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Abstract 9 

A large proportion of today’s digital data has a spatial component. The storage and effective 10 

management of such data poses particular challenges. Nowhere is this truer than with Light De-11 

tection and Ranging (LiDAR), where datasets of even small geographic areas may contain sever-12 

al hundred millions points. Currently available spatial information systems do not provide suita-13 

ble support for 3D data. As a consequence, while a specific system can be used to store the data, 14 

another has to be used to process it. Typically several software applications are used to analyze 15 

and process LiDAR data, requiring multiple format transformations. Our work aims at providing 16 

a more cost-effective way for managing LiDAR data that allows for the storage and manipulation 17 

of these data within a single system. We achieve this by exploiting current Spatial Database 18 

Management technology. In order to provide an efficient solution, suitable 3D indexing mecha-19 

nisms are essential. In this paper we describe the implementation of an octree index for 3D Li-20 

DAR data atop Oracle Spatial 11g and present a comprehensive evaluation that shows its effi-21 

cient performance as compared to the native Oracle R-tree index. 22 

1. Introduction 23 
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The proliferation of point cloud data from both terrestrial and aerial laser scanning coupled with 24 

large-scale efforts to provide remote sensing data for web-based, multiple-user access have be-25 

come strong dual motivators to reconsider current storage strategies for 3D point cloud data. 26 

Point cloud datasets provide significant management challenges because of their size. As an ex-27 

ample, typical low-density aerial scanning generates 30-50 point/m2 (for the State of North Caro-28 

lina a 2001 flood plane mapping generated approximately 5.6 billion points for the entire da-29 

taset). More recent flyovers report significantly higher densities of up to 225/m2 resulting in 225 30 

million points for a single square kilometer (Hinks et al., 2009).  31 

Currently available spatial information systems do not provide suitable support for 3D data. This 32 

means that while a specific system can be used to store the data, another has to be used to pro-33 

cess it. Typically several software applications are used to analyze and process LiDAR data, re-34 

quiring multiple format transformations with consequent loss of accuracy. Our work aims at 35 

providing a more efficient and cost-effective way for managing LiDAR data that allows for the 36 

storage and manipulation of these data within a single system. Our solution exploits current Spa-37 

tial Database Management (SDBMS) technology and its extensibility capabilities that allow de-38 

velopers to implement additional functionality within such technology. Indeed, while extensive 39 

support for 2D data has been made available by several DBMS vendors (including Postgres and 40 

Oracle), very limited support is currently provided for 3D data handling. In particular, in order to 41 

achieve efficiency, suitable 3D indexing mechanisms are essential. Oracle is currently the only 42 

SDBMS that provides native 3D spatial data types and the implementation of a 3D index. How-43 

ever, such an index is based on R-trees and is not adequately efficient for 3D point cloud data. 44 

This paper shows how octree-based indexing can greatly facilitate the storage and indexing of 45 

3D point cloud data within an SDBMS. We present an implementation of the octree index 46 
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(Laefer et al., 2009) atop Oracle Spatial 11g and show that it outperforms the native R-tree index 47 

provided by Oracle. 48 

This paper is structured as follows:  Section 2 discusses current SDBMS support for 3D data, 49 

including indexing approaches. Section 3 describes the implementation of an octree index within 50 

an Oracle Spatial 11g database. Section 4 presents an evaluation of the octree index that com-51 

pares its performance with that of the Oracle R-tree. Section 5 provides a critical discussion of 52 

the results presented in this paper and an outlook for future efforts in this area of research.  53 

2. Background and Technologies 54 

This section outlines the various technologies and approaches that are currently used in order to 55 

index 3D point cloud data. First, support of SDBMSs is investigated, which is followed by an 56 

overview of research approaches in this area. Then, the approach implemented within this paper 57 

is explained. An evaluation of an experiment assessing this approach is presented in section 4. 58 

2.1. SDBMS support for 3D Point Cloud Data 59 

Today, many of the benefits of high-resolution LiDAR remain relatively unexploited as the data 60 

cannot be efficiently managed in a traditional Geographical Information System (GIS), because 61 

of the current inability of GISs to fully support 3D objects. For example, GIS systems are not 62 

designed to support Finite Element Meshes, which are often the intended end product for a Li-63 

DAR scan. A desirable alternative would not be file-based (due to the very large size of datasets) 64 

and would overcome the need for multiple programs with repeated import and export transac-65 

tions (to eliminate the potential loss of LiDAR’s accuracy through format conversions). The pro-66 

posed solution in this paper integrates all required functionality within a SDBMS. 67 
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A Database Management System (DBMS) controls the organization, storage, management and 68 

retrieval of all data that is kept in a database. A DBMS ensures that data inconsistencies and data 69 

redundancies are significantly reduced compared to storing information in a file system. A 70 

DBMS also facilitates data integrity, as well as multi-user control on shared data. Initially, tradi-71 

tional DBMSs did not support storage and querying of spatial data (i.e. data with a spatial com-72 

ponent). Later, an integrated approach was developed to store the spatial extent (together with 73 

the attribute data) directly into the database (in the same table). Current SDBMSs, such as Oracle 74 

Spatial or PostGIS are based on the extensibility of Relational Database Management System 75 

(RDBMS), i.e. the ability to add new types and operations. This technology allows for the man-76 

agement of all data within the same engine. Additionally, data retrieval and manipulation are fa-77 

cilitated through Structured Query Language (SQL). 78 

For a spatial system to be fully 3D, it must support 3D data types, such as point, line, surface, 79 

and volume in 3D Euclidean space. Three-dimensional data types are based on a 3D geometric 80 

data model (i.e. vector and/or raster data with underlying geometry and topology). A 3D spatial 81 

system must also offer operations and functions embedded into its query language that can oper-82 

ate with its 3D data types (Bruenig & Zlatanova, 2004). Until recently, SDBMSs have not pro-83 

vided support for 3D data management; an extensive review of this is available elsewhere (Schön 84 

et al., 2009a). However, with Oracle Spatial’s release of 11g, 3D point clouds can be stored in an 85 

in-built data type. Previously Oracle Spatial relied heavily on SDO_GEOMETRY. Now 86 

SDO_PC is the main data type employed for the storage of 3D point cloud data. SDO_PC is de-87 

signed for the storage of multi-dimensional point clouds. There is no upper bound on the number 88 

of points in an SDO_PC object. A set of points are grouped and stored as the BLOB object in a 89 

row. However, the current version of Oracle Spatial offers only a limited amount of placeholders 90 
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for the storage of information alongside locational attributes, as only nine attributes can be stored 91 

together in one element within SDO_PC (Murray, 2009). Another disadvantage is that Oracle 92 

Spatial does not yet offer functionality to update SDO_PC objects. Consequently, the 93 

SDO_GEOMETRY data type remains highly useful for the storage of any geometry type, includ-94 

ing 3D data points. Particularly considering 3D point clouds, it is desirable to store the locational 95 

information together with its attribute information (e.g. color, intensity) in the same table, as se-96 

mantic information oftentimes directs feature recognition processes, which are typically applied 97 

onto the data at a later stage in the work flow.  98 

Indexes are employed in order to avoid traversing a complete table when performing spatial que-99 

ries. Thus, indexes are used to organize the space and the objects within this space. Given the 100 

sheer size of aerial LiDAR datasets, efficient indexing mechanisms are essential. Spatial index-101 

ing techniques evolved in the mid-1980s, with Guttman’s R-tree (Guttman, 1984) being one of 102 

the most popular and enduring indexing techniques. Indexing techniques are discussed in the 103 

next section.  104 

2.2. Indexing of 3D Point Cloud Data 105 

Stanzione and Johnson (2007) argue that a tree structure is inherently more efficient due to its 106 

binding with the internal data storage structure.  In this spirit, various tree structures have been 107 

explored for indexing vast point cloud data. One approach is based on combining R-trees with an 108 

importance value (Oosterom, 1990), which is called V-reactive tree (Li, 2001). The V-reactive 109 

tree is an R-tree structure in 4D, which is optimized for 3D visualization. However, to date, the 110 

structure has not been tested for realistically large point cloud datasets. Hua et al. (2008) pro-111 

posed a hybrid approach for visualization combining an octree with a k-d tree (Bentley, 1975) by 112 

building a local k-d tree at each octree level node.  This approach has only been evaluated for 113 
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visualization speed of 3D point clouds for up to 100,000 points (Hua, 2008). De Floriani et al. 114 

(2008) extended quadtree indexes to work with TIN structures and argued that their mechanism 115 

could be generalized to support Tetrahedral Irregular Networks (TENs) on an octree basis in or-116 

der to support true 3D functionality. 117 

Hierarchical space division based structures (e.g. octree) are critical for 3D surface representa-118 

tions and queries as they are purely volume based. Combined approaches, such as the Volume-119 

Surface tree (V-S tree) aim to avoid a strong imbalance with regards to clustering of points by 120 

applying a 3D octree on a global level and a 2D quadtree on a local level (Boubekeur, 2006). 121 

However, this method has a tendency to collapse in cases where the surface is not smooth, which 122 

results in pure octree indexing (Velizhev & Shapovalov, 2008). Another interesting approach for 123 

indexing LiDAR is based on the Hilbert Space-Filing curve (Wang & Shan, 2005). Space-Filing 124 

curves (Sagan, 1994) preserve spatial proximity at local level and map points in n-dimensional 125 

space into linear order. This approach has been implemented in the MySQL and the Microsoft 126 

Access Database for evaluation purpose and tested on 1.4 million LiDAR points from a terrestri-127 

al scan of a bridge structure (Wang & Shan, 2005). Currently, Microsoft Access does not provide 128 

any spatial support. While MySQL Spatial offers rudimentary spatial support by providing spa-129 

tial data types, functions and a spatial index. However, due to the limited amount of spatial func-130 

tions, this database is best used for simple retrieval by bounding box operations.  131 

Presently, Oracle Spatial provides an R-tree based spatial index and a deprecated two-132 

dimensional (2D) quadtree (Murray, 2003). The 2D R-tree is based on minimum bounding rec-133 

tangles (MBRs), and the 3D extension consists of minimum bounding boxes (MBBs). How to 134 

implement a bounding box on a dense point cloud is non-trivial, and sometimes inefficiencies 135 

develop due to the overlap of sibling nodes and the uneven size of nodes (Zhu, 2007). An alter-136 
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native approach is to map spatial objects onto one-dimensional space to enable the use of a 137 

standard index, such as a B-tree (Bayer, 1971).  138 

In Oracle Spatial, only an R-tree index can be created in 3D on geometry columns; the R-tree 139 

implementation is the successor for HHCode in Oracle Spatial (Murray, 2009). However, it only 140 

supports one operator in 3D, called SDO_FILTER (Kothuri, 2007, p. 272). This operator per-141 

forms only a primary filter operation, which identifies all rows of a table where Minimum 142 

Bounding Rectangles (MBRs) of the column geometry intersect with the MBRs of the query ge-143 

ometry (Kothuri, 2007, p. 269). As such, this operator returns the superset of results for all spa-144 

tial queries and cannot be used for a particular spatial query. All other presently implemented 145 

operators work only for two-dimensional (2D) geometries. THIS PARAGRAPH WAS IN THE 146 

PREVIOUS SECTION BUT IT DID NOT FIT SO I MOVED IT HERE BUT IT IS NOT 147 

LINKED WITH WHAT COMES EARLIER. DO WE NEED IT TO JUSTIFY HOW WE 148 

DID THE EXPERIMENTS? If not I would remove it. 149 

Personally, I think that we can delete this paragraph. It is mainly a response to one of the re-150 

viewer’s comments regarding HHCode. I don’t think it is important and it doesn’t really fit an-151 

ywhere anyway. 152 

PostgreSQL supports the Generalized Search Tree (GiST) index (Geo-Consortium, 2007) which 153 

is a “template data structure for abstract data types” that offers more robust support for spatial 154 

indexing.  155 

Several strategies have been developed for efficient indexing of multi-dimensional data. Alt-156 

hough there is limited vendor support for these, and true 3D index creation is still an ongoing 157 

research problem (Schön, 2009b). In most cases, indexes only support two-dimensionality with 158 
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simple 3D extensions (Arens, 2005). An octree offers an alternative, but currently no SDBMS 159 

support octree indexing and to the best of the authors’ knowledge no meaningful benchmarks 160 

have been provided thus far on this approach. This is where this paper seeks to make a signifi-161 

cant contribution. 162 

2.3. Octree Indexing for Spatial 3D Point Cloud Data 163 

An octree structure offers distinct advantages over the frequently implemented R-tree in particu-164 

lar regarding the indexing of LiDAR datasets. Octrees can index point geometries directly, as 165 

opposed to the R-trees that solely rely on bounding boxes. Furthermore, octrees generate dis-166 

jointed, non-overlapping tree nodes, whereas R-tree bounding boxes are often overlapping, 167 

which reduces query efficiency in the case of the R-tree. Moreover, storing the logical tree struc-168 

ture into a SDBMS is complex. The tree structure can be stored in a table where each node of the 169 

tree structure corresponds to a row in the table. In that specific case, one column is needed to 170 

store node identifiers (nodeID) and another to store the list of node identifiers (nodeIDs) as 171 

pointers to the child nodes. The node identifier of the root node can be stored in a table, called 172 

the metadata table for that index. Oracle Spatial’s R-tree index implementation stores the tree 173 

structure in a table and selects a node using an internal SQL statement, as each node is visited 174 

(Kothuri, 2002). Thus, query operations involve the processing of many recursive SQL state-175 

ments, which consequently increases query processing times (Kothuri, 2002). The octree, on the 176 

other hand, can be used to divide the entire space according to a specified tiling level. In this 177 

case, only the tiling level needs to be stored as the tree structure can be rebuilt during the query 178 

processing; details are described subsequently. 179 

A further advantage of the octree lies in its support for optimized 3D point cloud visualization 180 

(Koo and Shin, 2005). Rendering of 3D point clouds is computationally expensive and rendering 181 
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from an SDBMS causes further delays due to I/O operations on the DBMS. However, an octree 182 

can be utilized to filter visible points for rendering according to a specific view frustum, instead 183 

of rendering all points in the dataset at once. Nonetheless, the selection of an appropriate spatial 184 

index depends on many factors, such as data distribution and data type. Octrees provide a more 185 

specific approach applicable to all 3D point cloud object types. The following section outlines 186 

how an octree index can be implemented in Oracle Spatial. 187 

3. Design of an Octree Index atop Oracle Spatial 11g 188 

Oracle’s Extensibility Framework requires that a data cartridge be implemented, in order to pro-189 

vide a new index structure (Belden, 2008). Data cartridges are re-usable server based compo-190 

nents, which utilize object types and features such as large objects (LOBs), external procedures, 191 

extensible indexing, and query optimization. Oracle’s extensible indexing framework defines a 192 

set of interface methods. These must be implemented in an object type, which is called indextype 193 

(Belden, 2008). An indextype is an object that specifies the routines that manage a domain (ap-194 

plication-specific) index. It has two major component sets:  (1) methods that implement the in-195 

dex’s behavior and (2) operators that the index supports.  196 

This paper presents a new data cartridge implemented in Oracle’s extensible indexing framework 197 

that enables octree indexing and is in the following sections referred to as OCTREEINDEX. To 198 

facilitate the analysis of 3D point clouds, a window query operator OT_CLIP_3D was also im-199 

plemented, which performs a window query on a given 3D point geometry stored in an Oracle 200 

SDO_GEOMETRY data type. Spatial metadata information is stored in the US-201 

ER_SDO_GEOM_METADATA view provided by Oracle Spatial (Kothuri, 2007, p. 45). The 202 

following presents the index and related window query operator implementation. 203 
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3.1. Implementation of the Octree Index 204 

An octree’s structure dictates that each internal node contains exactly eight child nodes regard-205 

less of its many variants (Samet, 2006). This paper uses a region octree, where the space is de-206 

composed into cubic blocks (or cells) through recursion, until a block is homogeneous. The ap-207 

proach is oriented to interior-based representations for 3D region data, which permits further ag-208 

gregation of identically valued cells.  209 

MICHELA: add a sentence here about providing a compromise – the trick is to find a suitable 210 

tiling level.  211 

By definition, an octree can result in an unbalanced hierarchical tree when the data distribution is 212 

not uniform. However, with regards to its implementation this harbors a distinct challenge, as it 213 

would require storage of its logical tree structure in a SDBMS for reconstruction of the tree 214 

structure during query processing. This could introduce inefficient query processing due to the 215 

issuance of several internal recursive SQL select statements generated during each node visita-216 

tion. The approach presented in this paper resolves this issue by constructing a balanced tree 217 

structure up to a fixed tiling level; an example is provided in the implemented approach and is 218 

described further below. In this case, only the tiling level information (as opposed to the whole 219 

tree) needs to be stored for tree reconstruction. The selection of an appropriate tiling level for a 220 

specific dataset is a decisive factor, which involves the dataset’s area and size. As such, this is a 221 

drawback of this approach, as experimentation with different levels is needed in order to opti-222 

mize performance for a specific dataset. Particulars of this problem are further illustrated in sec-223 

tion 4. The user can specify the tiling level through the parameter OCTREE_LEVEL during in-224 

dex creation. Each cell is associated with a unique code, which is herein referred to as the cell 225 

code. The cell code is obtained by using z-ordering (i.e. Morton encoding) of all cells at the spec-226 

Comment [bs1]: I am not sure how this 
is meant 
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ified level (Morton, 1966). Fig. 1 illustrates the decomposition of space on the example of a 2D 227 

quadtree, as this is easier to illustrate graphically. The octree functions analogous in 3D. Fig. 1(a) 228 

illustrates the 3D space decomposition and fig. 1(b) illustrates the cell code generation. All cells 229 

in the bottom half are assigned with the prefix ‘0’ – zero, and all cells in the top half are assigned 230 

with prefix ‘1’ – one. The cells are marked south-west (SW), south-east (SE), north-east (NE) 231 

and north-west (NW) and associated codes are 00, 01, 10 and 11 consecutively. The associated 232 

cell code with each point is identified by traversing the octree structure from root node to leave 233 

node. For example, using B to represent the bottom half and T to designate the top half, at tiling 234 

level 5, the code for the path BNW (011) – TSW (100) – TNE (110) – BSE (001) – BSW (000) 235 

is 011100110001000. Here, it only follows the tree path where the cell associated to a node in 236 

the path contains the point. The ROWID of the point and the associated cell code are stored in an 237 

index storage table. The metadata (e.g. tiling level, index name, index owner, max level, min 238 

level, etc.) for the entire index are stored as a row in a table called index metadata table. 239 

 
 

(a) 3D space decomposition. (b) Cell code generation. 
Figure 1. Quadtree Sectors.  240 

The 3D query processing using this implementation is illustrated in fig. 2. To generate the result 241 

set for a spatial query, the octree index is used as the primary filter to find the area of interest or 242 

candidate geometries for this query.  Figure 3 illustrates the use of a primary and secondary filter 243 

during the query process. The area of interest is the sum of the cells of the octree that interact 244 

spatially (e.g. intersect, touch, inside, covered by) with the query geometry, as established by the 245 



12 
 

primary filter. These cells are identified by the cell code, and candidate geometries are identified 246 

by the associated cell code from the index storage table. These candidate geometries are passed 247 

through the intermediate filter and divided into two sets. Cells inside or covered by the query ge-248 

ometry are identified as an exact match. The points associated with these cells are sent directly to 249 

the result set. The remaining cells (those that intersect or touch the query window) are identified 250 

as unknown and passed through the secondary filter. The secondary filter is a spatial function, 251 

which corresponds to the spatial query.  252 

 253 

Figure 2. Query Processing Steps 254 

The Oracle Extensibility Framework requires that a new index must implement a certain inter-255 

face and related methods. The name of the interface is ODCIIndex (Belden, 2008). Associated 256 

methods are categorized into four classes: (1) index definition methods, (2) index maintenance 257 

methods, (3) index scan methods, and (4) index metadata method. Table 1 summarizes these 258 

methods with implementation details described henceforth. 259 

 260 

Table 1. ODCIIndex Interface Methods 261 

Category Method Name Invoked by 
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Definition 
Methods 

ODCIIndexCreate() “CREATE INDEX” statement  
ODCIIndexDrop() “DROP INDEX” statement 
ODCIIndexAlter() “ALTER INDEX” statement  

Maintenance 
Methods 

ODCIIndexInsert() “INSERT INTO” statement on the base table, which 
involves the indexed column. 

ODCIIndexUpdate() “UPDATE” statement on the base table, which in-
volves the indexed column. 

ODCIIndexDelete() “DELETE FROM” statement on the base table, 
which involves the indexed column. 

Scan Meth-
ods 

ODCIIndexStart() At the beginning of an index-scan. 
ODCIIndexFetch() In order to fetch the row identifiers those satisfies 

the operator predicate. 
ODCIIndexClose() At the end of the index-scan In order to perform 

cleanup. 
Metadata 
methods 

ODCIIndexGetMetadata() In order to write implementation-specific metadata 
into the export dump file using “Export” utility. 

  262 

An implementation type is required to create the indextype OCTREEINDEX and must contain 263 

the implementation of the ODCIIndex interface methods. An object type known as the imple-264 

mentation type and named OCTREE_IM is defined to implement the ODCIIndex interface 265 

methods (Belden, 2008). It contains the signature and return type of the interface methods.  266 

The body of OCTREE_IM contains the implementation of these, which can be implemented us-267 

ing PL/SQL, C, C++ or Java. In this implementation, only the ODCIGetInterfaces method is im-268 

plemented in PL/SQL, while others are implemented as Java callouts, which resides in a Java 269 

class. A previously available Java API was exploited (Kothuri, 2007, p. 223). It enables applica-270 

tions written in Java to access and process geometry objects managed in Oracle database with 271 

Oracle Spatial. OCTREE_IM contains only the implementation of the method ODCIGetInterfac-272 

es, while others are implemented in a Java class entitled OctreeIndex. The mapping of the inter-273 

face methods to the Java methods is defined in OCTREE_IM. 274 
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The process of index creation is outlined below. Other methods implemented for the prototype, 275 

as explained in Table 1, are created accordingly. Fig. 3 illustrates index creation process, and fig. 276 

4 illustrates the requisite steps.  277 

 278 

Figure 3. Index Creation Sequence 279 

 280 
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 281 

Figure 4. Steps needed for Index Creation  282 

 283 

The ODCICreate method is invoked when a user issues the “CREATE INDEX” SQL statement 284 

of indextype OCTREEINDEX. This starts the index creation process. At first, metadata infor-285 

mation regarding the index is stored into an index metadata table named OC-286 

TREE_INDEX_METADATA. Next, the octree structure is initialized, and the 3D bound of the 287 

3D point cloud sample as a whole is created. The 3D points that are stored as point geometry da-288 

ta types are accessed from the base table through the Java Database Connectivity (JDBC) con-289 
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nection with the database. These are inserted into the octree structure, which returns the cell code 290 

for each point. 291 

3.2. Implementation of an Operator 292 

Window queries are among the most commonly used first-step-analysis operations for LiDAR 293 

data. This query has been implemented and is referred to as OT_CLIP_3D. The operator returns 294 

all point geometries that are inside and on the boundary of the specified 3D cube and takes two 295 

SDO_GEOMETRY objects as input. The first input is a 3D point geometry or a column of the 296 

type SDO_GEOMETRY that contains a 3D point geometry on which the operator is applied. 297 

The second input is a simple solid of type SDO_GEOMETRY, which specifies the query win-298 

dow. Every operator must be tied to an index for index-based evaluation. Oracle’s extensible in-299 

dexing framework requires the implementation of index scan methods to evaluate the operators. 300 

These are ODCIIndexStart, ODCIIndexFetch and ODCIIndexClose. Fig. 5 illustrates the invoca-301 

tion sequence of index scan methods.  302 
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 303 

Figure 5. Index Invocation 304 

At first, the interface method ODCIIndexStart is invoked by Oracle with the operator name, ar-305 

guments, and the lower and upper bounds describing the predicate. This method is invoked to 306 

begin the operator evaluation. A series of fetches are performed by invoking the ODCIIndex-307 

Fetch method to obtain row identifiers or rows that satisfy the operator predicate. The number of 308 

expected rows (nRows) in every fetch is specified by Oracle during each invocation of this 309 

method. The ROWIDs are placed into the placeholder array (rowIds). Finally, before the destruc-310 

tion of the SQL cursor, ODCIIndexClose is invoked by Oracle to end the processing of the oper-311 

ator. Figure 6 illustrates the window query performed on a 3D point cloud. The result set returns 312 

all point geometries that are inside or on the boundary of the query window. In this example, all 313 

the square points are the ones inside or on the boundary of the query window (illustrated by the 314 

box of dotted lines). 315 
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 316 
Figure 6. Query Window.  317 

The OT_CLIP_3D operator is evaluated through the octree index. Figure 7 demonstrates the 318 

evaluation process. For ease of illustration, the example is shown as a 2D case. The query win-319 

dow is drawn in dotted lines and the resulting geometries as solid squares. The octree is traversed 320 

in order to identify cells that interact or are topologically related with the query window. Possible 321 

topological relations are “inside”, “intersect”, “touch”, and “covered by” (Egenhofer & Franzosa, 322 

1991).  323 
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 324 

Figure 7. Octree Query Window 325 

 326 

Blocks that are (1) inside the query window or (2) intersect with the query window or (3) touch 327 

the query window, or (4) are covered by the query window are identified, and the area of interest 328 

is the union of these blocks. This area is searched in order to generate the result set for this que-329 

ry. In fig. 7 blocks labeled A, B, C, D, F, G and I intersect with the query window. Block E is 330 

inside the query window, and block H is covered by the query window.  331 

The intermediate filter is used to identify any exact match, such as block E and H. These blocks 332 

are inside the query window, which implies that all the points belonging to these blocks are also 333 

inside the query window. These points are sent directly to the result set and the blocks are la-334 

beled as known regions. Points belonging to this region are also labeled as known. The points 335 

that are covered by the other blocks are passed through the secondary filter. Their points are la-336 

beled as unknown and require further processing. 337 
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This section presented a comprehensive description on the octree implementation on top of Ora-338 

cle Spatial 11g, which is expected to provide a more effective mechanism for the storage of 3D 339 

LiDAR point clouds. The following section presents a study that benchmarks this approach. 340 

4. Evaluation 341 

This section provides an evaluation of the implementation of octree indexing that has been pre-342 

sented in the previous sections. In particular, window query response times on a 3D LiDAR 343 

point cloud dataset are compared between R-tree and octree indexing. The evaluation has been 344 

conducted on a computer with the Intel Core2 Duo CPU 2.53GHz and 4GB RAM, 7,200 SATA 345 

hard drive using Oracle 11g release 11.1.0.6. 346 

The 3D LiDAR point cloud dataset is stored in Oracle’s SDO_GEOMETRY data type. In order 347 

to perform spatial queries on 3D point cloud data, the dataset is indexed using the R-tree and the 348 

octree index. Two randomly selected datasets from a dense aerial LiDAR flyover of Dublin’s 349 

city centre (Hinks et al., 2009) were selected.  One contained nearly 2,9 million points and the 350 

other almost 66 million points. Query response times are compared for the two index types for a 351 

variety of window sizes. The R-tree index was created using Oracle’s existing, in-built spatial 352 

index. An octree index structure is implemented in Oracle’s extensible indexing framework, as 353 

described in section 3.1.   354 

In Oracle Spatial, the R-tree index supports only one operator with which a 3D spatial query can 355 

be performed. However, this operator does not provide window query functionality. Consequent-356 

ly, in order to perform a window query on a LiDAR dataset, which is one of the most common 357 

first-step analyses for point cloud datasets, a 2D index was created in order to allow for a 2D 358 

window query.  It is assumed that since the 2D R-tree index is created on the 3D point clouds 359 
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that the index is created on the 2D projection of the 3D point cloud data. The SDO_RELATE 360 

operator provides functionality similar to a general window query.  The “inside and touch” 361 

masks (Kothuri, 2007, p. 274) and the 2D query window are specified to perform the window 362 

query. 363 

The implemented octree index supports the operator OT_CLIP_3D, which performs a 3D win-364 

dow query on 3D point cloud data. This operator is used to execute 3D window query on 3D Li-365 

DAR point cloud data. To create the octree index, it is very important to determine the tiling lev-366 

el for efficient query processing. For this purpose, the total number of points in the table and the 367 

area of the dataset are considered. The total number of indexed points per cell and cell volume 368 

are decreased as the tiling level increases, which in turn decreases the total number of candidate 369 

geometries. On the other hand, the total number of leaf nodes increases. For example, the total 370 

number of leaf nodes at tiling level ‘N’ is 8N. As such, memory consumption increases at higher 371 

tiling level during manipulation of the octree structure. Tiling level five (5) was experimentally 372 

selected for this dataset. Further work will be conducted for automatic tiling level determination. 373 

This will in part be dependent upon the uniformity of the dataset. If terrestrial data is incorpo-374 

rated selectively in a larger aerial set, the result may be highly non-uniform. 375 

In this example, a fairly uniform aerial LiDAR dataset was used as it represents a portion of  376 

Dublin’s city centre in Ireland, where relatively few large occlusions exist as the average build-377 

ing height is low.  With this dataset, the response time of a 2D window query (x- and y-378 

coordinates) using an R-tree index is compared with the response time of a 3D window query (x-379 

, y- and z-coordinates) using an octree index. Basically, the query response time increases with 380 

an is expected to increase query window size, as well as the number of resulting geometries (Ko-381 

thuri, 2002). For that reason, the same number of resulting geometries for a window query using 382 
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both indexes is considered. To ensure this, in case of using an octree index, the maximum and 383 

minimum value of the z-coordinates of the query window is set to the minimum and maximum 384 

value of the underlying space. The same value is used for x- and y- coordinates for the octree and 385 

R-tree index. As a result, the total number of resulting geometries is equal for both indexes. 386 

Table 2 presents the average query response time with the increase of the window size using the 387 

R-tree and the octree index. A square rectangle was used as a query window. For every window 388 

size up to 625 queries were performed around the underlying space, and the query response time 389 

is the average of these queries. Fig. 8 and 9 illustrate the response times. The octree index nearly 390 

consistently outperforms the R-tree index for all window sizes. 391 

The dataset used in fig. 9 is about 23 times the size of the dataset in fig. 8. In fig. 8, the octree is 392 

twice as fast as the R-tree for the small window of 25m2 and 8 times faster for the large window 393 

of 2,500m2 in size. In fig. 9, for the small window of 400m2 size, the R-tree outperforms the oc-394 

tree, but once the window reaches 1,600m2, the octree is better, with a six-fold improvement for 395 

a 40,000m2 window. 396 

 397 

Figure 8. R-tree vs. Octree 2,881,899 points in the dataset  398 
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 399 

 400 

Figure 9. R-tree vs Octree 65,562,235 million points in the dataset 401 

 402 

Table 2. Evaluation Results  403 

Small Dataset of 2,881,899 Million Points Large Dataset of 65,562,235 Million Points 
Window 

Size 
(m2) 

Avg. Query Re-
sponse Time in 

ms (R-tree) 

Avg. Query 
Response Time 
in ms (Octree) 

Window 
Size 
(m2) 

Avg. Query 
Response Time 
in ms (R-tree) 

Avg. Query 
Response Time 
in ms (Octree) 

25 3,720.40 1,686.28 400 83,026.65 128,814.14 
100 10,868.86 1,975.92 1,600 166,708.00 149,541.69 
225 17,170.21 3,121.44 3,660 321,180.30 243,061.55 
400 23,269.12 4,628.71 6,400 467,678.50 245,920.08 
625 30,816.40 5,804.15 10,000 641,871.10 250,993.00 
900 42,541.17 6,934.25 14,400 864,345.50 257,525.44 

1,225 42,277.08 6,329.17 19,600 1,065,853.90 269,746.34 
1,600 68,354.84 7,521.83 25,600 1,281,446.50 286,461.88 
2,025 70,115.16 8,328.33 32,400 1,535,893.00 310,641.75 
2,500 83,238.25 9,462.75 40,000 1,933,097.50 321,632.50 

 404 

5. Conclusions and Summary 405 

This paper presents the implementation and evaluation of an octree index, intended for 3D point 406 

cloud data from laser scanning, employing Oracle’s extensible indexing framework. However, its 407 

functionality may be cross-applicable to other point cloud datasets and implementable in other 408 

SDMS as they expand their 3D capabilities. The goal is to improve the support of the storage and 409 
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analysis of point cloud data in order to enable the integration of multiple datasets. The intention 410 

is to significantly improving query capabilities for users from different discipline-based needs, 411 

hence the ability to store the actual raw LiDAR data has enjoyed increasing focus in recent years. 412 

To this end, an operator using our octree index has been implemented to perform 3D window 413 

queries. This implementation is described along with some optimizations. The newly implement-414 

ed octree index and Oracle’s inbuilt R-tree index are compared using data from a dense, aerially-415 

based 3D point cloud. The octree consistently outperformed the R-tree for almost every window 416 

size and more so with increases in query window size to as much as an eight-fold difference. The 417 

considerably improved performance, while notable in itself, needs to be considered further in 418 

light of the additional functionality offered by the octree in terms of a more appropriate storage 419 

and indexing of point cloud data in particular. As such, groupings into appropriate cells may oc-420 

cur according to a predefined semantic, such as for example color, intensity or elevation infor-421 

mation. Furthermore, the approach is not plagued with the R-tree’s related uncertainty when try-422 

ing to select a bounding box for point geometries, as the data in the octree is processed directly 423 

instead of as a derived object.   424 

Since only one operator is implemented, further work envisions a more comprehensive evalua-425 

tion in order to assess the octree’s full potential for other query operators, such as nearest neigh-426 

bor or within distance. In this prototype, tiling level is determined by the user for a dataset. Fur-427 

ther work will enhance the prototype by incorporating a feature for automatic tiling level deter-428 

mination, along with exploitation of the visualization-based efficiencies that this approach will 429 

engender. In Oracle Spatial, the new SDO_PC data type applies an R-tree index only to the 430 

groups of clusters that contain the point geometries. An alternative approach to the one presented 431 

in this paper may rely on a two-step index, where an octree index is applied to the points inside a 432 
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block, and an R-tree is applied as a higher level index to the block extents as polygons are better 433 

indexed by R-tree. There may also be specific cases where the converse of ordering proves ad-434 

vantageous with an octree over an R-tree. Future work will further evaluate these options. 435 

Much need has been expressed for the web-dissemination of LiDAR data. The earlier mentioned 436 

UCSD example provides non-raw data through a web interface. The hope is that through better 437 

storage and indexing of 3D point cloud data, web dissemination of substantial raw LiDAR da-438 

tasets will not remain a feature of the far future. 439 
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