D 5 B LIN Technological University Dub.lin
- ARROW@TU Dublin

Articles

2015-06-01

Lower Macular Pigment Optical Density in Foveal-Involved
Glaucoma.

James Loughman
Technological University Dublin, james.loughman@tudublin.ie

Follow this and additional works at: https://arrow.tudublin.ie/otpomart

0 Part of the Ophthalmology Commons

Recommended Citation

Siah WF. et al (2015) Lower Macular Pigment Optical Density in Foveal-Involved Glaucoma.
Ophthalmology, 2015 Aug 3. pii: S0161-6420(15)00616-8. doi: 10.21427/nhxe-aa69

This Article is brought to you for free and open access by
ARROW@TU Dublin. It has been accepted for inclusion in
Articles by an authorized administrator of ARROW@TU
Dublin. For more information, please contact
yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie,
brian.widdis@tudublin.ie.

OLLSCOIL TEICNEOLAIOCHTA
BHAILE ATHA CLIATH

This wors licensed under a Creative Commons D u B L I N

TECHNOLOGICAL

Attribution-Noncommercial-Share Alike 3.0 License CRIVERSITY DUBLIN



https://arrow.tudublin.ie/
https://arrow.tudublin.ie/otpomart
https://arrow.tudublin.ie/otpomart?utm_source=arrow.tudublin.ie%2Fotpomart%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/695?utm_source=arrow.tudublin.ie%2Fotpomart%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

AMERICAN ACADEMY*
OF OPHTHALMOLOGY
The Eye M.D. Association

Lower Macular Pigment Optical Density in
Foveal-Involved Glaucoma

We Fong Siah, MRCPI, FRCOphth," James Loughman, FAOI, PhD,”** Colm O’Brien, FRCOphth, MD'

Purpose: To evaluate the relationship between macular pigment optical density (MPOD) and structural
parameters of the macula and optic nerve head in glaucomatous eyes.

Design: A cross-sectional analysis of the baseline data collected during the Macular Pigment and Glaucoma
Trial ISRCTN registry number: 56985060).

Participants: Eighty-eight subjects (48 male, 40 female) with a diagnosis of open-angle glaucoma and a
median age of 67 years (interquartile range, 13; range, 36—84 years) were enrolled in this trial.

Methods: The MPOD at 0.25°, 0.5°, and 1° retinal eccentricity was measured using a customized hetero-
chromatic flicker photometry technique. Glaucoma-related structural parameters were captured using RTVue
Fourier-domain optical coherence tomography (FD-OCT). Statistical significance was set at P < 0.01, and P
values ranging from 0.01 to 0.05 were considered borderline significant.

Main Outcome Measures: The MPOD and its relationship to the macula and optic nerve head topography in
glaucomatous eyes.

Results: The MPOD peaked centrally at 0.25° of retinal eccentricity (mean + standard deviation, 0.23+0.14)
and decreased at more peripheral eccentricities. For the overall group, borderline significant correlations were
observed between MPOD and a range of topographic measures, including inferior peripapillary retinal nerve fiber
layer (RNFL) thickness, inferior ganglion cell complex (GCC) thickness, foveal inner retinal thickness, cup-to-disc
area ratio, and optic disc rim area. Glaucomatous eyes with GCC loss involving the foveal zone on FD-OCT
imaging (n = 52) had lower MPOD at 0.25°, 0.5°, and 1° of retinal eccentricity compared with those without
foveal GCC involvement (P < 0.001, for all). Those with foveal GCC loss also had greater glaucoma severity, and
this was evident by lower GCC and RNFL thickness, greater cup-to-disc area ratio, and lower optic disc rim area
(P < 0.001 for all).

Conclusions: Our observations indicate that MPOD is lower in glaucomatous eyes with foveal GCC
involvement relative to those without foveal involvement. A longitudinal evaluation of MPOD and structural
change among patients with glaucoma is required to elucidate the nature of any causal relationship that might
exist between MPOD and foveal damage in glaucoma. Ophthalmology 2015;m:1—9 © 2015 by the American

Academy of Ophthalmology.

The macula can be involved in the early stage of glaucoma, as
evidenced by the presence of paracentral scotoma on visual
field tests' or thinning of the ganglion cell complex (GCC)
layer on optical coherence tomography (OCT) scans.” In the
human retina, the ganglion cells are most densely located at
the macula, and approximately 50% are concentrated within
45 mm of the fovea’ Macular pigment (MP), which
comprises the hydroxycarotenoids lutein, zeaxanthin, and
meso-zeaxanthin, is also known to be most densely concen-
trated around the fovea.” Both lutein and zeaxanthin are solely
of dietary origin, whereas meso-zeaxanthin can be synthesized
de novo from retinal lutein.’

Macular pigment is believed to possess the following
properties: (1) acts as a potent antioxidant,’ (2) exhibits
preferential spectral absorption of short-wavelength light,’
and (3) benefits visual performance.” Macular pigment
optical density (MPOD) in individual eyes can be measured
using a variety of techniques, including heterochromatic
flicker photometry (HFP).” The protective effect of MP has

© 2015 by the American Academy of Ophthalmology
Published by Elsevier Inc.

been demonstrated in age-related macular degeneration
(AMD), a retinal neurodegenerative disorder in which old age
and oxidative stress have been implicated.'” It has been shown
that oral dietary MP supplementation can augment MPOD and
improve visual function in individuals with AMD'" and those
without underlying ocular disease.'”

Glaucoma is also associated with the aging eye, and
oxidative stress is known to play a vital role in its patho-
genesis.'” The possible role of oxidative stress in
glaucoma, coupled with emerging evidence that (1) the
structural integrity of the macula is affected early in
glaucoma and (2) MP levels may be compromised in
glaucoma'® was sufficient to prompt this investigation
into the relationship between MP and structural aspects
of glaucoma in the macular region. To our knowledge,
this is the first time the relationship between MPOD and
glaucoma-related topography has been investigated.
Given the fact that MP is largely concentrated to the central
1° of retinal eccentricity of the macula, we were keen to
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explore glaucoma involving the foveal zone using OCT
imaging. Currently, the potential benefit of dietary MP
supplementation in glaucoma is yet to be elucidated.

Methods

Subjects

The Macular Pigment and Glaucoma Trial is a prospective,
placebo-controlled, double-masked randomized study (ISRCTN
registry number: 56985060). This article comprises an analysis of
the baseline MP and structural data collected during this trial.
Eighty-eight subjects with a diagnosis of open-angle glaucoma
were recruited into this study, which has been approved by the
Research Ethics Committees at the Mater Misericordiae University
Hospital, Dublin, and the Dublin Institute of Technology. Written
informed consent was obtained from all subjects, and the study
adhered to the tenets of the Declaration of Helsinki.

Open-angle glaucoma was defined as the presence of glau-
comatous optic disc cupping with associated visual field loss in an
eye with a gonioscopically open anterior chamber drainage angle.
The different open-angle glaucoma subtypes that were considered
for inclusion were (a) primary open-angle glaucoma (POAG)
(intraocular pressure >21 mmHg); (b) normal-tension glaucoma
(NTG) (intraocular pressure <21 mmHg); (c) pseudoexfoliative
glaucoma (fibrillar deposits in the anterior segment of the eye);
and (d) pigment dispersion glaucoma (peripheral iris trans-
illumination and pigment deposition throughout the anterior
segment structures of the eye). Other inclusion criteria were age
>18 years and subject capacity to adhere to trial protocol.
Exclusion criteria included an Early Treatment Diabetic Reti-
nopathy Study (ETDRS) logarithm of the minimum angle of
resolution (logMAR) visual acuity >0.30, underlying ocular pa-
thology such as AMD or moderate to significant cataract (using
Lens Opacity Classification System III grading), previous ocular
surgery other than for cataract extraction or glaucoma drainage
procedure, coexisting blue-light filter intraocular lens, history of
diabetes mellitus, or the use of an oral dietary macular pigment
supplement within the past 6 months. All subjects had charac-
teristic and reproducible glaucomatous field defects on standard
automated perimetry (Humphrey Visual Field [HVF] Analyzer
24-2 Swedish Interactive Threshold Algorithm Fast program;
Carl Zeiss Meditec, Jena, Germany).

Demographic information, including age, gender, type of glau-
coma, years diagnosed with glaucoma, history of smoking (current
smoker, ex-smoker, and never smoked), and body mass index
(kilograms per meters squared) were recorded for each subject.
Throughout the study, only 1 eye per subject was selected for testing.
If both eyes were eligible, the study eye was randomly selected using
the randomization software Research Randomizer (version 4.0). All
glaucoma subjects underwent a comprehensive eye examination
including ETDRS logMAR visual acuity, slit-lamp biomicroscopy,
MPOD measurement (HFP), RTVue (software version 5.1; Optovue
Inc., Fremont, CA), Fourier-domain optical coherence tomography
(FD-OCT) imaging of the optic nerve head and macula, and standard
automated perimetry. The logMAR test chart used was computer
generated (version 1.1; KyberVision, Quebec, Canada), and visual
acuity was tested at a viewing distance of 4 m, using a Sloan ETDRS
letter set, while wearing current distance spectacle prescription where
required.

Measurement of Macular Pigment Optical Density

Heterochromatic flicker photometry is a psychophysical tech-
nique for measuring MPOD that has been validated against the
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absorption spectrum of MP in vitro."” Tt has also been shown to
provide reliable data when compared with other methods of
measuring MPOD, such as fundus reflectometry and
fluorophotometry.'®!” Because the HFP technique is not depen-
dent on or affected by regional variation in sensitivity at the
central and Peripheral retinal loci (normal or disease-induced
variations),'® the HFP technique remains appropriate for MPOD
measurement among glaucoma subjects. In this study, MPOD
was measured using the Macular Densitometer (Macular
Metrics, Rehoboth, MA), a device originally described by Wooten
and colleagues.'® Subjects viewed a stimulus consisting of a square
wave, alternating blue (460 nm) and green (550 nm), flickering
light-emitting diode light source. Subjects were required to make
iso-luminance matches, which were perceived as the point of cessa-
tion of flicker (null flicker). All subjects were shown a training video
before being tested with the densitometer and were afforded the
opportunity to practice the technique. A customized HFP approach
was used, a refined technique that allowed the investigator to
predetermine the optimal flicker frequency for each subject, thus
enabling a more discrete end point for the test and minimizing the
variance between readings.'® In this study, the spatial profile of MP
at 0.25°, 0.5°, and 1° of retinal eccentricity was measured under
conditions of dimmed light at a viewing distance of 18.5 inches
(47 cm), with distance optical correction where required. Five
readings were obtained to produce a mean MPOD value at each
retinal eccentricity, which was deemed reliable and acceptable
for inclusion in the study when the standard deviation of
measures was 0.05 or less.

Fourier-Domain Optical Coherence Tomography

All subjects were scanned using the RTVue FD-OCT system, with
a scan speed of 26 000 A-scans/second and 5-pm axial resolution.
The protocols used included (a) the retinal nerve fiber layer
(RNFL) 3.45 scan; (b) the optic nerve head scan; (c) the Enhanced
Macular Map 5 (EMM5) scan; and (d) the GCC scan.

The RNFL 3.45 protocol acquired four 3.45-mm-diameter cir-
cular scans centered on the optic disc and provided the average
RNFL thickness at the temporal, superior, nasal, and inferior
quadrants (peripapillary RNFL). The optic nerve head scan pattern
consisted of 12 radial line scans of 3.4-mm length and 13
concentric rings (1.3- to 4.9-mm diameter) centered on the optic
disc, providing a detailed optic disc/rim/cup analysis. The EMMS5
scan pattern captured 29 438 data points across the macula over
0.90 seconds and provided information such as the full retinal and
inner retinal thickness at the fovea, parafoveal, and perifoveal re-
gions, which are 1 (~3.3°), 3, and 5 mm in diameter, respectively.

The MP is localized within the foveal and parafoveal regions,
and therefore these regions were a priority focus in this study. The
EMMS scan image was excluded from analysis in the presence of a
poor-quality image (signal strength <40), segmentation error, off-
center fixation, or out-of-range image.'” The GCC scan pattern
specifically provided a comprehensive ganglion cell assessment
by measuring the thickness of the nerve fiber layer (ganglion cell
axons), ganglion cell layer (ganglion cell body), and inner
plexiform layer (ganglion cell dendrites) at the macula. The
macular region was scanned over (.58 seconds and consists of 1
horizontal line and 15 vertical lines at 0.5-mm intervals. The
scan was centered 1 mm temporal to the fovea to produce a 7-mm?>
region. The RTVue software cropped the outer 0.5-mm region to
provide a 6-mm GCC thickness map that was used for the calcu-
lation of the GCC Significance Map. This 6 x 6-mm map spans an
area that is equivalent to the central 20° on a visual field map. If the
signal strength index was poor at <40 or the scan was misaligned,
the images were not used.
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Figure 1. Ganglion cell complex (GCC) significance map. A, Fovea-not-involved. B, Fovea-involved. N = nasal; T = temporal.

Ganglion Cell Complex Subgroups

In the GCC color-coded Significance Map, the central, grey foveal
area (1.5 mm/5° diameter) covers the region where the GCC thick-
ness is too thin to be evaluated. In a normal eye, the MP is most
densely located within the diameter of this grey area. Beyond
approximately 7° eccentricity, retinal MP becomes optically unde-
tectable.”” Glaucoma subjects were divided into 2 subgroups based on
their GCC Significance Map to better represent the GCC thickness in
relation to the anatomic location of the MP. All diagnostic parameters
in the GCC Significance Map were color coded to indicate whether
there was any significant GCC thickness reduction; P < 1% was
coded as red, P < 5% was coded as yellow, and P > 5% was
coded as green. If the perimeter of the grey foveal area was green,
it was classified as “fovea-not-involved” (Fig 1A). If the red scale
encroached up to the grey area, it was classified as “fovea-
involved” (Fig 1B). A general linear model analysis was used to
determine the effect of foveal involvement (“fovea-not-involved”
vs. “fovea-involved” subgroups) and age, years diagnosed with
glaucoma, smoking status, and body mass index on the dependent
variable, MPOD.

Dietary Intake of Lutein and Zeaxanthin

A self-administered, semiquantitative food frequency questionnaire
(Lutein Zeaxanthin Questionnaire) was used to assess the dietary
intake of lutein and zeaxanthin (Carotenoid & Health Laboratory,
Jean Mayer USDA Human Nutrition Center on Aging, Tufts
University, Medford, MA),Z' as has been used in other MPOD
studies.”” This information allowed us to control for any MPOD
disparity that may arise from different dietary habits among the
glaucoma subjects.

Statistical Analysis

Results were analyzed using the statistical software package SPSS
(version 22.0; IBM Corp., New York, NY). The Kolmogor-
ov—Smirnov test (if n > 50) or Shapiro—Wilk W test (if n < 50) was
used to assess the normality of all variables before statistical analysis.
Most of the quantitative variables that were investigated exhibited a
normal distribution except for age, duration of glaucoma diagnosis,
body mass index, peripapillary RNFL thickness, superior macular
RNFL thickness, cup-to-disc ratio, and optic disc rim area. Various
statistical analyses including an independent 7 test, Mann—Whitney U
test, analysis of variance (ANOVA) with post hoc tests, and Pearson
or Spearman correlation coefficients were computed when

appropriate. A conservative 1% level of significance was adopted
throughout the analysis to offset the risk of a type I error given the
multiple comparisons and correlations conducted, although the ma-
jority of statistical tests were unrelated. The GCC thickness subgroup
analyses (“fovea-not-involved” and “fovea-involved”) were per-
formed to explore relationships, if any, with other glaucoma-related
OCT parameters and MPOD.

Results

Demographics

The demographics for all 88 glaucoma subjects are summarized in
Table 1. The right eye was selected for inclusion in 51 subjects
(58%), and the left eye was selected for the remaining 37
subjects (42%).

Macular Pigment Optical Density

Valid MPOD data were obtained for 69 subjects at 0.25° retinal
eccentricity (mean + standard deviation, 0.23+0.14), 81 subjects
at 0.5° eccentricity (0.19+£0.12), and 59 subjects at 1° eccentricity
(0.1240.09). Only 53 subjects had complete MPOD data at all 3
retinal eccentricities. Of these subjects, 46 displayed a typical MP
spatial profile with a central peak at 0.25° and relative decline at
more peripheral eccentricities, whereas the remaining 7 subjects
exhibited atypical MP spatial profiles that peaked at 0.5° of retinal
eccentricity.

There was no statistically significant correlation observed be-
tween MPOD and age (r = —0.21, P = 0.08 at 0.25° eccentricity;
r=—0.23, P =0.04 at 0.5° eccentricity; r = —0.17, P =0.19 at 1°
eccentricity) or length of time since being diagnosed with glau-
coma (r = —0.24, P = 0.05 at 0.25° eccentricity; r = —0.09, P =
0.44 at 0.5° eccentricity; r = —0.11, P = 0.40 at 1° eccentricity),
although there was a trend toward significance (P = 0.01—0.05) in
both instances at some eccentricities. Likewise, no statistically
significant correlation was observed between MPOD and body
mass index at any eccentricity (r = —0.13, P = 0.28 at 0.25° ec-
centricity; r = 0.01, P = 0.93 at 0.5° eccentricity; r = —0.08, P =
0.57 at 1° eccentricity). Independent 7 test analysis showed no
gender-based difference in MPOD (P > 0.01 for all). One-way
ANOVA revealed no statistically significant effect of smoking
habits (current smoker, ex-smoker, and never smoked) on MPOD.
Although there was no statistically significant correlation between
MPOD and OCT structural parameters at the strict 0.01 threshold,
borderline significant (P = 0.01—0.05) correlations were observed
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Table 1. Subject Characteristics (N = 88)

Characteristic Result

Age (yrs), median (range) 67 (36—84)
Sex, n (%)

Male 48 (54.5)

Female 40 (45.5)
Study eye logMAR, mean + SD 0.034+0.10
Type of glaucoma, n (%)

POAG 45 (51.1)

NTG 31 (35.2)

PXG 9 (10.2)

PDG 3 (3.4)
Duration of glaucoma (yrs), median (range) 6 (0.5—32)
Smoking habits, n (%)

Never smoked 42 (47.7)

Ex-smoker 36 (40.9)

Current smoker 10 (11.4)
Body mass index (kg/m?®), median (range) 25.5 (18.5—42)
Lutein intake (mg/dl), median (range) 0.7 (0—13.2)
Zeaxanthin intake (mg/dl), median (range) 0.1 (0—1.2)

LogMAR = logarithm of the minimum angle of resolution; NTG
normal-tension glaucoma; PDG = pigment dispersion glaucoma; POAG
primary open-angle glaucoma; PXG = pseudoexfoliative glaucoma; SD =
standard deviation.

between MPOD and a number of topographic measures, including
inferior peripapillary RNFL thickness, inferior GCC thickness,
inner retinal thickness at the fovea, cup-to-disc area ratio, and optic
disc rim area (Table 2).

Optical Coherence Tomography Parameters and
Ganglion Cell Complex Subgroups

Of the 88 GCC scans completed, 3 demonstrated poor signal
strength and were eliminated from the analysis. In total, there were
33 subjects (38.8%) in the “fovea-not-involved” subgroup and 52
subjects (61.2%) in the “fovea-involved” subgroup.

Figure 2 shows the difference in MPOD spatial profile between
the “fovea-not-involved” and “fovea-involved” subgroups. Table 3
shows the different types of glaucoma within the GCC subgroups
and other characteristics. The 2 most common types of glaucoma
within the “fovea-involved” group were POAG (n = 22) and
NTG (n = 23). Between these subgroups, no significant
differences in MPOD or any OCT parameters were observed
(P > 0.01 for all).

Within GCC subgroups, no statistically significant correlation
was observed between MPOD (at 0.25°, 0.5°, and 1° retinal ec-
centricities, respectively) and age, length of time since diagnosed
with glaucoma, and body mass index (P > 0.01 for all). There was
no significant gender-based difference in MPOD at all retinal ec-
centricities within the GCC subgroups (P > 0.01 for all, inde-
pendent ¢ test). Furthermore, 1-way ANOVA did not reveal any
significant effect of smoking habits on MPOD in either subgroup
(P > 0.01 for each).

A statistically significant difference in MPOD between the “fovea-
not-involved” and “fovea-involved” GCC subgroups was observed at
all retinal eccentricities (P < 0.001 for all) (Table 4). Furthermore, the
“fovea-involved” group exhibited more severe glaucoma as
determined by thinner RNFL and GCC, larger cup-to-disc area ratio,
and a smaller optic disc rim area (P < 0.01 for each). However, MPOD
did not correlate significantly with OCT structural parameters for the
“fovea-not-involved” or “fovea-involved” GCC subgroup (P > 0.01
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for all). A general linear model analysis confirmed a significant effect
of foveal involvement (“fovea-not-involved” vs. “fovea-involved”
subgroups) on MPOD at all retinal eccentricities (P < 0.001), but no
effect of age, years diagnosed with glaucoma, smoking status, and
body mass index on MPOD (P = 0.12—0.72 at 0.25° retinal eccen-
tricity, P = 0.34—0.99 at 0.5° retinal eccentricity, P = 0.49—0.88 at 1°
retinal eccentricity).

Median lutein intake in the “fovea-not-involved” group was 0.7
mg/dl (range, 0—13.2 mg/dl), whereas that in the “fovea-involved”
group was 0.8 mg/dl (range, 0—13.1 mg/dl). These respective in-
takes were not statistically significantly different (P = 0.95, Mann—
Whitney U test). Likewise, we did not find any significant difference
in zeaxanthin intake between the “fovea-not-involved” group (me-
dian, 0.1 mg/dl; range, 0—0.5 mg/dl) and the “fovea-involved”
group (median, 0.1 mg/dl, range, 0—1.2 mg/dl) (P = 0.44, Mann—
Whitney U test).

Discussion

Macular pigment has been shown to be lower among sub-
jects with glaucoma compared with healthy controls.'* This
study extends those findings and suggests that a continuum
exists, whereby MPOD not only is lower in the presence of
glaucoma but also is further compromised in more severe
cases of the condition and, in particular, where foveal
ganglion cells are involved. We also found borderline
significant correlations between MPOD in the overall
group and OCT-derived topography measures, which may
further imply a relationship between MP and glaucoma-
related structural parameters.

Table 2. Relationship between Macular Pigment Optical Density
and Optical Coherence Tomography Parameters

MPOD 0.25° MPOD 0.5° MPOD 1°
R P R* P R* P
Peripapillary RNFL thickness
Average 0.15" 023 0.16' 0.18 O‘Of 0.60
Superior 0.13" 031 0.12" 030 0.02" 0.89
Inferior 021" 009 023" 005 0.5 0.28
Macular RNFL thickness
Average 0.11 036 018 0.12 0.12 0.36
Superior 0.05" 068 0.11" 035 0.03" 0.83
Inferior 0.18 0.14 021 0.07 0.16 022
GCC thickness
Average 0.15 024 016 0.15 0.22 0.09
Superior 0.06 063 011 033 0.13 033
Inferior 0.21 0.09 0.18 0.11 0.27 0.04
Foveal thickness
Full retina 0.09 052 018 0.15 0.18 022
Inner retina 0.19 0.17 029 0.02 023 0.11
Parafoveal thickness
Full retina 0.03 085 0.09 046 0.07 0.66
Inner retina 0.16 024 020 0.11 0.14 035

Cup-to-disc-area ratio -0.27" 0.03 -025' 0.03 —0.28' 0.04
Optic disc rim area 0.28" 0.02 022" 0.06 0.22" 0.10

GCC = ganglion cell complex; MPOD = macular pigment optical density;
RNFL = retinal nerve fiber layer.

P = significance (2-tailed).

*Pearson coefficient correlation (unless indicated otherwise).

Spearman coefficient correlation.
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Figure 2. Mean macular pigment optical density (MPOD) spatial profile
for subjects with glaucoma. —m—, Fovea-Not-Involved; ---&---, Fovea-
Involved.

In this study, only half of the patients with POAG had foveal
involvement compared with a large proportion of those with
NTG (77%). This finding was not surprising to us given that
paracentral scotoma is a common finding in the early course of
NTG. Pseudoexfoliative glaucoma is generally recognized as a
more progressive glaucoma subtype. This may explain why the
majority (78%) of patients in the pseudoexfoliative glaucoma
group had foveal-involved glaucoma and displayed the worst
glaucoma parameters (HVF 24-2 mean deviation [MD] and
average GCC thickness, respectively) compared with other
glaucoma subtypes.

Beatty et al™ previously demonstrated the finding of an age-
related decline in MPOD in individuals with healthy eyes,
whereas an earlier study by Bone et al*’ showed the contrary.
Given that glaucoma is a progressive retinal degenerative
disease that tends to affect the aging individual, one could
speculate that increasing age may, in part, be contributing to
the decline in MPOD with advancing disease. Although
subjects in the “fovea-involved” subgroup were older than in

the “fovea-not-involved” subgroup (mean age, 67.9 vs. 62.6
years, respectively), this difference was only borderline
significant (P = 0.02, independent ¢ test). However, our data
are in keeping with the findings of Bone et al’’ and do not
support the existence of a relationship between MPOD and
age. Our earlier study (Igras et al'*) showed that MPOD was
significantly lower in glaucomatous eyes compared with age-
matched controls. With our current data, it would seem that
age is not a confounding factor, but the presence of foveal GCC
loss is a major determinant of MPOD levels.

Adipose tissue acts as a major storage organ for carot-
enoids and therefore may compete with the retina for their
uptake. It has been shown that an inverse relationship exists
between MPOD and body mass index in those with healthy
eyes.”* In our study, we did not find any correlation between
MPOD and body mass index.

In human eyes, the most central part of the fovea (also known
as the foveal pit) measures 200 |im in diameter and is a region
where only cone photoreceptors can be found.” From here, the
inner retinal structures are displaced radially to form the foveal
slope, and eventually, at the parafovea (thickest portion of the
retina), the ganglion cells are packed 6 layers thick. Macular
pigment can be localized to the fibers of Henle and plexiform
layers at the fovea and the inner and outer plexiform layers at
the parafovea.” This is of relevance because the 3 innermost
retinal layers preferentially affected in glaucoma are (1) nerve
fiber layer (ganglion cell axon), (2) ganglion cell layer
(ganglion cell body), and (3) inner plexiform layer (ganglion
cell dendrites).”” Collectively, these 3 retinal layers constitute
the GCC as measured by the RTVue FD-OCT.

Because of limitations of the RTVue FD-OCT to reliably
evaluate GCC thickness at the fovea, we described a simple
method to allow us to distinguish the presence or absence of
foveal involvement in glaucoma subjects (see “Methods”
section). The MPOD was significantly lower in subjects
who exhibited evidence of GCC thinning that encroached
on the foveal zone (“fovea-involved” GCC) relative to
those without foveal GCC involvement. Given that the
macular layers where MP is housed appear to be affected
by glaucoma, this may explain, at least in part, the
observation in this study that MPOD is lower in
individuals with more severe glaucoma and, in particular,
those with GCC loss at the fovea. However, our data in
this study are not sufficient enough to make any
conclusions on causal inferences.

Table 3. Types of Glaucoma and Characteristics

Fovea-Not-Involved (n = 33)

Fovea-Involved (n = 52)

Types of Glaucoma n (%) HVF 24-2 MD (dB)* Mean GCC (um) n (%) HVF 24-2 MD (dB)* Mean GCC (um)
POAG 22 (50) —5.721 77.31 22 (50) —10.41" 70.11
NTG 7(23) —5.30 83.85 23 (77) -8.79 71.47
PXG 2 (22) -9.68 75.90 7 (78) —16.24 68.66
PDG 2 (100) —4.50 74.83 0 (0) N/A N/A

dB = decibels; GCC = ganglion cell complex; HVF = Humphrey Visual Field; MD = mean deviation; N/A = not applicable; NTG = normal-tension
glaucoma; PDG = pigment dispersion glaucoma; POAG = primary open-angle glaucoma; PXG = pseudoexfoliative glaucoma.

*Mean (unless indicated otherwise).
"Median.
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Table 4. Comparison between Ganglion Cell Complex Subgroups

Fovea-Not-Involved Fovea-Involved P Value

MPOD, mean + SD

0.25° 0.30£0.12 0.174+0.11 <0.001*

0.50° 0.244+0.12 0.154+0.10 <0.001*

1.00° 0.17+0.07 0.08+0.08 <0.001*
RNFL thickness (im), mean + SD

Peripapillary 77.58+9.80 69.334+8.34 <0.001*

Macular 79.66+12.55 69.704+10.65 <0.001*
GCC thickness (tm), mean &+ SD 78.46+7.71 70.384+9.34 <0.001*
Foveal thickness (Lm), mean + SD

Full fovea 270.00£19.55 253.02423.08 0.002°*

Inner fovea 86.54+11.93 76.76+14.84 0.005*

Quter fovea 183.46+11.19 176.26+11.91 0.013*
Parafoveal thickness (m), mean + SD

Full parafovea 306.03420.06 285.454+18.99 <0.001*

Inner parafovea 119.06+12.25 106.20+9.42 <0.001*
Cup-to-disc area ratio, median (range) 0.76 (0.36—0.97) 0.88 (0.55—0.98) <0.001!
Rim area (mm?), median (range) 0.43 (0.06—0.86) 0.22 (0.05—0.71) <0.001"
HVF 24-2 MD (dB), median (range) —5.46 (—1.45 to —26.46) —10.54 (—0.09 to —31.06) 0.018!

dB = decibels; GCC = ganglion cell complex; HVF = Humphrey visual field; MD = mean deviation; MPOD = macular pigment optical density; RNFL =

retinal nerve fiber layer; SD = standard deviation.
*Two-tailed significance using the independent ¢ test.
"Two-tailed significance using the Mann—Whitney U test.

In our earlier study, we showed that MPOD was signifi-
cantly lower in glaucomatous eyes compared with controls.'*
Also using the HFP technique, Igras et al'* showed that mean
MPOD =+ standard deviation was 0.39+0.24 in a similar
cohort of normal controls, in comparison with 0.1940.12 at
0.5° of retinal eccentricity in this study. The current study
was not designed to repeat that investigation, but rather to
extend the study in an effort to better understand the
relationship between MPOD and glaucoma-related structural
parameters. As such, the lack of a normal control group is not a
substantial limitation to the current study.

Igras et al'* also reported that MPOD did not correlate
with glaucoma severity (HVF 24-2 MD), whereas the
present study demonstrated a borderline significant (P =
0.01—-0.05) correlation between MPOD and glaucoma-
related structural parameters as measured by RTVue FD-
OCT in the overall group. Furthermore, we also found that
those with foveal-involved glaucoma had more severe disease
(OCT parameters, P < 0.01; HVF 24-2 MD, P = 0.02) and
demonstrated lower MPOD (P < 0.001) compared with those
without foveal involvement. This disparity between the 2
studies likely reflects limitations in our earlier study, which
had a smaller sample size (and therefore lacked statistical
power), and where, importantly, a central visual field test
(HVF 10-2) and OCT scans to capture foveal loss were not
used. The majority of the subjects in this study had foveal-
involved glaucoma, whereas this information was not avail-
able for analysis during our earlier study. Therefore, the
differences in results between the studies do not suggest a
contradiction, but rather emphasize the differences in the
study methodology.

We also observed that a small subset of our glaucoma
subjects (7/53 subjects [13%] with complete MPOD data at
all eccentricities) exhibited an atypical MP spatial profile,

6

which peaked at 0.50° of retinal eccentricity. Six of these 7
subjects had foveal-involved glaucoma. In a study of
healthy subjects, Kirby et al*® found that atypical MP spatial
profile was related to the foveal slope such that the steeper
the foveal depression, the steeper the MP distribution. The
significance of an atypical MP spatial profile in glaucoma
is currently unknown, and therefore further studies are
warranted to better understand it.

In this study, both the full parafoveal (P < 0.001) and foveal
thickness (P = 0.002) were significantly lower in the “fovea
involved” group, which exhibited greater glaucoma severity. In
a study of patients with POAG with isolated superior or inferior
hemifield defects, it was shown that the retinal thickness at the
parafovea and fovea linearly correlated with glaucoma
seven'ty.27 Furthermore, Inuzuka et al’’ also showed that the
parafoveal and foveal thicknesses were significantly reduced
in the corresponding hemifield defects when compared with
the normal side. Another study demonstrated the finding of a
thin parafoveal ring on time-domain OCT imaging in subjects
with more advanced glaucoma but not for full foveal thick-
ness.”” This discrepancy in findings may be related to the use of
different OCT imaging modalities across the studies; for
example, time-domain OCT has been shown to exhibit a
higher percentage of clinically significant inaccurate central
foveal thickness compared with FD-OCT."”

A statistically significantly reduced outer foveal thickness
was observed in the “fovea-involved” group (P = 0.01). This
finding suggests that cone photoreceptors may be affected in
foveal-involved glaucoma. A histologic study of human eyes
with a diagnosis of chronic glaucoma demonstrated cone
photoreceptor swelling and loss.”” Furthermore, fundus
reflectometry and OCT imaging techniques have provided
evidence of the loss of foveal cone outer segment integrity
in subjects with POAG with advanced central visual field
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defects,”® while loss of cone density in glaucomatous eyes
has been shown to correspond with retinal locations of
greater visual sensitivity loss.”” Although this study does
not provide definitive evidence of cone photoreceptor loss,
the observed involvement of those structures where MP is
housed, including significantly thinner parafovea and inner
fovea, and a borderline significantly thinner outer fovea,
may provide some explanation as to our finding of lower
MPOD in foveal-involved glaucoma.

The macula is susceptible to oxidative injury because it is
highly aerobic, constantly exposed to light (ultraviolet A and
short-wavelength blue light are particularly hazardous), and
environmental chemicals such as cigarette smoke.”’
Furthermore, the presence of high levels of polyunsaturated
fatty acids predisposes to the generation of reactive oxygen
species. Retinal ganglion cells (RGCs) are highly
dependent on mitochondria for energy and are particularly
vulnerable to oxidative stress.”” The finding of lipofuscin
accumulation in glaucomatous eyes emphasizes the
importance of oxidative stress in glaucoma pathogenesis.*
Ghanem et al’* studied the levels of malondialdehyde, an
antioxidant enzyme, in aqueous humor samples of patients
with POAG (n = 30) and found that it was significantly
correlated with visual field loss (P < 0.001), indicating that
increased oxidative stress is associated with more glaucoma
damage.” Lutein™ and zeaxanthin®® have been shown to
confer a protective effect against oxidative stress—induced
cell damage in in vitro studies using the RGC-5 cell line.
Likewise, lutein has been shown to increase the survival of
RGCs by decreasing oxidative stress in a model of acute
retinal ischemia—reperfusion in mice.”” We postulate that an
environment of high oxidative stress such as glaucoma can
cause MP to be depleted, and thereby potentially explain
the finding of lower MPOD in glaucomatous eyes
exhibiting foveal involvement and more severe damage.

Study Limitations

We were not able to obtain complete MPOD data at all 3
retinal eccentricities in some glaucoma subjects because
they found the HFP task somewhat difficult to perform and
time-consuming with consequent fatigue. Because the HFP
technique is a psychophysical test, it is observer-dependent
and may explain the difficulty in carrying out the task.
Furthermore, the presence of glaucoma may have contrib-
uted to additional challenges. Despite that, HFP is still
considered a reliable and practical method to measure
MPOD.'® However, it may be worthwhile to incorporate a
less onerous and time-consuming imagin% test such as
fundus autofluorescence in future studies.'”®

Currently, an imaging system that can accurately mea-
sure the GCC thickness at the fovea is lacking. The Cirrus
HD-OCT (Carl Zeiss Meditec, Dublin, CA) uses the Gan-
glion Cell Analysis protocol to measure 2 retinal layers at
the macula, namely, the ganglion cell and inner plexiform
layers, unlike the RTVue FD-OCT that measures 3 layers
including the nerve fiber.”” In the context of studying MP,
Cirrus HD-OCT may have a slight advantage over the
RTVue FD-OCT because its macular area of analysis is
centered on the fovea, compared with 1 mm temporal to the

fovea in the latter. Nevertheless, both OCT devices are not
capable of reliably measuring the ganglion cell layer at the
fovea. Our method of determining whether GCC loss affects
the foveal region by referring to the GCC Significance Map
of the RTVue FD-OCT remained effective in providing us
with sufficient data for analysis in this study.

Given the limitations of this study, we can only postu-
late as to the likely explanation for the finding that MPOD
is lower in foveal-involved glaucoma. First, as discussed
earlier, it may be possible that when the foveal and par-
afoveal structures are affected in glaucoma, loss of the MP
housing initiates MPOD depletion. Second, low levels of
MPOD, due to poor dietary intake or impaired carotenoid
absorption, metabolism, and transportation, may predis-
pose RGC to oxidative damage because of the lack of its
protective antioxidant effect, leading to eventual foveal
damage. Third, given that the macula is a highly aerobic
tissue and that glaucoma creates an environment of chronic
oxidative stress, MP may be constantly used up to scav-
enge free radicals, leading to MPOD depletion. This may
be especially evident in those with foveal-involved glau-
coma, in whom the RGCs are under immense oxidative
stress and MP storage depletes faster than it can be
replenished. Therefore, augmentation of MPOD by dietary
modification or supplementation may be desirable in pa-
tients with glaucoma, particularly those with evidence of
foveal involvement. However, the potential protective role
of oral MP supplementation against foveal damage in
glaucoma remains to be elucidated.

In this study, we investigated the relationship between
MP and macula and optic nerve head topography in glau-
coma. Our study complements previous findings that
glaucoma is associated with lower MPOD levels and ex-
tends the relationship such that MPOD, it seems, is lower in
more severe cases of glaucoma exhibiting foveal involve-
ment. Further research is merited to better define the
causative roles of oxidative stress, impaired ocular blood
flow, and other factors that might influence MP levels in
glaucoma. In addition, it is important to evaluate whether
oral dietary MP supplementation in patients with glaucoma
can (1) increase MPOD and (2) affect glaucoma-related
structural parameters.
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Abbreviations and Acronyms:

AMD = age-related macular degeneration; ANOVA = analysis of vari-
ance; EMMS5 = Enhanced Macular Map 5; ETDRS = Early Treatment
Diabetic Retinopathy Study; FD = Fourier domain; GCC = ganglion cell

complex; HFP = heterochromatic flicker photometry; HVF = Humphrey
visual field; logMAR = logarithm of the minimum angle of resolution;
MD = mean deviation; MP = macular pigment; MPOD = macular
pigment optical density; NTG = normal-tension glaucoma; OCT = optical
coherence tomography; POAG = primary open-angle glaucoma;
RGC = retinal ganglion cell; RNFL = retinal nerve fiber layer.
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