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Graphical Abstract 

The double wall carbon nanotube-Fullerene hybrids exhibit superior optical limiting performance to 

those of Fullerenes and CNTs. 
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Abstract  

In order to merge complementary temporal and spatial nonlinear optical characteristics of Fullerene and 

carbon nanotubes, synthesis of double wall carbon nanotube-Fullerene hybrid was performed by 

covalently linking DWNT and C60 by amination reaction with polyethylenimine. DWNT-Fullerene 

hybrids were characterized by thermogravimetric analysis, UV-vis spectroscopy and transmission 

electron microscopy. Optical limiting performance of DWNT-Fullerene hybrids is superior to those of 

Fullerenes and SWNTs at the same level (~ 80%) of transmission. Whereas nonlinear scattering is an 

evident mechanism, reverse saturable absorption from Fullerene moieties has significant contribution. 

Charge transfer between the DWNT and Fullerene moieties may play an important role of optical 

limiting. 
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1. Introduction  

Recently, there has been increasing interest in the application of nanotechnology to protective 

coatings, including polymer nanotubular thin film composites. The use of carbon nanotubes in 

nanocomposites revealed a multiplicity of applications as nano-fillers in polymer hosts including 

thermal sensors [1] and antistatic coatings [2]. However, the success of nanocomposite fabrication is 

still dependent on developing reliable synthetic methods in forming their primary building blocks, a 

process that is challenging at the nanoscale for both inorganic and organic nanomaterials. Nonetheless, 

there have been significant advances in the use of nanocomposites in various optical applications, 

including organic light emitting diodes [3] and optical limiters [4]. Since the invention of lasers in the 

1960s, not only have they become powerful instruments for material assessment, but are also commonly 

used in our daily life, such as surgery and telecom applications. Protection from lasers is consequently 

not a trivial matter but is one of genuine concern from a public safety and technological perspective. 

The development of optical limiting materials/devices provides a valuable solution to the dangers of 

lasers, as well as various other forms of optical instruments being used. A successful optical limiter 

should strongly attenuate intense, potentially dangerous laser beams, while exhibiting high 

transmittance for low intensity ambient light. Investigating optical limiting materials/mechanisms/ 

devices is therefore a very important area of research [5-8]. In the forefront of this field is a quest for 

ideal materials that include carbon nanomaterials [7,8], phthalocyanines [9,10], porphyrins [11], 

organometallics, inorganic semiconductors and liquid crystals [5,6]. In particular, the carbon 

nanomaterials: carbon black [12], fullerenes [13,14], carbon nanotubes (CNTs) [4,15-17] and graphenes 

[18] all make a great contribution to laser protection applications. 

During the past two decades, researchers have established several effective nonlinear optical (NLO) 

mechanisms for optical limiting, namely, reverse saturable absorption (RSA), two-photon absorption 

(TPA), free-carrier absorption, nonlinear scattering and nonlinear refraction [5,8]. Fullerene-C60 is 

considered an ideal optical limiter across the visible spectrum (from 400 to 700 nm) since it was first 
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studied by Tutt and Kost [14]. The primary mechanism of optical limiting for C60 is RSA, which 

involves formations of excited states (triplet-triplet) with an absorption cross section much larger than 

that of the ground state, leading to nonlinear absorption. More recent studies show CNTs have potential 

as a broadband optical limiter from 430 to 1064 nm [4,7,8,15]. Thermally-induced nonlinear scattering 

and nonlinear refraction are found to be the dominant mechanisms. At low fluences, nonlinear scattering 

comes from solvent microbubbles generated by heat transfer from CNTs. At high fluences, the 

scattering is mainly due to formations of carbon microplasmas. Therefore, the superior optical limiting 

performance of CNTs can be attributed to their unique electronic structures that absorb broadband 

energy, as well as their large surface area that can effectively dispatch the energy to surrounding 

environments. In contrast to Fullerenes with a quick response time in the picosecond regime, CNTs 

generally respond at best in the nanosecond regime. 

The development of nonlinear absorber–CNT hybrids by covalent or noncovalent combination has 

been reported by several groups [19-23]. In this work, we report the synthesis, characterization and 

optical limiting property of a covalent linked CNT-Fullerene hybrid. The hybrid is expected to merge 

complementary temporal and spatial NLO characteristics of Fullerene and carbon nanotubes, resulting 

in a viable optical limiting material satisfying most of requirements for laser protection. 

2. Experimental Methods 

Materials. DWNTs prepared using a CVD method (> 95% purity, O.D. of 4 nm and length of 5-20 

µm) were obtained from Nanolab. Transmission electron microscope (TEM) images revealed that the 

pristine DWNT sample is actually a mixture of SWNT, DWNT, TWNT and FWNT. Polyethylenimine 

(PEI, branched, Mn = 10,000 Da), N,N-dimethylformamide (DMF, anhydrous, 99.8%), Fullerene-C60 

(98%), chlorobenzene (anhydrous, 99.8%) were obtained from Aldrich and used as received. 

Direct Amination of DWNTs. DWNTs (3 g) and polyethylenimine (Mn ~ 10,000) (15 g) were mixed in 

250 mL of DMF.  Sonication for 20 min and stirring at 50 ºC for 5 d formed the product, DWNT-PEI 

10,000. The resulting suspension was filtered through a 0.20 µm nylon membrane and the precipitate 
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was washed with 1M HCl, 1M NaOH, water and methanol to remove any excess PEI.  After drying, 5.5 

g of the product was obtained. Characterization of the product was carried out by titration. A known 

amount of DWNT-PEI10,000 was added to  20 mL of 0.01M HCl.   After sonicating the mixture for 1 h 

at 25 C, an aliquot (5 mL) of the resulting HCl solution was titrated to a pH 9.0 endpoint using 0.01M 

NaOH. The difference between the original amount of HCl and the amount of HCl titrated corresponded 

to the loading of titratable amino groups on DWNT-PEI10,000 and was 0.9 mequiv of titratable amine 

groups/g. 

Synthesis of DWNT-PEI10,000-C60. DWNT-PEI10,000 (300 mg), Fullerene-C60 (150 mg) and 

triethylamine (0.5 mL) were mixed in 20 mL of chlorobenzene. Sonication for 1 min and stirring at 100 

ºC for 5 d formed the product, DWNT-PEI10,000-C60. The resulting suspension was filtered through a 

0.20 µm nylon membrane and the precipitate was washed with chlorobenzene and methanol to remove 

any excess C60 and triethylamine. After drying, 408 mg of the product was obtained. 

Synthesis of PEI10,000-C60. PEI10,000 (50 mg), Fullerene-C60 (100 mg) and triethylamine (1.0 mL) 

were mixed in 10 mL of chlorobenzene. Sonication for 1 min and stirring at 100 ºC for 5 d formed the 

product, PEI10,000-C60. The resulting suspension was filtered through a 0.20 µm nylon membrane and 

the precipitate was washed with chlorobenzene and methanol until the filtrate became colorless. After 

drying, 122 mg of the product was obtained. 

Characterization. Thermogravimetric analysis (TGA) was recorded by SEIKO 1 TG/DTA 200 under 

Ar or air from 30 to 950 oC. UV-vis spectra were recorded by an Ocean Optics HR2000+ high 

resolution spectrometer using a Mikropack PH-2000-BAL Deuterium-Halogen light source. High 

resolution micrographs were taken by an FEI TECNAI G2 20F transmission electron microscope. It was 

operated at a 200 kV accelerating voltage, equipped with a ZrO2/W Schottky field emission gun and a 

Gatan imaging filter slow-scan CCD camera (GIF Tridiem with 2k x 2k pixels). Bright field TEM 

images were collected by the CCD camera of the TECNAI 20F. 

Z-scan Measurement. NLO and optical limiting properties of DWNT-Fullerene hybrids were studied 
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using open aperture Z-scan method, which is widely adopted to investigate third-order NLO processes, 

including nonlinear absorption, scattering and refraction. In this work, a Z-scan was performed using 6 

ns pulses from a Q-switched Nd:YAG laser. After spatially removing higher-order modes, a laser beam 

was tightly focused with a 9 cm focal length lens. The laser was operated at its second harmonic, 532 

nm, with a repetition rate of 10 Hz. Simultaneously, a focusing lens setup was arranged at ~30° to the 

direct incident beam to monitor the scattered light from the dispersions. All samples were tested in 1.0 

cm quartz cells. 

3. Results and Discussion 

Syntheses and studies of CNT-fullerene hybrids have been reported [24,25]. D’Souza et al. performed 

syntheses of SWNT/Pyr-NH3
+/crown-C60 hybrids by supramolecular assembly and studied their 

photoinduced electron transfer [24]. The results suggested a possibility of electron transfer from SWNTs 

to singlet excited Fullerenes in the hybrids. Wu et al. performed syntheses of grapevine SWNT-C60 

hybrids by covalent amide formation between oxidized SWNT and C60 derivative [25]. 

Characterizations revealed a ground-state electron-transfer trend from SWNT to C60 moieties in the 

grapevine nanostructure. Although these CNT-fullerene hybrids show great potential as materials for 

nonlinear optics, their syntheses are prohibitively complicated and time consuming. Here, we 

synthesized CNT-Fullerene hybrids using all commercial available reagents in only two steps. DWNTs 

are first treated with an excess amount of polyethylenimine (PEI) in N,N-dimethylformamide (DMF) at 

50oC to give DWNT-PEI10,000 by following a procedure described by Liao et al [26]. Similar 

procedures were carried out by Dillon et al. for SWNT amination as well [27]. The PEI functionalized 

DWNTs can readily disperse in common organic solvents and the free amines on PEI functionalized 

DWNTs can act as nucleophiles. In the next step, DWNT-PEI10,000 was reacted with an excess amount 

of C60 in chlorobenzene at 100 oC for 5 days, as shown in Figure 1. Amination of Fullerenes was first 

studied by Hirsch et al [28] and it is suggested that amination of CNTs involves a similar mechanism as 

amination of Fullerenes [29]. 
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Characterization of CNT-Fullerene hybrids included a series of chemical and physical analyses. 

Thermogravimetric analysis (TGA) under Ar showed distinct differences between the PEI derivative of 

DWNTs and starting DWNTs.  As shown in Figure 2, as-received DWNTs exhibited a gradual weight 

loss of 10% over a temperature range 30-950 C. DWNT-PEI10,000 exhibited a ~ 30% weight loss in 

the 250-350 ºC temperature range.  The weight loss in this region was ascribed to loss of the grafted PEI 

on DWNT samples. The TGA of DWNT-PEI10,000-C60 under Ar exhibited a ~ 25% weight loss at the 

same temperature range, this represented the loss of grafted PEI. However, no extra weight loss was 

observed at higher temperature range. Presumably, both DWNT and C60 residue didn’t burn under Ar. 

This hypothesis was proved by a separate TGA of PEI10,000-C60 under Ar over a temperature range 30-

800 C (data not shown). The TGA showed more than 60% of residue was left which can be ascribed to 

the C60 residue. In order to differentiate the composition of remaining residue of DWNT-PEI10,000-C60, 

the next TGA was first carried out under Ar from 30 to 500 oC to fully degrade PEI, air was then 

introduced to the heating chamber and the temperature was increased gradually to 650 oC. A sudden 

drop of ~ 25% weight was observed at 520 oC, followed by a more gradual weight loss of another 45% 

from 520 to 600 oC. The first sudden drop was ascribed to the loss of C60 because all C60 molecules 

should burn at the same temperature. While the gradual weight loss from 520 to 600 oC can be ascribed 

to the loss of DWNT because it is dependent on the diameter and length of DWNTs. Each individual 

DWNT should burn gradually under different temperature ranges. 

The formation of DWNT-Fullerene hybrids was also confirmed by UV-vis spectroscopy. As shown in 

Figure 3, relative to the spectrum of C60, the spectrum of DWNT-PEI10,000-C60 in chlorobenzene 

showed a maximum absorption of 330 nm. The peak at 330 nm can be assigned to the allowed 

1T1u→
1Ag transition of C60 [30]. Direct evidence of the formation of nanotube-fullerene hybrids can be 

seen through high resolution TEM micrographs as well. As shown in Figure 4, while the image of a 

pristine nanotube (left) shows a smooth surface covered with some amorphous carbon materials, a 

monomeric form of C60 spheres (right) can be clearly seen to be attached to the inner and outer surfaces 
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of the SWNT in the image of the nanotube-fullerene hybrid.  

For the optical limiting study, the hybrid was dispersed in chlorobenzene and poly(m-

phenylenevinylene-co-2,5-dioctoxyp-phenylenevinylene) (PmPV), respectively. PmPV is a well-known 

conjugated polymer used to disperse carbon nanotubes, resulting in property modified nanocomposites 

[3,31]. The normalized transmission and scattered light as functions of incident energy density was 

shown in Figure 5. As the incident energy density was increased, intense scattered light was observed 

from DWNT-Fullerene dispersions along with decreasing transmission. Therefore the nonlinear 

scattering, arising from DWNT moieties, is regarded as one of the main mechanisms for optical 

limiting. The mechanism leading to optical limiting effects in carbon nanotubes has been studied 

intensively. The induced scattering centers are composed of solvent bubbles and carbon microplasmas. 

Due to the solvent effect [8,17], the hybrid dispersed in chlorobenzene possess superior optical limiting 

response and stronger scattered signal in comparison to the polymer dispersions. In addition, it is 

believable that RSA from Fullerene moieties has significant contribution as well. The superior optical 

limiting effect of the hybrids results from an accumulation of different mechanisms. 

In order to evaluate the optical limiting ability of DWNT-Fullerene dispersions, we compare the 

optical limiting response of this hybrid with that of Fullerenes and SWNTs. As shown in Figure 6, the 

optical limiting performance of this hybrid is superior to those of Fullerenes and CNTs at the same level 

of transmission. Table 1 summarizes the linear and NLO coefficients for these three materials. 

4. Conclusion 

In summary, synthesis and characterization of DWNT-Fullerene hybrids was performed to merge 

complementary temporal and spatial NLO characteristics of Fullerene and carbon nanotubes. The 

optical limiting performance of DWNT-Fullerene hybrids is superior to those of Fullerenes and SWNTs 

at the same level of transmission. Future studies regarding mechanisms that contribute to this better 

optical limiting performance and the influence of covalent linkages between DWNTs and C60 to optical 

limiting are currently underway. 
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Captions for Figures and Table 

Figure 1. Synthesis of DWNT-PEI10,000-C60 

Figure 2. TGA of DWNT, DWNT-PEI10,000, DWNT-PEI10,000-C60 in Ar and DWNT-PEI10,000-C60 

in Ar followed by air introduced at 500 oC 

Figure 3. UV-vis spectra of C60, DWNT-PEI10,000 and DWNT-PEI10,000-C60 in chlorobenzene 

Figure 4. TEM images of a pristine TWNT partially covered with carbon materials (left) and a SWNT-

Fullerene hybrid (right). The circular profiles indicated by the arrows suggest that monomeric C60 

molecules (based on their size and shape) are attached to the inner and outer surfaces of the nanotube. 

Figure 5. Plots of normalized transmission and scattering light against incident pulse energy density for 

DWNT-Fullerene dispersions. 

Figure 6. Optical limiting responses of the DWNT-Fullerene, Fullerene and SWNTs 

Table 1. Linear and NLO coefficients for the DWNT-Fullerene, Fullerene and SWNTs. 
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Material Host 
Conc. 
(g/L) 

T 
(%) 

α0 
(cm-1) 

βeff 
(cm GW-1) 

Im {χ(3)} 
(x10-12 esu) 

Chlorobenzene 0.1 79.8 0.23 7.01 ± 0.99 2.74 ± 0.39 

DWNT-C60 

PmPV/toluene 0.1 83.4 0.18 4.01 ± 1.15 1.51 ± 0.43 

SWNTs DMF 0.005 81.3 0.21 2.46 ± 0.50 0.85 ± 0.17 

C60 Toluene 0.11 81.9 0.20 3.28 ± 0.51 1.24 ± 0.19 

 
Table 1. 
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