum derivatisation efficiency.  Thereafter 10 mls of hexane was 

added and the solution was vortexed for 5 mins.  After settling for 2 mins, the hexane 
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layer (top) was removed.  The extraction into hexane was also repeated in triplicate for 

maximum recovery. The three hexane layers were pooled and concentrated to 

approximately one ml, 70 mg of instrumental internal standard was added and extracts 

were analysed using GC-PFPD. 

 

3.2.2.9 Results of pH dependency study 

 
The % recovery for each analyte was calculated based on the spiking concentrations and 

the results for the pH dependency study are presented in Figure 3.2 which displays the 

% recovery for each of the various pH derivatisation yields for each analyte over the pH 

range (n=3). 
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Figure 3.2: The percentage recovery of five organotin analytes over the pH range 3-6 

 

The % recoveries for the organotin analytes proved to be highly variable.  The optimum 

pH for TBT was between pH 5-6 with recoveries of 77.6 and 87.6 % which was similar 

to the literature value of pH5 ± 0.5 (Strand et al., 2003). There was greater recovery 

error associated with pH 6 (SD± 25.6%) for TBT demonstrating that pH 5 would be 

more appropriate as the optimum pH for this analyte.  Low recoveries were obtained for 

DBT and MBT with the exception of pH 6 which demonstrated recoveries of 73.5 % 

(n=1) for DBT and 40.8 % for MBT (n=3).   
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Further testing and recoveries of these analytes from certified reference materials is later 

described.  TPT demonstrated percentage recoveries in excess of 100 % potentially 

demonstrating contamination of either reagents used in the procedure or standards with 

triphenyltin.  Blank extracts did not however show positive recoveries.  DPT was shown 

to have optimum recovery of 90 % at pH 4.  Figure 3.3 demonstrates that other 

organotins were detected such as monophenyltin trichloride (MPT) which was not 

present in the organotin mixture and therefore could potentially be a degradation 

product of TPT or DPT or could be present in one of the reagents or standards used. 

 
 

 
 

Figure 3.3: Chromatogram of derivatised OTCs showing presence of (a) MPT  

 

3.2.3 Method for speciation of organotins in marine sediment 

 

An adaption of an in-situ ethylation method (Strand et al., 2003) was employed for 

extraction of sediments for both quantification and cell line assay purposes with 

modifications detailed below. 

 

(a) 
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Freeze dried sediment samples (0.5 g) were digested in a solution of HCl: H20 (1:1 v/v) 

for 30 min in an ultrasonic bath.  The mixture was then extracted with dichloromethane 

(DCM) for 30 min using a vortex mixer and the organic layer was decanted.  The 

digestion procedure was completed on the sample in triplicate to maximise recovery.  

The DCM layer was firstly solvent exchanged to hexane and then subsequently to 

methanol, the pH was adjusted to 5.0 ± 0.5 with 10 % sodium acetate and 20 % sodium 

hydroxide in deionised water and ethylation of organotins completed using a 10 % w/v 

solution of sodium tetraethylborate (STEB) in methanol.  The ethylated OTCs were then 

extracted into hexane and a clean up was performed on the organic extract with sodium 

sulphate and 5 % water deactivated alumina.  Sulphur was removed from the extract 

using tetrabutylammonium sulphite which is described.  To prepare the sulphite reagent, 

tetrabutylammonium hydrogen sulphate (3.39g) was dissolved in organic-free reagent 

water (100cm3).  This was extracted three times with three aliquots of hexane (20cm3) 

to remove impurities.  The hexane extracts were discarded and sodium sulphite (25g) 

was added to the water solution.  The resulting solution, [tetrabutylammonium sulphite 

(TBA)] which is saturated with sodium sulphite was used for sulphur removal from the 

solvent extracts.  The extract (1ml) was transferred quantitatively with hexane (1ml) to a 

60ml turbo vap vial and TBA-sulphite (1ml) and propan-2-ol (2ml) was added and the 

bottle capped.  This mixture was shaken for at least 1 min.  Clear crystals (precipitated 

sodium sulphite) were indicative that sufficient sodium sulphite was present.  If 

precipitated sodium sulphite disappeared, more crystalline sodium sulphite was added in 

approximately 0.100g portions until a solid residue remained after repeated shaking.  

Purified water (5ml) was added and shaken for at least 1 min and the solution was 

allowed to stand for 5-10 min.  The hexane layer (top) was then transferred to a 

concentrator tube and was concentrated to approximately 1ml.  The actual volume of the 

final extract was recorded.  Tetrapropyltin was then added to the extract in the gas 

chromatography (GC) vial as an injection correction standard and the sample extract 
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was analysed using GC-PFPD.  No procedural internal standard was employed during 

the course of this study as suitable compounds e.g. tripropyltin chloride have been 

previously found to be toxic to biological organisms at very low levels (Brüschweiler et 

al., 1995).  The freshwater sediment certified reference material BCR646 was analysed 

with every batch to further ensure compliance with internal quality control procedures.  

A diagram outlining the method for speciation of organotins in marine sediment is 

presented in Figure 3.4 and is detailed below.   

 
Figure 3.4: Method diagram for speciation of organotin compounds in marine sediment 

for analytical quantification. 

Add 8mls HCl:H20 1:1 

v/v to 2g FD sediment 

and sonicate for 30mins 

Add 20mls DCM and 

shake for 30mins Repeat 3 times (8mls 

HCl:H20 1:1 v/v and 

60mls DCM) 

Centrifugation at 

3000rpm for 5mins and 

DCM layer removed 

with separating funnel 

Transfer to hexane with 

turbovap (approx. 1ml) 

Transfer to methanol 

with turbovap (approx. 

5mls) 

pH adjustment with 

10% sodium acetate and 

20% sodium hydroxide  

0.5mls STEB in 

methanol added and 

vortexted 3mins x 3 

(Back extraction in 

hexane -5mls x 3mins) 

x 3 and hexane layer 

combined and conc. 

Clean up with 1g sodium 

sulphate (top) and 2g 

5% deactivated alumina 

(bottom) 

Clean up using TBA 

sulphite (2 x 2mls hex 

added for quantitative 

transfer) 

Add external std. 

tetrapropyltin and 

analyse GC-PFPD 

Bulk sediment 

(< 2mm/< 0.063 mm) 



- 137 - 

 
 

3.3 Validation of Methodology 

 
Method validation provides an assurance of reliability and is sometimes referred to as 

"the process of providing documented evidence that the method does what it is intended 

to do”. Method validation was completed to ensure that an analytical methodology is 

accurate, precise, specific, reproducible, and linear over specified ranges ensuring that 

only the analyte will be analysed.  

3.3.1  Accuracy 

 

Accuracy is the measure of exactness of an analytical method (EURACHEM, 1998). It 

measures the closeness of agreement between the value accepted either as a 

conventional true value or a reference value and the result obtained from a particular 

method. Accuracy can be calculated by comparison of observed results from 

environmental samples to expected values.  

Accuracy was determined with the freshwater certified reference material BCR646 

which has certified values of tri-, di- and mono- butyltin and tri-, di- and mono-

phenyltin. Certified values and percentage recoveries of the butyltins were determined 

in the sediment and results are presented in Table 3.1 below. 
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Table 3.1: Percentage recoveries of butyltins in the certified reference material BCR646 

showing upper and lower control limits (UCL/LCL) as ± 2 SD mean % recovery. 

Recovery (%) 

Analyte 

Certified value 

(uncertainty) µg kg
-1

 1* 2* 3* Mean % RSD UCL  LCL 

 
TBT 

 

 
480(80) 

 
63.2 

 
63.2 

 
64 

 
63.4 

 
0.71 

 
63.9 

 
63.0 

 
DBT 

 

 
770(90) 

 
69.2 

 
71.4 

 
74.4 

 
71.7 

 
3.65 

 
74.3 

 
69.0 

 
MBT 

 

 
610 (120) 

 
29.1 

 
30.8 

 
29 

 
29.6 

 
3.28 

 
30.6 

 
28.7 

* Replicate number 

 

3.3.2 Precision 

 

Precision can be defined as the measure of the amount of scatter of data points around 

the mean and can be determined by multiple analysis of a homogeneous sample. It is a 

measure of the degree of repeatability of an analytical method under normal operation 

and is normally expressed as the percent relative standard deviation (% RSD).  

Precision of analysis (% RSD) was tested by analysis of one sample which contained 

the three analytes TBT, DBT and MBT at different concentrations and analysed 10 

times.  Precision of analysis was determined for the three analytes, TBT, DBT and MBT 

as 4.95, 9.31 and 9.81 % respectively. 

 

3.3.3 Specificity 

 

Specificity is the ability to measure accurately and specifically the analyte of interest in 

the presence of other components that may be expected to be present in the sample 

matrix (EURACHEM, 1998). It is a measure of the degree of interference from active 

ingredients, impurities or degradation products amongst others, ensuring that a peak 

response is due to a single component only i.e. that co-elution does not occur. Matrix 
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effects are sample dependent; therefore compounds that could cause interference in 

analyte peak identification will change depending on the sample type.  

 

Identification of each sample analyte peak required that the relative retention time of the 

analyte to a specified internal standard be similar to the relative retention time observed 

with an analytical standard.  Relative retention times were calculated by dividing the 

retention time (RT2) of the external standard (ES) by the retention time (RT1) recorded 

for the analyte peak.  

 

 
Figure 3.5: Chromatogram of ethylated butyl- and phenyl-tin compounds indicating 

relative retention times 

 

RT 1 

RT 2 

MBT 

ES 
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Table 3.2: Retention and relative retention times of six ethylated organotin compounds.  
 

Analyte RT RT1 RT2 RT2/ RT1 

MBT 11.6 12.9 9.3 0.72 
DBT 15.8 12.9 13.5 1.05 
MPT 17.6 12.9 15.3 1.19 
TBT 19.4 12.9 17.1 1.33 
DPT 26.4 12.9 24.1 1.87 
TPT 33.9 12.9 31.6 2.45 

TetPT 15.2    
Solvent quench 2.3    

                       RT- Retention Time 
                       RT2/ RT1-Relative retention time 
 

Relative retention times (RT2/RT1) were calculated for MBT, DBT and TBT on a 

phenomenex ZB-1 column using tetrapropyltin as external standard. 

3.3.4 Linear range 

 

Linearity shows the ability of the method to produce results that are directly 

proportional to analyte concentration within a given range.  Linearity is generally 

reported as the R2 of the regression line.  An acceptable linear range has an R2 value 

range of 0.9995-1.0000.  Range is the interval between the upper and lower levels of 

analyte (inclusive) that has been demonstrated to be determined with precision, 

accuracy and linearity using the method as written.  Linearity statistics for calibration 

curves corrected for instrumental internal standard are outlined in Table 3.4 below. 

 

Table 3.4: Linear range and regression statistics for TBT, DBT and MBT 

Analyte Points in regression Range (µg kg
-1

) R
2
 

TBT 8 41.8-2496.5 0.9995 
DBT 8 40.2-2406.7 0.9996 
MBT 8 38.1-2278.8 0.9997 

 

 
 



- 141 - 

 

3.3.5 Determination of instrument LoD and LoQ 

 
The LoD can be defined as the lowest concentration of an analyte in a sample that can 

be detected, but that is not quantified.  It is a limit test that specifies whether or not an 

analyte is above or below a certain value within a certain degree of confidence.  The 

sample LoD was expressed as the analyte concentration corresponding to a mean 

sample matrix blank response plus three standard deviations (+3s).  

 

The LoQ can be defined as the lowest concentration of an analyte in a sample that can 

be determined with acceptable precision and accuracy under the stated operational 

conditions of the method.  Validation of the LoQ for this method was expressed as the 

analyte concentration corresponding to a mean sample blank value +10s.  The sample 

LoD and LoQ for the three OTCs are presented in Table 3.5 below. 

 

Table 3.5: Limit of Detection (LoD) and Limit of Quantification (LoQ) determined for 

three OTCs (ng g-1
) 

 TBT DBT MBT 

LoD ng g
-1

 19.1 59.3 22.9 
LoQ ng g

-1
 40.1 106.3 51.7 

 
The instrument LoD is determined as the concentration (ng g-1) of the second lowest 

standard on the calibration curve for each given analyte.  This concentration is then 

multiplied by the weight of each sample analysed to determine the ultimate “sample” 

LoD for each sample (approx. 0.5g).  This means that there is an individual LoD for 

each analyte in each sample and will be used when reporting results.  An example of the 

calculation LoD x sample wt = LoD g/sample) is presented in Table 3.6 and therefore, is 

expressed as an absolute weight of analyte (rather than concentration) which is the 

sample LoD. 

 



- 142 - 

 

Table 3.6: Sample limit of Detection (LoD) determined for three OTCs (ng) 

MI Ref MSC/07/1002 MSC/07/1064 MSC/07/1065 MSC/07/1068 MSC/07/1073 

Weight (g) 0.5254 0.5339 0.5294 0.5312 0.5012 
TBT LoD (ng) 44.3 45.0 44.6 44.8 42.2 
DBT LoD (ng) 42.7 43.4 43.0 43.1 40.7 
MBT LoD (ng) 40.4 41.1 40.7 40.8 38.5 

 

The sample and instrument LoD for the three analytes (e.g. 19.1 and 44.3 ng g-1) was 

elevated compared to other studies using the same detector.  Strand et al. (2003) 

reported LoDs of 0.1 ng g-1 for all butyltins in sediment.   

 

3.3.6 Reproducibility of method performance 

 

Reproducibility is the closeness of agreement between individual results using the same 

method and test substance, but a different set of laboratory conditions such as analysis 

of CRMs on different days.  The reproducibility of the method was tested by analysing 

the same certified reference material (CRM BCR646) in different batches on different 

days. Quality control (QC) charts were generated for the three OTCs and are presented 

in Figures 3.6, 3.7 and 3.8 below.  

 

The mean concentration (µ) and standard deviation (s) was calculated from the results 

obtained from 17 batches of analyses.  A mean result outside the µ ± 3s action limits 

would require investigation however no results were outside these action limits for all 

three OTCs on QC charts.  If one mean result is outside the µ ± 2s this serves as a 

warning of possible loss of statistical control and indicates that a possible source of 

error might be present.  If two mean results are outside the µ± 2s this shows a drift from 

statistical control.  If there are eight successive results on the same side of the x-axis 

further investigation is needed and this is seen as a bias.  However no negative or 

positive bias was observed for any of the three OTCs with the exception of the 
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monobutyltin control chart where the last point was out of range and removed from the 

chart. 

 

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

No.

C
o

n
c
e
n

tr
a

ti
o

n
 (

n
g

/g
)

Actual value U U+2SD U-2SD U+3SD U-3SD
 

 
Figure 3.6: Control chart of tributyltin (TBT) in certified reference material BCR646 
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Figure 3.7: Control chart of dibutyltin (DBT) in certified reference material BCR646 
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Figure 3.8: Control chart of monobutyltin (MBT) in certified reference material 

BCR646 

 

3.3.7 Summary discussion on validation parameters 

 

The ultimate aim of this study was to develop a method for the extraction of OTCs in 

their salt form for exposure to a cell line (chapter 4) and subsequent derivatisation for 

quantification using GC analysis.  Procedural internal recovery standards such as 

tripropyltin have been found to be highly toxic to cell cultures therefore the described 

method did not incorporate the use of an internal recovery standard for cell line assay 

work which is essential for quality assurance as losses can potentially occur at the 

extraction and derivatisation stage.  However, the quality of each batch was assured by 

running the CRM BCR646 within every batch to provide a % recovery concentration 

for each analyte. 

 

Accuracy of the method was determined (n=17 extractions) with three concentrations of 

each compound in the CRM BCR646 and showed recoveries of 63.4, 71.7 and 29.6 % 
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for TBT, DBT and MBT respectively.  The precision of analysis demonstrated good 

precision for TBT with a % RSD of 4.95 %.  Elevated LoDs were determined for the 

three compounds (19.1, 59.3 and 22.9 ng g-1 for TBT, DBT and MBT respectively) in 

comparison to other studies using different methodology however for this particular 

project, all sites analysed demonstrated high quantities of butyltin compounds and low 

LoDs were not required.  Overall the method showed good reproducibility and 

repeatability however detection limits would need to be improved for better sensitivity 

for future work. 

 

3.4 Conclusion 

An analytical method for extraction of OTCs in their chloride form and subsequent 

derivatisation and quantification was optimised and validated.  Leaching with acid using 

ultrasound followed by extraction with DCM was demonstrated to be the most effective 

technique as opposed to pressurised fluid extraction which proved to be problematic due 

to the precipitation of complexing agents during the highly pressurised extraction.  

Sodium tetraethylborate was used as an effective derivatisation reagent however it was 

difficult to obtain commercially due to its explosive nature.  Reproducibility of the 

method was demonstrated for TBT, DBT and MBT using control charts and recoveries 

of these three analytes were found to be 63.4, 71.7 and 29.6 % respectively.  The low 

MBT recovery again demonstrates the difference in hydrophobicities of the three OTCs.  

The LoD/LoQ obtained for this study were high in comparison to other studies but did 

not affect the results for this present study as all samples were found to have elevated 

concentrations of OTCs.  However further work is required to obtain lower LoD/LoQ 

values for future analysis. 
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4.1 Introduction 

Persistent organic pollutants (POPs) can pose a potential risk of causing adverse effects 

to organisms which reside in marine environments.  Sediments can serve as an ultimate 

sink for these POPs and it is therefore important that the levels of such priority 

pollutants can be accurately determined and that sensitive and reproducible biological 

effects methodologies are developed to allow the long term effect of such contaminants 

on these organisms to be monitored.   Presently, sediment quality in Ireland is 

predominantly reliant on chemical analysis alone and established procedures to 

characterise potential toxicity are limited. The integration of both chemical analysis and 

bioassay data, however, provide a more informative basis for in depth assessment of the 

sediment quality. Organisations such as the Oslo and Paris commission (OSPAR) and 

the International Council for the Exploration of the Sea (ICES) with responsibility for 

the provision of advice on marine ecosystems are tending towards integrated approaches 

(ICES, 2007). 

 

Organotin compounds (OTCs) have been found to be of toxicological concern in 

organisms in the marine environment (Rüdel, 2003) therefore, sensitive biological 

indicators of organotin contamination need to be established to assess sediment toxicity. 

In general, it has been found that the greater the degree of substitution on the tin atom, 

the more toxic the compound (Forsyth and Casey, 2003).  Tributyltin (TBT) and 

triphenyltin (TPT) enter the marine environment mainly from their use in antifouling 

paints used for shipping (Gomez-Ariza et al., 1994) and on fish cages (Minchin, 2003) 

with both compounds degrading to their di- and mono- metabolites in the marine 

environment. The TBT degradation metabolites dibutyltin (DBT) and monobutyltin 

(MBT) have been used as stabilisers in polymers such as poly vinyl chloride (PVC) 

(Ikonomou, 2002).  Triphenyltin has also reportedly been used as an agricultural 
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fungicide and algicide (Gomez-Ariza et al., 1994) and its metabolites can also be found 

in the marine environment but their presence is due to degradation of triphenyltin only. 

Ireland was the first country to ban the use of all organotin containing compounds on 

vessels less than 25m in 1987 (Minchin, 2003). 

 

In general the solubility of OTCs in water is low due to their hydrocarbon substituents.  

Organotins exist as neutral ion pairs and complexes or as cations in the aquatic system.  

The log Kow for TBT-Cl and TPT-Cl has been reported to be in the ranges 2.3-4.4 and 

2.02-4.08 respectively (Rüdel, 2003), these compounds are therefore tightly bound to 

the particle phase and have been found to bind to oxides and hydroxides and organic 

material (Hoch et al., 2002).  Bioavailability of organotin compounds is greatest at 

neutral and slightly alkaline pH values and is reduced in the presence of dissolved 

organic carbon.  Bioconcentration of TBT and TPT in marine aquatic systems has been 

shown to decrease with increasing concentrations of humic acids.  Bioconcentration 

through the water phase has been shown to be significantly greater than 

bioaccumulation through the marine food chain (Rüdel, 2003). 

 

Tributyltin has been found to cause limb deformities in crab species, affect arm 

regeneration in brittle stars and induce high larval mortality of the common mussel 

(Forsyth and Casey, 2003).  Exposure to this compound has also been linked to 

reductions in tissue weight, increased shell thickness and distortion in Pacific oysters 

(Minchin, 2003). Tributyltin has been unequivocally linked to imposex in the dogwhelk 

Nucella lapillus, this condition manifesting itself as the imposition of male 

characteristics on the female dogwhelk following exposure to concentration levels as 

low as 1 ng/L with severe cases resulting in sterilisation of the organism (Bryan et al., 

1986; Gibbs and Bryan, 1986; Bryan et al., 1987). Nucella species are recognised within 

international fora (e.g. OSPAR) as a suitable bioindicator of TBT contamination. As 
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OTCs are recognised pollutants of priority concern both biological and chemical 

monitoring of these compounds in Ireland is mandatory within the OSPAR framework. 

 

Several analytical methods have been developed for the determination of OTCs.  In 

general speciation of OTCs in sediment involve an acid digestion step, followed by 

extraction into an organic phase for subsequent derivatisation, clean up and 

chromatographic separation and detection.  A wide range of extraction and 

derivatisation techniques have been reported and these are the most critical steps in the 

analysis (Quevauviller et al., 2000).  Overall, Gas Chromatography is the most 

commonly used separation technique but HPLC can also be used when coupled to 

inductively coupled plasma mass spectrometry (Smedes et al., 2000).  A wide range of 

very selective detection methods are available.  The pulsed flame photometric detector 

(PFPD) offers very selective and sensitive detection of the OTCs and reduces 

interferences such as sulphur emitting species (Bravo et al., 2004, Bancon-Montigny et 

al., 2000).  Current practices involving the production of solvent extracts intended for 

testing on biological organisms involve extraction of many anthropogenic compounds 

with a variety of solvents (Hollert et al., 2000; Brack et al., 2002; Houtman et al., 2004; 

Biselli et al., 2005; Brack et al., 2005). 

 

The use of a single test species in toxicity testing may result in an inaccurate 

measurement of the potential toxicity of a particular marine pollutant.  A single species 

test regimes cannot adequately address issues such as differences in species sensitivity, 

exposure routes and pollutant mode of action.  A test battery approach employing 

numerous test species representing multiple trophic levels is therefore recommended 

(Matthiessen et al., 1998; Ahlf et al., 2002; Davoren et al., 2005b).  In vitro cell cultures 

are becoming a frequent element of this test battery approach (Jos et al., 2003) as cell 

culture techniques are more practical both ergonomically and economically (and more 
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ethically responsible) than use of whole animal tests.  Fish cell lines have also proven to 

be an inexpensive and sensitive bioanalytical tool for sediment quality assessment 

(Fent, 2003).  Multiple endpoints for cytotoxicity testing have been shown to be a useful 

means of assessing the influence of different mechanisms of cell death for comparability 

of sensitivity (Weyermann et al., 2005). 

 

The RTG-2 cell line derived from rainbow trout gonads (Onchorhyncus mykiss) and the 

PLHC-1 fish hepatoma cell line (Poeciliopsis lucida) are both established cell lines and 

have been widely used in a number of cytotoxicity studies for a number of contaminant 

classes (Fent 2001; Caminada et al., 2006; Davoren and Fogarty, 2006; Zurita et al., 

2007a, 2007b).  While the toxicity of OTCs has been established with the PLHC-1 cells, 

an extensive search of the literature revealed a lack of corresponding data for the RTG-2 

cells.  In addition, very few studies to date have investigated the use of fish cell lines as 

bioanalytical tools to evaluate the toxicity of environmental samples (e.g. solvent 

extracts). 

 

This study reports on the extraction of OTCs in their salt form for subsequent exposure 

to cell cultures, in parallel with sediment extract derivatisation and quantification using 

GC-PFPD.  The aims of this were to (1) to develop an analytical method suitable for the 

extraction and quantification of the organotin residues in sediment matrices with the 

additional requirement of being adaptable to enable transfer of extracted residues into an 

organic solvent for subsequent testing on the cell lines, (2) to determine the toxicity of 

five OTCs to the RTG-2 cell line using multiple endpoint measurements (3) to evaluate 

the selective sensitivities and different endpoints of this cell line for each of the OTCs 

used in this study, (4) to assess the sensitivity of both the RTG-2 and PLHC-1 cell lines 

to this solvent extract compared to the detection limits with the analytical technique, (5) 
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to assess the potential of employing both cell lines as screening tools of organotin 

contaminated sediments. 

4.2 Materials and methods 

4.2.1 Chemicals 

 
Tributyltin chloride (CAS No. 1461-22-9), dibutyltin dichloride (CAS No. 683-18-1), 

monobutyltin trichloride (CAS No.1118-46-3), triphenyltin chloride (CAS No.639-58-

7), were obtained from LGC Promochem (UK). Diphenyltin dichloride (CAS No.1135-

99-5) was obtained from Sigma-Aldrich (Ireland). The organic solvent 

dimethylsulphoxide (DMSO) Sigma-Aldrich (Dublin, Ireland), was employed as an 

organotin solubilising agent for use in preparation of stock solutions for cytotoxicity 

assays. To ensure minimal background interference from solvents in bioassays the 

maximum allowable concentration (MAC) of DMSO did not exceed 1 % (v/v) in any of 

the cytotoxicity tests.  Stock solutions of each chemical were prepared in the appropriate 

media.  Cell culture media was purchased from Sigma-Aldrich (Dublin, Ireland) and all 

supplements and the trypsinisation solution were purchased from Biosciences (Dublin, 

Ireland).  The freshwater sediment certified reference material, BCR646 and OTC 

quantification external standard tetrapropyltin were obtained from LGC Promochem 

(UK). Hydrochloric acid (33%) was obtained from AGB, Ireland. The solvents, 

dichloromethane, propan-2-ol, hexane, acetone and methanol (all pestiscan grade) were 

obtained from Labscan, Ireland.  Tetrabutylammonium hydrogen sulphate, sodium 

sulphite, sodium acetate, sodium hydroxide and the derivatising agent sodium 

tetraethylborate 97% (STEB) were obtained from Sigma-Aldrich (Dublin, Ireland).  The 

ethylated organotin standards in hexane were obtained from the Quality Assurance of 

Information for Marine Environmental Monitoring in Europe (QUASIMEME) project 

office (Wageningen, The Netherlands). 
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4.2.2  Site selection and sediment sampling 

 

The sampling site at Dunmore East Harbour, Co Waterford 52º 08.843’N, 6º 

59.480’W was selected on the basis of a previous report indicating elevated levels of 

TBT (up to 6.4 mg kg-1) (Enterprise Ireland, 2002).  Sediment was collected with a 

Van Veen Grab and the top 0-5 cm was removed for use as a test material.  Samples 

were stored at -30 ºC.  Sediment samples were subsequently thawed and wet sieved 

to the < 2mm fraction.  Thereafter the < 2mm fraction was frozen at -30 ºC and 

freeze dried. The map of the sampling site can be seen in Figure 4.1 below. 
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Figure 4.1: Sampling site at Dunmore East harbour 

 
Sampling site at Dunmore East Harbour 
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4.2.3 Physical and chemical characterisation of the sediment 

 

Total organic carbon was determined in the < 2mm fraction by Alcontrol Laboratories 

(Dublin, Ireland) using the combustion method, which conforms to ISO 17025.  The 

accuracy of this method was ensured by analysing two QUASIMEME laboratory 

proficiency materials, which were found to be within acceptable |Z| score limits.   

 

4.2.4 Analytical methodology for speciation of OTCs 

 
An adaptation of an in situ ethylation method (Strand et al., 2003) was employed and 

resulting modifications are detailed below. 

 

Freeze dried sediment samples (0.5g) were digested in a solution of HCl:H2O (1:1 v/v) for 

30 min in an ultrasonic bath.  The mixture was then extracted with dichloromethane (DCM) 

for 30 min with shaking and the organic layer was removed.  The procedure was repeated 

in triplicate to maximise recovery.  The DCM layer was solvent exchanged to hexane and 

then subsequently transferred to methanol.  The pH was adjusted to 5.0 ± 0.5 with 10 % 

sodium acetate and 20 % sodium hydroxide in deionised water and ethylation of organotins 

completed using a 10 % w/v solution of sodium tetraethylborate in methanol.  The 

ethylated organotins were then back extracted into hexane and the organic extract was then 

cleaned up with sodium sulphate and alumina deactivated with 5% water and sulphur was 

removed from the extract using tetrabutylammonium sulphite.  Tetrapropyltin was then 

added as an injection correction standard to the extract in the GC vial and the sample 

extract was analysed using a gas chromatograph-pulsed flame photometric detector (GC-

PFPD).  No internal recovery standard was employed during the course of this study as 
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suitable compounds e.g. tripropyltin chloride have been previously found to be toxic to 

biological organisms at very low levels (Brüschweiler et al., 1995). 

 

The freshwater sediment certified reference material BCR646 was analysed with every 

batch to further ensure compliance with internal quality control procedures.   

 

4.2.5 Cell culture 

 

RTG-2 cells (Catalogue number 90102529) derived from rainbow trout gonads, were 

obtained from the European Collection of Cell Cultures (Salisbury, UK).  The PLHC-1 cell 

line (CRL-2406) derived from a hepatocellular carcinoma in the topminnow were from the 

American Type Culture Collection and purchased from Promochem (UK).  Both cell types 

were maintained in Dulbecco’s Modified Medium Nutrient Mixture/ F-12 Ham (DMEM) 

supplemented with either 10 % (RTG-2) or 5% (PLHC-1) foetal calf serum (FCS) and 45 

IU ml penicillin, 45 µg ml streptomycin. The RTG-2 medium was also supplemented with 

25 mM 4-(2-hydroxyethyl)-1-piperazineethane sulphonic acid (HEPES) and 1% non-

essential amino acids.  Cultures were maintained in a refrigerated incubator (Leec, 

Nottingham, U.K.) at either 20°C (RTG-2) or 30°C (PLHC-1) under normoxic atmosphere.  

 

4.2.6 Cytotoxicity testing  

 

4.2.6.1 Organotin chemical exposure  

 
Individual wells of a 96-well microplate (Nunc, Denmark) were seeded with 100 µl of cell 

suspension at a seeding density of 2 x 105 cells per ml for RTG-2 cells and 8 x 105 cells per 



- 159 - 

ml for PLHC-1 cells for 24 h exposure periods.  RTG-2 cells were also exposed for 96 h 

and these plates were seeded at a density of 1.5 x 105 cells per ml, which was found to be 

optimal to achieve the desired confluence for this exposure period.  Test chemicals were 

prepared in a reduced serum medium (5% FCS).  Range finding tests were conducted on 

the five organotin compounds with the employed concentration range of 1 x 10-9 to 1 x 10-3 

M with the exception of MBT (1 x 10-8 to 1 x 10-3 M). Definitive testing was then 

conducted on four of the organotin compounds (DBT, TBT, DPT and TPT) with the RTG-2 

cell line.  The PLHC-1 cell line was only exposed to TBT within the same definitive range 

as the RTG-2 cell line.  Six replicate wells were used for each control, solvent control and 

test concentration per microplate. 

 

4.2.6.2 Preparation of sediment extract for cell line testing 

 
Approximately 26g of sediment was extracted in 2g aliquots and the extracts combined.  To 

each 2g freeze dried sediment, a solution of HCl:H2O 1:1 v/v (8 ml) was added and this was 

sonicated using an ultrasonic bath for 30 min.  Twenty ml of dichloromethane (DCM) was 

then added and the mixture was shaken for 30 min using a multitube vortexer.  The slurry 

was then centrifuged for 5 min and the DCM layer was removed. Further sonication and 

shaking were repeated twice and the DCM layers combined.  The DCM layer was then 

concentrated and transferred to hexane under a N2 stream using a turbovap concentrator.  

The hexane layer was evaporated to 1 ml in the turbovap and passed over a 1 g column of 

hexane washed sodium sulphate.  A sulphur clean up was performed using 

tetrabutylammonium sulphite.  The hexane layer was then transferred to 1 ml of 

hexane:acetone 9:1 v/v and ultimately transferred to 900 µl of DMSO.  Both a method 

blank and sediment sample extract (Dunmore East) were prepared for cell line testing.  
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Stock solutions of sediment and blank extracts were prepared with a ratio of 1:24 dilution 

of DMSO to cell culture media.  This stock solution was tested at dilutions 1:1 to 1:256 in 

media in six replicates per plate for a period of 24h (maximum concentration of DMSO was 

2 % which has been shown to have no significant effect on the RTG-2 cells).  A flowchart 

showing the analytical methodology and preparation of sediment extract for cell line testing 

is presented in Figure 4.2 below.  Two different paths are followed using the same 

extraction.  The analytical method is outlined in red and cell culture methodology is 

outlined in blue while the black outline indicates combined methodologies. 

 

 

 

 

 

 

 

 



- 161 - 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: A schematic diagram of analytical methodology and cell line testing, the red 

outline indicating analytical methodology, blue outline indicating bioassay methodology 

and black indicating methodology used for both bioassay and analytical. 

 

Following exposure of the cells to the individual OTCs or the sediment extract for the 

appropriate incubation period the test medium was removed; cell monolayers washed with 

phosphate buffered saline (PBS) and cytotoxicity assessed using the Alamar Blue and 

Neutral Red assays conducted subsequently on the same set of plates as previously 

described (Schirmer et al., 1998; Davoren and Fogarty, 2006). 
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4.2.7 Statistical analysis 

 

Fluorescent units (AB and NR assays) was measured using a microplate reader (TECAN 

GENios, Grödig, Austria).  Experiments were conducted in triplicate (three independent 

exposures).  Cytotoxicity was expressed as the mean percentage inhibition relative to the 

unexposed control ± standard deviation (SD), and was calculated using the formula [100-

((Mean Experimental data/Mean Control data) x 100)].  Control values were set at 0% 

cytotoxicity.  Cytotoxicity data (where appropriate) was fitted to a sigmoidal curve and a 

four parameter logistic model was used to calculate the 50 % Effective Concentration 

(EC50), which is defined as the concentration of test compound causing a 50% inhibition of 

cell viability compared to untreated controls.  The EC50 values are reported at ± 95 % 

Confidence Intervals (± 95% CI).  This analysis was performed using Xlfit3™ a curve 

fitting add-in for Microsoft® Excel (ID Business Solutions, UK).  Statistical analyses were 

completed using one-way analysis of variance (ANOVA) followed by Dunnett’s multiple 

comparison testing.  The respective no observed effect concentration (NOEC) and lowest 

observed effect concentration (LOEC) values were calculated for all data and statistical 

significance was accepted at P ≤ 0.05 throughout. 

 



- 163 - 

4.3 Results 

4.3.1 Chemical analysis of the sediment 

 

The total organic carbon content of the < 2mm fraction of sediment was found to be 1.52 % 

for the Dunmore East site.  The < 2mm fraction of the sediment was used for extractions as 

this fraction is most representative of the fraction available to organisms which reside in the 

sediment.  The Gas Chromatography-Pulsed Flame Photometric Detector (GC-PFPD) 

chromatogram of the Dunmore East sediment sample extract (1:10 dilution in hexane) is 

presented in Figure 4.3 below.  Three distinct butyltin peaks, tributyltin, dibutyltin and 

monobutyltin and a peak indicative of the external standard tetrapropyltin are detected.  

However two unknown peaks are also observed which could be by-products from 

ethylation with sodium tetraethylborate such as boroxin, diethylsulphide and 

diethyltrisulphide or ethylated sulphur species, all which have been found previously to be 

present in large quantities (Smedes et al., 2000). 
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Figure 4.3: GC-PFPD chromatogram of the Dunmore East sediment sample extract (1 in 

10 dilution in hexane).  TBT, DBT and MBT and the injection correction standard peak, 

tetrapropyltin are highlighted. 

4.3.1.1  Quality assurance of analysis 

 
The concentrations of the various butyltin compounds and the percentage recoveries for the 

Dunmore East sample and the freshwater sediment certified reference material (CRM) 

BCR646 are shown in Table 4.1.  The recoveries of OTCs in the CRM can be used to 

correct for concentrations of the various organotins in the environmental sample. 
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Table 4.1 Concentrations (µg kg-1 dry weight) and recoveries (%) of various butyltins in 

the Dunmore East sediment sample extract and certified values in the reference material 

BCR646. 

Analyte BCR646 Certified value 

and uncertainty   

Conc OTCs in 

Dunmore East extract
1
 

% Recovery ±SD of OTCs in 

BCR646 (n=3) 

 
TBT (Sn (C4H9)3

+) 
 

480 (80) 
 

2125 
 

70.4±2.40 
 
DBT (Sn (C4H9)2

2+) 
 

770 (90) 
 

790 
 

52.0±12.1 
 
MBT (Sn (C4H9)

3+) 
 

610 (120) 
 

609 
 

34.6±15.9 
1 Concentrations reported are not recovery corrected 
 

 

4.3.2 Cytotoxicity tests with RTG-2 cells and organotin compounds  

 

Cytotoxicity data for the RTG-2 cells following exposure to the four individual OTCs, 

TBT, DBT, TPT and DPT for 24 h and 96 h are presented in Tables 4.2 and 4.3 

respectively.  Cytotoxicity was found to be greatest for the higher substituted organotin 

compounds TBT and TPT.  Range finding tests confirmed that MBT was significantly less 

toxic than the other compounds so that no further definitive testing was conducted.  

Concentration response cytotoxicity charts, as quantified with the AB and NR assays are 

presented for the four individual compounds TBT, DBT, TPT and DPT after 24 hours 

(Figures 4.4 to 4.7) and after 96 hours (Figures 4.8 to 4.11).   
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Table 4.2: Cytotoxic effects on RTG-2 cells after 24 hour exposure with four OTCs and an 

organotin mixture 

Compound Exposure period 

and endpoint 

EC50  

(µM)
a
 

Fit Statistic 
(r

2
) 

 

NOEC
 b 

(µM) 

LOEC
c 

(µM) 

 
TBT 

(0.1-10 µM) 

 
24 h AB 
inhibition 

 

 
1.03 

(0.75-1.31) 

 
0.981 

 
0.1 

 
0.5 

 
 

  
24 h NR 
inhibition 

 

 
3.43 

(-0.09-6.96) 
 

 
0.800 

 
0.1 

 
0.5 

 
DBT 

(0.1-100 µM) 

 
24 h AB 
inhibition 

 

 
6.27 

 (4.15-8.38) 
 

 
0.986 

 
1 

 
5 

  
24 h NR 
inhibition 

 

 
9.89 

(5.94-13.85) 
 

 
0.981 

 
1 

 
5 

 
TPT 

(0.1-10 µM) 

 
24 h AB 
inhibition 

 

 
0.65 

 (0.003-1.31) 
 

 
0.891 

 
0.1 

 
0.5 

  
24 h NR 
inhibition 

 

 
1.57 

(-0.37-3.52) 
 

 
0.850 

 
0.1 

 
0.5 

 
DPT 

(1-10 µM) 

 
24 h AB 
inhibition 

 

 
2.40 

(1.78-3.02) 
 

 
0.974 

 
<1 

 
1 

  
24 h NR 
inhibition 

 

 
4.42 

(3.50-5.33) 
 

 
0.971 

 
1 

 
2 

 

aValues represent EC50 (µM) with 95% confidence intervals in parentheses. 
bNOEC, no observed effect concentration, the highest observed concentration at which no significant 
cytotoxic effect (P ≤ 0.05) was detected. 
cLOEC, lowest observed effect concentration, the lowest observed concentration at which a significant 
cytotoxic effect (P ≤ 0.05) was detected. 
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Table 4.3: Cytotoxic effects on RTG-2 cells after 96 hour exposure with four OTCs. 

Compound Exposure period 

and endpoint 

EC50  

(µM)
a
 

Fit Statistic 
(r

2
) 

 

NOEC
b 

(µM) 

LOEC
c 

(µM) 

 
TBT 

(0.1 -10 µM) 

 
96 h AB 
inhibition 

 

 
0.94 

(0.75-1.12) 

 
0.989 

 
0.5 

 
0.75 

 
 

  
96 h NR 
inhibition 

 

 
2.22 

(0.72-3.73) 
 

 
0.891 

 
0.5 

 
0.75 

 
DBT 

(0.1-100 µM) 

 
96 h AB 
inhibition 

 

 
2.38 

 (1.97-2.79) 
 

 
0.999 

 
0.5 

 
1 

  
96 h NR 
inhibition 

 

 
5.06 

(2.43-7.68) 
 

 
0.979 

 
1 

 
5 

 
TPT 

(0.1 -10 µM) 

 
96 h AB 
inhibition 

 

 
0.24 

 (0.20-0.27) 
 

 
0.997 

 
0.1 

 
0.5 

  
96 h NR 
inhibition 

 

 
0.31 

(0.2-.0.41) 
 

 
0.988 

 
0.1 

 
0.5 

 
DPT 

(1-10 µM) 

 
96 h AB 
inhibition 

 

 
0.82 

(-0.58-2.22) 
 

 
0.987 

 
<1 

 
1 

  
96 h NR 
inhibition 

 

 
0.89 

(0.09-1.68) 
 

 
0.775 

 
<1 

 
1 

 
aValues represent EC50 (µM) with 95% confidence intervals in parentheses. 
bNOEC, no observed effect concentration, the highest observed concentration at which no significant 
cytotoxic effect (P ≤ 0.05) was detected. 
cLOEC, lowest observed effect concentration, the lowest observed concentration at which a significant 
cytotoxic effect (P ≤ 0.05) was detected. 
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Figure 4.4: Cytotoxicity of TBT after 24 h exposure to RTG-2 cells determined by the AB 

assay (■) and NR assay (■).  Data is expressed as a percentage of unexposed controls ± SD 

of three replicates for each exposure concentration.  *Denotes a significant difference from 

the control (P ≤ 0.05). 
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Figure 4.5: Cytotoxicity of DBT after 24 h exposure to RTG-2 cells determined by the AB 

assay (■) and NR assay (■).  Data is expressed as a percentage of unexposed controls ± SD 

of three replicates for each exposure concentration.  *Denotes a significant difference from 

the control (P ≤ 0.05). 
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Figure 4.6: Cytotoxicity of TPT after 24 h exposure to RTG-2 cells determined by the AB 

assay (■) and NR assay (■).  Data is expressed as a percentage of unexposed controls ± SD 

of three replicates for each exposure concentration.  *Denotes a significant difference from 

the control (P ≤ 0.05). 
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Figure 4.7: Cytotoxicity of DPT after 24 h exposure to RTG-2 cells determined by the AB 

assay (■) and NR assay (■).  Data is expressed as a percentage of unexposed controls ± SD 

of three replicates for each exposure concentration.  *Denotes a significant difference from 

the control (P ≤ 0.05). 
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Figure 4.8: Cytotoxicity of TBT after 96 h exposure to RTG-2 cells determined by the AB 

assay (■) and NR assay (■).  Data is expressed as a percentage of unexposed controls ± SD 

of three replicates for each exposure concentration.  *Denotes a significant difference from 

the control (P ≤ 0.05).  
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Figure 4.9: Cytotoxicity of DBT after 96 h exposure to RTG-2 cells determined by the AB 

assay (■) and NR assay (■).  Data is expressed as a percentage of unexposed controls ± SD 

of three replicates for each exposure concentration.  *Denotes a significant difference from 

the control (P ≤ 0.05).  
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Figure 4.10: Cytotoxicity of TPT after 96 h exposure to RTG-2 cells determined by the AB 

assay (■) and NR assay (■).  Data is expressed as a percentage of unexposed controls ± SD 

of three replicates for each exposure concentration.  *Denotes a significant difference from 

the control (P ≤ 0.05).  
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Figure 4.11: Cytotoxicity of TPT after 96 h exposure to RTG-2 cells determined by the AB 

assay (■) and NR assay (■).  Data is expressed as a percentage of unexposed controls ± SD 

of three replicates for each exposure concentration.  *Denotes a significant difference from 

the control (P ≤ 0.05). 

 

4.3.3 Cytotoxicity tests with PLHC-1 cells and TBT  

 

Cytotoxicity data for the PLHC-1 cells following exposure to TBT for 24 h is presented in 

Table 4.4.  The cytotoxicity chart for PLHC-1 cells as quantified with the AB and NR 

assays is presented for TBT after 24 h in Figure 4.12.  Other individual OTCs were not 

exposed to PLHC-1 cells as similar work has been previously reported by Brüschweiler et 

al., (1995).  A comparison of these PLHC-1 results with those determined with the RTG-2 

cells in this study is presented in Table 4.5. 
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Table 4.4: Cytotoxic effects on PLHC-1 cells after 24 hour exposure with TBT chloride 

Compound Exposure period 

and endpoint 

EC50  

(µM)
a
 

Fit Statistic 
(r

2
) 

 

NOEC
 b 

(µM) 

LOEC
c 

(µM) 

 
TBT 

(0.1-10µM) 

 
24 h AB inhibition 

 

 
0.99 

(0.74-1.25) 

 
0.988 

 
0.5 

 
0.75 

 
 

 24 h NR inhibition 
 

1.01 
(0.13-1.88) 

 

0.844 0.1 0.5 

 

aValues represent EC50 (µM)with 95% confidence intervals in parentheses. 
bNOEC, no observed effect concentration, the highest observed concentration at which no significant 
cytotoxic effect (P ≤ 0.05) was detected. 
cLOEC, lowest observed effect concentration, the lowest observed concentration at which a significant 
cytotoxic effect (P ≤ 0.05) was detected. 
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Figure 4.12: Cytotoxicity of tributyltin chloride to PLHC-1 cells determined by AB assay 

(■) and NR assay (■) following 24 h exposure.  Data is expressed as a percentage of 

unexposed controls ± SD of three replicates for each exposure concentration.  *Denotes a 

significant difference from the control (P ≤ 0.05).  
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4.3.4 Cytotoxicity tests with RTG-2 and PLHC-1 cells with the organic extract and 

method blank 

 

Cytotoxicity data for the RTG-2 and PLHC-1 cells following exposure to the Dunmore East 

organic extract are presented in Table 4.6.  Cytotoxicity charts for RTG-2 and PLHC-1 

cells as quantified with both AB and NR assays are presented for the Dunmore East extract 

and blank after 24 h exposure in figures 4.13 and 4.14 respectively. 
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Table 4.5: Comparison of cytotoxic effects on PLHC-1 cells and RTG-2 cells for four 

individual OTCs. 

Compound Exposure period 

And endpoint 

PLHC-1 EC50 
a

 

(µM)
 
 

RTG-2 EC50 
b

 

(µM) 

 
TBT-Cl 

 
24 h AB inhibition 
24 h NR inhibition 

 
 

 
0.99b 

0.11 (1.01b) 

 
1.03  
3.43  

 
DBT-Cl2 

 
24 h AB inhibition 
24 h NR inhibition 

 
 

 
- 

20 

 
6.27  
9.89  

 
TPT-Cl 

 
24 h AB inhibition 
24 h NR inhibition 

 
 

 
- 

0.17 

 
0.65  
1.57  

 
DPT- Cl2 

 
24 h AB inhibition 
24 h NR inhibition 

 
 

 
- 

15 

 
2.40  
4.42  

aValues obtained from Brüschweiler et al., 1995. 
bValues determined in this study 

 

 
Table 4.6: Cytotoxic effects on RTG-2 and PLHC-1 cells after 24 h exposure with the 

Dunmore East extract 

 
 

Cell line 

 

Exposure period 

and endpoint 

 

Dunmore East extract EC50 

(No. mgs sediment/ml media) ±SD 

(n = 3) 

 

r
2
 

 
RTG-2 

 
 

PLHC-1 

 
AB 24H 
NR 24H 

 
AB 24H 
NR 24H 

 
138.15 (±10.06) 
73.19 (± 24.85) 

 
66.91 (±16.61) 
63.97 (±17.93) 

 
0.983 
0.980 

 
0.995 
0.981 
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Figure 4.13: Cytotoxicity of the Dunmore East extract (■) and blank extract (■) to RTG-2 

cells determined by AB assay (a) and NR assay (b) following 24 h exposure.  Data is 

expressed as a percentage of unexposed controls ± SD of three replicates for each exposure 

concentration.  *Denotes a significant difference from the control (P ≤ 0.05).  
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Figure 4.14: Cytotoxicity of the Dunmore East extract (■) and blank extract (■) to PLHC-1 

cells determined by AB assay (a) and NR assay (b) following 24 h exposure.  Data is 

expressed as a percentage of unexposed controls ± SD of three replicates for each exposure 

concentration.  *Denotes a significant difference from the control (P ≤ 0.05).  
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4.4 Discussion  

Current methods of preparing extracts for exposure to biological organisms include 

extraction by a range of solvents and analytical techniques such as accelerated solvent 

extraction (ASE), soxhlet extraction, and ultra-turrax cold extraction (Hollert et al., 2000; 

Brack et al., 2002; Houtman et al., 2004; Biselli et al., 2005; Brack et al., 2005).  Such 

techniques generally have focused on the extraction of contaminants such as estrogens, 

polychlorinated biphenyls, polyaromatic hydrocarbons and other hydrocarbon containing 

compounds but are not ideal for the extraction of organotins.  Organotin compounds require 

an acid leaching step as well as a derivatisation step after extraction with organic solvents 

to convert the compounds to their volatile form for quantitation purposes with GC. 

 

A GC-PFPD chromatogram of the detected butyltin species is shown in Figure 4.3.  This 

study shows higher TBT recoveries (70.4 %) than DBT and MBT, (52.0 % and 34.6 % 

respectively) which were calculated from the mean recovery of the CRM BCR646 from 

three batches of samples (Table 4.1).  The lower recoveries of these compounds have been 

previously documented (Smedes et al., 2000, Ikonomou et al., 2002).  Extraction techniques 

such as soxhlet extraction were previously reported to have good TBT recoveries but low 

DBT and MBT recoveries (Smedes et al., 2000).  The solvent extracts were found to elicit 

cytotoxicity, while, by comparison, the current method can be used successfully as a tool in 

assessing toxicity of OTCs in environmental samples.  Accelerated solvent extraction, from 

our experience is unsuitable for the production of sediment extracts suitable for OTC 

toxicity testing due to the acidity of the extracts and use of complexing agents which 

themselves may be toxic to the cells.  The method described in this study provides a 

mechanism whereby OTCs (and other co-extracted contaminants) can be analytically 
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quantified and are readily transferable to DMSO for use in exposure experiments in their 

salt form. 

 

The analytical method displayed good reproducible recoveries for TBT but the recoveries 

for DBT and MBT were low in the CRM.  Many other laboratories use tripropyltin chloride 

as an internal standard which would correct the actual recovery in each sample however 

this compound was previously found to be very toxic to PLHC-1 cells with an NR50 of 1 x 

10-7M (Brüschweiler et al., 1995).  Therefore the concentration of each butyltin analyte is 

presented inTable 4.1(not recovery corrected with CRM recovery values) (Table 4.1). 

 
Data presented in Table 4.2 demonstrate that the alamar blue assay was found to be the 

most sensitive for each of the individual OTC exposures after 24 h.  Of the four individual 

compounds tested, TPT was found to be the most toxic after 24 h exposure with an AB50 

value of 0.65 µM.  After the 96 h exposure period (Table 4.3) increased cytotoxicity was 

observed for the RTG-2 cells for each of the individual OTCs for both of the endpoints 

studied as evidenced by the lower EC50 values.  A parallel study conducted in our lab with 

Vibrio fischeri and Tisbe battagliai demonstrated a similar increase in toxicity over time 

(unpublished data).  To the best of our knowledge, no toxicity data with the RTG-2 cell line 

and OTCs was available for comparative purposes in the peer reviewed literature  

 

The inhibition of cytochrome P4501A by organotins in PLHC-1 cells has also been 

investigated (Brüschweiler et al., 1996).  This cell line has also been used to study the 

cytotoxicity of pharmaceuticals along with the RTG-2 cell line and has been demonstrated 

to be more sensitive than the rainbow trout cell line for this class of compounds (Caminada 

et al., 2006).  Cytotoxicity tests with the PLHC-1 cells after 24h exposure with TBT show 
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that there are comparable sensitivities between the AB and the NR assays (Table 4.4 and 

Figure 4.12).  PLHC-1 cells have been previously employed to ascertain the toxicity of 

numerous OTCs (Brüschweiler et al., 1995).  For this reason, only TBT was tested on the 

PLHC-1 cells for comparability purposes.  An NR50 value for TBT was determined to be 

1.0 µM which is one order of magnitude higher than the 0.11µM that was determined by 

Brüschweiler (1995).  It must be highlighted that there was a wide confidence interval 

associated with our EC50 value for TBT (0.13-1.88 µM).  

 

The RTG-2 cells were found to be more sensitive than the PLHC-1 cells to the di-

substituted organotins, DBT and DPT but the PLHC-1 cells were found to be more 

sensitive for the higher substituted TBT and TPT using the NR assay.  In this study the 

alamar blue assay was found to be more sensitive than the NR assay for all OTCs tested.  

 

Sediment extracts are not intended to serve as an indicator of bioavailability of the OTCs  

to aquatic organisms, however, since these extracts can contain anthropogenic compound 

classes that are otherwise very tightly bound to particulate phases (i.e. a ‘worst case 

scenario’), they do provide a good representation of the quality of the sediment in the 

overall assessment.  Table 4.6 demonstrates that the NR assay was found to be the most 

sensitive for both cell lines when exposed to the environmental sample extracts.  The 

PLHC-1 cells were found to be slightly more sensitive (NR50, 63.97 mg sediment/ml 

media) to the Dunmore East extract than the RTG-2 cell line (NR50, 73.19 mg sediment/ml 

media).  It should be noted that the blank extract did elicit significant toxicity with the 

RTG-2 cells at the top concentration with both assay endpoints (AB assay at 550 mgs 

sediment per ml and NR assay at 275 and 550 mgs sediment per ml), however, the 
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sediment extract at the same concentrations was demonstrated to induce considerably more 

toxicity.  The blank extract had no adverse effect on the PLHC-1 cells with either endpoint. 

 

In Figure 4.13 (a) hormesis was demonstrated in the AB assay results upon exposure of the 

RTG-2 cells to both the Dunmore East extract and method blank using the AB assay.  

Hormesis can be described as a stimulatory response of the cells to low, non cytotoxic 

concentrations of chemicals or mixture of chemicals in the sample extracts therefore 

leading to an increase over controls (Calabrese and Baldwin, 2003).  Hormesis was only 

observed for the AB assay for the RTG-2 cell line and not observed with the NR assay. 

This hormetic effect has been reported previously for RTG-2 cells on exposure to zinc salts 

and PLHC-1 cells on exposure to cadmium (Ni Shúilleabháin et al., 2004; Caminada et al., 

2006).  Hormesis has been associated with an increase in cell proliferation (Ni 

Shúilleabháin et al., 2004) therefore hormetic effects would be expected with the AB assay 

(as evidenced in this present study) on the RTG-2 cell line since the AB assay is generally 

used to assess cell proliferation. 

 

The repeatability of the cytotoxic responses to pollutants is related to differences in 

metabolic activity of exposed cells and also to the type of toxic mode of action of chemicals 

or mixture of chemicals.  The RTG-2 cell line has been found to retain a basic cytochrome 

P450-dependent monooxygenase activity whereas other cell lines have been found to lose 

their metabolic activity (Fent, 2001).  In addition some of the chemicals in the 

anthropogenic cocktail can be light sensitive and temperature sensitive, repeatability can 

also be related to the storage of samples (De Lange et al., 2007). 
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A total of 26g of sediment was extracted for the purposes of the cytotoxicity study, this 

quantity being based on the TBT content in the <2mm fraction (2.125 mg/kg) and the 

demonstrated sensitivity of the RTG-2 cell line to TBT with the AB assay (1.03 x 10-6 

mol/Litre) which when expressed as TBT equivalents equates to 369 ng TBT/ml.  The 

actual EC50 obtained for the RTG-2 cells following exposure to the extract was 138 mg 

sediment/ml media with the AB assay (Table 4.6).  Therefore the amount of available TBT 

equivalents in the extract was calculated to be 294 ng TBT/ml (2125/1000*138). 

 

In summary the established sensitivity (EC50) of the RTG-2 cells to TBT was calculated as 

being 369 ng/ml while the sediment extract was found to be slightly more toxic to the cells 

(EC50, 294 ng TBT/ml).  While we have demonstrated that the extraction technique is very 

effective in extracting TBT from marine sediments and that RTG-2 cells are sensitive to 

TBT, the greater toxicity exhibited by the extract suggests that the toxic effects observed 

are not due to TBT alone.  We have shown that three OTCs were present in the extract 

(TBT, DBT and MBT), each of which may contribute to toxicity to differing degrees 

therefore increased sediment toxicity may be as a consequence of additive and/or 

synergistic effects between these OTCs and other anthropogenic compounds co-extracted 

by the described method.  Further research into such mixture effects is therefore warranted. 

The identification of these compounds and their associated cytotoxicity was beyond the 

scope of the present study but is currently being investigated by means of a Toxicological 

Identification Evaluation (TIE) study. 
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4.5  Conclusion 

This paper describes an optimised analytical method for the extraction and quantification of 

OTCs from a sediment extract, which were readily transferable to DMSO for use in cell 

exposure experiments in their chloride form.  The method displayed good reproducible 

recoveries for TBT but the recoveries for DBT and MBT were relatively low.  The method 

extracted butyltin compounds in their salt form for testing on both cell lines and 

demonstrated toxicity with approximately 26g of sediment, thus demonstrating that this 

technique can be used as a tool for sediment assessment.  The toxicity of four individual 

OT compounds was also established with the RTG-2 cells.  The AB assay was found to be 

the most sensitive for each of the individual OTC exposures after 24 h and TPT was found 

to be the most toxic compound tested.  After the 96 h exposure period, increased 

cytotoxicity was observed for the RTG-2 cells for each of the individual OTCs for both of 

the endpoints studied as evidenced by the lower EC50 values.  Comparing results from this 

study to previously published data, the RTG-2 cells were found to be more sensitive than 

the PLHC-1 cells to the di-substituted organotins (DBT and DPT) while the PLHC-1 cells 

were found to be more sensitive for the higher substituted TBT and TPT using the NR 

assay.  The NR assay was found to be the most sensitive assay for both cell lines when 

exposed to the environmental sample extracts and the PLHC-1 cells were found to be 

slightly more sensitive to the Dunmore East extract than the RTG-2 cell line.  In conclusion 

we have described a novel technique, integrating specific cytotoxicity tests with analytical 

chemistry that has not previously been performed for OTCs in sediment extracts.   

 



- 184 - 

4.6 References  

Ahlf, W., Hollert, H., Neumann-Hensel H., Ricking M. 2002. A guidance for the 

assessment and evaluation of sediment quality: A German approach based on 

ecotoxicological and chemical measurements. Journal of Soils and Sediments (online 

first) http://dx.dol.org/10.1065/jss2002.02.356pp 

 

Bancon-Montigny, C., Lespes, G., Potin-Gautier, M. 2000. Improved routine speciation 

of organotin compounds in environmental samples by pulsed flame photometric 

detection. Journal of Chromatography A 896, 149-158. 

 

Biselli, S., Reineke, N., Heinzel, N., Kammann, U., Franke, S., Hűhnerfuss, Theobald, 

N. 2005. Bioassay-directed fractionation of organic extracts of marine surface 

sediments from the North and Baltic Sea. Part 1: Determination and identification of 

organic pollutants. Journal of Soils and Sediments 5, 171-181. 

 

Brack, W., Schirmer, K., Erdinger, L., Hollert, H. 2005. Effect-Directed analysis of 

mutagens and ethoxyresorufin-o-deethylase inducers in aquatic sediments. 

Environmental Toxicology and Chemistry 24, 2445-2458. 

 

Brack, W., Schirmer, K., Kind, T. Schrader, S., Schűűrmann. 2002. Effect-directed 

fractionation and identification of cytochrome P4501A-inducing halogenated aromatic 

hydrocarbons in contaminated sediment. Environmental Toxicology and Chemistry 21, 

2654-2662. 



- 185 - 

 

Bravo, M., Lespes, G., De Gregori, I., Pinochet, H., Potin-Gautier, M. 2004. 

Identification of sulphur interferences during organotin determination in harbour 

sediment samples by sodium tetraethyl borate ethylation and gas chromatography- 

pulsed flame photometric detection.  Journal of Chromatography A 1046, 217-224. 

 

Brüschweiler, B.J., Würgler, F., Fent, K. 1995. Cytotoxicity of organotin compounds to 

fish hepatoma cells PLHC-1 (Poeciliopsis lucida) Aquatic Toxicology 32, 143-160. 

 

Brüschweiler, B.J., Würgler, F., Fent, K. 1996. Inhibition of cytochrome P4501A by 

organotins in fish hepatoma cells PLHC-1. Environmental Toxicology and Chemistry 

15, 728-735. 

 

Bryan, G.W., Gibbs, P.E., Burt, G.R., Hummerstone, L.G. 1987. The effects of 

tributyltin (TBT) accumulation on adult dogwhelks, Nucella lapillus: long term field 

and laboratory experiments. Journal of the Marine Biological Association of the United 

Kingdom 67, 525-544. 

 

Bryan, G.W., Gibbs, P.E., Hummerstone, L.G., Burt, G.R. 1986. The decline of the 

gastropod Nucella lapillus around South West England: evidence for the effect of 

tributyltin from antifouling paints.  Journal of the Marine Biological Association of the 

United Kingdom 66, 611-640. 

 



- 186 - 

Calabrese, E.J., Baldwin, L.A. 2003. Hormesis: the dose-response revolution. Annual 

Review of Pharmacology and Toxicology 43, 175-197. 

 

Caminada, D., Escher, C, Fent, K. 2006. Cytotoxicity of pharmaceuticals found in 

aquatic systems: Comparison of PLHC-1 and RTG-2 fish cell lines. Aquatic 

Toxicology 79, 114-123. 

 

Davoren, M., Ní Shúilleabháin, S., Hartl, M.G.J., Sheehan, D., O’Brien, N.M., 

O’Halloran, J., Van Pelt, F.N.A.M, Mothersill, C. 2005. Assessing the potential of fish 

cell lines as tools for the cytotoxicity testing of estuarine sediment aqueous elutriates. 

Toxicology in Vitro 19, 421-431. 

 

Davoren, M., Ni Shuilleabhain, S., O'Halloran, J., Hartl, M.G.J., Sheehan, D., O 'Brien, 

N.M., Van Pelt, F.N.A.M., Mothersill, C. 2005b.  A Test Battery Approach for the 

Ecotoxicological Evaluation of Estuarine Sediments. Ecotoxicology 14, 741-755. 

 

Davoren, M., Fogarty, A. 2006. In vitro cytotoxicity assessment of the biocidal agents 

sodium o-phenylphenol, sodium o-benzyl-p-chlorophenol, and sodium p-tertiary 

amylphenol using established fish cell lines. Toxicology in Vitro 20, 1190-1201. 

 

De Lange, H.J., Van Griethuysen, C., Koelmans, A.A. 2007. Sampling method, storage 

and pretreatment of sediment affect AVS concentrations with consequences for 

bioassay responses. Environmental Pollution 151, 243-251. 



- 187 - 

 

Enterprise Ireland Report, 2002. Collection and analysis of sediments from Dunmore 

East. Report to Department of Communications, Marine and Natural Resources. 

 

Fent, K. 2001. Fish cell lines as versatile tools in ecotoxicology: assessment of 

cytotoxicity, cytochrome P4501A induction potential and estrogenic activity of 

chemicals and environmental samples. Toxicology in Vitro 15, 477-488. 

 

Fent, K. 2003. Ecotoxicological problems associated with contaminated sites. 

Toxicology Letters 140-141, 353-365. 

 

Forsyth, D.S., Casey, V. 2003. Butyltin compounds in retail mollusc products. Food 

Additives and Contaminants 20, 445-452. 

 

Gibbs, P.E., Bryan, G.W. 1986. Reproductive failure in populations of the dog-whelk, 

Nucella lapillus, caused by imposex induced by tributyltin from antifouling paints. 

Journal of the Marine Biological Association of the United Kingdom 66, 767-777. 

 

Gomez-Ariza, J.L., Beltrán, R., Morales, E., Giraldez, I., Benitez-Ruiz, M. 1994. Use of 

cartridges for speciation of organotin compounds in environmental samples. Applied 

Organometallic Chemistry 8, 553-561. 

 



- 188 - 

Hoch, M., Alonzo-Azcarate, J., Lischick, M. 2002. Adsorption behaviour of toxic 

tributyltin to clay-rich sediments under various environmental conditions. 

Environmental Toxicology and Chemistry 21, 1390-1397. 

 

Hollert, H., Dűr, M., Erdinger, L., Braunbeck, T. 2000. Cytotoxicity of settling 

particulate matter and sediments of the Neckar River (Germany) during a winter flood. 

Environmental Toxicology and Chemistry 19, 528-534. 

 

Houtman, C., Cenijin, P.H., Hamers, T., Lamoree, M.H., Legler, J., Murk, A.J., 

Brouwer, A. 2004. Toxicological profiling of sediments using in vitro bioassays with 

emphasis on endocrine disruption. Environmental Toxicology and Chemistry 23, 32-40. 

 

ICES, 2007. Report of the ICES/OSPAR Workshop on Integrated Monitoring of 

Contaminants and their Effects in Coastal and Open-sea Areas (WKIMON III), 16–18 

January 2007, ICES Headquarters. ICES CM 2007/ACME, 1, 209. 

 

Ikonomou, M.G., Fernandez, M.P., He, T., Cullen, D. 2002. Gas Chromatography-high-

resolution mass spectrometry based method for the simultaneous determination of nine 

organotin compounds in water, sediment and tissue. Journal of Chromatography A 975, 

319-333. 

 

Jos, A. Repetto, G., Rios, J.C., Hazen, M.J., Molero, M.L., del Peso, A., Salguero, M., 

Fernandez-Freire, P., Perez-Martin, J.M., Camean, A. 2003. Ecotoxicological 



- 189 - 

evaluation of carbamazepine using six different model systems with eighteen endpoints. 

Toxicology in Vitro 17, 525-532. 

 

Matthiessen, P., Bifield, S., Jarrett, F., Kirby, M.F., Law, R.J., McWinn, W.R., 

Sheahan, D.A., Thain, J.E., Whale, G.R. 1998. An assessment of sediment toxicity in 

the River Tyne Estuary, U.K. by means of bioassays. Marine Environmental Research 

45, 1–15. 

 

Minchin D. 2003. Monitoring of tributyltin contamination in six marine inlets using 

biological indicators. Marine Environment and Health Series 6. 

 

Ní Shúilleabháin, S., Mothersill, C., Sheehan, D., O’Brien, N.M., O’Halloran, J., Van 

Pelt, F.N.A.M, Davoren, M. 2004. In vitro cytotoxicity testing of three zinc metal salts 

using established fish cell lines. Toxicology in Vitro 18, 365-376. 

 

Quevauviller, P., Morabito, R., Massanisso, P. 2000. Derivatization methods for the 

determination of organotin compounds in environmental samples. Trends in Analytical 

Chemistry 19, 2 – 3. 

 

Rüdel, H. 2003. Case study: bioavailability of tin and tin compounds. Ecotoxicology 

and Environmental Safety 56, 180-189. 

 



- 190 - 

Schirmer, K., Dixon, D.G., Greenberg, B.M., Bols, N.C. 1998.  Ability of 16 priority 

PAHs to be directly cytotoxic to a cell line from the rainbow trout gill. Toxicology 127, 

129-141. 

 

Smedes, F., De Jong, A.S., Davies, I.M. 2000. Determination of (mono-, di- and) 

tributyltin in sediments. Analytical methods. Journal of Environmental Monitoring 2, 

541-549. 

 

Strand, J., Jacobsen, J.A., Pedersen, B., Granmo, Å. 2003. Butyltin compounds in 

sediment and molluscs from the shipping strait between Denmark and Sweden. 

Environmental Pollution 124, 7-15. 

 

Weyermann, J., Lochmann, D., Zimmer, A. 2005. A practical note on the use of 

cytotoxicity assays. International Journal of Pharmaceutics 288, 369-376. 

 

Zurita, J.L. Jos, A., Camean, A., Salguero, M., Lopez-Artiguez, M., Repetto, G., 2007a. 

Ecotoxicological evaluation of sodium fluoroacetate on aquatic organisms and 

investigation of the effects on two fish cell lines. Chemosphere 67, 1-12.  

 

Zurita, J.L., Jos, A., Del Peso, A., Salguero, M., López-Artíguez, Repetto, G. 2007b. 

Ecotoxicological effects of the antioxidant additive propyl gallate in five aquatic 

systems. Water Research 41, 2599-2611. 



- 191 - 

5  
 

CHAPTER 5 AN IN-SITU STUDY USING CAGED NUCELLA 

LAPILLUS AND CRASSOSTREA GIGAS TO MONITOR TBT 

BIOEFFECTS IN IRISH COASTAL WATERS 
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5.1 Introduction 

 
In recent years there has been increase in concern regarding the potential effects that 

pollutants may have on the health status of marine organisms.  A number of adverse 

physiological and/or morphological changes have been reported in a variety of species as a 

result of exposure to anthropogenic substances.  Organotins are one such group of 

compounds that are recognised as being of toxicological concern to resident marine 

organisms (Rüdel, 2003; Hagger et al., 2005; Macken et al., 2008).  Tributyltin (TBT) and 

triphenyltin (TPT) enter the marine environment mainly from their use in antifouling paints 

used for shipping (Gomez-Ariza et al., 1994) and on fish cages (Minchin, 2003) with both 

compounds degrading to their di- and mono- metabolites in the marine environment.  The 

TBT degradation metabolites dibutyltin (DBT) and monobutyltin (MBT) have been used as 

stabilisers in polymers such as poly vinyl chloride (PVC) (Ikonomou, 2002).  Triphenyltin 

has also reportedly been used as an agricultural fungicide and algicide (Gomez-Ariza et al., 

1994) and its metabolites can also be found in the marine environment, however, their 

presence is due to degradation of triphenyltin only.  

 

TBT is known to be toxic to marine species at low water concentrations (Seinen, 1981, 

Beaumont and Budd, 1984; Hall, 1988), with the irreversible condition of imposex i.e. the 

imposition of male genital organs (penis and vas deferens) on female gastropods strongly 

associated with organotin exposure (Gibbs, 1987; Oehlmann et al., 1991).  Reproductive 

failure has been reported to occur in severely affected organisms (Gibbs and Bryan, 1986; 

Gibbs et al., 1988; Horiguchi, 2000; Bryan et al., 1987) with severe imposex reported to 

lead to both sterility in females and detrimental reproductive effects on individuals and 

populations.  Organotin related biological effects are commonly measured in a number of 
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gastropod species including, Nucella lapillus (dog whelk) and the Littorina littorea 

(periwinkle) for coastline monitoring of TBT-induced imposex and Buccinum undatum 

(common whelk) and Neptunea antiqua (red whelk) for the measurement of offshore 

effects (Bryan et al., 1988., Bailey et al., 1988; Gibbs et al., 1986; Harding et al., 1992, 

1997 and 1998).  

 

During the 1980s several Pacific oyster culture operations in Europe were adversely 

impacted with high levels of TBT reported in tissues.  A cause and effect relationship was 

established between TBT contamination and reductions in meat weight and increased shell 

thickness in Pacific oysters (Alzieu et al., 1982) while Waldock et al., (1995) utilized the 

ratio of shell length to shell thickness (length/thickness) as an index of contamination.  

Increased shell thickening is not considered as being an organotin specific effect, however, 

shell thickening in Crassostrea gigas has been associated with trace levels of TBT in the 

water column (Lawler and Aldrich, 1987) and Medaković et al., 2006 have reported 

environmentally induced levels of tin in the chambers of oyster shells.  In Ireland, grossly 

distorted oysters were reported from Cork Harbour and Baltimore, Co. Cork in 1985 

(Minchin et al., 1987).  

 

Ireland was one of the first countries to ban the use of all organotin containing compounds 

on vessels less than 25m in 1987 (Minchin, 2003).  In 1989 the European Union (EU) 

adopted a ban on the application of tributlytin (TBT) containing antifouling paints to small 

vessels and subsequently in 1999 the International Maritime Organisation (IMO) (2004) 

adopted a resolution that called for global prohibition on the application of organotin 

compounds (OTCs) in anti-fouling paints on vessels by 1 January 2003 with a complete 

prohibition by 1 January 2008.  This has now been implemented in the EU by Council 
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Directive 2002/62/EC.  Ireland is additionally a contracting party to the Oslo Paris 

Commission Coordinated Environment Monitoring Programme (OSPAR CEMP) and as 

such has commitments on the provision of TBT specific biological effects data to OSPAR 

under the CEMP. 

 

The use of cages to transplant dogwhelks has been previously reported (Harding et al., 

1992; Quintela et al., 2000; Smith et al., 2006) and these species have been demonstrated to 

provide valuable biological effects information over short time periods in areas with high 

levels of TBT contamination.  Additional studies have reported the use of marked and 

recaptured dogwhelks (Bryan et al., 1986, 1987; Foale, 1993; Bech et al., 2002).  

Recapturing procedures, whilst valuable techniques, can prove problematic as accessibility 

of food, predation and submergence/emergence times are generally uncontrollable variables 

(Smith et al., 2006).  It has also been reported that the marking can result in animal stress 

thus reducing the chance of survival of the animal (Quintela et al., 2000).  The use of the 

caging techniques in TBT hotspots can overcome a number of these problems.  Using these 

particular technoques, specimens do not require marking and therefore this would possibly 

reduce stress on the individuals.  Also, gastropods will have accessibility to food and 

potential threats of external predation can be reduced.   

 

The measurement of stable isotopes (SI) of nitrogen (δ15N) and carbon (δ13C) in marine 

species has previously been employed to provide a quantitative, continuous variable for 

studying relative trophic status, dietary preferences and the biomagnification of 

contaminants within complex food webs (De Niro and Epstein, 1978; Minigawa and Wada, 

1984; Peterson and Fry, 1987; Rounick and Winterbourn, 1986; Hobson, 1999; Fisk et al., 
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2001; Rüüs et al., 2002) and as such SI techniques were primarily employed during this 

study to provide information on nutrient assimilation within selected test species. 

 

This study provides information on the application of caging methodologies for the 

simultaneous determination of a number of organotin specific biological effects 

measurements in two indicator species (Pacific oyster and dogwhelk).  It additionally 

integrates biological effects information with derived tissue concentrations in the species.  

The potential for the utilisation of stable isotope techniques to trace organism 

acclimatisation, transplanting success and/or nutrient assimilation within the test system is 

further discussed.  The present study additionally compares quantified organotin 

measurements to relevant sediment quality and biota assessment criteria and discusses the 

applicability of caging techniques for use in environmental monitoring assessments. 
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5.2 Materials and methods 

5.2.1 Selection of test species 

 

This study focused on the transplanting of indicator species collected from Omey Island: 

(Nucella lapillus), Galway Bay: (Crassostrea gigas and Mytilus edulis) to two test sites 

(Dublin Port and Dunmore East) in addition to setting up of a control test system at Omey 

Island itself.  Levels of imposex in Nucella lapillus have been shown to be very low or 

absent (Minchin et al., 1987), which when coupled with low levels of marine traffic and the 

absence of industrialised influences lead to this site being selected as the reference/control 

location.  Dogwhelks for use in the study were obtained from littoral to sublittoral areas, no 

parasitism of the snails was found at this site.  Oysters and mussels for all experiments were 

obtained from the southern shores of Galway Bay. 

 

5.2.2 Site descriptions and collection of indicator species 

 

At least 40 specimens of N. lapillus per site were collected at low tide from Omey Island 

(see Figure 5.1) in April 2007 which is a semi-exposed shore of bedrock and boulders 

located on the west coast of Ireland.  Largest specimens and smaller juveniles were 

excluded, smaller juveniles were excluded as their presence is a valuable for continued 

reproductive activity and removal.  Nucella lapillus species were subsequently transported 

to the laboratory in damp cool conditions and analysed for imposex and other biological 

effects within 48 hours.  
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Figure 5.1: Map of transplant locations at Omey Island, Dunmore East and Dublin Bay 
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Dublin is the main shipping port on the east coast of Ireland.  The chosen experimental site 

is near a fixed navigation mark at the entrance to the estuary sheltered by two breakwaters 

(the North and South Bull Wall) extending into Dublin Bay.  The breakwater to the north 

becomes progressively flooded over from its extremity during a rising tide.  Dunmore East 

is a fishing port with boat-lifting facilities on the south coast of Ireland.  This harbour is 

protected by a breakwater on an exposed coast.  Elevated organotin levels have previously 

been reported in the inner harbour at Dunmore East (Enterprise Ireland, 2002).  The chosen 

experimental site was located underneath the harbour and the cages were secured to 

boulders beneath.  Test site locations (coordinates) are detailed in Table 5.8 and locations 

are presented in Figure 5.1. 

5.2.3 Caging study methodology 

 

Under the OSPAR-CEMP, collection of periodic biological effects monitoring data with 

suitable gastropod species is mandatory for contracting parties.  While a number of 

gastropod species are available in Irish waters, N. lapillus is an internationally recognised 

sensitive bioindicator of TBT contamination in addition to its relative abundance at the 

selected control location and its sensitivity it was chosen for this study.  The additional 

inclusion of C. gigas to the test system, added another valuable potential bioindicator to the 

study.  

 

A total of 7-8 dogwhelks and approximately 1kg of blue mussels (Mytilus edulis) were 

placed together in rigid plastic Northwest Trays® (51cm by 51cm and 53mm deep with a 

bar mesh of 5mm).  Dogwhelks when presented with mussels have been shown to 

preferentially select these over other bivalves (Minchin, 1989).  At each site, 10-12 trays 

containing both dogwhelks and oysters and one tray containing pacific oysters alone were 



- 199 - 

stacked and were secured to fixed or temporary moorings at each of the test sites (see 

Figure 5.2 below).  During the experimental period of 18 weeks, trays were permanently 

submerged at both Omey Island and at Dublin Port while the tray stack was exposed at low 

tide at the Dunmore East test site.  Complete submersion was not found to have an impact 

on survival of mytilus galloprovincialis in cages in previous studies (Quintela et al., 2000).  
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Figure 5.2:  An open tray at t=0 with N. lapillus and M. edulis (a) and one set of closed 

trays ready to be transplanted (b) is also displayed.Transplant sites at the North Bank 

Lighthouse in Dublin Bay (c) where cages were secured and suspended to either side of the 

lighthouse onto ladders, Dunmore East (d) where cages were secured to boulders 

underneath the harbour on the opposite side of the synchro-lift and Omey Island (e) where a 

cage was attached to a buoy in the bay. 
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5.2.4  Measurement of a species condition index 

 
In order to assess whether transplantation adversely affected test species, a simple surrogate 

condition index (CI) was derived by calculating the individual mean whole-body tissue dry 

weight for each test species at t=zero weeks and at t=18 weeks.  This average weight was 

further divided by the mean organism length (mm) to derive a proxy indicator of condition 

that reduced the inherent variability associated with differences in growth of individual 

locations. 

 

5.2.5 Determination of the Vas Deferens Sequence Index (VDSI) and relative penis size 

indices (RPSI) 

The development of imposex in N. lapillus may be divided into seven stages, depending 

upon the developmental state of both the penis and vas deferens in the female (Gibbs et al., 

1987).  Stage 0 is identified where no signs of imposex are observed.  Stage 1 can be 

identified when the vas deferens begins at the site of the vulva with Stage 2 also showing a 

small penis behind the right eye tentacle.  As imposex progresses, the vas deferens starts to 

develop from the penis (Stage 3) and will become continuous (Stage 4).  Eventually, vas 

deferens tissue may proliferate over the opening of the vulva (Stage 5), rendering the 

female incapable of breeding since she can no longer release egg capsules.  The trapped egg 

capsules form a solid mass within the capsule gland.  In this final Stage (Stage 6), the 

capsule gland may eventually rupture, causing premature death of the female.  Calculation 

of the mean Vas Deferens Sequence (VDS) for a group of females provides the Vas 

Deferens Sequence Index (VDSI) that may be used to compare the reproductive 

competency of different populations.  The VDS was determined for each female and the 

mean VDS calculated to provide an estimate of the VDSI of the population.  The 
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determination of imposex incidence was calculated from the VDSI, the VDSI calculated as 

(Sum of imposex stages of all females sampled)/number of females. 

 

A second measure is the relative penis size index (RPSI), the ratio (female penis length)3 / 

(male penis length)³ x 100.  This index provides a more sensitive indication of relative 

concentrations of TBT and is useful in areas close to release points, especially where VDSI 

levels are high.   

 

5.2.6 OSPAR Assessment criteria for VDSI 

 

Assessment criteria have been derived by OSPAR for Vas Deferens Sequence Index 

(VDSI) in Nucella lapillus.  The assessment classes range from A to F and enable 

integration of biological effects and chemical data and comparison of sensitivity between 

other species. 

 

TBT simulates an androgenic hormone in Nucella lapillus and in many other neogastropod 

snails, causing the formation of male organs superimposed upon the normal female 

reproductive tract.  In severe conditions the vas deferens seals the vagina causing 

obstruction to the release of egg capsules.  This condition not only renders the female snail 

sterile but can also result in mortality (Bryan et al., 1987).  Six stages of male organ 

superimposition are presented in Table 5.1, ranging from 1(A), indicative of the least 

biological effect to 6 (F), the worst case likely to be observed.  The spire-height of 

dogwhelks was measured from the shell apex to the most ventral part of the siphonal canal 

at the start and completion of field exposure. 
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Table 5.1 Oslo and Paris Commission biological effects assessment criteria for imposex in 

N. lapillus, based on VDSI (OSPAR, 2004).  

 

Assessment 

Class 

N. lapillus 

VDSI 

Effects and impacts 

A VDSI = <0.3 The level of imposex in the more sensitive gastropod species is 

close to zero (0~30% of females have imposex) indicating 

exposure to TBT concentrations close to zero, which is the 

objective in the OSPAR strategy of hazardous substances. 

B VDSI = 0.3 - 

<2.0 

The level of imposex in the more sensitive gastropod species (~30  

~100 % of the females have imposex) indicates exposure to TBT 

concentrations below the EAC derived for TBT e.g. adverse 

effects in the more sensitive taxa of the ecosystem caused by 

long-term exposure to TBT are predicted to be unlikely to occur. 

C VDSI = 2.0 - 

<4.0 

The level of imposex in the more sensitive gastropod species 

indicates exposure to TBT concentrations higher than the EAC 

derived for TBT e.g. there is a risk of adverse effects, such as 

reduced growth and recruitment, in the more sensitive taxa of the 

ecosystem caused by long-term exposure to TBT 

D VDSI = 4.0 - 5.0 The reproductive capacity in the populations of the more sensitive 

gastropod species, such as N. lapillus, is affected as a result of the 

presence of sterile females, but some reproductively capable 

females remain e.g. there is evidence of adverse effects, which 

can be directly associated with the exposure to TBT. 

E VDSI = > 5.0 Populations of the more sensitive gastropod species, such as N. 

lapillus, are unable to reproduce. The majority, if not all females 

within the population have been sterilized. 

F VDSI = negative The populations of the more sensitive gastropod species, such as 

N. lapillus and Ocinebrina aciculata, are absent/expired. 

 

5.2.7 Measurement of biological effects in Nucella lapillus 

 

Dogwhelk shells were crushed in a vice and the living snail was removed and examined for 

imposex features (VDSI).  The length of the female penis, if present, and male penis was 

measured to 0.1mm following the procedure recommended by OSPAR (1998).  Vas 

deferens sequence index (VDSI) and relative penis size index (RPSI) measurements follow 
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a standard methodology originally developed by Gibbs et al. (1987) and adopted by 

OSPAR.  The method has a general uniformity of impact on dogwhelks in Europe 

(Oehlmann et al., 1998). 

 

5.2.8  Measurement of biological effects in Crassostrea gigas 

 

In this study the practice of measuring maximum length of the flat shell and thickness at the 

position of the adductor muscle was adopted.  A great deal of biological variation can exist 

within any sampled population and consequently a large sample size (> 50 individuals) was 

investigated to derive a meaningful index.   

Investigations into the presence/absence of a number of other biological features in C. gigas 

suspected to be linked to TBT and/or pollutant effects was also completed including; 

1) the formation of an adductor pit in the upper (flat) shell and the occurrence of a gel 

between shell lamellae of the thickened flat valve, 

2) shell thickness; the length of the upper flat shell and the thickness of this shell 

provides an index of shell-thickness as described by Waldock et al. (1995).  At its 

most severe a low index is obtained when organisms are exposed to high levels of 

TBT contamination.   

3) The presence of a brittle, thick and chambered flat shell (producing shell plates 

referred to here as lamellae) often containing a clear gel in its chambers. 

4) the occurrence of a prolonged and dorsally extending spur to the cupped shell. 

These features are generally associated with shell distortion of highly contaminated 

Pacific oysters (Alzieu et al., 1982; Minchin et al., 1987) 
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5.2.9 Organotin analysis in biota  

 

Following the measurement of imposex and shell thickening in N lapillus and C. gigas 

respectively, the biologically examined whole body tissue was collected from individuals, 

pooled, homogenised and stored at < -20oC prior to the determination of  TBT, DBT, MBT 

and TPhT in representative tissue aliquots.  Organotin analysis in biota was carried out at 

the National Environmental Research Institute, Roskilde in Denmark using a method 

developed by Strand et al., 2003 and is summarised.  To 2g (wet weight) of tissue, a 

methanolic solution of tripropyltin chloride was added as internal standard.  The tissue was 

then digested with 1M HCl in an ultrasonic bath followed by treatment with an Ultraturrax© 

homogenisator.  The pH was then adjusted to approximately 5 with a sodium acetate and 

sodium hydroxide solution before in- situ derivatisation with 1ml 10% sodium 

tetraethylborate in methanol and subsequent extraction with 10ml pentane.  The 

derivatisation and extraction procedure was repeated 3 times for maximum recovery and 

the extracts were pooled, before being dried with sodium sulphate.  The extracts were then 

gently evaporated to a volume of 100µl before butyltin and phenyltins are speciated and 

quantified with a gas chromatograph and a Pulsed Flame Photometric Detector (GC-

PFPD).  Final data were normalised to tissue dry weight content determined at 105ºC. 

 

5.2.10  Stable isotope analysis in biota 

 

Tieszen et al. (1983) reports that the presence of lipid in biotic tissue samples can affect 

isotopic ratios, therefore for the purposes of this study, lipid free tissue extracts were 

prepared on all tissue samples according to the method of Smedes (QUASH, 1998, 1999) 

prior to stable isotope analysis.  Lipid free tissues were freeze-dried and approximately 1 
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mg of sample was transferred to a 9 x 15 mm tin capsule before combustion in the presence 

of O2 and Cr2O3 at 1700oC in a Carlo Erba NCS 2500 element analyser.  Reduction of NOx 

to N2 was then performed in a Cu oven at 650oC.  Water was removed in a KMnO4 

chemical trap before separation of N2 and CO2 on a 3 m Poraplot Q GC column prior to on-

line detection of δ15N and δ13C using a Micromass Optima Isotope Ratio Mass 

Spectrometer.  Differences in stable isotope abundances are expressed by (δ) notation as the 

deviation from standards in parts per 

thousand by   

δX= [(Rsample/R standard)-1] X 1000 

 

where X relates to 13C or 15N and R is the corresponding ratio 13C/12C or 15N/14N. Rstandard 

for 13C and 15N relate to Pee Dee Belemnite standard and atmospheric N2, values 

respectively. 

 

5.2.11 Sediment collection and organotin analysis 

 

Sediment was collected with a Van Veen Grab sampler at high tide in the Dublin Port area 

while the Dunmore East and Omey Island locations were sampled under low tidal 

conditions.  The upper 0-5cm of sediment were removed for analysis using an appropriately 

washed spatula for organics analysis and placed into solvent washed jars for OTC analysis.  

Prior to analysis the sediments were homogenised, wet sieved to the < 2mm and < 0.063 

mm fractions, frozen to -20 ºC and subsequently freeze dried at -30 ºC. 

 

Determination of OTC levels in sediments was conducted in the Marine Institute 

laboratories in Galway, Ireland.  In brief, the sediment was digested with dilute HCl and 
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extracted with dichloromethane and the organic layer centrifuged and removed.  This was 

solvent exchanged to methanol prior to derivatisation with sodium tetraethylborate (10% 

w/v in methanol solution).  The ethylated OTCs were then extracted into hexane and the 

this layer was pooled and concentrated to approximately 1 ml.  Sulphur was removed using 

tetrabutylammonium (TBA) sulphite.  The organotin speciation method was optimised to 

extract OTCs in their chloride form for subsequent exposure of extracts to various 

biological organisms for ecotoxicological testing.  Finally, tetrapropyltin was added to the 

analytical extract (approx 1 ml hexane) as an instrumental internal standard prior to 

analysis by gas chromatography pulsed flame photometric detection (GC-PFPD). 

 

5.2.12 Determination of total organic carbon in sediments 

 

Normalisation to Total Organic Carbon (TOC) in sediments provides a means to compare 

OTC results from differing locations.  TOC was analysed under sub-contract at the 

Environment Agency laboratories in Llanelli in Wales.  Sediments were wet sieved to < 2 

mm and < 0.063 mm fractions and freeze dried.  Total organic carbon was determined in 

the < 2mm and the < 0.063mm fractions by an ISO 17025 accredited flash combustion 

method using a Thermo flash Elemental Analyser as described below.  Sediment samples 

were weighed, treated with sulphurous acid for removal of inorganic carbonates and heated 

to 900 ºC under a constant flow of helium and introduction of oxygen.  Individual 

components were separated and eluted in the order N2-CO2-H2O and were measured using 

a thermal conductivity detector.   
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5.2.13 Quality assurance of determinations 

 

A full analytical quality control program was completed for all analyses, details are 

presented below. 

 

5.2.13.1  Quality assurance of biological measurements 

 
During the past fifteen years Analytical Quality Control (AQC) procedures have been 

developed through QUASIMEME for the measurement of imposex with regular 

intercalibration studies being conducted Europe wide.  OSPAR guidelines for TBT-specific 

biological effects monitoring are now in place.  Bioeffects measurements were made by 

Marine Organism Investigations who received satisfactory results from two such 

intercalibration exercises in the QUASIMEME programme.  

 

5.2.13.2  Quality assurance of sediment analysis 

 
Quality control of organotin measurements for all sediment analyses was evaluated by the 

use of the certified reference material BCR646.  Analyses of blanks showed no evidence of 

organotins.  Organotin recoveries were determined utilising the butyl- and phenyltin 

certified freshwater reference material BCR646.  Recoveries of TBT ranged from 63.3-68.1 

% and DBT from 79.2-84.2 %. 

 

Total organic carbon measurements were quality assured by analysing two QUASIMEME 

laboratory proficiency materials (QTM080MS and QOR090MS), which returned 

acceptable |Z| score limits (-0.6 and -0.2 respectively). 
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5.2.13.3  Quality assurance of biota analysis 

 
Organotin QA was completed utilising the butyl- and phenyltin certified freshwater 

sediment reference material BCR646.  Recoveries of TBT ranged from 63.3-68.1 % and 

79.2-84.2 % for DBT.  No recovery correction was completed on presented data. 

 

Within the analytical batch, the certified reference material (CRM477) was analysed to 

quality assure analytical procedures.  Quantification limits of 0.5ng Sn/g wet weight (ww) 

for butyltins (TBT, DBT and MBT) and 1ng Sn/g ww for phenyltins were determined, 

while repeatabilities were found to be within < 15 %.  Organotins were absent from 

procedural blanks.   

 

Stable isotope analysis was completed in the Institute for Energy Technology (IFE) in 

Kjeller, Norway.  Accuracy and precision of δ
15N and δ

13C analyses was successfully 

evaluated against International Atomic Energy Agency (IAEA-N-1, IAEA-N-2) and US 

Geological Survey (USGS-24) standards in addition to an internal IFE trout standard 

material.   
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5.3 Results and discussion 

5.3.1 Biological and morphological assessment 

 

On completion of the 18 week study, tray fouling with tunicates and barnacles was evident 

in Dublin, and dogwhelks had become heavily fouled with barnacles (see Figure 5.3 

below).  In the Dunmore East and Omey Island sites, trays and dogwhelks showed little 

fouling (Figure 5.3).  Most of the juvenile dogwhelks matured during the eighteen week 

study at all test sites and had a high survival rate.  Some unexplained dogwhelks mortalities 

were observed, Dunmore East (6 %), Dublin Port (5 %) and Omey Island (1 %), dogwhelks 

have been known to feed on each other under crowded conditions, however no such feeding 

was evident in this study. 
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Figure 5.3: Photographs of fouling at the Dublin Port site after 18 weeks (a) fouling on one 

of the cages including ciona, barnacles, and tubeworms at the Dublin Port site (b) barnacles 

on the dogwhelk/mussel at Dublin Port (c) fouling on dogwhelks from Omey Island (d) 

fouling on dogwhelks from Dunmore East where shells were more brittle than other two 

sites (e) fouling on dogwhelks from Dublin Port which had a high degree of barnacles, 

some growing to the lip of the dogwhelks. 

 

Mussels present in cages exhibited signs of dogwhelk predation as was further evidenced 

by the presence of a number of dogwhelk drill holes on collected shells (see Figure 5.4 

below).  Barnacles were present on the Dublin dogwhelks, some of which were vacant 

which may indicate feeding upon by dogwhelks.  Pacific oysters transplanted to Dublin 

port had some barnacle and tubeworm fouling.  Shell growth was found to be greatest at 

Dublin and lowest at Omey.  Morphological features of Pacific oysters at the end of the 

  

(c) (d) (e) 

 

  

(a) (b) 
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experimental period are displayed in Table 5.2 below.  The condition of oyster flesh from 

Dunmore East and Omey Island was poor relative to Dublin port.  No predation of oysters 

by dogwhelks was evident at any location. 

 

 

 

 

 

Figure 5.4: Two drilled holes in the mussel shell demonstrating predation of dogwhelk on 

mussel. 

 

Table 5.2: Morphological features of Pacific oysters at end of experimental period. Mean 

flat shell length and thickness (mm), and number of individuals with shell lamellae, gel 

between lamellae and a distinct adductor pit. 

Location Shell 

length  

Shell 

thickness  

Shell 

index 

Shell 

lamellae 

Gel between 

lamellae 

Distinct 

adductor pit 

Omey Island 31.0 1.40 22.1 4 0 0 

Dublin Bay 49.2 2.12 25.4 18 1 0 

Dunmore East 35.1 4.37 9.20 46 39 37 

 

5.3.2 Condition indices of test species 

 

Transplanted oysters at the Dublin Bay site grew at a much greater rate than those at the 

other two sites (see Table 5.3 below) and their relative condition factor (0.0059) was much 

greater than observed at the other two test sites.  Dublin Bay can experience much greater 

nutrient loadings than at either of the locations.  It was evident that oysters had no problem 

acclimatising to the environment in Dublin Bay compared to the mussels given the 

difference in stable isotope ratio (see Table 5.3).  However, there are no native oysters to 
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compare the stable isotope signal with.  Growth of both the mussels and dogwhelks at the 

test sites was less evident.  The dry weight condition index of mussels transplanted to 

Dunmore East and to Dublin Bay was however lower than that observed from the control 

site.  Results suggest that test species must be transplanted in a timely manner at test sites 

and that undue stress on animals must be avoided.  It should additionally be noted that the 

mussels, oysters and dogwhelks used in the transplantation experiment originated from 

saline waters on the west coast of Ireland and that transplantation to variable salinity 

estuarine waters (e.g. Dublin Bay) with a higher nutrient loading may additionally place 

undue stress on experimental animals thus appropriate species selection must be carefully 

considered prior to such caging studies. 
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Table 5.3 Concentrations (µg kg-1 wet weight) of organotin compounds in the tissues of 

Nucella lapillus (NL), Mytilus edulis (ME) and Crassostrea gigas (CG) and the carbon and 

nitrogen ratios and condition index for associated samples 

Location Species TBT DBT MBT TPT δδδδ
13

C δδδδ
15

N C:N ML DWCI 

           

NewQuay NL <0.5 <0.5 1 <1 -16.6 11.8 3.85   

 ME 0.8 1.3 0.5 <1 -18 9.3 3.46   

 CG <0.5 <0.5 <0.5 <2 -20.1 8.6 4.61   

           

Omey Island* NL <0.5 <0.5 <0.5 <1 -19.5 9.9 3.6 25.3 0.0028 

Omey Island NL <0.5 <0.5 2.1 <1 -17 10.3 4.24 27.3 0.0071 

 ME <0.5 <0.5 <0.5 <1 -20.5 9.1 3.95 45.2 0.1470 

 CG 5.3 1.6 <0.5 <1 -17.9 9 4.26 31.0 0.0016 

           

Dunmore East NL 113 71 11 <1 -17.3 9.4 4 27.8 0.0053 

 ME 94 41 6.1 <1 -18.8 7.6 3.74 52.1 0.0056 

 CG 116 18 5.9 <1 -18.1 9 3.71 35.1 0.0022 

           

Dublin Bay NL 1.8 1.3 <0.5 <1 -16.9 10.8 3.49 26.3 0.0063 

 ME 1.1 0.7 <0.5 <1 -18.2 7.8 3.86 52.6 0.0106 

 CG 11 0.8 <0.5 <1 -20.6 9.8 3.72 49.2 0.0059 
 

*Control site at Omey Island, specimens were sampled at beginning of experimental period, 

i.e. T=0 

ML= Mean length (mm) 

DWCI = Dry weight condition index (dry weight (g) per unit length (mm) of species) 

 

5.3.3  Occurrence of imposex in caged Nucella lapillus 

 

Imposex was not detected in Nucella lapillus from the Omey Island control site throughout 

the 18 week experiment while dogwhelks at the Dublin site showed a VDSI (stage 1) for 5 

(25 %) individuals and no other level of imposex was present at this site (Table 5.4).  At 

Dunmore East however, Stage 4 VDSI was demonstrated in 14 individuals (58.3 %) with 

100 % of the individuals displaying some level of imposex at this site (Table 5.4 below).   
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Table 5.4 Imposex of dogwhelks sourced from Omey Island at T=0 weeks and T=18 

weeks. 

VDSI T=0 Omey T=18 Omey T=18 Dublin T=18 Dunmore East 

0 15 22 15 0 

1 0 0 5 2 

2 0 0 0 4 

3 0 0 0 4 

4 0 0 0 14 

5 0 0 0 0 

6 0 0 0 0 

     

RPSI 0 0 0.0003 2.375 

Number (%) imposex 0 (0%) 0 (0%) 5 (25%) 24 (100%) 

Mean shell height  27.3 26.3 27.8 

 

The RPSI index has been confirmed to be a more sensitive index of TBT pollution than the 

VDSI (Barrosa and Moreira, 2002).  RPSI values for the three sites are outlined in Table 

5.4.  Dunmore East was found to have an RPSI of 2.375 which was much greater than that 

observed at the Dublin site (RPSI= 0.0003).  Dogwhelks in Dunmore East showed a much 

stronger degree of imposex than observed in Dublin or Omey, while no sterile dogwhelks 

were detected, at Dunmore East it was the only site where distinct penises could be found 

on females (Table 5.4).  

 

The rapid development of imposex in the caged animals at Dunmore East reflects TBT 

contamination at this site.  High levels of imposex (4.21 to 5.00) have previously been 

determined in animals collected on the more coastal and east facing side of this breakwater 

(see Table 5.5 below) with dogwhelks absent at the end of the breakwater and in the inner 

harbour in the vicinity of the present test sites.  It is anticipated that the transplanted 

dogwhelks within Dunmore East harbour would have greater imposex levels given a longer 

exposure period.  Low level TBT related bioeffects were determined in the Dublin site.  No 
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imposex was noted at the control site Omey Island (see Table 5.4).  Quintela et al. (2000) 

detected VDSI in N. lapillus species at stages 4-5 after five months of exposure in caging 

studies and Smith et al. (2006) demonstrated VDSI stage 5 for four out of thirteen females 

after six months of exposure. 

 

Table 5.5 Historic mean VDSI (RPSI) values from studies adjacent to current experimental 

sites (Minchin, 2005). 

Year sampled Omey Island Dunmore East 
1
  Dublin

2
 

1996 - - 4.00 (14.00) 

1997 - 4.60 (54.41) - 

1999 0.00 (0.00) 5.00 (78.16) 4.25 (31.25) 

2005 - 4.21 (27.48) 4.00 (14.47) 
1
=Outer breakwater of harbour 

2
=North Bull Wall 

 

Although sterile snails have historically been found in Dublin bay, TBT levels were not 

sufficient to result in the extinction of dogwhelks on either of the two breakwaters leading 

into the port (Table 5.5).  Indications from a survey of Irish port regions (Minchin, 2005) 

show that there has been a general decline in TBT contamination in Irish waters, except for 

a number of fishing ports. 

 

5.3.4 Shell thickening in Crassostrea gigas 

 

Shell thickening has been reported as an initial indicator of TBT contamination in cultured 

Pacific oysters which developed distorted shells (Minchin et al., 1987) and can result in the 

shell gape becoming restricted (Alzieu et al, 1982).  

Morphological features of Pacific oysters at the end of the experimental period and shell 

thickness indices are presented in Tables 5.2 and 5.6 respectively.  The growth of oysters 
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was greatest in Dublin and five individuals had matured during the period.  Growth of 

oysters was least at Omey Island.  Shell thickening indices of 25.4 and 22.1 in Dublin and 

Omey Island respectively were determined.  Shell thickening was most prevalent in Dublin 

Port.  Oysters at Dunmore East demonstrated shell thickening of 9.2, lamellae and the 

presence of a gel in most shells, a gel was noted in one individual from Dublin.  Shell 

lamella was noted at all sites however in only one individual from the control site (Omey 

Island).  No shells had an elongated spur to the cupped shell at any site.  Shell thickening 

effects have previously been demonstrated in Cork Harbour and thereafter at other sheltered 

Irish harbours (Minchin et al., 1987).  Experimental studies involving the use of trays were 

undertaken in a bay in the north of Ireland and oysters demonstrated thickening in 70 days 

(Minchin et al., 1987) providing a shell index ranging from 5.9 to 7.7.  Shell thickening and 

inner white lamellae and gel can be observed in oysters from Dunmore East in Figure 5.5. 
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Figure 5.5: Photographs of Crassostrea gigas after 18 weeks (a) demonstrating the shell 

thickening at Dublin Port (b) shell thickening indicated by thick white lamella on 

Crassostrea gigas from Dunmore East (c) Crassostrea gigas from Omey Island showing no 

degree of shell thickening with much smaller shells. 

 

  

 

(a) (b) 

(c) 
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Table 5.6: Results of the shell thickness index for Pacific oysters  

Shell 

Index 

T=0 

Galway Bay 

T=18 

Omey 

T=18 

Dublin 

T=18 

Dunmore East 

0 0 0 0 2 

5 0 0 0 34 

10 0 2 6 10 

15 8 15 6 2 

20 9 12 14 2 

25 10 12 9 0 

30 12 6 9 0 

35 8 1 5 0 

40 2 1 0 0 

45 0 1 0 0 

50 1 0 0 0 

 

 

5.3.5 Assessment of stable isotope ratio information 

 

In order to investigate nutrient assimilation, feeding relationships, and the relative trophic 

status of indicator species, stable isotopes of both Carbon and Nitrogen were analysed in all 

indicator species at both the start (T=0) and end of the experimental period (T=18).  

 

5.3.6  Assessment of δδδδ13C data 

 

At the Dublin Bay test site δ
13C isotopes were most isotopically enriched in N. lapillus 

(NL) followed by M. edulis (ME) with C. gigas (CG) being the least enriched of the test 

species.  At both the Omey Island and Dunmore East test sites the order was NL < CG < 

ME.  Differences in the δ
13C profiles of test organisms suggest that dietary assimilation 
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and/or availability and utilisation of nutrients and especially in the case of oysters differed 

between locations.  As previously discussed, much greater growth rate was detected in 

oysters transplanted to Dublin Bay compared to those transplanted to other sites.  The δ13C 

ratio observed in whole body oyster tissue was less enriched (-20.6‰) in the Dublin 

individuals than observed at the other sites (-18.1‰ and -17.9‰) at Dunmore East and 

Omey Island respectively) thus supporting the hypothesis of a greater influence of 

increased nutrient loadings and/or freshwater influences on the feeding regime of 

transplanted oysters in Dublin Bay.  It should be noted that higher particulate matter 

content in the water column may affect the δ13C values of organisms at the base of the 

oyster food chain and thus be reflected in the δ
13C ratio of the primary consumer 

themselves.  Barnacles which were found to be vacant in Dublin may have potentially fed 

on these organisms, this however cannot be concluded. 

 

Whole-body nutrient turnover rates have previously been reported to be of the order of 30-

60 days (Riera and Richard, 1997) for C. gigas, therefore as oysters in this study have 

potentially been exposed to increased nutrient loadings in Dublin Bay, the observed 

isotopic differences between oysters in Dublin Bay and the other two locations would be 

expected. 

 

As reviewed by Fukumori et al. 2008, δ13C values of organisms in a marine trophic system 

have been shown to be influenced by phytoplankton growth rate (Laws et al., 1995), the 

occurrence of phytoplankton blooms (Nakatsuka et al., 1992; Gervais and Riebesell, 2001), 

primary productivity (Laws et al., 1995; Schell, 2000), and CO2 concentration (Burkhardt et 

al., 1999; Tortell et al., 2000).  Piola et al (2006) report that changes in oyster δ13C values 

can be as a result of the consumption of phytoplankton with differing δ13C isotope values 
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reflecting the source of dissolved inorganic carbon (DIC) used for photosynthesis.  DIC 

values typically change along an estuarine gradient, from a depleted signature (more 

negative) where freshwater influences are evident to an enriched signature at the marine 

end, and phytoplankton δ13C values have been shown to reflect this change (Deegan and 

Garritt, 1997).  While no Particulate Organic Matter (POM) isotopic data are available from 

each of the sampling sites nutrient loadings at the Dublin Bay site would be expected to 

influence the isotopic ratios derived in whole body tissues. 

 

Primary consumers of phytoplankton, such as oysters, are also likely to integrate this varied 

estuarine δ13C signature.  Oyster tissues from Dublin Bay show a relatively depleted δ13C 

signature compared to the other sites.  The strong positive correlation (R2=0.60) observed 

between δ
13C ratios and the surrogate condition index of both oysters and mussels may 

indicate the potential influence of localised sewage-derived nutrients on oysters at this site.  

 

5.3.7 Assessment of δδδδ
15

N data 

 

Greatest δ15N enrichment (9.4 to 10.8 ‰ at Dunmore East and Dublin Bay respectively) 

was found in N. lapillus, thus indicative of this organism’s higher relative trophic status 

compared to the other test species.  Enrichment in oysters was found to be greatest at the 

Dublin Bay site (9.8‰) however little difference was observed between δ
15N ratios in 

oysters between the sites (range 9.0 to 9.8‰).  The δ
15N isotopic ratio determined in 

mussels was found to be most enriched at the reference site at Omey Island (9.1‰) 

compared to those at Dunmore east (7.6‰) and Dublin Bay (7.8‰).  McKinney et al. 

(2001) reported a large variation of δ15N values of ribbed mussel in coastal salt marshes 
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and suggested that δ
15N of the mussel is influenced by nitrogen derived from human 

activities, thus locally increased nutrient loadings (e.g. in Dublin bay) would be expected to 

give rise to changes in the overall δ15N values derived.  

 

SI data confirm that N. lapillus have the highest relative trophic status of the three test 

species and that derived isotopic ratios may be influenced by site specific nutrient inputs in 

all species.  Overall strong correlations between δ13C ratios and the surrogate dry weight 

condition of oysters and mussels were observed and relevance of SI tissue measurements in 

the description of nutrient assimilation pathways was demonstrated. 

 

Figure 5.6 presents a plot of δ15N versus δ13C data for each of the three test species at the 

three selected locations. The highest values represent the highest trophic level when data is 

plotted.  It is demonstrated that the N. lapillus species had the highest trophic status of all 

three species at Omey Island and Dublin Bay sites however, C. gigas was at the same 

trophic level at Dunmore East.  The mussel M. edulis was the most predated species at the 

Dunmore East and Dublin Bay sites but showed the same trophic status at Omey Island to 

C. gigas species at Dublin Bay and Dunmore East. 



- 223 - 

 

 

Figure 5.6: Stable isotope profiling of test species (ME=Mytilus edulis, NL= Nucella 

lapillus and CG= Crassostrea gigas) at test locations. 

 

5.3.8 Organotin concentrations in transplanted animals and sediments  

The concentrations of organotins in biota and sediment with the corresponding TOC and 

moisture contents are presented in Tables 5.3 and 5.7 respectively.  On a dry weight basis, 

highest levels of OTCs were determined in the < 2mm fraction of the Dunmore East 

sediment (22707 µg kg-1 dry weight) and low levels were detected in the Dublin Port and 

Omey sediments (not detected and 192 µg kg-1 dry weight respectively).  Low level TBT 

contamination is evident for Dublin sediments despite the high amount of shipping entering 

the port and passing in close proximity to the experimental site.  Dublin Bay is further 

subjected to a significant level of water exchange and the sediment contains both low total 

organic carbon and a low level of clay.  
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Table 5.7 Concentrations of OTCs in sediment expressed as dry weight and normalised to 

total organic content µg kg -1 in bold text, in < 2mm and < 0.063 mm (in parenthesis) 

fractions of sediments from adjacent to the caging study test sites. 

 

 
TOC TBT  

(dw) 
TBT  

(Normalised) 

DBT 

(dw) 
DBT  

(Normalised) 

 
Omey Island  
 

 
22.6 (30.3) 

 
192 (742) 

 

21.2 (61.2) 

 
52.1 (45.6) 

 

5.76 (3.76) 

 
Dunmore East 
 

 
2.30 (1.42) 

 
22707 (6182) 

 

24681 (10884) 

 
7362 (965) 

 

8003 (1699) 

 
Dublin Bay  
 

 
0.60 (1.30) 

 
nd (109.2) 

 

nd (210) 

 
36.2(64.9) 

 

151 (125) 

nd=not detected 

 

Normalisation to 2.5 % total organic carbon as per the methodology of OSPAR and Kersten 

and Smedes (2002), resulted in highest OTC levels being demonstrated in the < 2 mm 

sediment fraction from Dunmore East (24681 µg kg-1 dry weight) while lower levels were 

shown in the Dublin Bay and Omey Island samples (not detected and 21.2 µg kg-1 dry 

weight respectively).  The Omey Island sediment sampling site while in close proximity to 

the cage study location may however be subject to terrestrial peat based influences and may 

not be truly representative of marine sediments in the surrounding area.  TOC values 

ranged from 0.60 to 22.6 % in the < 2 mm fraction and 1.30 to 30.3 % in the < 0.063 mm 

fraction of the three sites (Table 5.8).  TBT was the dominant species found in the Dunmore 

East site this being indicative of TBT inputs into Dunmore East harbour.  TBT was not 

detected in the < 2mm fraction of the Dublin Port site therefore normalisation was not 

completed.  It should be noted that in Dunmore East experimental trays were located close 

to the area where fishing craft have historically been maintained.  Sediments at this location 

are subjected to disturbance from boat activity and may have resulted in plumes reaching 

the trays.   
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Table 5.8 Summary of sampling locations and physico-chemical information for caging 

study 

  Identification Latitude Longitude 

TOC (%) 

< 2 mm 

TOC (%) < 

0.063 mm 

North Bank Lighthouse 

 

DB5 

 

6.17 

 

53.35 

 

0.6 

 

1.3 

 

Dunmore East  

 

DE2 

 

6.9922 

 

52.1475 

 

2.3 

 

1.42 

 

Omey Island  

 

OI1 

 

10.17 

 

53.53 

 

22.6 

 

30.3  

 

 

5.3.9  Organotin concentrations in tissues of test species 

The C. gigas species accumulated the highest levels of TBT at each of the three test sites.  

Dry weight concentrations of the three OTCs determined were greater in N. lapillus 

compared to M. edulis.  Of the three sites analysed, all three species from Omey Island 

were found to contain the lowest levels of butyltins (BTs).  After the 18 week experimental 

period, it was found that N. lapillus had accumulated low levels of MBT compared to the 

T=0 control. TBT and/or DBT were not accumulated at the same rate at this location.  Wet 

weight concentrations of butyltins in M. edulis from Omey were below the detection limit 

however C. gigas did accumulate some TBT and DBT.  Highest levels of butyltins were 

accumulated in all species present in Dunmore East and distribution followed the pattern 

TBT > DBT > MBT.  As previously discussed sediments at this location are subjected to 

disturbance from boat activity and this may result in test organisms being exposed to 

sediment plumes with elevated OTCs.  At the Dublin Port site levels of TBT and DBT in 
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the three species were above the quantitation limits and again the distribution followed the 

pattern TBT > DBT > MBT, this being similar to the pattern in Dunmore East.  

 

5.3.10 Comparison of mussel tissue results to assessment criteria 

 

Ecotoxicological Assessment Criteria (EACs) for TBT were adopted as assessment tools by 

OSPAR in 1997.  The EACs were intended to be used to identify potential areas of concern 

and to indicate which substances could be considered as a priority.  Table 5.9 displays the 

current EACs for sediment, water and biota in relation to the various stages of imposex in 

N. lapillus.  The quantities of TBT in each of the matrices needed to produce these 

biological effects are also presented.  For Dunmore East, VDSI of 3.25 was demonstrated 

which, is represented by assessment class C in OSPAR assessment criteria.  The 

concentration of TBT in sediment needed to produce such an effect ranged from 2 to < 50 

µg kg-1 dry weight, however TBT in sediment at this site was at an elevated level of 22707 

µg kg-1.  This value was elevated compared to the EAC of 0.01 µg kg-1 dry weight. 

 

Table 5.9: OSPAR classification of various VDSI stages (A-F) in Nucella lapillus species 

relating to Ecotoxciological Assessment Criteria and concentrations of TBT (µg kg-1) in 

water, mussels and sediment. 

 

Nucella lapillus 

Assessment 
class A B C D E F 

 VDSI < 0.3 0.3 - <2.0 2.0 - < 4.0 4.0 - 5.0 >5.0  

TBT Water (ng TBT/l) <0.025 
0.025-
0.25 0.25-5 5-7.5 7.5-37.5 >37.5 

TBT mussel (µg TBT/kg dw) < 3 Mar-30 30 - <600 600-<900 
900-
4200 >4200 

TBT sediment (µg TBT/ kg dw) n.d. < 2 2 - <50 50-<200 200-500 >500 
EAC water (ng TBT/l)  0.1     

EAC Mussel (µg TBT/ kg dw)  12     
EAC sediment (µg TBT/ kg dw) 0.01      
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5.4 Conclusions  

The employment of caging technologies allows for the introduction of indicator species into 

locations where they may not be present or where they may have previously been affected 

by elevated contaminant levels.  This provides an efficient mechanism whereby integrated 

biological and/or chemical effects measurements can be determined.  It should be noted that 

prior to these transplantation studies the disease free status of the test organisms must be 

ensured and undesirable organisms are not introduced to the test site.  The reported data are 

valuable as few studies are available that report measured OTC concentrations in biota with 

biological effects measurements in multiple caged indicator species.  Biological indicators 

and measured biota and sediment concentrations indicate: 1) elevated levels of 

contamination of TBT at the fishing port of Dunmore East, 2) low contaminant levels were 

found at the test site in outer Dublin port and at the control site in Omey Island, 3) no TBT 

specific biological effects were noted at Omey Island, 4) imposex data at the Dunmore East 

location suggest exposure of N. lapillus to TBT concentrations higher than the 

Ecotoxicological Assessment Criteria (EAC) for TBT.  Stable isotope data confirm that N. 

lapillus had the greatest relative trophic status of the three test species and that dietary 

assimilation of nutrients may be influenced by site localised nutrient inputs in all species.  

The relevance of SI tissue measurements in the description of nutrient assimilation 

pathways was demonstrated.  This study has highlighted the value in using imposex for 

measuring the effects of organotins in the marine environment; and in light of legislative 

constraints of the use of TBT, the caging techniques described provide a means for 

biological effects monitoring to take place where resident gastropod populations are absent.  
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6  

 

CHAPTER 6 UTILISING CAGING TECHNIQUES TO 

INVESTIGATE METAL UPTAKE RATES IN NUCELLA 

LAPILLUS, MYTILUS EDULIS AND CRASSOSTREA GIGAS 
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6.1 Introduction 

The pollution of marine environments by metal contaminants has been of increasing 

concern for a number of decades, however many gaps still remain in our understanding of 

the mechanisms underlying bioaccumulation and toxicity of metals in aquatic organisms.  

Ongoing studies on the mechanism of metal accumulation are required to further provide 

information for environmental risk assessment of metals in aquatic environments and to 

provide valuable seafood safety data, which may ultimately assist in consumer protection.  

 

Goldberg (1975) first proposed the mussel-watch concept, this having since being adopted 

by a number of International metal monitoring programmes (such as OSPAR (OSPAR 

2005) wide (including Ireland Mussel-watch programmes).  These programmes are 

primarily based on a quantitative bio-indicator concept, using the ability of marine bivalves 

(usually mussels/oysters) to concentrate and accumulate contaminants in their tissues.  

 

Utilisation of such sentinel species offers a “time-integrated” response to contaminant 

levels in the relevant environmental compartment and is considered much more efficient 

than direct/spot measurements in the water (Goldberg, 1975; De Kock and Van het 

Groenewoud, 1985; Claisse et al., 1992; Boisson et al., 2003; Andral et al., 2004).  

Interpretation difficulties can result as a consequence of contaminant dynamics, 

environmental factors (e.g. temperature, trophic conditions, contamination level, salinity, 

pH, redox potential, dissolved organic carbon, temperature, and food availability) 

(Bjerregaard and Depledge, 1994; Sunda and Huntsman, 1998) and (associated) 

interactions with the physiology (size, sex, sexual maturity, reproduction stages, and 

seasonal growth cycles) of the test species (Cossa, 1989; Rainbow et al., 1990; Bjerregaard 

and Depledge 1994; Wang and Eckmann, 1994; Wright, 1995; Lee and Luoma, 1998; Lee 



- 240 - 

et al., 1998).  A better understanding of the mechanism of metals accumulation/elimination 

is fundamental to ensuring that test species are appropriately selected in order to deliver 

experimental, environmental and or food safety related goals.  

 

6.1.1  Accumulation/elimination and toxicity of metals in marine organisms 

 

Significant differences can exist in the abilities of marine species to accumulate metals.  

Silver, cadmium, zinc, copper, and mercury are generally accumulated to much higher 

concentrations in oysters as compared to mussels whilst scallops (Pecten maximus) have 

been reported to accumulate metals such as cadmium in the digestive gland and kidneys to 

a greater degree than other bivalves (Belcheva et al., 2006; Metian et al., 2007). 

 

Oysters are known to accumulate high concentrations of zinc in the form of detoxified 

granules while mussels excrete a portion of accumulated zinc in granules from the kidney.  

Thus oysters are strong accumulators of zinc whereas mussels are weak net accumulators or 

partial regulators of zinc (Rainbow, 1992).  Such information is fundamental when 

implementing monitoring programs where zinc levels are to be determined.  

 

Mussels have been reported to accumulate relatively low cadmium and zinc concentrations 

while oysters have been shown to contain relatively high cadmium and zinc concentrations 

compared to other marine species.  It has additionally been reported that even in unpolluted 

waters, neogastropods such as Nucella (Thais) lapillus, Murex brandaris and Buccinum 

undatum can accumulate cadmium at high concentrations (Bouquegneau and Martoja, 

1982). 
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Toxicity of metals to marine organisms does not solely depend on total accumulated tissue 

concentrations but is related to a threshold concentration of internal metabolically available 

metal (Rainbow, 2007).  Toxicity ensues when the rate of metal uptake from all sources 

exceeds the combined rates of detoxification and excretion (if present) of the metal 

concerned. 

 

When metals first enter the body of crustaceans (after uptake from solution through 

permeable ectodermal surfaces or across the endoderm of the gut) they will initially be 

metabolically available, i.e. will have the potential to bind to molecules in the receiving cell 

or elsewhere in the body after internal transport via the haemolymph (Rainbow, 2007).  

Essential metals (e.g. zinc, copper) are then available to bind to sites where they can play 

an essential role in metabolic processes, or, if present in excess may cause toxic effects.  

Excesses of essential metal (and all non-essential metals) must be detoxified, e.g. bound in 

a storage organ within the body of the animal.  Such bound forms in a “detoxified store” 

may be temporary in which they may be excreted (Rainbow, 1998; Rainbow, 2002). 

 

Detoxification can also occur in the soluble phase.  Certain trace metals e.g. zinc, copper, 

cadmium, silver and mercury, are associated with, and induce, metallothioneins, low 

molecular weight cytosolic proteins involved in the cellular regulation and detoxification of 

these metals (Roesijadi, 1993; Amiard et al., 2006).  The presence of sulphur in cysteine 

residues in these proteins provides the high metal affinity of the molecule, sequestering 

metals in the cytoplasm and reducing their metabolic availability.  Once the uptake rate of a 

trace metal is lower than the combined rates of detoxification and excretion, then the metal 

will not accumulate in the metabolically available component and toxicity will not ensue 

(Rainbow, 2002; Marsden and Rainbow, 2004).  Conversely if the uptake rate exceeds that 
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of excretion/detoxification then the level of metabolically available metal will exceed a 

threshold and toxic metal can then bind to sites where they can interfere with normal 

metabolic functioning. 

 

Differences in tissue metal concentrations can therefore be described as a function of the 

interaction of the physicochemical characteristics of the contaminant, environmental 

factors, physiology of the test species, and inter-specific differences in the biokinetics of 

uptake and elimination.  Summary factors influencing metal accumulation in a number of 

marine species relevant to this work are further discussed below. 

 

6.1.2 Factors influencing metals uptake 

 

There have been numerous studies on factors controlling metal uptake in marine species.  It 

is not the purpose of this chapter to fully report on all of these studies, however a number 

are summarised below.  

 

6.1.2.1 Physiological factors influencing metals uptake  

 
Wang and Rainbow (2006) reported that differences can exist in cadmium assimilation 

efficiencies (AE) among bivalve species feeding on a common laboratory food source.  

Predatory gastropods can also assimilate dietary cadmium at close to 100 % efficiency 

(Wang and Ke, 2002).  

 

Major differences exist in the uptake rate constants of dissolved metals among the different 

species of bivalves with scallops and oysters having the highest uptake rate constants for 
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different metals as a result of high pumping rates.  Differences in metal “efflux” rates are 

also important in determining inter-specific differences in accumulated metal 

concentrations in bivalves.  The storage of accumulated metal in a detoxified form is 

required for a low efflux rate, particularly where the detoxification form is other than 

soluble metallothionein (Ng et al., 2007). 

 

Differences in growth rate in accounting for the difference in metal accumulation among 

different bivalve species have not yet been explored.  Growth rate is used in the biokinetic 

equation to calibrate growth dilution (analogous to metal efflux).  The importance of the 

growth rate of the bivalves in controlling metal concentrations needs to be studied, 

especially when examining differences in metal concentrations in bivalves from different 

locations.  Wang and Fisher (1997b) suggested that the growth rate is needed to predict the 

metal concentration and allometry of metal accumulation in the mussel Mytilus edulis, 

especially in the case of smaller mussels. 

 

Biokinetic parameters (e.g., dietary assimilation, dissolved uptake and efflux rates) are 

therefore important in determining interspecies differences, while other parameters (such as 

feeding rate, growth rate) can be of less importance in metal accumulation.  Since many 

species living in the same geochemical environment display contrasting metal 

concentrations, geochemical parameters (metal concentrations in water and food) may be 

less important in explaining the interspecies difference in metal body concentrations Wang 

and Rainbow (2005). 
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6.1.2.2  Subcellular fractionation of metals 

 
It is now established that aquatic invertebrates possess diverse strategies in the handling 

and storage of accumulated metals; thus great differences in tissue metal concentrations 

across different phyla can exist (Rainbow, 1998; Rainbow, 2002; Wang and Rainbow, 

2005). 

 

Wang and Rainbow (2005) discuss the importance of the sub-cellular distribution of metals 

in bivalves and suggest that metals are generally fractionated into 5 operationally defined 

subcellular pools, consisting of 1) metal-rich granules (MRG), 2) cellular debris (mainly 

cellular membrane fragments), 3) organelles (metals bound with mitochondria, lysosomes, 

endoplasmic reticulum), 4) heat-sensitive proteins (HSP, including enzymes), and 5) heat-

resistant proteins (generally considered to be metallothioneins or more correctly 

metallothionein-like proteins (MTLP) (Wallace et al., 2003).  Different metals have 

contrasting associations with different subcellular pools, depending on species, exposure 

history, and other conditions.  

 

Blackmore and Wang (2003a) have reviewed whether differences in the measured 

concentrations in biomonitors reflect local bioavailabilities or reflect inter-site differences 

in the organism's physiology and biochemistry, suggesting that biomonitoring data from 

different areas and even utilising different mussel species may be directly comparable thus 

supporting the concept of biomonitoring/“Mussel-Watch” programs.  Such conclusions 

confirm that with appropriately selected test species and methodologies (e.g. caging 

techniques in areas where species may be absent) that caging of sentinel species can 

provide valuable information on (metal) pollutant levels in the marine environment. 
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6.1.2.3 Factors influencing metal uptake 

 
Environmental factors can however be critical in influencing metal accumulation in 

organisms living in different environments and are discussed below. 

 

6.1.2.4 Effect of salinity 

 
Water salinity variations can directly affect the speciation potential of metals in the water 

column and thus both the metal uptake rate from solution and potentially the physiology of 

organisms.  Factors leading to an increase in the local proportion of free ion concentration 

may increase metal bioavailability and thus increase uptake and toxicity, although such 

relationships especially in field situations can be complex (Pan and Wang, 2004; Chuang 

and Wang, 2006). 

 

Blackmore and Wang (2003b) compared the biokinetics of metals in the green mussel P. 

viridis from two sites of contrasting salinity.  Concentrations of metals (cadmium, 

chromium, selenium and zinc) were 1.2–6.4 times greater in mussels collected from the low 

salinity site compared to those from the high salinity site.  The authors suggest that Cr (VI) 

and Se (IV), which are present as anions in solution are not affected by chloride 

complexation, thus behave similarly to cadmium and zinc in that their uptake from the 

dissolved phase increased with decreased salinity and dissolved speciation was not the only 

factor to affect metal uptake from solution by the mussels.  Such studies demonstrate that 

changes in salinity can cause eco-physiological changes in particular organisms and 

subsequently cause an inter-populational difference in dissolved metal uptake rates. 
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A previous history of environmental exposure of a population to metals itself may result in 

changes within that populations metal handling physiology.  Prior metal exposure may 

induce specific metal detoxification processes or physiological and biochemical changes 

that can subsequently affect the uptake of metals (Wang and Rainbow, 2005).  

 

Shi and Wang (2004a) compared the cadmium biokinetics in clams R. philippinarum from 

a previously contaminated site and a “clean” site and found that the contaminated clam 

population had a higher metallothionein (MT) concentration compared to the 

uncontaminated population.  No significant difference in the dissolved uptake rate 

constants, efflux rate constants and the clearance rates of the two were observed between 

the populations and the contaminated clam population had significantly higher cadmium 

and zinc AEs compared to the uncontaminated population.  The authors suggest that AE 

differences may account for the higher cadmium and zinc tissue concentrations in the clams 

from the contaminated site and may suggest the presence of a “positive feedback” 

mechanism.  Others studies (e.g. Rainbow et al., 1999) on amphipods (Orchestia 

gammarellus) and crabs (C. maenas and Pachygrapsus marmoratus) did not suggest such 

positive feedback.  

 

Mussels rapidly accumulate heavy metals and can carry out depuration when animals are 

transplanted to clean locations or when environmental concentrations of contaminants 

decline (Okazaki and Panietz, 1981).  It has been reported that despite depuration, 

detoxification and the potential for metals isolation, that heavy metals negatively affect 

growth of mussels and other bivalves (Rainbow, 1995; Manley et al., 1984; Din and 

Ahamad, 1995).  
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6.1.3 Use of caging studies 

 

The translocation of sentinel species from a reference site to the study areas has been 

demonstrated as a useful strategy for the assessment of water quality in coastal and 

estuarine environments, either through bioaccumulation and/or biomarker response (Regoli 

and Orlando, 1994; Regoli, 2000; Da Ros et al., 2002; Nasci et al., 2002; Riveros et al., 

2002; Riveros et al., 2003; Smolders et al., 2002; Romeo et al., 2003; Bodin et al., 2004; 

Bolognesi et al., 2004; Regoli et al., 2004).  The use of cages to transplant dogwhelks has 

also been previously reported (Harding et al., 1992; Quintela et al., 2000; Smith et al., 

2006). 

 

Caging of marine species facilitate the investigation in areas where native organisms are 

absent, reduce the influence of genetic/population differences, of seasonal variability or 

adaptive phenomena.  The use of caged organisms provides a time-integrated assessment of 

environmental quality over a translocation period, and reveals the early biological effects 

induced by accumulated pollutants.  As discussed previously in chapter 5, caging of 

Nucella lapillus and Crassostrea gigas species demonstrated a high level of imposex (3.25 

VDSI and 2.375 RPSI) and a high degree of shell thickening (shell index: 9.20 ) after only 

an 18 week period in a TBT contaminated site.  

 

6.1.4 Stable isotopes in describing nutrient assimilation and metal uptake 

 

Wang (2002) reports that aquatic invertebrates will take up trace metals into the body from 

solution through permeable body surfaces and from the gut.  It is becoming increasingly 

appreciated that uptake of trace metals from the diet may be the major source of metals for 
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many aquatic invertebrates.  The measurement of stable isotopes (SI) of nitrogen and 

carbon in marine species has previously been employed to provide a quantitative, 

continuous variable for studying relative trophic status, dietary preferences and the 

biomagnification of contaminants within complex food webs (De Niro and Epstein, 1978; 

Minigawa and Wada, 1984; Peterson and Fry, 1987; Rounick and Winterbourn, 1986; Fisk 

et al., 2001; Ruus et al., 2002; Hobson, 1999).  The potential for the application of SI 

techniques to caging studies for metals uptake is evaluated. 

This chapter proposes to investigate: 

1) the potential application of caging techniques for the monitoring of metals uptake in 

three marine species (mussels, oysters and dogwhelks) 

2) levels of metals in filter-feeding mussels and oysters and in the predatory dogwhelk 

(at T=0 and T=18 weeks) transplanted to 3 Irish coastal locations.  

3) Similarities/differences in the metals accumulation pattern in the filter-feeding 

organisms and in the gastropods.  

4) the potential application of stable isotope methodologies to track nutrient 

assimilation in these species. 

5) a potential role for stable isotopes in modelling metals uptake in test species. 

6) the potential for application of caging studies to support biomarker/ecotoxicological 

studies. 

6.2 Materials and methods 

6.2.1 Caging study methodology 

 

The caging study was completed as reported in chapter 5 (section 5.2.3) of this thesis.  Test 

species (oysters, mussels and dogwhelk) at T=0 and T=18 weeks were collected for 

biological effects measurement as described previously in chapter 5 (section 5.2.2).  Whole 
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tissues remaining after biological effects measurements were completed were pooled on a 

species basis and analysed for a variety of metals as described below. 

 

6.2.2 Biota metals analysis 

 

A total of 23 metals were analysed in freeze dried tissues from each of the test species.  The 

methodology for metals analysis is briefly described.  Metal concentrations were quantified 

using a 7500cs ICP-MS (Agilent, Santa Claire, United States) with a Babington nebuliser 

connected to a cooled spray chamber (5 °C), introducing the mist into an Ar-plasma 

operating at 1500W with 15 L Ar per minute.  Standard mass-overlap correction from US-

EPA method 6020 was used to correct the signal before the calibration was calculated, and 

drift was corrected by using rhodium, iridium and indium as internal standards.  Zinc was 

determined using acetylene-air flame atomic absorption on a PerkinElmer 5100PC (Perkin 

Elmer Corporation, Massachusets, United States); cadmium was determined by graphite 

furnace of the same instrument, using palladium-magnesium as modifier in a platform 

furnace and finally mercury was determined using cold vapor atomic absorption 

spectrometry on a Perkin Elmer flow injection mercury system (FIMS) 400 (Strand et al., 

2005).  All atomic absorption methods were based on external standard curves. 

6.2.3  Stable isotope analysis 

 

The methodology for stable isotopes analysis in tissues is described previously in chapter 5 

(section 5.2.10). 
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6.2.4 Quality control of data 

 

A full quality control programme was completed for both stable isotope analysis (see 

chapter 5, section 5.2.14.3) and metals as discussed below.   

 

Quality assurance for metals was validated by the use of certified reference material (CRM) 

NIST 2976.  With the exception of strontium and uranium, all where within 30 % of the 

target value for the metals, aluminium, potassium, iron, nickel, cobalt, copper and lead fell 

within 15 % (on ICP-MS, RSD of 3-12 % for 5 NIST digestions) zinc (Flame Atomic 

Absorption), cadmium (Graphite Furnace Atomic Absorption) and mercury (Cold Vapour) 

where all within 15 % (RSD < 5%).  The RSD on replicate digestions was typically 2-5 % 

for AAS and 3-12 % for ICP-MS. 

 

6.2.5 Data assessment 

 

Concentrations of 23 metals (µg kg-1 dry weight) and for stable isotopes (‰) in the test 

species are presented in Table 6.2.  For the purposes of further assessment concentration 

and stable isotope data were subdivided into five classifications, as follows;  

1) Mussels- Mytilus edulis only (filter feeding). 

2) Pacific Oysters- Crassostrea gigas only (filter feeding). 

3) Dogwhelk- Nucella lapillus only (predatory gastropod). 

4) Mussels and oysters combined (as indicators of filter feeders).  

5) Data from all three test species. 
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Correlations were subsequently completed with S-Plus software between 23 metal 

concentrations (µg kg-1 dry weight), δ
13C and δ

15N for each of the above classifications 

allowing for the identification of strong positive and/or negative correlations between 

metals, between species (individual and combinations) and between locations.  

 

Strong positive/negative correlations can indicate that parameters are closely associated, 

and in the case of metals that they may have similar assimilation and/or elimination 

mechanisms.  In the case of filter feeding organisms (oysters and mussels) strong 

correlations in opposite directions may indicate that mechanisms for the 

assimilation/elimination of metals may differ within species.  Strong correlations between 

stable isotope parameters and individual metals may indicate dietary related assimilation of 

metals. 

 

For further illustrative purposes graphs (Figures 6.1 to 6.6) detailing increases/decreases in 

metal concentrations in each of the three test species relative to their appropriate t=0 

reference sample were completed.  Subtracting the log (x+1) metal concentration in the 

t=18 week samples from that of the t=0 week reference sample has the effect of 

“normalising” datasets to allow for visualisation of uptake/elimination of metals on both a 

location (Omey Island, Dublin Bay and Dunmore East) basis and on a test species basis.  

 

Cluster Analysis (Pielou, 1984) was performed as Bray-Curtis with Single Linkage and 

plotted as % similarity.  Principle Components Analysis (Jeffers, 1978; Pielou, 1984) was 

based upon a correlation matrix to calculate only necessary Eigen values for three axis.  

Both analyses were performed in Biodiversity Pro 2 (McAleece et al., 1997). 
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6.3 Results and Discussion 

6.3.1  Overall observations on metals concentrations 

 

Cadmium levels were found to be more elevated in both resident dogwhelks (t=0) and in 

dogwhelks transplanted to each of the test locations than in either tranplanted mussels or 

oysters (see Figures 6.1 to 6.6).  Levels of cadmium are raised in the initial (t=0) sample 

and are still elevated in (t=18 weeks) at Omey island.  Cadmium levels at Omey Island 

would be expected to be low therefore in the absence of additional supporting data it is 

unclear whether results suggest that the dogwhelk, Nucella lapillus, has a greater capacity 

to accumulate cadmium in their tissues or may or have a lower capacity to eliminate the 

metal than the other species.  Exposure to cadmium is responsible for metallothionein 

induction in both N. lapillus and T. clavigera, and metal-rich granules (MRG) have also 

been shown to be involved in cadmium storage in detoxified form (Leung and Furness, 

2001; Cheung et al., 2006).  Correlations between cadmium levels in Nucella lapillus and 

δ
13C (r=-0.60) and δ15N (r=-0.65) suggested dietary influences in cadmium uptake in the 

species, however this should be further investigated (as discussed in detail below) due to 

the small sample number (n=4) available. 

 

Levels of zinc were more elevated in oysters than observed in either mussels or in the 

dogwhelks.  Zinc levels in this thesis were also found to be more elevated for each of the 

test species located in Dunmore East.  The capacity within the oysters to accumulate higher 

concentrations of zinc and (copper) in oysters is primarily related to the oysters’ high 

pumping rate.  Such haemocytes are typically present in all oysters (Roesijadi, 1996).  

George et al., (1978) report that based on observations of copper in the oyster Ostrea edulis 

relative to mussels, may be attributable to bonding to sulfur within hemocytes.  This 
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mechanism may be responsible for the strong correlation between silver and copper 

concentrations as reported by Daskalakis (1996). 

 

Levels of lithium were found to be lower in NL than in either CG or ME.  Manganese 

levels were lower in CG and NL than in ME.  Levels of iron were lower in NL transplanted 

to the three test sites than in other species (exception t=0 reference ME).  Nickel was lower 

in NL transplanted to the three test sites than in other transplanted species.  Cobalt was 

found to be more elevated in ME than in the other test species.  
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Figure 6.1: Levels of metals in Crassostrea gigas, Mytilus edulis and Nucella lapillus 

transplanted to Dublin, relative to the appropriate (t=0) reference.  Units expressed as Log( 

x + 1)  of t=18 week sample minus Log(x + 1) of t=0 reference.  
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Figure 6.2: Levels of metals in Crassostrea gigas, Mytilus edulis and Nucella lapillus  

transplanted to Omey Island, relative to the appropriate (t=0) reference. Units are expressed 

as Log(x + 1) of t=18 week sample minus Log(x + 1) of t=0 reference.  
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Figure 6.3: Levels of metals in Crassostrea gigas, Mytilus edulis and Nucella lapillus  

transplanted to Dunmore East, relative to the appropriate (t=0) reference.  Units expressed 

as Log(x + 1) of t=18 week sample minus Log(x + 1) of t=0 reference.  

 

Copper levels were more elevated in each of the test species transplanted to both Dublin 

and Dunmore East indicating increased concentrations of these metals at these two more 

industrialised locations.  Similarly lead (with the exception of mussels in Omey) was more 

elevated in Dunmore East and Dublin than in other sites.  Uranium levels were found to be 

lowest in dogwhelks at all sites and in mussels transplanted to Omey Island.  Mercury was 

raised in each of the species transplanted to Dunmore East compared to at other sites. 

 

Arsenic levels were higher in NL (range 38.4 to 71.2 µg kg-1 dry weight) than in either 

mussels or oysters at other test locations while antimony concentrations were found to be 

lower in dogwhelks than in mussels or oysters. 
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The above findings with respect to biotic accumulation of elevated metals levels at test sites 

in both Dunmore East and Dublin suggest rapid accumulation of bioavailable metals from 

the surrounding environment and provide a valid tool for biomonitoring metal impacted 

areas (Regoli and Orlando, 1994; Regoli et al., 2004).  

 

6.3.2 Metal concentrations in Mytilus edulis  between locations 

 

In general, dry weight metal concentrations in transplanted and T=0 mussels were broadly 

similar in mussels between locations.  Higher levels of aluminium, iron, lead, cadmium, 

copper, and zinc (201, 261, 4.42, 1.43, 14.1 and 251µg kg-1 respectively) in mussels 

transplanted to Dunmore East were found to be higher than in those transplanted to other 

locations.  

 

Aluminium, calcium, manganese, iron, strontium, molybdenum and lead were found in 

greater levels in mussels transplanted to all three locations than in the reference (t=0) 

mussels.  Calcium levels in mussels from Omey Island were much higher than in those at 

other locations, shell fragments if present in a sample would potentially result in such 

elevated calcium levels. 
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Figure 6.4: Levels of metals in Mytilus edulis relative to the Galway (t=0) reference. For 

graphical purposes units are expressed as Log(x + 1) of t=18 week sample minus Log(x + 

1) of Galway t=0 reference. 

 

6.3.3 Metal concentrations in Crassostrea gigas between locations 

 

Concentration levels for the majority of metals were broadly similar in oysters transplanted 

to the test locations.  Copper, lead and zinc levels in Dunmore East and copper and lead in 

Dublin Bay (DB5) transplants were higher than those observed in either the (t=0) or Omey 

Island samples indicative of the nature of activities in these locations.  Both molybdenum 

and strontium were found to be lower in both Dublin Bay and Dunmore East transplanted 

samples than at the other two sites.  
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Figure 6.5: Levels of metals in Crassostrea gigas relative to the Galway (t=0) reference. 

For graphical purposes units are expressed as Log(x + 1) of t=18 week sample minus Log(x 

+ 1) of Galway t=0 reference.  

 

6.3.4 Metal concentrations in Nucella lapillus between locations 

 

Stable isotope (δ15N) data suggest that Nucella lapillus occupy a higher trophic level than 

either Mytilus edulis or Crassostrea gigas and thus accumulation of metals may potentially 

result as a consequence of its predatory nature.  Chromium, nickel, arsenic, strontium and 

iron levels in (t=0) dogwhelks were higher than those determined at the same location at 

T=18 weeks and in Dunmore East and Dublin after 18 weeks.   
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Figure 6.6: Levels of metals in Nucella lapillus relative to the Omey Island (t=0) reference. 

For graphical purposes units are expressed as Log (x + 1) of t=18 week sample minus Log 

(x + 1) of Omey Island t=0 reference. 

 

Levels of lithium were found to be lower in dogwhelks than in either oysters or mussels 

with strong correlations between lithium and δ13C (r=0.81) and δ15N (r=0.82) indicating 

dietary assimilation.   

 

Arsenic levels were found to be higher in dogwhelks (range 38.4 to 71.2 µg kg dry weight) 

than in either mussels or oysters at other test locations with strong correlations to both δ13C 

(r=0.81) and δ15N (r=0.82). 

 

Raised imposex indices (see chapter 5) were determined in dogwhelks from Dunmore East 

and while elevated organotin levels have been found at this location, it may be of 

significance that a number of other metals are elevated in dogwhelks transplanted to 

Dunmore East.  
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6.3.5 Metal and stable isotopes correlations in classification groups 

 
As previously discussed, stable isotopes provide a mechanism whereby dietary assimilation 

of nutrients can be tracked and where assimilation of contaminants can be modelled.  A full 

discussion on the use of stable isotopes to trace nutrient assimilation in these caging studies 

is previously described in chapter 5 (sections 5.3.6 and 5.3.7), while the application of 

stable isotopes in tracing metals assimilation/elimination is further discussed below.  

 

A substantial dataset containing concentration data from a total of 23 metals, 2 stable 

isotope and 5 biota classifications was available and a large correlations dataset was 

established.  However the discriminatory power in such correlations was reduced based on 

the low number of samples (3 sites with 1 replicate each).  Additionally due to the 

complex/dynamic nature of test sites it was deemed inappropriate to utilise SI techniques to 

identify potential dietary/trophic level correlations with this dataset.  With additional 

discriminatory power in the form of an increased number of samples and establishment of 

the level of potential analytical errors associated with singlicate sampling SI techniques 

may prove to be valuable in further elucidating the influence of diet/trophic status in trace 

metal assimilation/elimination.  It should however be noted that the use of stable isotopes to 

track nutrient flow within a food web system has been demonstrated in sections 5.3.6 and 

5.3.7 of this thesis.  

6.3.6 Principle Components Analysis and Cluster Analysis 

 

In both Principle Components Analysis (PCA) (Figure 6.7) and Cluster Analysis (CA) 

(Figure 6.8) samples were grouped primarily by species; C. gigas, M. edulis and N. lapillus.  
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Samples of N. lapillus clustered closest together and separated furthest from other samples. 

Signals of site were present in the analysis.  For all 3 species, samples showed the same site 

ordering along Axis 1 of the PCA within their respective clusters.  Samples collected at the 

site of origin at t=0, showed the lowest score along the axis, followed in all three cases, by 

Omey Island, Dublin Port and finally Dunmore East. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7: Principle Components Analysis Axis 1, 2 and 3 with clusters by species 

indicated. 
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Figure 6.8: Bray-Curtis Cluster Analysis (single Linkage) with clusters indicated. 

Results suggest that metabolism/ absorption and the accumulation of metals in tissues is 

species specific.  Clearly, tissue loadings of chemicals from different species are not 

comparable.  Within species however, results indicate that there is a site influence upon 

tissue concentrations (for example, at the Dunmore East site, turbulence from boating 

activities could effect sediment exposure) however this cannot be concluded from this 

study. 

6.3.7 Statistics used for metals results 

 

Significant differences (as derived by ANOVA) in dry weight metal concentrations 

between species were determined for lithium, aluminium, potassium, vanadium, 
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manganese, iron, arsenic, antimony, uranium, cadmium and zinc.  The nature of these 

differences was further examined by the use of a Scheffe Post Hoc Test (See Table 6.1).  

 

 

Table 6.1: Summary ANOVA statistics for transplantation experiment including F test 

statistic (F Critical = 4.25 2 and 6 df), probability statistic P and nature of difference 

between species as derived from Post Hoc Scheffe tests. 

 

Metal Sig Diff 

F test 

(F crit. 4.25. 9,2 df) Probability ME - CG NL - CG NL - ME 

li � 11.05 0.0038 0.85 0.006 0.014 
Na  1.5     
Mg  0.92     

al � 5.78 0.024 0.99 0.046 0.049 
P  2.807     

K � 12.6 0.0025 0.99 0.006 0.005 
Ca  1.88     

V � 6.2 0.0203 0.625 0.103 0.02 

Cr  0.02     

Mn � 13.998 0.0017 0.0035 0.0056 0.94 

Fe � 4.405 0.046 0.4 0.046 0.347 

Ni  0.16     

Co � 7.38 0.0127 0.046 0.82 0.018 

Cu  2.03     

As � 15.899 0.001 0.812 0.004 0.002 

Sr  0.808     

Mo  3.91     

Sb � 16 0.0011 0.33 0.01 0.0013 

pb  2.29     

U � 5.42 0.0285 0.689 0.033 0.12 

Hg  1.91     

Cd � 82.26 0.0001 0.999 0.00000562 0.0000055 

Zn � 16.64 0.0009 0.0021 0.0029 0.97 
 

Significant differences in levels of manganese, cobalt and particularly for zinc were 

reported between mussels and oysters.  Differences in the levels of lithium, aluminium, 

potassium and antimony (lower in dogwhelks than in either mussels or oysters) arsenic and 
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cadmium (elevated in dogwhelks compared to mussels or oysters) were determined.  These 

results are presented in graphs (Figures 6.9-6.14).   
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Figure 6.9: Concentrations of lithium (Li) in the caged species, Crassostrea gigas, Mytilus 

edulis and Nucella lapillus species after 18 weeks exposure. 
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Figure 6.10: Concentrations of aluminium (Al) in the caged species, Crassostrea gigas, 

Mytilus edulis and Nucella lapillus species after 18 weeks exposure. 
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Figure 6.11: Concentrations of potassium (K) in the caged species, Crassostrea gigas, 

Mytilus edulis and Nucella lapillus species after 18 weeks exposure. 
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Figure 6.12: Concentrations of antimony (Sb) in the caged species, Crassostrea gigas, 

Mytilus edulis and Nucella lapillus species after 18 weeks exposure. 
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Figure 6.13: Concentrations of arsenic (As) in the caged species, Crassostrea gigas, 

Mytilus edulis and Nucella lapillus species after 18 weeks exposure. 
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Figure 6.14: Concentrations of cadmium (Cd) in the caged species, Crassostrea gigas, 

Mytilus edulis and Nucella lapillus species after 18 weeks exposure. 
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6.4 Conclusions 

Rapid biotic accumulation of metals was demonstrated in the test species, especially in both 

Dunmore East and Dublin suggesting the caging study as described is a valid tool for 

biomonitoring metal impacted areas.  The use of SI techniques to model metal uptake in 

this study was statistically limited by sample size.  Application of the SI technique to 

describe nutrient assimilation in the test species has been demonstrated.  It has been 

demonstrated that the cage study is suitable for the deployment of indicator species to 

potential “hotspot” locations or where resident species may be absent.  Further to this, the 

metals and stable isotopes datasets derived during this study are of significant value in 

supporting other biological effects (i.e. imposex in the dogwhelk Nucella lapillus and shell 

thickening in Crassostrea gigas) described throughout this thesis. 
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Table 6.2: Levels of metals (mg kg-1 dry weight) and stable isotope ratios δ
13C and δ

15N (0/00) in Crassostrea gigas (CG), 

Mytilus edulis (ME), Nucella lapillus (NL) at t=0 and t=18 weeks in Dublin, Dunmore East and Omey Island. 

Location 

Galway 

 (t=0 wks) Dublin 

Dunmore 

East Omey 

Galway 

 (t=0 wks) Dublin 

Dunmore 

East Omey 

Omey  

(t=0 wks) Dublin 

Dunmore 

East Omey 

Species CG CG CG CG ME ME ME ME NL NL NL NL 

Dry Wt % 24.4 21.2 21.8 22.1 21.9 20.3 21.1 24.79 30.1 37.2 36.4 36.4 

d13C -20.1 -20.6 -18.1 -17.9 -18.0 -18.2 -18.8 -20.5 -19.5 -16.9 -17.3 -17.0 

d15N 8.60 9.80 9.00 9.00 9.30 7.80 7.60 9.10 9.90 10.8 9.40 10.3 

Li ICP 0.67 0.72 0.67 0.69 0.54 0.68 0.81 0.55 0.56 0.29 0.29 0.29 

Na ICP 11,033 11,435 11,826 14,859 15,117 17,495 15,945 9,728 18,501 6,576 6,415 6,839 

Mg ICP 2,132 2,310 2,133 2,611 2,696 3,153 2,746 1,757 5,541 2,305 2,068 2,992 

Al ICP 111 148 133 81.3 39.7 93.3 201 133 33.3 31.0 28.9 21.2 

P  ICP 4,761 7,320 6,301 5,357 6,944 5,050 5,318 5,595 3,871 5,037 4,873 4,592 

K  ICP 10,110 11,150 10,266 11,618 11,569 11,370 10,460 9,866 6,424 8,784 8,641 8,416 

Ca ICP 33,549 13,910 2,525 25,827 1,263 3,119 3,948 1,856 35,042 3,296 3,151 5,226 

V ICP 1.05 1.21 0.88 1.29 1.11 1.59 1.41 0.95 0.52 0.88 0.61 0.88 

Cr ICP 1.70 0.79 0.99 1.09 1.24 0.98 1.51 0.71 2.26 0.65 1.00 0.88 

Mn ICP 21.3 47.1 29.0 31.8 4.64 9.02 13.4 12.1 10.6 13.8 11.4 9.5 

Fe ICP 254 188 191 175 29.8 152 261 113 124 56.6 55.5 46.0 

Ni ICP 1.58 0.81 1.03 1.21 1.56 1.43 1.47 0.88 2.57 0.51 0.53 0.75 
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Co ICP 0.49 0.52 0.48 0.46 0.67 0.62 0.88 0.54 0.51 0.47 0.39 0.42 

Cu ICP 20.6 72.7 282 40.3 7.70 8.29 14.1 5.82 30.6 15.9 46.5 23.3 

As ICP 16.6 9.5 20.7 17.3 10.5 11.6 17.4 6.68 71.2 42.2 39.4 38.4 

Sr ICP 84.2 47.0 19.2 73.8 18.9 33.0 29.8 19.9 147 23.7 21.2 31.7 

Mo ICP 1.85 0.84 0.83 1.27 1.00 2.64 1.73 1.80 0.56 1.23 0.63 0.76 

Sb ICP 0.28 0.28 0.27 0.27 0.39 0.31 0.31 0.25 0.21 0.16 0.17 0.16 

Pb ICP 1.20 1.65 1.51 0.74 1.01 1.22 4.42 2.45 0.54 1.05 1.32 0.54 

U ICP 0.46 0.44 0.51 0.56 0.54 0.49 0.46 0.32 0.38 0.32 0.35 0.34 

Hg - FIMS 0.13 0.10 0.23 0.13 0.15 0.12 0.18 0.06 0.18 0.16 0.28 0.18 

Cd-GFAA 1.49 1.14 1.37 1.17 1.77 1.05 1.43 0.67 34.1 23.7 24.1 22.3 

Zn-FAA 673 786 1,466 791 120 148 251 118 163 204 238 172 

ICP: Inductively Coupled Plasma, GFAA: Graphite Furnace Atomic Absorption, FAA: Flame Atomic Absorption, FIMS: Flow Injection Mercury System, CG: Crassostrea 

gigas, ME: Mytilus Edulis, NL: Nucella lapillus 

 



- 271 - 

6.5 References 

Amiard, J.C., Amiard-Triquet, C., Barka, S., Pellerin, J., Rainbowd, P.S. 2006. Review. 

Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as 

biomarkers. Aquatic Toxicology 76, 160–202.  

 

Andral, B., Stanisiere, J.I., Sauzade, D., Damier, E., Thebault, E., Galgani, F., Boissery, P. 

2004. Monitoring chemical contamination levels in the Mediterranean based on the use of 

mussel caging. Marine Pollution Bulletin 49, 704–712. 

 

Belcheva, N.N., Zakhartsev, M., Silina, A.V., Slinko, E.N., Chelomin, V.P. 2006. 

Relationship between shell weight and cadmium content in whole digestive gland of the 

Japanese scallop Patinopecten yessoensis (Jay). Marine Environmental Research 61, 396–

409.  

 

Blackmore, G., Wang,W.-X. 2003a. Variations of metal accumulation in marine mussels at 

different local and global scales. Environmental Toxicology and Chemistry 22, 388–395. 

 

Blackmore, G., Wang, W.X. 2003b. Inter-population differences in Cd, Cr, Se, and Zn 

accumulation by the green mussel Perna viridis acclimated at different salinities. Aquatic 

Toxicology 62, 205–218. 

 

Bodin, N., Burgeot, T., Stanisiere, J.Y., Bocquene, G., Menard, D., Minier, C., Boutet, I., 

Amat, A., Cherel., Y., Budzinski, H. 2004. Seasonal Variations of a battery of biomarkers 

and physiological indices for the mussel Mytilus galloprovincialis transplanted into the 



- 272 - 

northwest Mediterranean Sea. Comparative Biochemistry and Physiology Part C 

Toxicology and Pharmacology 138, 411-427. 

 

Boisson, F., Goudard, F., Durand, J.P., Barbot, C., Pieri, J., Amiard, J.C., Fowler, S.W. 

2003. Comparative radiotracer study of cadmium uptake, storage, detoxification and 

depuration in the oyster Crassostrea gigas: Potential adaptive mechanisms, Marine 

Ecology Progress Series 254, 177-186.  

 

Bolognesi, C., Frenzilli, G., Lasagna, C., Perrone, E., Roggeiri, P. 2004. Genotoxicity 

biomarkers in Mytilus galloprovincialis: wild versus caged mussels. Mutation Research 

552, 153-162. 

 

Bouquegneau, J.M., Martoja, M. 1982. Copper content and its degree of complexation in 

four marine gastropods. Data concerning cadmium and zinc. Oceanologica acta Paris 5, 2, 

219-228.  

 

Bjerregaard, P., Depledge, M.H. 1994. Cadmium accumulation in Littorina littorea, 

Mytilus edulis, and Carcinus maenas: the influence of salinity and calcium ion 

concentrations. Marine Biology 119, 385–395. 

 

Cheung, M-S., Fok, E.M.W., Ng, T.Y.T., Yen, Y-F., Wang, W-X. 2006. Subcellular 

cadmium distribution, accumulation and toxicity in a predatory gastropod, Thais clavigera, 

fed different prey, Environmental Toxicology and Chemistry 25, 174-181.  

 



- 273 - 

Chuang, C.Y., Wang, W.-X. 2006. Co-transport of metal complexes by the green mussel 

Perna viridis. Environmental Science and Technology 40, 4523–4527. 

 

Claisse, D., Joanny, M., Quintin, J-Y. 1992. The French marine pollution monitoring 

network (RNO). Analusis Paris 20, 6, M19-M22.  

 

Cossa, D. 1989. A review of the use of Mytilus spp. as quantitative indicators of cadmium 

and mercury contamination in coastal water. Oceanologica Acta 12, 417–432. 

 

Da Ros, L., Meneghetti, F., Nasci, C. 2002. Field application of lysosomal destabilization 

indices in the mussel Mytilus galloprovincialis: biomonitoring and transplantation in the 

lagoon of Venice (north-east Italy). Marine Environmental Research 54, 817-822.  

 

Daskalakis, K.D. 1996. Variability of metal concentrations in oyster tissue and implications 

to biomonitoring, Marine Pollution Bulletin 32, 794–801. 

 

DeKock, W.C., and Van Het Groenewoud, H. 1985. Modelling bioaccumulation and 

elimination dynamics of some xenobiotic pollutants (Cd, Hg, PCB, HCB) based on "in situ" 

observations with Mytilus edulis. TNO report. The Hague: 68-79. 

 

DeNiro, M.J., Epstein, S. 1978. Influence of diet on the distribution of carbon isotopes in 

animals. Geochimica et Cosmochimica Acta 42, 495–506. 

 

Din, Z.B., Ahamad, A. 1995. Changes in the scope for growth of blood cockles (Anadara 

granosa) exposed to industrial discharge. Marine Pollution Bulletin 31, 4-12. 



- 274 - 

 

Fisk A.T., Hobson K.A., Norstrom R.J. 2001. Influence of chemical and biological factors 

on trophic transfer of persistent organic pollutants in the Northwater Polynya food web. 

Environmental Science and Technology 35, 732–738. 

 
George, S.G., Pirie, B.J.S., Cheyne, A.R., Coombs T.L., and Grant, P.T. 1978. Detoxication 

of metals by marine bivalves: an ultrastructural study of the compartmentation of copper 

and zinc in the oyster Ostrea edulis, Marine Biology 45, 147–156. 

 

Goldberg, E.D. 1975. The mussel watch – a first step in global marine monitoring. Marine 

Pollution Bulletin 6, 111. 

 

Harding, M.J.C., Bailey, S.K., Davies, I.M. 1992. TBT imposex survey of the North Sea.  

North east Atlantic Marine Research Programme, Marine Division, Department of the 

Environment. Report 15, 1-25. 

 

Hobson, K.A. 1999. Tracing origins and migration of wildlife using stable isotopes: a 

review. Oecologia 120, 314–326. 

 

Jeffers, J.N.R. 1978. An Introduction to Systems Analysis with Ecological Applications. 

Arnold, London. 

 

Lee, B-G., Luoma, S.N. 1998. Influence of microalgal biomass on absorption efficiency of 

Cd, Cr, and Zn by two bivalves from San Francisco. Limnology and Oceanography 43, 

1455-1466.  



- 275 - 

 

Lee, B.G., Wallace, W.G., Luoma, S.N. 1998. Uptake and loss kinetics of Cd, Cr, and Zn in 

the bivlaves Potamocorbula amurensis and Macoma bathicar: effects of size and salinity. 

Marine Ecology Progress Series 175, 177–189. 

 

Leung, K.M.Y., Furness, R.W. 2001a. Survival, growth, metallothionein and glycogen 

levels of Nucella lapillus (L.) exposed to sub-chronic cadmium stress: the influence of 

nutritional state and prey type. Marine Environmental Research 52, 173–194. 

 

Leung, K.M.Y., Furness, R.W. 2001b. Metallothionein induction and condition index of the 

dogwhelk Nucella lapillus exposed to cadmium and hydrogen peroxide. Chemosphere 44, 

321–325. 

 

Manley, A.R., Gruffydd, L.I.D., Almada-Villela, P.C. 1984. The effect of copper and zinc 

on the shell growth of Mytilus edulis measured by a laser diffraction technique. The Marine 

Biological Association of the United Kingdom 64, 2, 417-427. 

 

Marsden, I.D., Rainbow, P.S. 2004. Does the accumulation of trace metals in crustaceans 

affect their ecology — the amphipod example? Journal of Experimental Marine Biology 

and Ecology 300, 343–371. 

 

McAleece, N., Lambshead, P.J.D., Paterson, G.L.J., Gage, J.D. 1997. Biodiversity Pro. A 

program research for analysing ecological data. http://www.sams.ac.uk/ . The Natural 

History Museum, London and the Scottish Association for Marine Science, Oban. 

 



- 276 - 

Metian, M., Warnau, M., Oberhänsli, F., Teyssié, J-L., Bustamente, P. 2007. Interspecific 

comparison of Cd bioaccumulation in European Pectinidae (Chlamys varia and Pecten 

maximus). Journal of Experimental Marine Biology and Ecology 353, 58–67. 

 

Minagawa, M., Wada, E. 1984.  Stepwise enrichment of 15N along food chains: Further 

evidence and the relation between δ15N and animal age. Geochimica et Cosmochimica Acta 

48, 1135-1140. 

 

Nasci, C., Nesto, N., Monteduro, R.A., Da Ros, L. 2002. Field application of biochemical 

markers and a physiological index in the mussel, Mytilus galloprovincialis: transplantation 

and biomonitoring studies in the lagoon of Venice (NE Italy). Marine Environmental 

Research, 811-816. 

 

Ng, T.Y.T., Rainbow, P.S., Amiard-Triquet, C., Amiard, J.C., Wang, W.-X. 2007. 

Metallothionein turnover, cytosolic distribution and the uptake of Cd by the green mussel 

Perna viridis. Aquatic Toxicology 84, 153–161. 

 

Okazaki, R.K., and Panietz, M.H. 1981. Depuration of twelve trace metals in tissues of the 

oysters Crassostrea gigas and Crassostrea virginica. Marine Biology 63, 113–120. 

 

OSPAR CEMP - reference 2005-5.  www.ospar.org 

 

Pan, J.F., Wang, W.-X. 2004. Differential uptake of dissolved and particulate organic 

carbon by the marine mussel Perna viridis. Limnology and Oceanography 49, 1980–1991. 

 



- 277 - 

Pielou, E.C. 1984. The interpretation of Ecological Data Wiley, New York. 
 

Peterson, B.J., Fry, B. 1987. Stable isotopes in ecosystem studies. Annual Review of 

Ecology and Systematics 18, 293–320. 

 

Quintela, M., Barreiro, R., Ruiz, J.M. 2000. The use of Nucella lapillus (L.) transplanted in 

cages to monitor tributyltin (TBT) pollution. The Science of the Total Environment 247, 

227-237. 

 

Rainbow, P.S., Phillips, D.J.H., Depledge, M. 1990. The significance of trace metal 

concentrations in marine invertebrates. A need for laboratory investigation of accumulation 

strategies. Marine Pollution Bulletin 21, 321–324.  

 

Rainbow, P.S. 1992. The accumulation by marine organisms of heavy metals and its 

significance Marine environmental science/Haiyang Huanjing Kexue. Dalian, 11, 1, 44-52.  

 

Rainbow, P.S. 1995. Biomonitoring of heavy metal availability in the marine environment. 

Marine Pollution Bulletin 31, 183–192. 

 

Rainbow, P.S. 1998. Phylogeny of trace metal accumulation in crustaceans. In: Langston, 

W.J., Bebianno, M.J. (Eds.), Metal Metabolism in Aquatic Environments. Chapman and 

Hall, London, 285–319. 

 

Rainbow, P.S., Amiard-Triquet, C., Amiard, J.C., Smith, B.D., Best, S.L., Nassiri, Y., 

Langston, W.J. 1999. Trace metal uptake rates in crustaceans (amphipods and crabs) from 



- 278 - 

coastal sites in NW Europe differentially enriched with trace metals. Marine Ecology 

Progress Series 183, 189–203. 

 

Rainbow, P.S. 2002. Trace metal concentrations in aquatic invertebrates: why and so what? 

Environmental Pollution 120, 497–507. 

 

Rainbow, P.S., 2007. Trace metal bioaccumulation: models, metabolic availability and 

toxicity. Environment International 33, 576–582. 

 

Regoli, F. 2000. Total oxyradical scavenging capacity (TOSC) in polluted and translocated 

mussels: a predictive biomarker of oxidative stress. Aquatic Toxicology 50, 351-361. 

 

Regoli, F., Frenzilli, G., Bocchetti, R., Annarumma, F., Scarcelli, V., Fattorini, D., Nigro, 

M. 2004. Time-course variations of oxyradical metabolism, DNA integrity and lysosomal 

stability in mussels, Mytilus galloprovincialis, during a field translocation experiment. 

Aquatic Toxicology 68, 167-178. 

 

Regoli, F., Orlando, E. 1994. Accumulation and subcellurar distribution of metals (Cu, Fe, 

Mn, Pb and Zn) in the Mediterranean mussels Mytilus galloprovincialis during a field 

transplant experiment. Marine Pollution Bulletin 28, 592-600. 

 

Riveros, A., Zuniga, M., Hernandez, A., Camano, A. 2002. Cellular biomarkers in native 

and transplanted populations of the mussel Perumytilus purpuratus in the intertidal zones 

of San Jorge Bay, Antofagasta, Chil. Arch. Environmental Contamination and Toxicology 

42, 303-312. 



- 279 - 

 

Riveros, A., Zuniga, M., Larrain, A. 2003. Copper metallothionein-like proteins as 

exposure biomarker in native and transplanted intertidal populations of the mussel 

Perumyltilus purpuratus from San Jorge Bay, Antofagasta. Chilean Bulletin of 

Enviromental Contamination and Toxicology 70, 233-241. 

 

Roesijadi, G. 1993 Metallothioneins in metal regulation and toxicity in aquatic animals. 

Aquatic Toxicology 22, 81–114. 

 

Roesijadi, G. 1996. Environmental factors: response to metals. In: V.S. Kennedy et al., 

Editors, The Eastern Oyster Crassostrea virginica Maryland Sea Grant, College Park, MD, 

515–537.  

 

Romeo, M., Hoarau, P., Garrello, G., Gnassia-Barelli, M., Girard, J.P. 2003. Mussel 

transplantation and biomarkers as useful tools for assessing water quality in the NW 

Mediterranean. Environmental Pollution 122, 369-378. 

 

Rounick, J.S., Winterbourn, M.J. 1986. Stable Carbon Isotopes and Carbon Flow in 

Ecosystems. BioScience 36, 171-177. 

 

Rüüs, A., Ugland, K.I., Skaare, J.U. 2002. Influence of trophic position on organochlorine 

concentrations and composition patterns in a marine food web. Environmental Toxicology 

and Chemistry 21, 2356–2364. 

 



- 280 - 

Shi, D., Wang, W-X. 2004, Understanding the differences in Cd and Zn bioaccumulation 

and 6 subcellular storage among different populations of marine clams. Environmental 

Science and Technology 38, 7 449-456. 

 

Smolders, R., Bervoets, L., Blust, R. 2002. Transplanted zebra mussels (Dreissena 

polymorpha) as active biomonitors in an effluent dominated river. Environmental 

Toxicology and Chemistry 21, 1889-1896. 

 

Smith, A.J., Thain, J.E., Barry, J. 2006. Exploring the use of caged Nucella lapillus to 

monitor changes to TBT hotspots areas: a trial in the River Tyne estuary (UK). Marine 

Environmental Research 62, 149-163. 

 

Strand, J., Larsen, M.M., Lockyer, C. 2005. Accumulation of organotin compounds and 

mercury in harbour porpoises (Phocoena phocoena) from the Danish waters and West 

Greenland Science of the Total Environment 350, 1-3, 59-71.  

 

Sunda, W.G., Huntsman, S.A. 1998. Processes regulating cellular metal accumulation and 

physiological effects: phytoplankton as model systems. Science of the Total Environment 

219, 165–181. 

 

Wallace, W.G., Lee, B.G., Luoma, S.N. 2003. Subcellular compartmentalization of Cd and 

Zn in two bivalves. I. Significance of metal-sensitive fractions (MSF) and biologically 

detoxified metal (BDM). Marine Ecology Progress Series 249, 183–197. 

 



- 281 - 

Wang, N., Eckmann, R. 1994. Distribution of perch (Perca fluviatilis L.) during their first 

year of life in Lake Constance Hydrobiologia 277, 135-143.  

 

Wang, W.-X., Fisher, N.S. 1997. Modeling the influence of body size on trace element 

accumulation in mussel Mytilus edulis. Marine Ecology Progress Series 161, 103–115. 

 

Wang, W.-X. 2002a. Interaction of trace metals and different marine food chains. Marine 

Ecology Progress Series 243, 295–309. 

 

Wang, W.-X. 2002b. Cd and Se aqueous uptake and exposure of green mussels Perna 

viridis: influences of seston quantity. Marine Ecology Progress Series 226, 211–221. 

 

Wang, W-X., Rainbow, P.S. 2005. Influence of metal exposure history on trace metal 

uptake and accumulation by marine invertebrates. Ecotoxicology and Environmental Safety 

61, 145–159. 

 

Wang, W-X., Rainbow, P.S. 2006. Subcellular partitioning and the prediction of cadmium 

toxicity to aquatic organisms. Environmental Chemistry 3, 395–399. 

 

Wright, D.A. 1995. Trace metal and major ion interactions in aquatic animals. Marine 

Pollution Bulletin 31, 8–18. 



- 282 - 

 

7  

 

CHAPTER 7 BIOASSAY-DIRECTED FRACTIONATION OF 
SOLVENT EXTRACTS OF MARINE SEDIMENTS FROM THE 
EAST COAST OF IRELAND 
 



- 283 - 

7.1 Introduction 

Bioassay-directed fractionation (BDF) and Effects-directed analysis (EDA) are two 

valuable techniques that aim to establish a causal link between chemical substances and 

biological effects in environmental samples by combining chemical and biological analysis.  

Thousands of compounds can potentially exist in marine coastal sediments and usually 

different contaminants present their own mode of action on marine organisms.  In 

ecotoxicological studies with marine species, effects of single substances are usually 

assessed.  This scenario is not realistic of the true environmental exposure as sediment 

samples from individual locations can contain a mixture of contaminants.  Ecotoxicological 

based assessments of contaminants in mixtures is difficult to quantify due to the potential 

for contaminant interactions (e.g. additive, antagonistic or synergistic effects).  When 

dealing with marine species there are many substances for which no toxicity data currently 

exists.  The measurement of biological effects on organisms and identification of the 

causative agent using chemical analysis is therefore essential for the risk assessment of 

sediments.   

 

In BDF/EDA, the cause of toxicity is narrowed down by using a fractionation procedure 

which separates the complex mixture of contaminants into various groups.  This procedure 

has been used previously for fractionation of groups of compounds such as polycyclic 

aromatic hydrocarbons (Grote et al. 2005), halogenated aromatic hydrocarbons such as 

coplanar polychlorinated biphenyls, polychlorinated naphthalenes, polychlorinated 

dibenzo-p-dioxins and dibenzofurans (Brack et al., 2005) alkylphenols, nitroaromatics, 

synthethic musks, organophosphorous compounds and brominated organic compounds 

(Biselli et al., 2004).  Limited bioassay directed fractionation data is available for 

contaminant groups such as organotin compounds (OTCs).  This is because a derivatisation 
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step is required in the quantification procedure and their extraction into suitable forms for 

bioassay testing may be problematic.  The production of crude solvent extracts to test other 

compounds on biological organisms has previously been reported to incorporate mainly the 

use of soxhlet extraction using dichloromethane [DCM] (Brack et al., 2002; Brack et al., 

2005; Grote et al., 2005), soxhlet extraction over 24 h with solvents of increasing polarity 

(Hollert et al., 2000) and a sequential extraction incorporating a range of solvents with 

increasing polarity using accelerated solvent extraction (ASE) (Biselli et al., 2004; 

Houtman et al., 2004).  A direct analysis can therefore be performed with these extracts for 

quantification of many organic compounds but an additional derivatisation step is needed 

for organotin quantitation.   

 

7.1.1 Bioassays used for bioassay directed fractionation 

 

The primary consumer, Tisbe battagliai and the decomposer, Vibrio fischeri were selected 

for ecotoxicological testing of solvent extracts of samples.  These two assays have 

previously been shown to be sensitive to organotin compounds (Macken et al., 2008).   

 

Microbial tests such as the Microtox® Acute Test, which tests the acute toxicity of 

environmental samples and pure compounds based on the natural bioluminescence of 

Vibrio fischeri species, are suited for sediment toxicity testing primarily because they 

represent principal cell functions.  The uptake of pollutants is more direct than with higher 

organisms where the main route of exposure may be ingestion of sediment (Liß and Ahlf, 

1997).  In the presence of certain pollutants, the natural bioluminescence is reduced and the 

toxicity is expressed as the sample concentration that produces a 10 or 50 % reduction of 
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the initial luminescence (EC10/EC50).  This test has been observed to show differences in 

sensitivities to various organic and inorganic contaminants (Macken et al., 2008). 

 

Copepods are the most abundant metazoans in the aquatic environment.  Ecologically, 

copepods are an important trophic level, living on phytoplankton and serving as food for 

fish larvae.  The marine copepod Tisbe battagliai has previously been observed to be 

sensitive to a range of complex mixtures and single substances (Hutchinson et al., 1994; 

Kirby et al., 1998; Macken et al., 2008) and requires low sample volumes (< 20 ml) for 

testing.  

 

7.1.2  Aims of the study 

 

The aims of this present study were to (a) prepare a crude contaminant extract using a 

method which has previously been reported to extract OTCs and other anthropogenic 

compounds (see chapter 4) for three sites in Ireland namely Bull Lagoon, Dunmore East 

and Alexandra Basin for assaying with Tisbe battagliai and the Microtox® system, (b) use 

chemical analysis to characterise these extracts (c) where toxicity is evident, further 

fractionate the extract/s with solvents of increasing polarity, (d) perform further bioassays 

on these fractions with Tisbe battagliai and the Microtox® system in tandem with additional 

chemical characterisation and ultimately (e) assess whether bioassay directed fractionation 

is a useful tool for fractionation of a contaminated sediment extract. 
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7.2 Materials and Methods 

7.2.1 Sediment sampling and sample extraction 

 

Sediments were collected in Dunmore East (DE1), Dublin Port west Alexandra Basin 

(DB1) and the Bull Lagoon (BL) as per 2.2.1 in chapter 2 of this thesis and is briefly 

described.  Sediment was sampled from three sites on the east coast of Ireland (Bull Lagoon 

[latitude 6.1300, longitude 53.3480] Dunmore East [latitude 6.9921, longitude 52.1477] 

and Alexandra Basin [latitude 6.2187, longitude 53.3485]).  Sediment was collected with a 

Van Veen Grab sampler and the top 0-5 cm was removed for use as a test material.  

Samples were stored at -30 ºC.  Thereafter, the < 2mm fraction was frozen at -30 ºC and 

freeze dried.  Sediment samples were subsequently thawed and wet sieved to the < 2mm 

fraction.  A map of the sampling locations is shown in Figure 7.1. 
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Figure 7.1: Map of sampling locations for the bioassay directed fractionation study. 
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7.2.2 Preparation of crude organic extract for assaying  

 
A crude contaminant extract was prepared for each of the three test sites.  Three separate 

extractions were prepared, (1) for the Microtox® assay, (2) for the Tisbe battagliai acute 

tests and (3) the final extract for the chemical analysis.  A crude extract was also prepared 

for assaying with the RTG-2 and PLHC-1 cell lines which was previously described in 

section 4.2.6.2 of chapter 4 in this thesis. 

 
For the T. battagliai test approximately 6 g sediment was extracted in total in 2 g fractions 

(see Figure 7.2) and the extracts combined.  To each 2 g of freeze dried sediment, a solution 

of HCl: H2O 1:1 v/v (8 ml) was added and this was sonicated using an ultrasonic bath for 

30 min.  Dichloromethane (20 ml) was then added and the mixture was shaken for 30 min 

using a multitube vortexer.  The slurry was then centrifuged at 3000 rpm for 5 min and the 

DCM layer was removed.  Sonication and shaking were repeated twice for maximum 

recoveries and the DCM layers combined.  The DCM layer was then concentrated and 

transferred to hexane under a N2 stream using a turbovap concentrator.  The hexane layer 

was concentrated down to 1 ml with a turbovap concentrator and excess water was removed 

with 1 g of hexane washed sodium sulphate.  Sulphur was removed from the extract using 

tetrabutylammonium sulphite as previously described.  The hexane layer was then 

transferred to hexane:acetone 9:1 v/v (1 ml) and ultimately transferred to 0.25 ml of 

DMSO.  A blank extract and a sample extract were prepared for each site.   

 

For the Microtox® test, 1 g of sediment was extracted.  Sediment weights used for extract 

preparation were based on previous chemical and bioassay data which determined each 

species’ sensitivity to tributyltin (Macken et al., 2008).   
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Working solutions for the bioassay procedures were prepared by conducting a 1:100 

dilution for the Microtox test® (with Microtox® diluent) and a 1:1000 dilution for the T. 

battagliai test (with natural seawater) which took the Maximum Allowable Concentration 

(MAC) of DMSO; 1 % for the Microtox® assay and 0.1 % for the T. battagliai assay, into 

account respectively.  These MACs have previously been reported by Macken (2008) to 

show no discernible toxicity in both assays.  The total crude extracts were then assayed 

with both species in at least triplicate in three independent experiments.  The Dunmore East 

extract was also assayed on two cell lines namely RTG-2 and PLHC-1 (submitted 

manuscript) which is detailed in chapter 4. 

 

7.2.3 Preparation of extract for chemical analysis 

 

The analytical method was based on a method by Strand et al. (2003) with the following 

modifications.  The hexane layer was transferred to methanol, the pH was adjusted to 5.0 ± 

0.5 with 10 % sodium acetate and 20 % sodium hydroxide in deionised water and 

ethylation of OTCs completed using a 10 % w/v solution of sodium tetra ethylborate 

(STEB) in methanol.  The ethylated OTCs were then back extracted into hexane and the 

organic extract was cleaned up with sodium sulphate and 5% water deactivated alumina 

with sulphur being removed from the extract using tetrabutylammonium sulphite.  

Tetrapropyltin was then added to the extract in the gas chromatography (GC) vial as an 

injection correction standard and the sample extract was analysed using GC-PFPD.  No 

internal standard was employed during the course of this study as suitable compounds e.g. 

tripropyltin chloride have been previously found to be toxic to biological organisms at very 

low levels (Brüschweiler et al., 1995).  The freshwater sediment certified reference material 

BCR646 was analysed with every batch to further ensure compliance with internal quality 



- 290 - 

control procedures.  A diagram outlining the production of the crude organic extract for 

bioassay testing and chemical analysis is presented in Figure 7.2. 



- 291 - 

 

 

 
 
 
 
Figure 7.2: Diagram outlining the production of a crude organic extract for bioassay testing 

and chemical analysis.  Colours distinguish between analytical and bioassay methodology 

blue indicating bioassay testing and red indicating analytical methodology. 
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7.2.4 Fractionation for bioassay testing and chemical analysis 

 

On the basis of overall toxicity profiles observed on all assays including the RTG-2, PLHC-

1 and OTCs concentration levels, further fractionation was conducted on the Dunmore East 

sediment extract.  This sediment extract was fractionated according to Figure 7.3.  The total 

crude solvent extract in DMSO (500 µl) which was remaining from the cell line assays (see 

chapter 4) was mixed with 3 g of 5 % deactivated alumina with water and placed in a thistle 

column (0.5 g sodium sulphate was placed at the bottom of the column).  The extract was 

then eluted with solvents of increasing polarity into five primary fractions (fraction 1, 18 ml 

of n-hexane; fraction 2; 67.5 ml n-hexane/dichloromethane [95:5 v/v] fraction 3, 67.5 ml of 

dichloromethane, fraction 4, 70 ml of methanol/acetic acid [99:1 v/v]; fraction 5, 70 ml 

methanol).  The elution of compounds with this procedure has previously been reported by 

Grote (2005). 

 

Each of the fractions (1-5) was divided into three separate aliquots the first of which was 

used for tests with T. battagliai, the second in the Microtox® assay and the third fraction 

was used for chemical analysis (Figure 7.3).  Calculation of quantities of sediment to be 

extracted for each bioassay was based on EC50 values of TBT-Cl obtained by Macken 

(2008) and extraction efficiencies of the various butyltin compounds from the OTC 

analytical method (see chapter 3).  The solvent extracts for bioassay testing were solvent 

exchanged to DMSO (250 µl) from the original solvent prior to assaying.  Fractionation of 

the Dunmore East total crude extract was not conducted for assaying with the RTG-2 and 

PLHC-1 cell lines as both the T. battagliai, and Microtox® assays were determined to be 

more sensitive to TBT-Cl than both cell lines as discussed later in this chapter. 
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Figure 7.3: Fractionation procedure for the separation of organic compounds with 

increasing polarity fraction 1 (least polar) to fraction 5 (most polar).  

 

7.2.5 Chemical analysis 

 

Each of the five chemical analysis fractions were further divided into two aliquots.  One 

half of each extract was transferred to methanol from the original solvent for OTC analysis.  

The pH of each methanolic extract was adjusted to 5.0 ± 0.5 with 10 % sodium acetate and 

20 % sodium hydroxide in deionised water and ethylation of organotins completed using a 

10 % w/v solution of sodium tetraethylborate in methanol.  The ethylated organotins were 

then back extracted into hexane using a multitube vortexer and each fraction was 

concentrated down in hexane using a turbovap concentrator.  This extract was analysed for 

organotins using a gas chromatograph coupled with a Pulsed Flame Photometric Detector 

(GC-PFPD).  The other half of each of the fractions 1 – 3 in their original solvent were 

analysed with Gas Chromatography-Electron Capture Detection (GC-ECD) for analysis of 

chlorinated compounds such as polychlorinated biphenyls (PCBs) and organochlorine 
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compounds (OCs), GC coupled with a Flame Ionisation Detector (GC-FID) for the 

detection of hydrocarbons and oil residues and GC coupled with a Mass Spectrometer (GC-

MS) using selected ion monitoring (SIM) for polycyclic aromatic hydrocarbon (PAH) 

identification were also conducted.  The various instrument parameters used for analysis of 

the fractions are outlined in Table 7.1 below. This analysis was conducted in-house at the 

Marine Institute, Galway, Ireland.  The last two fractions (fractions 4 and 5) are methanolic 

and therefore could not be analysed using gas chromatography techniques and were to be 

analysed using High Performance Liquid Chromatography (HPLC) however due to time 

limitations and the fact that the blank extracts demonstrated high toxicity to the Microtox® 

assay, this analysis was not performed and currently out of the scope of this thesis.  Figure 

7.4 summarises the chemical analysis conducted on the three solvent extracts.  

 

 

Figure 7.4: Schematic diagram of chemical analysis of solvent extract fractions (1 – 5). 
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Table 7.1: Instrument parameters for analysis of crude and fractionated contaminant extracts  

Instrument GC-FID GC-ECD (Front) GC-ECD (Middle) GC-PFPD GC-MS (PAH)

Analytical separation Column CPSIL5CB Column HT8 CPSIL19CB ZB-1 DB5-MS
Length (m) 25 50 60 30 60
Internal diameter (mm) 0.32 0.22 0.25 0.32 0.32
Film thickness (µm) 0.12 0.25 0.25 0.25 0.25
Carrier Gas Helium Hydrogen Hydrogen Helium Helium
Make up Gas Hydrogen/Air Nitrogen Nitrogen Hydrogen/Air
Column flow (ml/min) 1.0 1.3 2.0

Injection parameters Injection mode User defined Pressure pulse Std on column

Temperature (oC) 300 240 240 240 300
Temperature hold time (min) 5 9 9 52
Liner type double gooseneck single gooseneck single gooseneck single gooseneck
Injection volume (µl) 1 1

Detector parameters Detector temperature (oC) 300 280 280 300
Make up flow (ml/min) 25 25 25 22
Hydrogen flow (ml/min) 30 25

Source temperature (oC)
Air flow (ml/min) 325 30

Temperature programmes Initial temperature (oC) 60 80 80 70 50
Initial time (mins) 1 1 1 3 1

Ramp 1 (oC) 5 45 45 5 20

Final temperature (oC) 300 180 180 220 100
Hold time (mins) 20 0 0 7 0

Ramp 2 (oC) 2 2 10

Final temperature (oC) 235 235 220
Hold time (mins) 0 0 0

Ramp 3 (oC) 5 5 3

Final temperature (oC) 275 275 280
Hold time (mins) 20 20 0

Ramp 4 (oC) 2.5

Final temperature (oC) 320
Hold time (mins)
Total time (mins) 69.0 58.7 58.7 40.0 53.5

External standard N/A PCB 112 PCB 112 Tetrapropyltin N/A  
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7.2.6 Biological assays 

 

For the identification of active toxicants in the solvent extracts, two bioassays were 

employed, the Microtox® acute assay and the acute mortality assay with T. battagliai.  All 

extracts were tested in a geometric dilution series (according to Macken et al. 2008) with a 

final DMSO concentration of no greater than 1 % for the Microtox® and 0.1 % for the T. 

battagliai assay.  For the blank assaying of the fractionated extracts only Microtox® blank 

data is described however future work will include blank assaying with Tisbe battagliai for 

future manuscript submission.  All experiments were conducted in triplicate (Microtox®) or 

quadruplicate (T. battalgiai) and all testing was conducted in three independent 

experiments.   

 

7.2.6.1 Microtox
®

assay 

 
Lyophilised Vibrio fischeri bacteria (NRRL B-11177) and all Microtox® reagents were 

obtained from SDI Europe, Hampshire, UK.  Phenol was used as a reference chemical and 

a basic test for phenol was run for every fresh vial of bacteria to ensure the validity of all 

tests.  Each of the three solvent extracts was diluted 1:100 with Microtox® diluent in order 

to achieve ≤ 1 % DMSO at all concentrations.  Sample blanks which underwent the same 

extraction process as the samples were also tested in parallel with each sample.   

 

The 90 % test for aqueous extracts (Azur Environmental Ltd, 1998) was selected as it is the 

method validated by our laboratory for the assessment of other environmental samples (e.g. 

porewater and elutriate samples).  Percentage inhibition after 5, 15 and 30 min was 

recorded for each extract and respective EC10 and EC50 values were calculated.   
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7.2.6.2  Tisbe battagliai assay 

 
Toxicity testing using T. battagliai was performed according to the International Standard 

ISO/DIS 14669 (1997), with slight modifications.  Each of the five solvent extracts were 

diluted 1:1000 with natural seawater in order to achieve ≤ 0.1 % DMSO at all 

concentrations.  Organisms were exposed to a range of solvent extract concentrations (20, 

40, 60, 80 and 100 %) using natural seawater as a diluent.  The same concentration range 

was prepared for each fraction (1 -5).  Survival was recorded after 24 h and 48 h and the 

lethal concentration at which 10 % and 50 % of the experimental population died (LC10 and 

LC50) was calculated for each timepoint.  A positive control using the reference chemical 

potassium dichromate was run alongside tests in order to verify the sensitivity of the 

copepods, results of which have previously been reported in the PhD thesis (Macken, 2007) 

and negative controls containing only natural seawater were also run concurrently. 

 

7.3 Statistical analysis 

All data are expressed as arithmetic mean ± standard error of the mean (SEM).  The acute 

toxicity data for the Microtox® assays was analysed using MicrotoxOmni® software (SDI 

Europe, Hampshire, UK).  Toxicity data were fitted to a sigmoidal curve and the Hill model 

was used to calculate Effective Concentration (EC) and Lethal Concentration (LC) values.  

This analysis was performed using REGTOX-EV6.xls (Èric Vindimian 

http://eric.vindimian.9online.fr/), a curve fitting macro for Microsoft® Excel.  Statistical 

analyses were carried out using a one-way analysis of variance (ANOVA) followed by 

Dunnett’s post hoc test.  These analyses were performed using MINITAB® release 14 

(MINITAB Inc. PA, USA).  Statistical significance was accepted at p ≤ 0.05.  Percentage 
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inhibition data generated by the MicrotoxOmni® software were Arcsin transformed prior to 

statistical analysis to improve normality and homogeneity of variances and reduce the 

influence of outliers.   

 

7.4 Results 

7.4.1  Results for Microtox
®
 testing of crude extracts from three locations 

 

The reduction in bioluminescence and corresponding EC10 and EC50 results for the total 

crude extract for each of the three sites, Bull Lagoon, Dublin Port and Dunmore East with 

the Microtox® assay is presented in Table 7.2 below.  These extracts were assayed with the 

90 % test for aqueous extracts and the Microtox® system.  The 1:100 dilution of the stock 

solvent extract was used as the top concentration (90 % solvent extract).  The dilution of 

the extract was conducted to eliminate toxicity arising from the DMSO carrier solvent.  The 

concentrations of solvent extract (%) ranged from 0.35- 90.0 % for each site.  Solvent 

extract blanks were prepared in a similar manner (1:100) and were found to have no 

significant toxicity from the extraction process or the carrier solvent.  The Bull Lagoon 

extract was found to be the least toxic extract while the extract from the Alexandra Basin in 

Dublin Port was found to be the most toxic.  The order of decreasing toxicity for each of 

the three sites was found to be Dublin Port > Dunmore East > Bull Lagoon demonstrating 

EC10 values at 30 min of 1.08, 11.6 and 26.9 % solvent extract respectively.  
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Table 7.2 Toxicity of solvent extracts from three Irish marine sediment sites to Microtox® 

Site 

Exposure time 

 (min) 

Maximum reduction  

in  

bioluminescence (%) EC10
a
 EC50

b
 

Bull Lagoon (DB6) 5 26.9 34.4 (3.05-54.6) > 100 % 
 15 28.1 29.3 (2.97-56.9) > 100 % 
 30 28.3 26.9 (2.89-48.0) > 100 % 
     

Dunmore East (DE1) 5 48.9 11.1 (6.47-38.0) > 100 % 
 15 49.1 9.98 (4.03-29.9) > 100 % 
 30 44.8 11.6 (3.53-36.3) > 100 % 
     

Alexandra Basin (DB1) 5 52.9 1.78 (0.86-4.48) > 100 % 
 15 51.8 2.60 (1.29-7.19) > 100 % 
  30 48.6 1.08 (0.40-3.07) > 100 % 

a EC10 values and corresponding 95 % confidence intervals in parentheses 
b EC50 values (no confidence intervals presented) 
 

7.4.2 Results for Tisbe battagliai assaying with crude extracts  

 

The crude organic solvents from each of the three locations were assayed with T. battagliai 

results of which are further described.  The crude solvent extract blank was not found to 

elicit any significant toxic effect to these organisms.  The Bull Lagoon extract was found to 

be the least toxic with no significant toxicity being observed after 48 h.  The Dunmore East 

was the next most toxic extract with 24 h and 48 h EC10 values of 65.9 (95% CI=44.0–78.8) 

% and 19.1 (4.2–34.7) % extract respectively.  The Dublin Port solvent extract was the 

most toxic with EC10 values of 46.7 (23.5–70.0) % and 13.0 (5.2–22.9) % after 24 h and 48 

h exposure respectively.  The Dublin port extract was the only extract from which EC50 

values could accurately be derived.  Calculated values for this site were 86.3 (74.7–110.6) 

% and 46.6 (37.1–57.1) % of solvent extract after 24 h and 48 h respectively. 
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7.4.3 Chemical analysis results for each of the three locations 

 

Chemical analysis results including metals and organics for the < 2 mm fraction of the 

sediment samples from the three locations are presented in Table 7.3.  It should be noted 

that these concentrations are an overall representation of the chemicals present in sediment 

samples from the three locations however cannot be deemed representative of the chemicals 

that may be present in the bioassay solvent extract.  The presence of various organic 

contaminants contained in the crude contaminant and blank extracts is presented in Table 

7.4 and Figure 7.5.  The extraction used in this study involved leaching with acid and 

therefore the solvent extract could potentially contain metals extracted from the sediment 

but metals were not quantified in the solvent extract in this study. 

Figure 7.5 presents chromatograms obtained for the solvent extract and blank samples from 

each of the instruments including GC-PFPD which is organotin specific, GC-ECD which is 

extremely sensitive to chlorinated compounds and GC-FID which is very useful for 

hydrocarbon profiling.  For GC-PFPD and GC-ECD, injection correction standards were 

introduced prior to analysis and for GCFID, a number of reference oils and an n-alkane mix 

(C10-C40) were analysed with the samples. 

 

It is demonstrated from previous chemical results (see Table 7.3) and the organotin specific 

GC-PFPD chromatogram, that the Dunmore East total crude extract contained an elevated 

level of organotin contamination (in particular TBT which is one of the most toxic OTCs) 

but also had another distinct unknown tin peak present in the chromatogram.  The Dunmore 

East extract also contained various chlorinated compounds and showed a distinct 

hydrocarbon profile containing long chain hydrocarbons C20-C40 (see Table 7.4 and Figure 

7.5).  The Dublin Port extract was observed to have a variety of contaminants present 
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including the presence of OTCs, some chlorinated compounds and demonstrated a 

“petroleum like” profile with GC-FID analysis.  The Bull Lagoon was observed to be the 

least contaminated showing some chlorinated compounds which could potentially be due to 

method contamination as these compounds were also observed in the blank extract (see 

Table 7.4) and demonstrated to have the lowest level of TBT however there was a distinct 

unknown tin peak present which was approximately 180 times greater than the injection 

correction standard peak tetrapropyltin which was at an approximate concentration of 300 

ng g-1.   

 

It was concluded that the fractionation procedure would be conducted on the Dunmore East 

extract on the basis that this extract contained the most elevated level of the toxic 

compound TBT in addition to having significant levels of other pollutants present.  The 

quantity of sediment to be extracted would be calculated from results obtained from a 

model compound study (Macken et al., 2007).  The EC50 obtained from the model 

compound study for TBT was used to determine the number of grams of sediment to be 

extracted for both the Microtox® and Tisbe battagliai tests. 
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Table 7.3: Concentrations of metals and organics of the < 2 mm sediment fraction for the 

crude solvent extracts of the three sampling locations and Irish Sediment Quality Guideline 

upper and lower levels 

Contaminant Bull 

Lagoon 

Dunmore 

East 

Alexandra 

Basin 

Proposed 

lower level
a
 

Proposed 

upper level
a
 

Metals (mg kg 
-1

 dry weight)     
      

Mercury 0.08 < 0.05 0.28 0.2 0.7 
Aluminium 20300 12800 19200 - - 

Lithium 36.6 29.4 33.7 - - 
Arsenic 15.4 7.05 11.7 9.0 70.0 

Cadmium 0.37 0.48 3.23 0.7 4.2 
Chromium 55.5 41.7 41.7 120 370 

Copper 35.3 76.8 78.8 40 110 
Lead 68.2 45.4 265.0 60 220 

Nickel 35.6 18.6 28.4 21 60 
Zinc 154 242 755 160 410 

      
Organic contaminants (µg kg 

-1 
dry weight)    ∑ 16 - PAHs

b
 409 1006* 5039† 4000.0 - ∑ 11 - PCBs

c
 33.0 36.0 36.8† 7.0 1260 ∑ 22 - OCs

d
 66.0 527* 279.3† - - 

TBT 42.4 2125 6621   
DBT 75.9 790 1362 - - ∑ TBT &DBT 118 2915 7984 100 500 

      
TOC (%) 0.28 1.52 3.7   

 
a Proposed Irish Sediment Quality guidance figures from the Marine Institute of Ireland (Cronin et al., 2006).  
b ΣPAHs = Acenaphthene, acenaphthalene, anthracene, B[a]anthracene, B[a]pyrene, B[b]fluoranthene, 
B[ghi]perylene, B[k]fluoranthene*, chrysene, DiB[ah]anthracene, fluoranthene, fluorene, indeno123cdPyrene, 
naphthalene*†, phenanthrene, pyrene. 
c Σ = Congeners 28†, 52†, 101, 106, 118, 128, 138, 153, 156, 170, 180.  
d Σ = 1,2,3-Trichlorobenzene, 1,2,4-Trichlorobenzene*†, 1,3,5-Trichlorobenzene, aldrin*†, dieldrin†, endrin†, 
isodrin, cis-, trans-chlordane, o,p′-DDE, DDT*†, p,p′-DDE, DDT*†, TDE†, Endosulphan A† and B*†, HCB, 
HCBD, α-*†, β-, γ-, δ-HCH†.  
* Raised LOD due to ion interference in Dunmore East sample.  
† Raised LOD due to ion interference in Alexandra Basin sample.  
  

 

 

 



- 303 - 

Table 7.4: Chemicals observed to be present in crude extracts of BL, DP and DE and fractionated DE extract.  Blank extract 

chemicals are also presented. 

Site Crude BL Crude DP Crude DE Crude Blank FR1 DE FR2 DE FR3 DE FR1-3 BLANK

PCBs

PCB28 � �
PCB 52 � � � � �
PCB138 � � � �
PCB 101 � � � � �
PCB 118 � � �
PCB 153 � � �
PCB 105 � � � � �
PCB156 � � �
PCB180 � � �

OCs

a-HCH � � � � � �
b-HCH �
HCB � � � � �

lindane � � �
pp-ddd � � � � �
pp-dde � � � � �
pp-ddt � � �

dieldrin � � � � � �
trans -nonachlor � � � �

HCs

Low level Petroleum profile C20-C40 Low level C20-C40 Low level C27-C40 low level
OTs

TBT � � � � � �
DBT � � �
MBT � �

Unknown peaks Unknown OT peak* Unknown peak** Unknown OT peak*

PAHs Naphthalene � �
Acenaphthene �

Fluorene �
Phenanthrene �

Pyrene �
Fluoranthene �  
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Figure 7.5: Chromatograms obtained using various instrumental techniques for each of the three crude extracts and method 

blank.  Note: extracts were analysed on a dual column (A and B) with GC-ECD. 
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7.4.4  Results for Microtox® testing and Dunmore East fractionated extracts 

 
Results of the Microtox® assay for all five Dunmore East fractions are presented in Table 

7.5 and Figure 7.6.  No significant toxicity was observed for any of the blank fractions 

prepared alongside each of the test fractions (1-3).  The blanks extracts produced for 

Fraction 4 and 5 were both observed to cause significant toxicity in both bioassays 

therefore the toxicity elicited by the actual fractions cannot be attributed solely to the 

contaminants extracted in these fractions, therefore the results and discussion will focus 

primarily on fractions 1-3.  Therefore, fractions 4 and 5 are not further discussed.  Fraction 

1 was found to be the most toxic with an EC10 of 0.15 % and an EC50 of 16.8 % solvent 

extract after 30 min, while fractions 2 and 3 are not significantly toxic at any concentration.  

Employing calculated ecotoxicity values (EC10 and EC50) a sensitivity ranking order for all 

fractions to the Microtox® system is as follows: Fraction 1 > Fraction 3 ≥ Fraction 2.  The 

toxicity of Fraction 1 is observed to increase with time which correlates with a previous 

study where TBT-Cl was tested using the Microtox® assay in a model compound study 

(Macken et al., 2007).   
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Table 7.5: Results of the Microtox® assay and five organic solvent fractions from Dunmore 

East sample.   

 
Fraction Time 

(min) 

EC10
a
 (%) EC50

a
 (%) NOEC

b
 

(%) 

LOEC
c
 

(%) 

1 5 0.15 (0.04 – 0.38) 46.7 (31.8 – 89.3) 2.81 5.62 

 15 0.10 (0.04 – 0.38) 21.6 (15.8 – 29.9) 0.35 0.70 

 30 0.15 (0.03 – 0.60) 16.8 (11.4 – 29.5) 2.81 5.62 

2 5 NSTd NST > 100 > 100 

 15 NST NST > 100 > 100 

 30 NST NST > 100 > 100 

3 5 NST NST > 100 > 100 

 15 NST NST > 100 > 100 

 30 NST NST > 100 > 100 

4 5 0.71 (0.35 – 1.88) 2.28 (1005 – 4.36) 1.41 2.81 

 15 0.92 (0.48 – 2.38) 2.05 (1.97 – 4.02) 1.41 2.81 

 30 1.55 (0.46 – 4.81) 3.48 (2.67 – 8.70) 2.81 5.62 

5 5 0.77 (0.28 – 1.17) 10.1 (6.73 – 13.3) 2.81 5.62 

 15 1.47 (0.61 – 2.81) 10.3 (7.01 – 13.3) 5.62 11.3 

 30 2.10 (0.76 – 3.57) 10.3 (6.48 – 12.5) 5.62 11.3 
a EC50 values and corresponding 95 % confidence intervals in parentheses 
bNOEC, no observed effect concentration, the highest observed concentration at which no significant effect (p ≤ 0.05) was detected 
cLOEC, lowest observed effect concentration, the lowest concentration of the tested concentration at which a 
significant (p ≤ 0.05) effect was detected.  
dNST, No Significant Toxicity 
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Figure 7.6: Microtox® assay results showing percentage light inhibition from 5 solvent 

extract fractions; Fraction 1 [hexane (100 %) exchanged to DMSO] ( ), Fraction 2 

[hexane:DCM (95:5 %) exchanged to DMSO] ( ), Fraction 3 [DCM (100 %) exchanged to 

DMSO] ( ), Fraction 4 [methanol: acetic acid (99:1 %) exchanged to DMSO]  ( ) and 

Fraction 5 [methanol (100 %) exchanged to DMSO] ( ) from Dunmore East after 15 mins 

exposure.  Data are expressed as a percentage of unexposed controls ± SEM of three 

independent experiments.  * denotes significance from the control (p ≤ 0.05). 

 

7.4.5 Results for T. battagliai testing and Dunmore East fractionated extracts 

 
The results of the T. battagliai assay and five solvent fractions are presented in Figure 7.7 

and Table 7.6.  As with the Microtox® test no significant toxicity was determined with any 

of the test blanks prepared alongside each fraction (1-3).  From the results presented, 

fraction 1 was significantly toxic to T. battagliai at all concentrations above 60 % for 24 

and 48 h.  Fraction 4 was only significantly toxic at the top two concentrations after 24 and 
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48 h, while fractions 2, 3 and 5 were not observed to be significantly toxic at any 

concentration for the time intervals assayed.  The toxicity of fractions 2 and 3 appeared to 

increase with time.  However, this was not significant.  The toxicity of the fractions to T. 

battagliai, in decreasing order was as follows: Fraction 1 > Fraction 4 ≥ Fraction 2 ≥ 

Fraction 3 ≥ Fraction 5.   
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Figure 7.7: Percentage mortality of T. battagliai exposed to 5 organic sediment solvent 

extracts; Fraction 1 [hexane (100 %) exchanged to DMSO] ( ), Fraction 2 [hexane:DCM 

(95:5 %) exchanged to DMSO]  ( ), Fraction 3 [DCM (100 %) exchanged to DMSO] ( ), 

Fraction 4 [methanol: acetic acid (99:1 %) exchanged to DMSO]  ( ) and Fraction 5 

[methanol (100 %) exchanged to DMSO] ( ) from Dunmore East after (a) 24, and (b) 48 h 

exposure.  Data are expressed as a percentage of unexposed controls ± SEM of three 

independent experiments.  * denotes significance from the control (p ≤ 0.05). 
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Table 7.6: Ecotoxicity results of the Tisbe battagliai
 assay and five solvent fractions from 

an original Dunmore East total solvent extract.   
 
Fraction Time 

(h) 

EC10
a
 (%) EC50

a
 (%) NOEC

b
 

(%) 

LOEC
c
 

(%) 

1 24 33.3 (24.4 – 41.2) 49.6 (42.2 – 53.9) 40 60 

 48 30.9 (20.1 – 38.2) 44.7 (37.1 – 48.0) 40 60 

2 24 68.1 (20.6 – 115) NAd > 100 > 100 

 48 39.6 (7.76 – 64.6) NA > 100 > 100 

3 24 NA NA > 100 > 100 

 48 17.8 (0.19 – 35.1) NA > 100 > 100 

4 24 62.2 (60.7 – 63.4) 64.9 (63.7 – 66.1) 60 80 

 48 58.84 (57.4 – 59.1) 62.5 (61.6 – 62.7) 60 80 

5 24 NA NA > 100 > 100 

 48 NA NA > 100 > 100 
a EC50 values and corresponding 95 % confidence intervals in parentheses 
bNOEC, no observed effect concentration, the highest observed concentration at which no significant effect (p ≤ 0.05) was detected 
cLOEC, lowest observed effect concentration, the lowest concentration of the tested concentration at which a 
significant (p ≤ 0.05) effect was detected.  
dNA = Not Applicable. 
 

According to reported EC50 values for the fractions and the two assays, the Microtox® 

system was more sensitive.  For example, fraction 1 was observed to be toxic in both 

assays, however, the 24 h EC50 value reported for T. battagliai (49.6 %) was greater than 

the 30 min EC50 value reported for the Microtox® system (16.8 %). 

 

7.4.6 Chemical analysis results of fractionated extracts 

 
According to the chemical analysis results for the first three fractions (Figure 7.8 and Table 

7.4), fraction 1 contained approximately 100 times more TBT than fraction 2 and 

approximately 28 times more TBT than fraction 3.  Fraction 1 also contained detectable 

levels of DBT with the ratio being 36:1 TBT: DBT found in the derivatised extract using 
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GC-PFPD.  Trace levels of various polychlorinated biphenyls (PCBs) and organochlorines 

(OCs) were found in the underivatised extract fraction when analysed using a dual column 

GC-ECD system (see Table 7.4).  A hydrocarbon profile was also detected which showed 

similar characteristics to that of a spilt crude oil containing hydrocarbons C20-C40 in a 

“hump” like profile.  Fraction 2 contained trace amounts of DBT and some TBT however 

to a much lesser extent than fraction 1.  Some PCBs and OC compounds were observed and 

a very low level hydrocarbon profile.  In fraction 3 a quantity of TBT in addition to an 

unknown OTC peak was observed which was previously demonstrated in the total crude 

contaminant Dunmore East extract chromatogram (see Figure 7.8).  No chlorinated 

compounds were detected in fraction 3 however a hydrocarbon profile was detected 

containing C27-C40 hydrocarbons in a long chain hydrocarbon profile which differentiated 

from the hydrocarbon profile found in fraction 1.  Blanks for each of the fractions (1-3) 

showed little by the way of contaminant levels (see Table 7.4). 
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Figure 7.8: Chromatograms of the three fractions obtained from the fractionated Dunmore 

East sample and blanks.  
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7.5 Discussion 

Bull Lagoon (DB6), according to the Microtox® crude solvent extract results, was the least 

toxic site.  This result correlates with the chemical analysis of the bulk sediment (> 2 mm) 

as DB6 had the lowest total concentration for all organic contaminants (PAHs, PCBs, OCs 

and OTCs) (see Table 7.3).  The chemical analysis results of the solvent extract (see Table 

7.4 and Figure 7.5) also supports the low toxicity whereby only slight levels of chlorinated 

compounds were detected and a low level hydrocarbon profile was observed.  However an 

unknown OTC was observed using GC-PFPD analysis.  The toxicity of this extract was 

observed to increase with time suggestive of delayed response exposure to metals in the 

extract (Azur Environment Ltd., 1998).  The levels of aluminium, lithium, arsenic, 

chromium and nickel were higher than for any other sites but were within the proposed 

Irish sediment quality guideline levels.  Low level of organotins was detected at this site 

relative to the other sites (see Table 7.3).   

 

The Dublin Port site (inner West Alexandra Basin) was the most toxic crude extract and 

toxicity was observed to decrease with time (Table 7.2) with the Microtox® assay indicative 

of organic contaminants such as PAHs where the sum of 19 PAHs at this site (5755 µg kg-

1) was found to exceed the proposed lower level Irish Sediment Guideline value (4000 µg 

kg-1).  The chemical analysis of this extract was observed to include many chlorinated 

compounds in addition to a “petroleum like” hydrocarbon profile using GCFID analysis.  

Macken et al. (2008) observed a similar time-dependent decrease in light levels with V. 

fischeri following exposure to the PAHs benzo[a]pyrene and fluoranthene.  However, no 

definitive conclusions on the causative agents can be made as synergistic, antagonistic or 

additive effects of these contaminants are unknown. 
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Macken et al. (2008) determined that the Microtox® and Tisbe battagliai assays were 

sensitive to the chemical TBT-Cl with EC50’s of 0.06 µM after 30 min for the Microtox® 

assay and 0.07 µM after 48 h with the Tisbe battagliai assay in comparison to a study 

conducted in this thesis (chapter 4, submitted manuscript) with RTG-2 and PLHC-1 cell 

lines where the EC50’s for these cell lines and the compound TBT-Cl were determined to be 

0.94 µM after 96 h exposure with the RTG-2 cell line and 0.99 µM after 24 h exposure with 

the PLHC-1 cell line.  Therefore it was concluded that the Microtox® and Tisbe battagliai 

assays would be used for testing the fractionated extracts. 

 

Despite the fact that the Dunmore East sediment was not shown to be as toxic as the Dublin 

Port, the crude extract was observed to contain many chlorinated compounds also and 

showed elevated levels of OTCs compared to the Dublin Port extract.  A hydrocarbon 

profile was also evident and it can be observed that a number of long chain hydrocarbons 

C20-C38 are present in the sample.  These hydrocarbons have a similar profile to that of the 

spilt/degraded crude oil which can be seen in Figure 7.5.  In the DE1 sample dominating n-

alkanes are observed from C28-C32.  The dominating odd carbon n-alkanes C29 and C31 

could potentially be an indication that these hydrocarbons originate from biogenic 

processes.  A similar study has previously investigated the use of hydrocarbon profiles to 

investigate point sources of PAHs (Webster et al., 2001). 

 

The most toxic crude solvent extract to T. battagliai was the Dublin Port extract and the 

least toxic was from Bull Lagoon.  For all three sites toxicity was observed to increase with 

time.  Results from previous studies with T. battagliai and organic contaminants (Macken 

et al., 2008) showed an increase in toxicity after exposure to organotins (tributyltin, 

triphenyltin), PAHs (benzo[a] pyrene, fluoranthene) and a PCB (PCB-153).  As the 
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analysed solvent extract was a crude contaminant extract this observation is not surprising.  

This is in contrast to the Microtox® assay, where an increase in toxicity was only observed 

after exposure to the organotins.  

 

For the crude contaminant solvent extract it was shown that T. battagliai was more 

sensitive than the Microtox® assay.  In contrast the results of the bioassays on the 

fractionated extracts differ in relation to species sensitivity.  According to these results T. 

battagliai is less sensitive to fraction 1 than the Microtox® assay.  Fractions 2 and 3 did not 

elicit a toxic effect in either assay.  In a model compound study conducted by Macken et al. 

(2008), it has been observed that Microtox® is less sensitive than T. battagliai to a variety 

of organic contaminants.  Interestingly it was also shown in chapter 4 (submitted 

manuscript) of this thesis that the PLHC-1 cell line was more sensitive than the RTG-2 cell 

line to the Dunmore East crude extract with EC50’s of 64.0 and 73.2 mg sediment/ml media 

demonstrated for PLHC-1 and RTG-2 cell lines respectively after 24 h exposure with the 

neutral red (NR) assay.  Therefore it can be concluded that for the sediment investigated 

here that the effects of mixture toxicity of organic extracts and also potentially co-

extraction of metals may potentially play an important role.  However, without full 

chemical analysis of the fractions no definite conclusions can be made. 

 

Kammann et al. (2005) concluded in their integrated study that despite sophisticated 

fractionation and intensive chemical analysis, that major toxicant identification can be 

difficult and much of the observed effects of their study remained without explanation.  

They also concluded that the toxicity of their extracts was most probably from a 

combination of effects in the mixtures.  Brack (2003) also stated that the identification of a 

compound in a fraction does not prove that the compound has caused the effect.  Therefore 
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it is important to conduct confirmatory assaying at environmentally relevant levels of the 

compound to investigate if it could potentially be responsible for the observed effect.  

Although the importance of a confirmation step has been advocated throughout the 

literature (Brack, 2003) few studies focus on the problem of confirming the results of BDF 

procedures (Grote et al., 2005).   

 

Fraction 1, which contained the majority of TBT was more toxic in the Microtox® assay 

than to T. battagliai.  From previous work (Macken et al., 2008) it was observed that both 

assays were comparably sensitive to the organotin, 48 h EC50 of 0.068 (0.056 – 0.078) µmol 

l-1 for T. battalgiai and a 15 min EC50 value of 0.083 (0.078 – 0.132) µmol l-1 in the 

Microtox® assay.  This further confirms that mixture toxicity could potentially be the cause 

of the differentiation in species sensitivity.  From Figure 7.8 it is observed that Fraction 1 

was found to contain a variety of compound groups in particular TBT, and showed 

overloading of the column with this compound indicating that this compound was the most 

dominant species overall.  A hydrocarbon profile was demonstrated in a GC-FID 

chromatogram containing long chain alkanes (nC20-nC40) in fraction 1.  These are present in 

this fraction in the form of a “hump”.  A “hump” such as this one observed is generally 

characterised as an unresolved complex mixture (UCM) and is generally composed of the more 

persistent compounds in an oil such as branched and cyclic compounds and is characteristic of 

petrogenic pollution.  This hump is a result of when crude oils degrade and the n-alkanes are 

lost initially and eventually all n-alkanes disappear and the so called “hump” appears when 

analysed with GC-FID.  This “hump” present in fraction 1 could therefore be a characteristic of 

petrogenic pollution and could potentially contribute to the overall toxicity observed from this 

extract. 

 



 - 317 - 

Fraction 2 contained trace amounts of DBT and some TBT however to a much lesser extent 

than fraction 1.  There were also some PCBs and OC compounds observed and a very low 

level hydrocarbon profile.  In fraction 3 a quantity of TBT similar to that of fraction 2 was 

observed and there was no chlorinated compounds detected however a hydrocarbon profile 

was detected containing nC27-C40 hydrocarbons in a long chain hydrocarbon profile which 

differentiated from the hydrocarbon profile found in fraction 1.  This could potentially be 

the cause of fraction 3 being slightly more toxic than fraction 2 when assayed using 

Microtox®. 

 

Overall, the order of toxicity of the total crude extract to the three sites was Dublin Port > 

Dunmore East > Bull Lagoon.  For the fractionated Dunmore East extracts, the Microtox® 

assay was more sensitive than Tisbe battagliai to fraction 1 however, no significant toxicity 

was observed for fractions 2 and 3 with this assay.  The order of toxicity of the fractionated 

Dunmore East extracts (1-3) to Tisbe battagliai were fraction 1 > fraction 3 > fraction 2.  

This correlated with the chemical analysis results where the order of decreasing quantities 

of OTCs was observed in this order also.  Fraction 3 was also observed to have an unknown 

OTC peak in the chromatogram which could have potentially contributed to the toxicity of 

this extract to Tisbe battagliai.  Fractions 1 and 3 also contained hydrocarbon profiles 

whereas fraction 2 did not.  The potential for effects from co-extracted metals cannot be 

discounted.  Chapter 2 reports elevated metal concentrations in Dublin Port and Dunmore 

East samples and these may have potentially be extracted into the bioassay solvent extracts 

however metals are not quantified in the solvent extracts obtained in this study and no 

definite conclusions can be made. 
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While BDF techniques described herein were inconclusive, their application is important in 

screening sediment for culprit compounds which could potentially be toxic to organisms.  

In comparison with other authors (e.g. Kammann and Brack), BDF in combination with 

chemical analysis can be a useful technique in deriving information related to the potential 

toxic nature of sediments.  To the best of our knowledge, this project is the first to utilise an 

extraction method capable of extracting OTCs in a form suitable for ecotoxicological 

testing. 
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7.6 Conclusion 

Methodology was developed for bioassay directed fractionation whereby OTCs and other 

anthropogenic compounds were extracted from the bulk sediment, fractionated and 

analysed using a variety of analytical techniques.  Instrumental analysis led to the 

characterisation of the solvent extracts for a range of organic contaminants.  The bioassay 

directed fractionation approach applied in this study led to the identification of the most 

toxic fraction isolated from the Dunmore East sediment.  Bioassay-directed fractionation 

was successfully used to characterise compounds with a variety of polarities as contributing 

to the measured activity. 

 

The need to use chemical and biological investigations in tandem to identify possible 

effects is further highlighted by this study as is the importance of using a battery of 

bioassays for any environmental assessment.  When dealing with an unknown mixture 

(such as marine sediment) there is no way to predict the sensitivity of the assay being 

employed.  As seen from this study a species that is considered highly sensitive (T. 

battalgiai) may in fact be less sensitive than expected when considering antagonistic, 

synergistic or additive effects that may be acting in a sample containing a mixture of 

compounds (both anthropogenic and biogenic).   

 

The BDF methodology used during this study is suitable for the identification of toxic 

fractions with a demonstrated hazard in the marine environment.  The benthic harpacticoid 

copepod, T. battalgiai, and the Microtox® system are particularly suitable for this sort of 

fractionation study as T. battagliai possesses a short life cycle, both assays require low 

sample volumes and there is minimum space, equipment and time required to conduct the 

assays (Hutchinson and Williams, 1998; Macken et al., 2008).  
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8  

 

CHAPTER 8 DETERMINATION OF AN “INTEGRATION 

RATIO”   
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8.1 Introduction 

Contamination of sediment has been defined as a condition in which substances would not 

normally be found or where they occur above background levels (Chapman and Anderson, 

2005).  Sediment contamination is a global problem, however as yet there is no universal 

decision- making approach in place for the assessment of sediment quality.   

 

This thesis has previously discussed the assessment methodologies used by ICES and 

OSPAR (background concentrations [BCs], background assessment concentrations [BACs] 

and environmental assessment criteria [EACs]) and the FullMonti approach which is under 

development in the UK and within ICES and the US-EPA assessment approach.  These in 

addition to a further approach as proposed by Beliaeff and Burgeot (2002) are summarised 

below. 

 

8.1.1 The “FullMonti” index 

 

As previously discussed this is primarily a weight of evidence approach currently under 

development (primarily within the UK) for sediment assessment and its concepts are under 

review by international organisations such as ICES and OSPAR.  This approach derives 

“scores” for a variety of compartments for contaminants, biological effects and biology and 

can combine these three measurements into an overall score which indicates the health 

status of the system.   

 

The score of effect level is weighted from top to bottom with the most significant effects 

(i.e. reproduction, growth, survival) weighted with a value of 10.  In addition, the response 

level is scored according to suggested intervals in the assessment criteria (green, amber and 
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red having values of 1, 5 and 10 respectively).  An overall score for biological effects is 

derived by mean value of total score multiplied with weighted values.  For contaminants, 

the scores for each pollutant are integrated into single scores for sediment, shellfish and fish 

tissue, which again can be integrated into one overall score for contaminants.  In the end a 

final integrated score can be extracted based on the overall scores for contaminants, biology 

and biological effects.  

 

These individual and an overall “final” score allows scientists and environmental managers 

to “visualize” how derived indices compare on a site specific basis.  The “Fullmonti” index 

may in future years provide a mechanism whereby the derived indices may support 

legislative limits such as outlined within the Water Framework directive.   

 

8.1.2 US-EPA assessment approaches 

 

The US-EPA approach uses a multi-factorial assessment approach for estuarine quality 

including water, sediment and aspects of biota.  A “traffic light” style assessment is 

performed for each parameter in each estuary based on assessment criteria and then 

combines assessments across determinands, estuaries and regions to produce national scale 

assessments.  The approach makes use of four primary indices of estuarine condition (water 

quality index, sediment quality index, benthic index, and fish tissue contaminants index) in 

a standardised format. 

 

The US-EPA water quality index is made up of five component indicators: dissolved 

inorganic nitrogen, dissolved inorganic phosphorus, chlorophyll a, water clarity, and 

dissolved oxygen.  The water quality index rating is calculated for the site based on these 
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five component indicators.  The development of indices for water quality is based on rating 

criteria for each sampling site. 

 

The sediment quality index is based on three component indicators of sediment condition: 

direct measures of sediment toxicity, sediment contaminant concentrations, and the 

sediment total organic content (TOC) concentration.  Chemical characterisation is 

performed on the sediment with chemical analysis, sediment toxicity is evaluated by 

measuring the survival of the marine amphipod Ampelisca abdita following a 10-day 

exposure to the sediments in the laboratory and the sediment TOC concentration is 

measured on a dry-weight basis.  Benthic community attributes are included in this 

assessment of estuarine condition as an independent variable rather than as an indicator of 

sediment quality.   

 

An overall condition for each region can be calculated by summing the scores for the 

available regional indices and dividing by the number of available indices and a final 

assessment on overall site status is deduced based on the number of indices found to fall 

within the acceptance criteria. 

 

To conduct an assessment with either the FullMonti or US-EPA approach, a full suite of 

parameter data is needed.  Such data would include water analysis for a suite of chemicals 

and benthic diversity indices measurement data, however the testing of these parameters is 

currently out of the scope of this thesis, therefore a subset of these parameters will be 

included.   
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8.1.3  Generation of an integrated biomarker response “IBR” type index   

 

A further approach to integrating datasets is that as proposed by Beliaeff and Burgeot 

(2002) and as adopted by Damiens et al., (2007) in which a battery of biomarkers in 

transplanted mussels was measured and an integrated biomarker response (IBR) was 

calculated.  A method for combining all the measured biomarkers responses into one 

general “stress index” was applied for each biomarker experiment.   

 

For each biomarker: (1) calculation of mean and SD for each station was performed, (2) 

standardisation of data for each station: x’i = (x’i –mean x)/s, where x’i is the standardised 

value of the biomarker, xi is the mean value of a biomarker from each station, mean x is the 

mean of the biomarker calculated for all the stations, and s is the standard deviation 

calculated for the station-specific values of each biomarker.  The result being variance = 1, 

mean = 0, (3) using standardised data, Z was computed as +x’i in the case of an activation 

and -x’i in the case of an inhibition, then the minimum value for all stations for each 

biomarker was obtained and added to Z.  Finally the score B was computed as B = Z + 

lminl where B ≥ 0 and lminl is the absolute value.   

 

For all the biomarkers corresponding IBR values were therefore calculated by 

multiplication of the obtained value of each biomarker (Bi) with the value of the next 

biomarker, arranged as a set, dividing each calculation by 2 and summing-up of all values 

i.e. IBR = {[(B1 x B2)/2]+[(B2 x B3)/2]+…[(B n-1 x Bn)/2] +[(Bn x B1)/2]}.   

An overall indication of stress for each site can therefore be represented on the star plot 

which would give an indication of the quality of sediment at a particular site.  
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8.1.4  The Environmental Assessment Criteria concept 

 

As previously discussed OSPAR/ICES have developed “provisional” Environmental 

assessment criteria (EACs) shown in Tables 8.2 and 8.3 as a basis to allow individual 

OSPAR contracting parties to assess the degree of toxicity of marine sediments within their 

region.  EACs have been estimated to represent the contaminant concentration in the 

environment below which it can be assumed that no chronic effects will occur in marine 

species, including in the most sensitive species.  The EACs have been modelled on 

predicted no effect concentrations (PNECs) as the concentration below which unacceptable 

effects will most likely not occur based upon the ecotoxicological data to the extent that is 

available for each of the contaminants concerned.   

 

The methodology for deriving the EACs, which has been brought into line with the 

methodology for deriving quality standards under the Water Framework Directive involves 

the use of precautionary assessment factors where there is a limited availability of data.  

Because of limited toxicity data large assessment factors have been used in many cases to 

calculate EACs for water on which the EACs for sediments and biota are based.  This 

means that many of the values are derived are precautionary and close to “background 

values” particularly for non-synthetic organic compounds.  EACs have not been derived for 

some substances and matrices because of the limited quantity of ecotoxicological data for 

marine species.  In some cases the EACs (shown in Tables 8.2 and 8.3) have been derived 

according to secondary poisoning as a tool for a better understanding of possible 

mechanisms and effects in food chains. 
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Due to these caveats, the EACs should only be applied with caution for any current 

assessments, and should not be used as a trigger for source directed action without 

further evaluation.  The relationship between environmental assessment criteria (EACs) 

and background concentrations (BCs) and background assessment concentrations (BACs) 

is currently being considered as part of the process of developing integrated assessments of 

the status of hazardous substances in the OSPAR Maritime Area. 

Furthermore, the environmental assessment criteria, set out below, do not: 

(a) take into account specific long-term biological effects such as carcinogenicity, 

genotoxicity and reproductive disruption due to hormone imbalances, or; 

(b) consider toxic effects resulting from combinations of substances. 

 

The provisional EACs as described herein do however provide a basis to allow for the 

comparison of analytically derived sediment and mussel concentration data to contaminant 

levels that are currently deemed to present a toxicological risk to resident marine 

organisms.   

 

The indices and EAC concept as described above all provide mechanisms that allow for the 

visualisation of the overall “health” of a particular site.  Each of these indexing systems 

attempt to incorporate elements of differences in toxicity potential (e.g. in the form of 

weighting factors) of various chemicals and have a number of merits.  The complex nature 

of the development of a complete indexing system (e.g. accounting for chemical toxicity, 

additive/synergistic effects, differences in sediment make-up and contaminant 

bioavailability etc.) was outside of the scope of this current work.   
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The primary focus of this thesis was on the development of Ireland’s capacity to complete 

both biomarker and supporting chemical analysis tools for the assessment of the toxicity of 

marine sediments and to investigate the generation of an indexing system that incorporates 

elements of the biological and chemical work packages completed and thus forms the basis 

of this chapter.  

 

This chapter describes an adaptation of the IBR concept of summing the indices derived 

from ranked analytical (based on the extent to which analytically derived and appropriately 

normalised data exceed the EAC) and biomarker data into a series of 

biomarker/contaminant integrated response (IR) indices.  Plotting of the derived indices 

followed by the generation of site specific star plots allow for the visualisation of the 

degree of contamination/toxicity relative to each other at the selected locations.  

 

 

8.2 Methods 

8.2.1  Sample collection and data generation 

 

Details on the collection of samples and the generation of analytical information relevant to 

IR generation are discussed throughout this thesis.  Additionally, the work of Macken 

(2007) who completed a number of bioassay measurements on sediment porewater and 

sediment extracts is utilised for the generation of bioassay scores and site specific IRs  
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8.2.2 Generation of an IR index 

 

For the generation of an index for sediments and biota, a ranking system (based on 

comparison to the EAC) has been developed.  The system only allows for the comparison 

of toxicity between the test sites examined during the course of this work.  The generation 

of the index requires a number of stepwise procedures to be completed. 

 

8.2.2.1 Sediment and blue mussel data index generation 

 
1) Sediment and mussel contaminant data must be converted to  

appropriately “normalised” data for comparison to the OSPAR/ICES EACs.  

Sediment data must be converted to 1 % organic carbon for metals assessment and 

for other contaminants (PCBs, TBT and PAH) to 2.5% organic carbon.  

2) Calculate the extent to which analytical data exceeds the relevant EAC by dividing 

the normalised contaminant value by the appropriate EAC. 

3) Identification of the site/sample that exceeded the EAC to the greatest degree. 

4) Assign a score of 10 to the highest value and pro-rata assign scores to other sites. 

5) Complete this process for all contaminants where EACs are available. 

 

8.2.3  Biomarker/Biological effects  

A score was completed for each parameter including the sediment toxicity bioassays 

(Macken et al., 2008) which included the PLHC-1 and RTG-2 cell line assays (see chapter 
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4) and from RPSI indices generated from the in-situ caging experiment (chapter 5).  Two 

systems were employed as follows; 

1. In bioassays where an EC10/EC50 value of 100 % represented the lowest degree of 

toxicity, a score of “0” was assigned to this sample.  

2. Scores were thus assigned to these assays by 10-[EC10/10]. 

3. In mortality related bioassays where 100% mortality indicated the greatest degree of 

toxicity, a score of “10” would be assigned to such a sample, thus in these assays 

then the score would be calculated by EC10/10.   

8.2.4 Comparison of tissue and sediment data to EACs 

For the contaminant data in tissue and sediment, EACs are used and the score for each 

contaminant in each site is calculated by how much it exceeded the EAC.  Therefore only 

scores are derived for contaminants for which EACs are available.   

Once comparison to the individual EACs was completed the sample/site which exceeded 

the EAC to the greatest degree was designated a score of “10”, with other site/sample 

scores assigned a pro-rata score relative to the highest one.  

Finally a score is created for each contaminant/effect and an overall score for the 

sample/site was obtained by using a method described by Damiens et al., (2007) as follows 

[(B1 x B2)/2]+[(B2 x B3)/2]+…[(B n-1 x Bn)/2] +[(Bn x B1)/2]}.  Star plots are then derived 

from data generated for each site. 
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8.3 Results and discussion 

The development of indices, as described in this chapter provides a weight of evidence 

approach for the identification of potentially toxic chemical parameters in Irish marine 

sediments.  Indices were generated for; 

1) Bioassay data as generated by Macken (2007) in part fulfillment of this current 

project and for cell line assays as reported in chapter 4 of this thesis. 

2)  Metals contaminants in M. edulis as transplanted and reported in chapter 5 of this 

thesis. 

3) Sediment chemistry analysis as reported in chapter 2 of this thesis. 

4) Biological effects measurements (RPSI and shell thickening) in Nucella lapillus and 

Crassostrea gigas as described in chapter 5 of this thesis 

5) Overall indices were calculated from a combination of 1-4 above. 

 

8.3.1  Indices generated from bioassay component 

 

As evidenced by Table 8.1, the overall scores derived from the bioassay component (a 

combination of data from Macken and this present thesis) of this project were relatively 

similar for the three selected sites.  The Dunmore East site exhibited a greater toxicity in 

the case of V. fischeri in the porewater component compared to that observed at the other 

locations.  The potential nature of this toxicity will be further discussed. 

 

This thesis primarily reports on the development of techniques directed towards OTCs and 

as such the development of cell line assay techniques as described in chapter 4 primarily 

concentrated on the Dunmore East site only. 
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Table 8.1: Scores generated for individual bioassay measurements as reported by Macken 

(1-5) and as described in chapter 4 of this thesis (6-7). 

 Sample/site “Score” 

Bioassay/organism DB1 DE1  DB6 

V. fischeri (1)  PW (*) 1.32 7.30 NA 

V. fischeri (1)  AE (*) NA 7.07 NA 

V. fischeri (1)  SE (*) 9.89 8.84 7.31 

V. fischeri (2) WS (*) 5.34 9.16 NA 

T. suecica (3) PW (*) 5.92 6.64 NA 

T. suecica (3) AE (*) NA NA NA 

T. battagliai(48 h) (4) PW (*) 9.13 8.29 8.24 

T. battagliai(48 h) (4) SE (*) 8.70 8.09 NA 

C. volutator (5) (*) 6.00 5.00 NA 

RTG-2 (6) SE (Chapter 4) NA 2.68 NA 

PLHC-1 (7) SE (Chapter 4) NA 3.60 NA 

Overall site score 146 234 30.1 

Score/n parameters 20.8 23.4 15.1 
(*) Macken PhD Thesis, PW = Porewater, AE=Aqueous Elutriate; WS=Whole sediment, SE= Solvent extract. 

DB1: Dublin Bay site 1; DE1: Dunmore East site 1; DB6: Dublin Bay site 6 
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Figure 8.1: Star plot of site specific individual “scores” calculated for various bioassays as 

completed during this thesis and as reported in Macken [PhD thesis] (2007). 
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Figure 8.2: Star plot of site specific overall “IR” as calculated for various bioassays as 

completed during this thesis and as reported in Macken et al.,(2008). 

 

While data for the cell line assay components are only available for the Dunmore East site, 

their removal from the overall index has a relatively small influence on the derived index at 

the site (overall 234 as against 209 upon removal) and 23.4 to 20.9 for the averaged index.  

This relatively minor decrease in index (~10%) supports the hypothesis that where multiple 

parameters are measured that the influence of the addition of additional stand alone test 

results (such as the cell line results described) do not dramatically alter derived indices.   

 

8.3.2 Biotic component (metals and TBT) 

 

Metals were measured in mussels at test sites as described in chapter 6.  Following the 18 

week testing regime, levels of lead (Pb), cadmium (Cd), mercury (Hg) and tributyltin 

(TBT) (only parameters where EACs have been generated) were determined in transplanted 

mussels (see Table 8.2 and Figure 8.3).  Wet weight levels were converted to dry weight 

prior to comparison to the EAC as per assessment criteria requirements.  
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Table 8.2: Dry weight normalised metals and TBT values and derived site scores.   

  Normalised Result Sample "score" 

Biota M. edulis EAC mg/kg 

OI1 

(t=0) 

DB5 

(t=18) 

DE2 

(t=18) 

OI1 

(t=18) OI1  DB5  DE2  

OI1 

(t=18) 

Pb  8.50 0.12 0.14 0.52 0.29 2.29 2.76 10.0 5.54 

Hg  0.01 15.0 12.0 18.0 6.00 8.33 6.67 10.0 3.33 

Cd 0.28 6.32 3.75 5.11 2.39 10.0 5.95 8.11 3.80 

TBT 12.0 0.37 0.51 43.0 0.20 0.09 0.12 9.99 0.05 

Overall site score      51.9 29.6 181 15.8 

Score/n parameters           10.4 5.9 36.2 3.16 

 

The average “score” suggests that the Dunmore East site (36.2) contains the greatest levels 

of the above contaminants compared to the other locations.  As previously discussed 

Dunmore East exhibits elevated TBT contamination compared to the other locations and 

thus forms a substantial portion of the index at this location (approx. 50 %).  

 

The impact of TBT contamination at this location is discussed throughout this thesis.  The 

IR generated for DE2 suggests that TBT contamination plays an important role in 

describing the overall contaminant profile at the selected test site within Dunmore East, but 

also that further work may be merited to conclusively evaluate the relative degree of 

contamination at this location compared to at the other test sites. 
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Figure 8.3: Star plot of site specific overall “IR” as calculated for various metals in M. 

edulis as completed during this thesis. 

 

8.3.3 Sediment component (metals and organic compounds) 

 

As per the biotic compartment, sediments data required normalisation prior to index 

generation.  Normalised metals and organic contaminant values in sediments and derived 

site scores are presented in Table 8.3 and Figure 8.4.  As per the metals and bioassay 

components the average index derived for Dunmore East (DE2) (34.7) was slightly greater 

than that determined for the Dublin Bay (DB5) site.  The DE2 site provided the highest 

index for all of the metals measured in addition to anthracene, benzo[a]anthracene and 

pyrene.  The Dublin Bay site (DB5) was shown to have a higher content of naphthalene and 

phenanthrene in addition to Benzo [ghi] perylene, Benzo [k] fluoranthene and Indeno[1,2,3-

cd] pyrene than the other locations. 
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Table 8.3: Normalised metals and organic contaminant values and derived site scores  

  Normalised result Sample "score" 

Sediment parameter 

EAC 

(ug/kg) 

OI1 

(t=0) 

DB5 

(t=18) 

DE2 

(t=18) OI1  DB5  DE2  

Mercury 0.22 0.01 0.17 0.29 0.26 6.00 10.0 

Cadmium 0.06 0.59 2.59 5.01 1.17 5.17 10.0 

Lead 2.20 1.05 16.3 22.1 0.47 7.39 10.0 

TBT 0.01 6120 21000 1088451 0.06 0.19 10.0 

PCB 153 40.0 0.0002 NA 0.009 0.23 NA 10.0 

Naphthalene 43.0 0.03 6.40 0.99 0.05 10.0 1.55 

Phenanthrene 1250 0.001 0.21 0.18 0.03 10.0 8.69 

Anthracene 78.0 0.01 0.89 1.79 0.06 4.96 10.0 

Fluoranthene 250 0.01 1.26 1.06 0.06 10.0 8.37 

Pyrene 350 0.00 0.85 1.08 0.04 7.87 10.0 

Benz[a]anthracene 1.50 0.55 52.1 183 0.03 2.84 10.0 

Benzo[a]pyrene 625 0.00 0.27 0.20 0.02 10.0 7.24 

Benzo [ghi] perylene 2.10 0.39 103 79.6 0.04 10.0 7.76 

Benzo [k] fluoranthene 3.50 0.24 27.0 21.8 0.09 10.0 8.07 

Indeno[1,2,3-cd] pyrene 1.50 0.28 131 97.4 0.02 10.0 7.45 

Overall site score     0.46 380 555 

Score/n parameters         0.03 23.7 34.7 

 

The indexing system identifies (and is supported by hydrocarbon analysis described in 

chapter 2 and 7) that sources of PAHs at the two locations may differ to an extent, with as 

the DB5 site contains predominantly low aromatic PAHs as against the higher aromatic 

compounds which predominate at the DE2.  Significantly TBT was again found to be 

elevated at DE2 compared to the other sites. 

 

By generating an IR with PAH data alone, the DE2 and DB5 sites would be similar (19.3 

and 19.6 respectively).  This suggests that contaminants other than PAHs provide the 

majority of difference to the overall IR at this site, significantly TBT was again found to be 

elevated at DE2 compared to other sites. 
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It should be noted that as a high TOC content was determined in the Omey Island sample, 

the results for this site should be treated with caution and are included in this assessment 

primarily for reference only purposes.   
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Figure 8.4: Star plot of site specific overall “IR” as calculated for various sediment 

parameters as completed during this thesis.  

  

8.3.4 Biological effect indices 

 

Derived values and calculated site scores for shell thickening and RPSI values at individual 

locations are presented in Table 8.4 and Figure 8.5.  Data on shell thickening and RPSI 

have previously been reported in chapter 5.  The DE2 site (score 22.7) was again found to 

show the most elevated indice.  As the biological effects of shell thickening and imposex 

have been linked to TBT contamination and elevated “scores” for TBT have been observed 
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at Dunmore East in mussels and in sediments (and further supported by bioassay directed 

fractionation analysis in chapter 7) it is not unreasonable to assume that the effects 

discussed in oysters and in dogwhelks may primarily be as a result of OTC contamination 

at this location. 

 

Table 8.4: Derived values and calculated site scores for shell thickening and RPSI at 

individual locations.   

 Result  Sample "score" 

Biological effects 

OI1 

(t=0) 

DB5 

(t=18) 

DE2 

(t=18) 

OI1 

(t=18) 

OI1 

(t=0) 

DB5 

(t=18) 

DE2 

(t=18) 

OI1 

(t=18) 

C. gigas (Shell thickening) NA 25.4 9.20 22.1 NA 7.46 9.08 7.79 

N. lapillus (RPSI) NA 0.0003 2.38 NA NA NA 10 NA 

Overall site score     NA 7.46 45.4 7.79 

Score/n parameters         NA 7.46 22.7 7.79 
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Figure 8.5: Star plot of site specific overall “IR” as calculated for various biological effects 

parameters (shell thickening and RPSI) as completed during this thesis.  
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8.3.5 Overall compartment based IR at test sites 

 

As consistently discussed throughout this chapter the Dunmore East site have been found to 

exhibit the highest scores and compartment IRs with respect to the other locations tested.  It 

is therefore not surprising that the mean compartment IR is much higher at this site (477) 

than at the other locations (see Table 8.5 and Figure 8.6).   

 

Table 8.5: Derived compartment based IRs at individual locations.   

Compartment OI1  DB5  DE2  OI1  

Biota 10.4 5.90 36.2 3.20 

Sediment 0.03 23.73 34.7  

Biological effects  7.46 22.7 7.79 

     

Total IR 0.15 181 1432 12.3 

Mean IR (IR/n compartments) 0.08 60.2 477 6.15 
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Figure 8.6: Star plot of site specific mean compartment “IRs” as calculated during this 

thesis.  

 

8.4 Overall conclusions 

This chapter generated an index system that allowed for the comparison of bioassay, 

biological effects and biotic and sediment chemistry data from a number of sites.  As such, 

this index provides a mechanism which allows individual parameters to be compared with 

respect to each other and between locations.  The system described does not include a 

mechanism for toxicity and/or synergistic/additive effects weightings which would 

ultimately provide further useful information on the potential for toxicity effects at 

individual sites.  Additionally future IR generation should attempt to modify the scoring 

system so that the degree to which a parameter exceeds the assessment criteria (e.g. EAC) 

becomes standardised, thus allowing for long term (temporal) assessments to be completed 

independent of comparison to a “reference” location as was completed in this present 

chapter. 



 - 344 - 

 

Beliaeff and Burgeot (2002) stated that the selection of an appropriate battery of 

biomarkers can avoid false–negative responses obtained with a single biomarker and allow 

information to be summarised in the form of a multivariate data set.  According to Broeg 

and Lehtonen (2005), due to its mathematical basis, the IBR becomes more robust when the 

number of biomarkers increases.  The number of biomarkers included in the calculation of 

the IBR plays an important role affecting the ‘‘relative weight’’ of each biomarker in the 

final index value.  When the set of biomarkers is relatively large, e.g. 6–8, the weight of 

one factor is markedly reduced compared to cases when 3–4 biomarkers are used.  The 

removal of individual parameters (e.g. cell-lines PLHC-1 and RTG-2 data which were only 

available for Dunmore East alone) from the bioassay IR resulted in only a small difference 

in the derived IR compared to when these parameters were included.  Further validation, 

intercalibration and temporal monitoring (to assess trends and variability) of the 

biomarkers/bioeffects techniques used to generate the IR would further improve the 

robustness of the technique. 

 

The primary objective of this chapter was to provide a visualisation mechanism whereby 

biological and chemical data can be scored relative to (provisional) assessment criteria and 

evaluated in an “integrated” manner.  As such this index achieves this goal.  
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9  

 

CHAPTER 9 GENERAL CONCLUSIONS 
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9.1 Conclusions 

This thesis formed part of a three and a half year collaborative project involving the 

Radiation and Environmental Science Centre (RESC) at DIT and the Marine Institute in 

Galway.  The project was divided into three work packages.  Work package 1 (WP1) 

mostly involved the optimisation and validation of a battery of bioassays for sediment 

toxicity testing and took place at the RESC [Macken PhD thesis 2007], work package 2 

(WP2) which is the work described in this thesis, primarily involved the development of 

chemical assessment methodologies (analytical, bioassay, caging studies and assessment 

techniques) for a suite of organic and inorganic contaminants in marine sediment and took 

place at the Marine Institute in Galway.  Work package 3 (WP3) involved the final 

integration of all data obtained from both PhDs and is discussed in chapter 8 of this thesis.  

The ultimate aim of this collaborative project was to design and implement an integrated 

programme for ecotoxicological testing and ultimately to correlate these results with 

chemical analysis data. 

 

At the beginning of the project, a number of spatial sediment locations were chosen on the 

basis of being potentially contaminated/clean for optimisation of bioassays for sediment 

toxicity testing.  A number of sites within Dublin Port and in the greater Dublin bay area 

were selected primarily on the basis of this region being Ireland’s busiest passenger ferry 

port and its overall industrialisation which may potentially subject it to a greater degree of 

contamination.  Two additional sites were selected in the Dublin Bay area, one directly 

under the North Bank Lighthouse (to primarily assess the potential for imposex effects in 

the main shipping channel area and to evaluate the potential influence of sewerage effluent 

into the Bay) and one in the North Bull Lagoon in Dublin Bay as the reference sediment for 

whole sediment bioassays.  Dunmore East in Co. Waterford was selected on the basis of a 
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previous report where organotin and metal levels were elevated.  The final selected location 

was Omey Island on the West coast of Ireland which was expected based on its location to 

be a pristine site.  This site is unexposed to industrialised and urban inputs and species of 

the dogwhelk Nucella lapillus were collected here which were previously observed to show 

no signs of imposex. 

 

A battery of bioassays was optimised by both Macken and Giltrap (this thesis) in WP1 and 

WP2 of this project including a variety of trophic levels from bacteria to fish cell lines.  The 

battery of bioassays utilised throughout this project are shown in Table 1.1 in chapter 1 of 

this thesis.  This battery was used for the ecotoxicological assessment of sediment by 

assaying with porewater, aqueous elutriate, whole sediment and solvent extracts.   

 

A full chemical assessment of sediments at all sites was performed and is described in 

chapter 2 of this thesis.  Concentration data are described for, heavy metals, organotin 

compounds (OTCs), polycyclic aromatic hydrocarbons (PAHs), hydrocarbons (HCs) and 

organochlorine compounds (OCs) at selected locations.  Levels of metals were observed to 

be elevated at both Dublin and Dunmore East harbours, TBT and PAHs were observed in 

highest elevated levels at Dunmore East harbour however elevated levels were also 

determined in the Alexandra basin in Dublin Port.  Overall levels of OCs were relatively 

low in all locations.   

 

Pollutant levels were further assessed with respect to OSPAR BAC and US National 

Oceanic and Atmospheric Administration (NOAA) Effects Range Low (ERL) and Effects 

Range Median (ERM) criteria and Irish Sediment Quality Guidelines.  It was demonstrated 

that Omey Island was near background for all contaminants where assessment criteria are 
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available however high TOC values suggest that terrestrial influences maybe present at the 

sampling site and thus this sample is unrepresentative of true marine sediments.  

Concentrations for zinc and lead in the inner Alexandra basin, lead at the North Bull 

Lagoon and copper at Dunmore East harbour were above the ERM and upper Irish guideline 

levels therefore adverse effects on organisms which reside at these sites could potentially 

be affected by these specific contaminants/groups of contaminants.  Concentration levels of 

PAHs did not exceed the ERM at any of the sites and therefore adverse effects from PAHs 

alone on aquatic species would potentially not be expected at these sites.  This finding is 

additionally evaluated in chapter 7 of this thesis where the potential influence of PAHs to 

the overall toxicity profile seems to be lower than that determined for other compounds 

(e.g. TBT). Therefore it can be concluded that toxicity of porewater from Dunmore East 

and Dublin port with the battery of bioassays could have potentially been induced by 

metals, organotin compounds or mixtures of contaminants. 

 

A method for the extraction of organotin (OT) compounds in their salt form from marine 

sediments for assaying with biological organisms and two cell lines (PLHC-1 and RTG-2) 

was established and is reported in chapter 3 of this thesis.  This method was used for the 

production of solvent extracts for assaying on biological organisms and was also 

successfully used for quantifying OTCs.  Solvent extracts were assayed and toxicity was 

observed with the Dunmore East and Alexandra basin extracts, the Alexandra basin extract 

being the most toxic to both the Microtox® test and T. battagliai assay.  In chapter 4 of this 

thesis it was shown that just 73.2 and 64.0 mg sediment /ml of media elicited 50 % 

cytotoxicity in the RTG-2 and PLHC-1 cell lines respectively however the cell lines utilised 

in this study were observed to be less sensitive than other organisms used in the battery in 

WP1 (Macken PhD thesis 2007).  The data produced by both Macken and Giltrap have 
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been further evaluated in chapter 8 of this thesis in the form of an “integrated ratio” and 

will be further discussed below. 

 

In chapter 4 of this thesis four organotin compounds namely TBT, DBT, TPT and DPT 

were assayed with the RTG-2 cell line to assess cytotoxic effects.  The EC50s calculated for 

these compounds after 96 h exposure using the alamar blue (AB) assay ranked the toxicity 

as TPT > TBT > DPT > DBT again demonstrating differences in sensitivities of various 

contaminants.  The RTG-2 cell line was found to be the least sensitive species for exposure 

to organotin compounds.   

 

In chapter 5, an in-situ study using caged Nucella lapillus and Crassostrea gigas was used 

to monitor TBT induced bioeffects in three sites namely Omey Island, Dunmore East and 

Dublin Port.  TBT has unequivocally been linked to the imposex effect and associated with 

shell thickening and reduced meat yields in the Pacific oyster Crassotrea gigas.  The 

degree of imposex in the gastropod as measured by the Vas Deferens Sequence Index 

(VSDI) and Relative Penis Size Index (RPSI) and the extent of shell thickening in the 

oysters was investigated at t=0 and t=18 weeks.  After 18 weeks the Dunmore East site 

showed the highest level of imposex (3.25 VDSI and 2.375 RPSI) of all three sites.  

Concentrations of organotins in whole-body tissues of each test species were also measured 

at t=0 and t=18 weeks and the highest accumulation of all organotins was observed in all 

test species at the Dunmore East site compared to the other two test locations which may be 

associated with elevated sediment concentrations observed at this location.   

 

Stable isotope ratios of carbon δ13C and nitrogen δ15N were used in this study to provide 

information on food sources for the caged species which assisted in studying relative 
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trophic status, dietary preferences and the biomagnification of contaminants within 

complex food webs.  Greatest δ
15N enrichment (at Dunmore East and Dublin Bay 

respectively) was found in N. lapillus, thus indicative of this organism having higher 

relative trophic status compared to the other two test species.  The employment of caging 

technologies allows for the introduction of indicator species into locations where they may 

not be present or where they may have previously been affected by elevated contaminant 

levels thus providing an efficient mechanism whereby integrated biological and/or chemical 

effects measurements can be determined.  Imposex data at the Dunmore East location 

suggest exposure of N. lapillus to TBT concentrations higher than the Ecotoxicological 

Assessment Criteria (EAC) derived for TBT.  This in-situ study proved to be a very 

effective technique for future integrated assessments as bio-effects were induced in a short 

period of time compared to other in-situ studies and bio-effect data correlated well with 

chemical measurements in biota and sediment  

 

In chapter 6 which also involved the caging study, levels of metals were determined to 

investigate metal uptake rates in the species Nucella lapillus, Mytilus edulis and 

Crassostrea gigas.  Rapid biotic accumulation of metal levels was demonstrated in the test 

species, especially in both Dunmore East and Dublin suggesting the caging study as 

described can be considered a valid tool for bio-monitoring in metal impacted areas.   

 

In chapter 7 of this thesis, methodology was developed for bioassay directed fractionation 

whereby OTCs and other anthropogenic compounds were extracted from the bulk sediment, 

fractionated and analysed using a variety of analytical techniques.  Instrumental analysis 

led to the characterisation of the solvent extracts for a range of organic contaminants.  The 

bioassay directed fractionation approach applied in this study led to the identification of the 
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most toxic fraction isolated from the Dunmore East sediment.  Bioassay-directed 

fractionation was successfully used to characterise compounds with a variety of polarities 

and hydrophobicities as contributing to the measured activity.  The difference in species 

sensitivity to both crude contaminant extracts and fractionated extracts proved that mixture 

toxicity plays an important role in profiling sediment toxicity and thus highlights the need 

for a battery of bioassay tests for sediment quality assessments.  Bioassay directed 

fractionation is no doubt a worst case scenario for sediment contamination but provided a 

useful insight into the contaminants present in the sediment and proved very useful for 

sediment quality assessments. 

 

 

Chapter 8 of this thesis generated an index system that allowed for the comparison of 

bioassay, biological effects and biotic and sediment chemistry data from a number of sites.  

As such this index provides a mechanism which allows individual parameters to be 

compared with respect to each other and between locations.  The system described did not 

include a mechanism for toxicity and/or synergistic/additive effects weightings which 

would ultimately provide further useful information on the potential for toxicity effects at 

individual sites.  Additionally future IR generation should attempt to modify the scoring 

system so that the degree to which a parameter exceeds the assessment criteria (e.g. EAC) 

becomes standardised, thus allowing for long term (temporal) assessments to be completed 

independent of comparison to a “reference” location as was completed in this present 

chapter.   

 

The relative robustness of the technique was demonstrated by the removal of individual 

parameters (e.g. cell-line PLHC-1 and RTG-2 data which were only available for Dunmore 
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East alone) from the bioassay IR and this resulted in only a small difference in the derived 

IR compared to when these parameters were included.  Further validation, intercalibration 

and temporal monitoring (to assess trends and variability) of the biomarkers/bioeffects 

techniques used to generate the IR would further improve the robustness of the technique.  

The primary objective of this chapter was to provide a visualisation mechanism whereby 

biological and chemical data can be scored relative to (provisional) assessment criteria and 

evaluated in an “integrated” manner. As such the index presented in this thesis achieved 

this goal.  

 

The extent of work completed in this thesis (and supported by Macken’s PhD thesis) has 

further developed the capacity within DIT and the Marine Institute (and Ireland) to monitor 

pollutant levels and measure their potential toxic effects in the Irish marine environment.  

The variety of techniques developed and the important information generated for a number 

of Irish coastal sites greatly adds to the currently available data.   

 

This PhD has described the chemical assessment component of a project entitled “An 

Integrated Approach to the Toxicity Evaluation of Irish Marine Sediments”.  It has 

highlighted the importance of coupling chemical analysis data with a multi-trophic, multi-

phase battery of bioassays for integrated assessments of marine sediment.  Current 

international approaches are utilising scoring systems with weight of evidence approaches 

similar to the approach used in chapter 8 of this thesis.  The use of scoring systems in 

chapter 8 highlights the importance of using a triad approach including chemistry, benthic 

indices and sediment toxicity for sediment assessments.  An integrated programme for 

ecotoxicological assessment of marine sediment was implemented and results of bioassays 

and chemical analysis were correlated. 
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