
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Articles School of Computer Science

2013

Octree-based Indexing for 3D Point Clouds within an Oracle Octree-based Indexing for 3D Point Clouds within an Oracle

Spatial DBMS Spatial DBMS

Bianca Schoen-Phelan
Technological University Dublin, bianca.schoenphelan@tudublin.ie

Abu Saleh Mohammad Mosa
University College Dublin

Debra Laefer
University College Dublin

See next page for additional authors

Follow this and additional works at: https://arrow.tudublin.ie/scschcomart

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Schoen-Phelan, B., Mosa, A., Laefer, D. & Bertolotto, M. (2013).Octree-based Indexing for 3D Point Clouds
within an Oracle Spatial DBMS.Computers & Geosciences, 51, 430-438. doi:10.1016/j.cageo.2012.08.021

This Article is brought to you for free and open access by the School of Computer Science at ARROW@TU Dublin. It
has been accepted for inclusion in Articles by an authorized administrator of ARROW@TU Dublin. For more
information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie, vera.kilshaw@tudublin.ie.

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschcomart
https://arrow.tudublin.ie/scschcom
https://arrow.tudublin.ie/scschcomart?utm_source=arrow.tudublin.ie%2Fscschcomart%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=arrow.tudublin.ie%2Fscschcomart%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie

Authors Authors
Bianca Schoen-Phelan, Abu Saleh Mohammad Mosa, Debra Laefer, and Michela Bertolotto

This article is available at ARROW@TU Dublin: https://arrow.tudublin.ie/scschcomart/43

https://arrow.tudublin.ie/scschcomart/43

1

Octree-based Indexing for 3D Point Clouds within an Oracle Spatial DBMS 1

Bianca Schöna, Abu Saleh Mohammad Mosab, Debra F. Laeferc,1, Michela Bertolottob 2

a National Centre for Geocomputation, National University of Ireland Maynooth, Ireland 3
b School of Computer Science & Informatics, University College Dublin, Belfield, Dublin 4, Ire-4

land 5
c School of Architecture, Landscape & Civil Engineering, University College Dublin, Belfield, 6

Dublin 4, Ireland 7

 8

Abstract 9

A large proportion of today’s digital data has a spatial component. The storage and effective 10

management of such data poses particular challenges. Nowhere is this truer than with Light De-11

tection and Ranging (LiDAR), where datasets of even small geographic areas may contain sever-12

al hundred millions points. Currently available spatial information systems do not provide suita-13

ble support for 3D data. As a consequence, while a specific system can be used to store the data, 14

another has to be used to process it. Typically several software applications are used to analyze 15

and process LiDAR data, requiring multiple format transformations. Our work aims at providing 16

a more cost-effective way for managing LiDAR data that allows for the storage and manipulation 17

of these data within a single system. We achieve this by exploiting current Spatial Database 18

Management technology. In order to provide an efficient solution, suitable 3D indexing mecha-19

nisms are essential. In this paper we describe the implementation of an octree index for 3D Li-20

DAR data atop Oracle Spatial 11g and present a comprehensive evaluation that shows its effi-21

cient performance as compared to the native Oracle R-tree index. 22

1. Introduction 23

1 Corresponding Author, Email: Debra.Laefer@ucd.ie, Tel.: +353-1-716-3226, Fax: +353-1-716-3297

mailto:Debra.Laefer@ucd.ie

2

The proliferation of point cloud data from both terrestrial and aerial laser scanning coupled with 24

large-scale efforts to provide remote sensing data for web-based, multiple-user access have be-25

come strong dual motivators to reconsider current storage strategies for 3D point cloud data. 26

Point cloud datasets provide significant management challenges because of their size. As an ex-27

ample, typical low-density aerial scanning generates 30-50 point/m2 (for the State of North Caro-28

lina a 2001 flood plane mapping generated approximately 5.6 billion points for the entire da-29

taset). More recent flyovers report significantly higher densities of up to 225/m2 resulting in 225 30

million points for a single square kilometer (Hinks et al., 2009). 31

Currently available spatial information systems do not provide suitable support for 3D data. This 32

means that while a specific system can be used to store the data, another has to be used to pro-33

cess it. Typically several software applications are used to analyze and process LiDAR data, re-34

quiring multiple format transformations with consequent loss of accuracy. Our work aims at 35

providing a more efficient and cost-effective way for managing LiDAR data that allows for the 36

storage and manipulation of these data within a single system. Our solution exploits current Spa-37

tial Database Management (SDBMS) technology and its extensibility capabilities that allow de-38

velopers to implement additional functionality within such technology. Indeed, while extensive 39

support for 2D data has been made available by several DBMS vendors (including Postgres and 40

Oracle), very limited support is currently provided for 3D data handling. In particular, in order to 41

achieve efficiency, suitable 3D indexing mechanisms are essential. Oracle is currently the only 42

SDBMS that provides native 3D spatial data types and the implementation of a 3D index. How-43

ever, such an index is based on R-trees and is not adequately efficient for 3D point cloud data. 44

This paper shows how octree-based indexing can greatly facilitate the storage and indexing of 45

3D point cloud data within an SDBMS. We present an implementation of the octree index 46

3

(Laefer et al., 2009) atop Oracle Spatial 11g and show that it outperforms the native R-tree index 47

provided by Oracle. 48

This paper is structured as follows: Section 2 discusses current SDBMS support for 3D data, 49

including indexing approaches. Section 3 describes the implementation of an octree index within 50

an Oracle Spatial 11g database. Section 4 presents an evaluation of the octree index that com-51

pares its performance with that of the Oracle R-tree. Section 5 provides a critical discussion of 52

the results presented in this paper and an outlook for future efforts in this area of research. 53

2. Background and Technologies 54

This section outlines the various technologies and approaches that are currently used in order to 55

index 3D point cloud data. First, support of SDBMSs is investigated, which is followed by an 56

overview of research approaches in this area. Then, the approach implemented within this paper 57

is explained. An evaluation of an experiment assessing this approach is presented in section 4. 58

2.1. SDBMS support for 3D Point Cloud Data 59

Today, many of the benefits of high-resolution LiDAR remain relatively unexploited as the data 60

cannot be efficiently managed in a traditional Geographical Information System (GIS), because 61

of the current inability of GISs to fully support 3D objects. For example, GIS systems are not 62

designed to support Finite Element Meshes, which are often the intended end product for a Li-63

DAR scan. A desirable alternative would not be file-based (due to the very large size of datasets) 64

and would overcome the need for multiple programs with repeated import and export transac-65

tions (to eliminate the potential loss of LiDAR’s accuracy through format conversions). The pro-66

posed solution in this paper integrates all required functionality within a SDBMS. 67

4

A Database Management System (DBMS) controls the organization, storage, management and 68

retrieval of all data that is kept in a database. A DBMS ensures that data inconsistencies and data 69

redundancies are significantly reduced compared to storing information in a file system. A 70

DBMS also facilitates data integrity, as well as multi-user control on shared data. Initially, tradi-71

tional DBMSs did not support storage and querying of spatial data (i.e. data with a spatial com-72

ponent). Later, an integrated approach was developed to store the spatial extent (together with 73

the attribute data) directly into the database (in the same table). Current SDBMSs, such as Oracle 74

Spatial or PostGIS are based on the extensibility of Relational Database Management System 75

(RDBMS), i.e. the ability to add new types and operations. This technology allows for the man-76

agement of all data within the same engine. Additionally, data retrieval and manipulation are fa-77

cilitated through Structured Query Language (SQL). 78

For a spatial system to be fully 3D, it must support 3D data types, such as point, line, surface, 79

and volume in 3D Euclidean space. Three-dimensional data types are based on a 3D geometric 80

data model (i.e. vector and/or raster data with underlying geometry and topology). A 3D spatial 81

system must also offer operations and functions embedded into its query language that can oper-82

ate with its 3D data types (Bruenig & Zlatanova, 2004). Until recently, SDBMSs have not pro-83

vided support for 3D data management; an extensive review of this is available elsewhere (Schön 84

et al., 2009a). However, with Oracle Spatial’s release of 11g, 3D point clouds can be stored in an 85

in-built data type. Previously Oracle Spatial relied heavily on SDO_GEOMETRY. Now 86

SDO_PC is the main data type employed for the storage of 3D point cloud data. SDO_PC is de-87

signed for the storage of multi-dimensional point clouds. There is no upper bound on the number 88

of points in an SDO_PC object. A set of points are grouped and stored as the BLOB object in a 89

row. However, the current version of Oracle Spatial offers only a limited amount of placeholders 90

5

for the storage of information alongside locational attributes, as only nine attributes can be stored 91

together in one element within SDO_PC (Murray, 2009). Another disadvantage is that Oracle 92

Spatial does not yet offer functionality to update SDO_PC objects. Consequently, the 93

SDO_GEOMETRY data type remains highly useful for the storage of any geometry type, includ-94

ing 3D data points. Particularly considering 3D point clouds, it is desirable to store the locational 95

information together with its attribute information (e.g. color, intensity) in the same table, as se-96

mantic information oftentimes directs feature recognition processes, which are typically applied 97

onto the data at a later stage in the work flow. 98

Indexes are employed in order to avoid traversing a complete table when performing spatial que-99

ries. Thus, indexes are used to organize the space and the objects within this space. Given the 100

sheer size of aerial LiDAR datasets, efficient indexing mechanisms are essential. Spatial index-101

ing techniques evolved in the mid-1980s, with Guttman’s R-tree (Guttman, 1984) being one of 102

the most popular and enduring indexing techniques. Indexing techniques are discussed in the 103

next section. 104

2.2. Indexing of 3D Point Cloud Data 105

Stanzione and Johnson (2007) argue that a tree structure is inherently more efficient due to its 106

binding with the internal data storage structure. In this spirit, various tree structures have been 107

explored for indexing vast point cloud data. One approach is based on combining R-trees with an 108

importance value (Oosterom, 1990), which is called V-reactive tree (Li, 2001). The V-reactive 109

tree is an R-tree structure in 4D, which is optimized for 3D visualization. However, to date, the 110

structure has not been tested for realistically large point cloud datasets. Hua et al. (2008) pro-111

posed a hybrid approach for visualization combining an octree with a k-d tree (Bentley, 1975) by 112

building a local k-d tree at each octree level node. This approach has only been evaluated for 113

6

visualization speed of 3D point clouds for up to 100,000 points (Hua, 2008). De Floriani et al. 114

(2008) extended quadtree indexes to work with TIN structures and argued that their mechanism 115

could be generalized to support Tetrahedral Irregular Networks (TENs) on an octree basis in or-116

der to support true 3D functionality. 117

Hierarchical space division based structures (e.g. octree) are critical for 3D surface representa-118

tions and queries as they are purely volume based. Combined approaches, such as the Volume-119

Surface tree (V-S tree) aim to avoid a strong imbalance with regards to clustering of points by 120

applying a 3D octree on a global level and a 2D quadtree on a local level (Boubekeur, 2006). 121

However, this method has a tendency to collapse in cases where the surface is not smooth, which 122

results in pure octree indexing (Velizhev & Shapovalov, 2008). Another interesting approach for 123

indexing LiDAR is based on the Hilbert Space-Filing curve (Wang & Shan, 2005). Space-Filing 124

curves (Sagan, 1994) preserve spatial proximity at local level and map points in n-dimensional 125

space into linear order. This approach has been implemented in the MySQL and the Microsoft 126

Access Database for evaluation purpose and tested on 1.4 million LiDAR points from a terrestri-127

al scan of a bridge structure (Wang & Shan, 2005). Currently, Microsoft Access does not provide 128

any spatial support. While MySQL Spatial offers rudimentary spatial support by providing spa-129

tial data types, functions and a spatial index. However, due to the limited amount of spatial func-130

tions, this database is best used for simple retrieval by bounding box operations. 131

Presently, Oracle Spatial provides an R-tree based spatial index and a deprecated two-132

dimensional (2D) quadtree (Murray, 2003). The 2D R-tree is based on minimum bounding rec-133

tangles (MBRs), and the 3D extension consists of minimum bounding boxes (MBBs). How to 134

implement a bounding box on a dense point cloud is non-trivial, and sometimes inefficiencies 135

develop due to the overlap of sibling nodes and the uneven size of nodes (Zhu, 2007). An alter-136

7

native approach is to map spatial objects onto one-dimensional space to enable the use of a 137

standard index, such as a B-tree (Bayer, 1971). 138

In Oracle Spatial, only an R-tree index can be created in 3D on geometry columns; the R-tree 139

implementation is the successor for HHCode in Oracle Spatial (Murray, 2009). However, it only 140

supports one operator in 3D, called SDO_FILTER (Kothuri, 2007, p. 272). This operator per-141

forms only a primary filter operation, which identifies all rows of a table where Minimum 142

Bounding Rectangles (MBRs) of the column geometry intersect with the MBRs of the query ge-143

ometry (Kothuri, 2007, p. 269). As such, this operator returns the superset of results for all spa-144

tial queries and cannot be used for a particular spatial query. All other presently implemented 145

operators work only for two-dimensional (2D) geometries. THIS PARAGRAPH WAS IN THE 146

PREVIOUS SECTION BUT IT DID NOT FIT SO I MOVED IT HERE BUT IT IS NOT 147

LINKED WITH WHAT COMES EARLIER. DO WE NEED IT TO JUSTIFY HOW WE 148

DID THE EXPERIMENTS? If not I would remove it. 149

Personally, I think that we can delete this paragraph. It is mainly a response to one of the re-150

viewer’s comments regarding HHCode. I don’t think it is important and it doesn’t really fit an-151

ywhere anyway. 152

PostgreSQL supports the Generalized Search Tree (GiST) index (Geo-Consortium, 2007) which 153

is a “template data structure for abstract data types” that offers more robust support for spatial 154

indexing. 155

Several strategies have been developed for efficient indexing of multi-dimensional data. Alt-156

hough there is limited vendor support for these, and true 3D index creation is still an ongoing 157

research problem (Schön, 2009b). In most cases, indexes only support two-dimensionality with 158

8

simple 3D extensions (Arens, 2005). An octree offers an alternative, but currently no SDBMS 159

support octree indexing and to the best of the authors’ knowledge no meaningful benchmarks 160

have been provided thus far on this approach. This is where this paper seeks to make a signifi-161

cant contribution. 162

2.3. Octree Indexing for Spatial 3D Point Cloud Data 163

An octree structure offers distinct advantages over the frequently implemented R-tree in particu-164

lar regarding the indexing of LiDAR datasets. Octrees can index point geometries directly, as 165

opposed to the R-trees that solely rely on bounding boxes. Furthermore, octrees generate dis-166

jointed, non-overlapping tree nodes, whereas R-tree bounding boxes are often overlapping, 167

which reduces query efficiency in the case of the R-tree. Moreover, storing the logical tree struc-168

ture into a SDBMS is complex. The tree structure can be stored in a table where each node of the 169

tree structure corresponds to a row in the table. In that specific case, one column is needed to 170

store node identifiers (nodeID) and another to store the list of node identifiers (nodeIDs) as 171

pointers to the child nodes. The node identifier of the root node can be stored in a table, called 172

the metadata table for that index. Oracle Spatial’s R-tree index implementation stores the tree 173

structure in a table and selects a node using an internal SQL statement, as each node is visited 174

(Kothuri, 2002). Thus, query operations involve the processing of many recursive SQL state-175

ments, which consequently increases query processing times (Kothuri, 2002). The octree, on the 176

other hand, can be used to divide the entire space according to a specified tiling level. In this 177

case, only the tiling level needs to be stored as the tree structure can be rebuilt during the query 178

processing; details are described subsequently. 179

A further advantage of the octree lies in its support for optimized 3D point cloud visualization 180

(Koo and Shin, 2005). Rendering of 3D point clouds is computationally expensive and rendering 181

9

from an SDBMS causes further delays due to I/O operations on the DBMS. However, an octree 182

can be utilized to filter visible points for rendering according to a specific view frustum, instead 183

of rendering all points in the dataset at once. Nonetheless, the selection of an appropriate spatial 184

index depends on many factors, such as data distribution and data type. Octrees provide a more 185

specific approach applicable to all 3D point cloud object types. The following section outlines 186

how an octree index can be implemented in Oracle Spatial. 187

3. Design of an Octree Index atop Oracle Spatial 11g 188

Oracle’s Extensibility Framework requires that a data cartridge be implemented, in order to pro-189

vide a new index structure (Belden, 2008). Data cartridges are re-usable server based compo-190

nents, which utilize object types and features such as large objects (LOBs), external procedures, 191

extensible indexing, and query optimization. Oracle’s extensible indexing framework defines a 192

set of interface methods. These must be implemented in an object type, which is called indextype 193

(Belden, 2008). An indextype is an object that specifies the routines that manage a domain (ap-194

plication-specific) index. It has two major component sets: (1) methods that implement the in-195

dex’s behavior and (2) operators that the index supports. 196

This paper presents a new data cartridge implemented in Oracle’s extensible indexing framework 197

that enables octree indexing and is in the following sections referred to as OCTREEINDEX. To 198

facilitate the analysis of 3D point clouds, a window query operator OT_CLIP_3D was also im-199

plemented, which performs a window query on a given 3D point geometry stored in an Oracle 200

SDO_GEOMETRY data type. Spatial metadata information is stored in the US-201

ER_SDO_GEOM_METADATA view provided by Oracle Spatial (Kothuri, 2007, p. 45). The 202

following presents the index and related window query operator implementation. 203

10

3.1. Implementation of the Octree Index 204

An octree’s structure dictates that each internal node contains exactly eight child nodes regard-205

less of its many variants (Samet, 2006). This paper uses a region octree, where the space is de-206

composed into cubic blocks (or cells) through recursion, until a block is homogeneous. The ap-207

proach is oriented to interior-based representations for 3D region data, which permits further ag-208

gregation of identically valued cells. 209

MICHELA: add a sentence here about providing a compromise – the trick is to find a suitable 210

tiling level. 211

By definition, an octree can result in an unbalanced hierarchical tree when the data distribution is 212

not uniform. However, with regards to its implementation this harbors a distinct challenge, as it 213

would require storage of its logical tree structure in a SDBMS for reconstruction of the tree 214

structure during query processing. This could introduce inefficient query processing due to the 215

issuance of several internal recursive SQL select statements generated during each node visita-216

tion. The approach presented in this paper resolves this issue by constructing a balanced tree 217

structure up to a fixed tiling level; an example is provided in the implemented approach and is 218

described further below. In this case, only the tiling level information (as opposed to the whole 219

tree) needs to be stored for tree reconstruction. The selection of an appropriate tiling level for a 220

specific dataset is a decisive factor, which involves the dataset’s area and size. As such, this is a 221

drawback of this approach, as experimentation with different levels is needed in order to opti-222

mize performance for a specific dataset. Particulars of this problem are further illustrated in sec-223

tion 4. The user can specify the tiling level through the parameter OCTREE_LEVEL during in-224

dex creation. Each cell is associated with a unique code, which is herein referred to as the cell 225

code. The cell code is obtained by using z-ordering (i.e. Morton encoding) of all cells at the spec-226

Comment [bs1]: I am not sure how this
is meant

11

ified level (Morton, 1966). Fig. 1 illustrates the decomposition of space on the example of a 2D 227

quadtree, as this is easier to illustrate graphically. The octree functions analogous in 3D. Fig. 1(a) 228

illustrates the 3D space decomposition and fig. 1(b) illustrates the cell code generation. All cells 229

in the bottom half are assigned with the prefix ‘0’ – zero, and all cells in the top half are assigned 230

with prefix ‘1’ – one. The cells are marked south-west (SW), south-east (SE), north-east (NE) 231

and north-west (NW) and associated codes are 00, 01, 10 and 11 consecutively. The associated 232

cell code with each point is identified by traversing the octree structure from root node to leave 233

node. For example, using B to represent the bottom half and T to designate the top half, at tiling 234

level 5, the code for the path BNW (011) – TSW (100) – TNE (110) – BSE (001) – BSW (000) 235

is 011100110001000. Here, it only follows the tree path where the cell associated to a node in 236

the path contains the point. The ROWID of the point and the associated cell code are stored in an 237

index storage table. The metadata (e.g. tiling level, index name, index owner, max level, min 238

level, etc.) for the entire index are stored as a row in a table called index metadata table. 239

(a) 3D space decomposition. (b) Cell code generation.
Figure 1. Quadtree Sectors. 240

The 3D query processing using this implementation is illustrated in fig. 2. To generate the result 241

set for a spatial query, the octree index is used as the primary filter to find the area of interest or 242

candidate geometries for this query. Figure 3 illustrates the use of a primary and secondary filter 243

during the query process. The area of interest is the sum of the cells of the octree that interact 244

spatially (e.g. intersect, touch, inside, covered by) with the query geometry, as established by the 245

12

primary filter. These cells are identified by the cell code, and candidate geometries are identified 246

by the associated cell code from the index storage table. These candidate geometries are passed 247

through the intermediate filter and divided into two sets. Cells inside or covered by the query ge-248

ometry are identified as an exact match. The points associated with these cells are sent directly to 249

the result set. The remaining cells (those that intersect or touch the query window) are identified 250

as unknown and passed through the secondary filter. The secondary filter is a spatial function, 251

which corresponds to the spatial query. 252

 253

Figure 2. Query Processing Steps 254

The Oracle Extensibility Framework requires that a new index must implement a certain inter-255

face and related methods. The name of the interface is ODCIIndex (Belden, 2008). Associated 256

methods are categorized into four classes: (1) index definition methods, (2) index maintenance 257

methods, (3) index scan methods, and (4) index metadata method. Table 1 summarizes these 258

methods with implementation details described henceforth. 259

 260

Table 1. ODCIIndex Interface Methods 261

Category Method Name Invoked by

13

Definition
Methods

ODCIIndexCreate() “CREATE INDEX” statement
ODCIIndexDrop() “DROP INDEX” statement
ODCIIndexAlter() “ALTER INDEX” statement

Maintenance
Methods

ODCIIndexInsert() “INSERT INTO” statement on the base table, which
involves the indexed column.

ODCIIndexUpdate() “UPDATE” statement on the base table, which in-
volves the indexed column.

ODCIIndexDelete() “DELETE FROM” statement on the base table,
which involves the indexed column.

Scan Meth-
ods

ODCIIndexStart() At the beginning of an index-scan.
ODCIIndexFetch() In order to fetch the row identifiers those satisfies

the operator predicate.
ODCIIndexClose() At the end of the index-scan In order to perform

cleanup.
Metadata
methods

ODCIIndexGetMetadata() In order to write implementation-specific metadata
into the export dump file using “Export” utility.

 262

An implementation type is required to create the indextype OCTREEINDEX and must contain 263

the implementation of the ODCIIndex interface methods. An object type known as the imple-264

mentation type and named OCTREE_IM is defined to implement the ODCIIndex interface 265

methods (Belden, 2008). It contains the signature and return type of the interface methods. 266

The body of OCTREE_IM contains the implementation of these, which can be implemented us-267

ing PL/SQL, C, C++ or Java. In this implementation, only the ODCIGetInterfaces method is im-268

plemented in PL/SQL, while others are implemented as Java callouts, which resides in a Java 269

class. A previously available Java API was exploited (Kothuri, 2007, p. 223). It enables applica-270

tions written in Java to access and process geometry objects managed in Oracle database with 271

Oracle Spatial. OCTREE_IM contains only the implementation of the method ODCIGetInterfac-272

es, while others are implemented in a Java class entitled OctreeIndex. The mapping of the inter-273

face methods to the Java methods is defined in OCTREE_IM. 274

14

The process of index creation is outlined below. Other methods implemented for the prototype, 275

as explained in Table 1, are created accordingly. Fig. 3 illustrates index creation process, and fig. 276

4 illustrates the requisite steps. 277

 278

Figure 3. Index Creation Sequence 279

 280

15

 281

Figure 4. Steps needed for Index Creation 282

 283

The ODCICreate method is invoked when a user issues the “CREATE INDEX” SQL statement 284

of indextype OCTREEINDEX. This starts the index creation process. At first, metadata infor-285

mation regarding the index is stored into an index metadata table named OC-286

TREE_INDEX_METADATA. Next, the octree structure is initialized, and the 3D bound of the 287

3D point cloud sample as a whole is created. The 3D points that are stored as point geometry da-288

ta types are accessed from the base table through the Java Database Connectivity (JDBC) con-289

16

nection with the database. These are inserted into the octree structure, which returns the cell code 290

for each point. 291

3.2. Implementation of an Operator 292

Window queries are among the most commonly used first-step-analysis operations for LiDAR 293

data. This query has been implemented and is referred to as OT_CLIP_3D. The operator returns 294

all point geometries that are inside and on the boundary of the specified 3D cube and takes two 295

SDO_GEOMETRY objects as input. The first input is a 3D point geometry or a column of the 296

type SDO_GEOMETRY that contains a 3D point geometry on which the operator is applied. 297

The second input is a simple solid of type SDO_GEOMETRY, which specifies the query win-298

dow. Every operator must be tied to an index for index-based evaluation. Oracle’s extensible in-299

dexing framework requires the implementation of index scan methods to evaluate the operators. 300

These are ODCIIndexStart, ODCIIndexFetch and ODCIIndexClose. Fig. 5 illustrates the invoca-301

tion sequence of index scan methods. 302

17

 303

Figure 5. Index Invocation 304

At first, the interface method ODCIIndexStart is invoked by Oracle with the operator name, ar-305

guments, and the lower and upper bounds describing the predicate. This method is invoked to 306

begin the operator evaluation. A series of fetches are performed by invoking the ODCIIndex-307

Fetch method to obtain row identifiers or rows that satisfy the operator predicate. The number of 308

expected rows (nRows) in every fetch is specified by Oracle during each invocation of this 309

method. The ROWIDs are placed into the placeholder array (rowIds). Finally, before the destruc-310

tion of the SQL cursor, ODCIIndexClose is invoked by Oracle to end the processing of the oper-311

ator. Figure 6 illustrates the window query performed on a 3D point cloud. The result set returns 312

all point geometries that are inside or on the boundary of the query window. In this example, all 313

the square points are the ones inside or on the boundary of the query window (illustrated by the 314

box of dotted lines). 315

18

 316
Figure 6. Query Window. 317

The OT_CLIP_3D operator is evaluated through the octree index. Figure 7 demonstrates the 318

evaluation process. For ease of illustration, the example is shown as a 2D case. The query win-319

dow is drawn in dotted lines and the resulting geometries as solid squares. The octree is traversed 320

in order to identify cells that interact or are topologically related with the query window. Possible 321

topological relations are “inside”, “intersect”, “touch”, and “covered by” (Egenhofer & Franzosa, 322

1991). 323

19

 324

Figure 7. Octree Query Window 325

 326

Blocks that are (1) inside the query window or (2) intersect with the query window or (3) touch 327

the query window, or (4) are covered by the query window are identified, and the area of interest 328

is the union of these blocks. This area is searched in order to generate the result set for this que-329

ry. In fig. 7 blocks labeled A, B, C, D, F, G and I intersect with the query window. Block E is 330

inside the query window, and block H is covered by the query window. 331

The intermediate filter is used to identify any exact match, such as block E and H. These blocks 332

are inside the query window, which implies that all the points belonging to these blocks are also 333

inside the query window. These points are sent directly to the result set and the blocks are la-334

beled as known regions. Points belonging to this region are also labeled as known. The points 335

that are covered by the other blocks are passed through the secondary filter. Their points are la-336

beled as unknown and require further processing. 337

20

This section presented a comprehensive description on the octree implementation on top of Ora-338

cle Spatial 11g, which is expected to provide a more effective mechanism for the storage of 3D 339

LiDAR point clouds. The following section presents a study that benchmarks this approach. 340

4. Evaluation 341

This section provides an evaluation of the implementation of octree indexing that has been pre-342

sented in the previous sections. In particular, window query response times on a 3D LiDAR 343

point cloud dataset are compared between R-tree and octree indexing. The evaluation has been 344

conducted on a computer with the Intel Core2 Duo CPU 2.53GHz and 4GB RAM, 7,200 SATA 345

hard drive using Oracle 11g release 11.1.0.6. 346

The 3D LiDAR point cloud dataset is stored in Oracle’s SDO_GEOMETRY data type. In order 347

to perform spatial queries on 3D point cloud data, the dataset is indexed using the R-tree and the 348

octree index. Two randomly selected datasets from a dense aerial LiDAR flyover of Dublin’s 349

city centre (Hinks et al., 2009) were selected. One contained nearly 2,9 million points and the 350

other almost 66 million points. Query response times are compared for the two index types for a 351

variety of window sizes. The R-tree index was created using Oracle’s existing, in-built spatial 352

index. An octree index structure is implemented in Oracle’s extensible indexing framework, as 353

described in section 3.1. 354

In Oracle Spatial, the R-tree index supports only one operator with which a 3D spatial query can 355

be performed. However, this operator does not provide window query functionality. Consequent-356

ly, in order to perform a window query on a LiDAR dataset, which is one of the most common 357

first-step analyses for point cloud datasets, a 2D index was created in order to allow for a 2D 358

window query. It is assumed that since the 2D R-tree index is created on the 3D point clouds 359

21

that the index is created on the 2D projection of the 3D point cloud data. The SDO_RELATE 360

operator provides functionality similar to a general window query. The “inside and touch” 361

masks (Kothuri, 2007, p. 274) and the 2D query window are specified to perform the window 362

query. 363

The implemented octree index supports the operator OT_CLIP_3D, which performs a 3D win-364

dow query on 3D point cloud data. This operator is used to execute 3D window query on 3D Li-365

DAR point cloud data. To create the octree index, it is very important to determine the tiling lev-366

el for efficient query processing. For this purpose, the total number of points in the table and the 367

area of the dataset are considered. The total number of indexed points per cell and cell volume 368

are decreased as the tiling level increases, which in turn decreases the total number of candidate 369

geometries. On the other hand, the total number of leaf nodes increases. For example, the total 370

number of leaf nodes at tiling level ‘N’ is 8N. As such, memory consumption increases at higher 371

tiling level during manipulation of the octree structure. Tiling level five (5) was experimentally 372

selected for this dataset. Further work will be conducted for automatic tiling level determination. 373

This will in part be dependent upon the uniformity of the dataset. If terrestrial data is incorpo-374

rated selectively in a larger aerial set, the result may be highly non-uniform. 375

In this example, a fairly uniform aerial LiDAR dataset was used as it represents a portion of 376

Dublin’s city centre in Ireland, where relatively few large occlusions exist as the average build-377

ing height is low. With this dataset, the response time of a 2D window query (x- and y-378

coordinates) using an R-tree index is compared with the response time of a 3D window query (x-379

, y- and z-coordinates) using an octree index. Basically, the query response time increases with 380

an is expected to increase query window size, as well as the number of resulting geometries (Ko-381

thuri, 2002). For that reason, the same number of resulting geometries for a window query using 382

22

both indexes is considered. To ensure this, in case of using an octree index, the maximum and 383

minimum value of the z-coordinates of the query window is set to the minimum and maximum 384

value of the underlying space. The same value is used for x- and y- coordinates for the octree and 385

R-tree index. As a result, the total number of resulting geometries is equal for both indexes. 386

Table 2 presents the average query response time with the increase of the window size using the 387

R-tree and the octree index. A square rectangle was used as a query window. For every window 388

size up to 625 queries were performed around the underlying space, and the query response time 389

is the average of these queries. Fig. 8 and 9 illustrate the response times. The octree index nearly 390

consistently outperforms the R-tree index for all window sizes. 391

The dataset used in fig. 9 is about 23 times the size of the dataset in fig. 8. In fig. 8, the octree is 392

twice as fast as the R-tree for the small window of 25m2 and 8 times faster for the large window 393

of 2,500m2 in size. In fig. 9, for the small window of 400m2 size, the R-tree outperforms the oc-394

tree, but once the window reaches 1,600m2, the octree is better, with a six-fold improvement for 395

a 40,000m2 window. 396

 397

Figure 8. R-tree vs. Octree 2,881,899 points in the dataset 398

23

 399

 400

Figure 9. R-tree vs Octree 65,562,235 million points in the dataset 401

 402

Table 2. Evaluation Results 403

Small Dataset of 2,881,899 Million Points Large Dataset of 65,562,235 Million Points
Window

Size
(m2)

Avg. Query Re-
sponse Time in

ms (R-tree)

Avg. Query
Response Time
in ms (Octree)

Window
Size
(m2)

Avg. Query
Response Time
in ms (R-tree)

Avg. Query
Response Time
in ms (Octree)

25 3,720.40 1,686.28 400 83,026.65 128,814.14
100 10,868.86 1,975.92 1,600 166,708.00 149,541.69
225 17,170.21 3,121.44 3,660 321,180.30 243,061.55
400 23,269.12 4,628.71 6,400 467,678.50 245,920.08
625 30,816.40 5,804.15 10,000 641,871.10 250,993.00
900 42,541.17 6,934.25 14,400 864,345.50 257,525.44

1,225 42,277.08 6,329.17 19,600 1,065,853.90 269,746.34
1,600 68,354.84 7,521.83 25,600 1,281,446.50 286,461.88
2,025 70,115.16 8,328.33 32,400 1,535,893.00 310,641.75
2,500 83,238.25 9,462.75 40,000 1,933,097.50 321,632.50

 404

5. Conclusions and Summary 405

This paper presents the implementation and evaluation of an octree index, intended for 3D point 406

cloud data from laser scanning, employing Oracle’s extensible indexing framework. However, its 407

functionality may be cross-applicable to other point cloud datasets and implementable in other 408

SDMS as they expand their 3D capabilities. The goal is to improve the support of the storage and 409

24

analysis of point cloud data in order to enable the integration of multiple datasets. The intention 410

is to significantly improving query capabilities for users from different discipline-based needs, 411

hence the ability to store the actual raw LiDAR data has enjoyed increasing focus in recent years. 412

To this end, an operator using our octree index has been implemented to perform 3D window 413

queries. This implementation is described along with some optimizations. The newly implement-414

ed octree index and Oracle’s inbuilt R-tree index are compared using data from a dense, aerially-415

based 3D point cloud. The octree consistently outperformed the R-tree for almost every window 416

size and more so with increases in query window size to as much as an eight-fold difference. The 417

considerably improved performance, while notable in itself, needs to be considered further in 418

light of the additional functionality offered by the octree in terms of a more appropriate storage 419

and indexing of point cloud data in particular. As such, groupings into appropriate cells may oc-420

cur according to a predefined semantic, such as for example color, intensity or elevation infor-421

mation. Furthermore, the approach is not plagued with the R-tree’s related uncertainty when try-422

ing to select a bounding box for point geometries, as the data in the octree is processed directly 423

instead of as a derived object. 424

Since only one operator is implemented, further work envisions a more comprehensive evalua-425

tion in order to assess the octree’s full potential for other query operators, such as nearest neigh-426

bor or within distance. In this prototype, tiling level is determined by the user for a dataset. Fur-427

ther work will enhance the prototype by incorporating a feature for automatic tiling level deter-428

mination, along with exploitation of the visualization-based efficiencies that this approach will 429

engender. In Oracle Spatial, the new SDO_PC data type applies an R-tree index only to the 430

groups of clusters that contain the point geometries. An alternative approach to the one presented 431

in this paper may rely on a two-step index, where an octree index is applied to the points inside a 432

25

block, and an R-tree is applied as a higher level index to the block extents as polygons are better 433

indexed by R-tree. There may also be specific cases where the converse of ordering proves ad-434

vantageous with an octree over an R-tree. Future work will further evaluate these options. 435

Much need has been expressed for the web-dissemination of LiDAR data. The earlier mentioned 436

UCSD example provides non-raw data through a web interface. The hope is that through better 437

storage and indexing of 3D point cloud data, web dissemination of substantial raw LiDAR da-438

tasets will not remain a feature of the far future. 439

Acknowledgement 440

This work was generously support by Ireland’s National Digital Research Centre’s grant 441

EoI/0701/008. Data for this work was provided by Science Foundation Ireland’s sponsored grant 442

05/PICA/I830. 443

References 444

Arens, C., Stoter, J., & Oosterom, P. van (2005). Modelling 3D Spatial Objects in a Geo-DBMS 445

using a 3D primitive. Computers & Geosciences, 31(2), 165-177. 446

Bayer, R. (1971). Binary B-trees for Virtual Memory. Proceedings of the 1971 ACM SIGFIDET 447

Workshop on Data Description, Access and Control (pp. 219-235). San Diego, California: ACM. 448

Belden, E., Chorma, T., Das, D., Hu, Y., Kotsovolos, S., Lee, G., et al. (2008). Oracle Database 449

Data Cartridge Developer's Guide, 11g Release 1 (11.1). 450

Bentley, J.L. (1975). Multidimensional Binary Search Trees Used for Associative Searching. 451

Communications of the ACM, 18(9), 509-517. 452

26

Boubekeur, T., Heidrich, W., Xavier, G., & Christophe, S. (2006). Volume-Surface Trees. Eu-453

rographics, 25(3), 399-406. 454

Bruenig, M., & Zlatanova, S. (2004, November 6). 3D Geo-DBMS. Directions Magazine. Re-455

trieved March 2010, from http://www.directionsmag.com/article.php?article_id=694 (accessed 456

Sep 1, 2010) 457

Egenhofer, M.J., & Franzosa, R.D. (1991). Point-Set Topological Spatial Relations. International 458

Journal of Geographical Information Systems, 5(2), 161-174. 459

De Floriani, L., Facinoli, M., Magillo, P., & Debora, D. (2008). A Hierarchical Spatial Index for 460

Triangulated Surfaces. International Conference on Computer Graphics Theory and Applica-461

tions, (pp. 86-91). 462

Francica, J. (2007, August). Informix Spatial Data Technology: Update and Positioning. Re-463

trieved March 2010, from Directions Magazine: 464

http://www.directionsmag.com/article.php?article_id=2520 (accessed Sep 1, 2010) 465

Geo-Consortium. (2007). Introduction to Spatial Data Management with PostGIS. Presentation 466

Slides by the Consulting Centre Geographic Information Systems. 467

Guttman, A. (1984). R-trees: A Dynamic Index Structure for Spatial Searching. Proceedings of 468

the 1984 ACM SIGMOD International Conference on Management of Data (pp. 47–57). ACM 469

NY, USA. 470

Hinks, T., Carr, H., & Laefer, D.F. (2009). Flight Optimization Algorithms for Aerial LiDAR 471

Capture for Urban Infrastructure Model Generation. Journal of Computing in Civil Engineering, 472

23(6), 330-339. 473

27

Hua, L., Zhengdong, H., Qingming, Z., & Peng, L. (2008). A database approach to very large 474

LiDAR data management. The International Archives of the Photogrammetry, Remote Sensing 475

and Spatial Information Sciences, XXXVII Part B1 Commission I, pp. 463-468. Beijing. 476

Koo, Y.-M., & Shin, B.-S. (2005). An Efficient Point Rendering Using Octree and Texture 477

Lookup. Computational Science and Its Applications-ICCSA 2005, 3482, 1187–1196. 478

Kothuri, R.K., Ravada, S., & Abugov, D. (2002). Quadtree and R-tree Indexes in Oracle Spatial: 479

a Comparison Using GIS Data. ACM SIGMOD International Conference on Management of Da-480

ta (pp. 546-557). Wisconsin, USA: ACM. 481

Kothuri, R., Godfrind, A., & Beinat, E. (2007). Pro Oracle Spatial for Oracle Database 11g. 482

Laefer, D.F., Bertolotto, M., Schön, B., & Mosa, A.S. (full filing Dec. 2009). Enablement of 483

three-dimensional hosting, indexing, analysing, and querying structure for spatial databases. Pa-484

tent Application No. 09177926. Europe. 485

Li, J., Jing, N., & Sun, M. (2001). Spatial Database Techniques Oriented to Visualization in 3D 486

GIS. In Proceedings of 2nd International Symposium on Digital Earth. 24-28.06.2001, Canada. 487

Morton, G.M. (1966). A Computer Oriented Geodetic DataBase and a New Technique in File 488

Sequencing. IBM, Ottawa, Canada. 489

Murray, C. (2009, March). Oracle Spatial Developer's Guide 11g Release 1 (11.1) B28400-04. 490

Murray, C. (2003, December). Quadtree Indexing. Retrieved March 2010. 491

Oosterom, P. van (1990). Reactive Data Structures for Geographic Information Systems. PhD 492

Thesis, Leiden University, The Netherlands. 493

Comment [bs2]: I don’t think it is right
to use this reference. It doesn’t match to
what it references either in the text.

28

Sagan, H. (1994). Space-Filling Curves. New York: Springer-Verlag. 494

Samet, H. (2006). Object-Based and Image-Based Image Representations. In H. Samet, & A. 495

Palmeiro (Ed.), Foundations of Multidimensional and Metric Data Structures (pp. 211-220). 496

Schön, B., Laefer, D.F., Morrish, S.W., & Bertolotto, M. (2009a). Three-Dimensional Spatial 497

Information Systems: State of the Art Review. Recent Patents on Computer Science, 2(1), 21-31. 498

Schön, B., Bertolotto, M. & Laefer, D.F. (2009b). Storage, manipulation, and visualization of 499

LiDAR data. Ed. Remondino, F., El-Hakim, S., and Gonzo, L. International Archives of Photo-500

grammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-5/W1, ISSN 501

1682-1777. 502

Stanzione, T., & Johnson, K. (2007). GIS Enabled Modeling and Simulation (GEMS). 2007 503

ESRI International User Conference. 18–22.06.2007, San Diego, California, USA. Retrieved 504

March 2010 505

Velizhev, A. & Shapovalov, R. (2008). GML LidarK Library. 506

http://graphics.cs.msu.ru/ru/science/research/3dpoint/lidark (accessed July 13, 2010). 507

Wang, J., & Shan, J. (2005). Lidar Data Management with 3-D Hilbert Space-Filling Curve. 508

ASPRS 2005 Annual Conference. 7-11.03.2005, Baltimore, USA. Retrieved March 2010 509

Zhu, Q., Gong, J., & Yeting, Z. (2007). An Efficient 3D R-tree Spatial Index Method for Virtual 510

Geographic Environments. ISPRS Journal of Photogrammetry and Remote Sensing, 62(3), 217-511

224. 512

	Octree-based Indexing for 3D Point Clouds within an Oracle Spatial DBMS
	Recommended Citation
	Authors

	tmp.1442856605.pdf.jdMKG

