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Abstract: A spatial information system (SIS) is critical to the hosting, querying, and analyzing of spatial 

data sets. The increasing availability of three-dimensional (3D) data (e.g. from aerial and terrestrial laser 

scanning) and the desire to use such data in large geo-spatial platforms have been dual drivers in the evo-

lution of integrated SISs. Within this context, recent patents demonstrate efforts to handle large data sets, 

especially complex point clouds. While the development of feature-rich geo-systems has been well do-

cumented, the implementation of support for 3D capabilities is only now being addressed. This paper 

documents the underlying technologies implemented for the support for 3D features in SISs. Examples 

include ESRI’s ArcGIS geo-database with its support for two-and-a-half dimensions (2.5D) in its Digital 

Elevation Model (DEM) and Triangular Irregular Network (TIN), the more recent development of the 

Terrain feature class, and support for 3D objects and buildings with its multi-patch feature class. Recent 

patents and research advances aim to extract DEMs and TINs automatically from point cloud data. In this 

context, various data structuring innovations are presented including both commercial and open source 

alternatives.  

 

Keywords: Spatial database management system, 3D spatial data support, GIS 

 

I TRODUCTIO    

A Database Management System (DBMS) controls 

the organization, storage, management and retrieval 

of all data that is kept in a database. A DBMS en-

sures that data inconsistencies and data redundancies 

are significantly reduced compared to storing infor-

mation in a file system. A DBMS also facilitates data 

integrity, as well as multi-user control on shared data. 

Traditional DBMSs were not developed to support 

spatial data (i.e. data with a spatial component) and, 

as such, did not provide mechanisms for the storage 

and querying of such data. 

 

   However, in recent decades, the amount of spatial 

data has significantly increased. In fact, it has been 

estimated that 80% of all data presently collected 

have at least one spatial component (called the extent 

[1]). Therefore much attention has been dedicated re-

cently towards developing abilities to effectively ex-

ploit and process the spatial extent of data.  

 

   In a parallel development stream, geographic in-

formation systems (GISs) have been used since the 

early 1960s to address the issues faced by planners 

and resource managers dealing with the spatial nature 

of systems in the real world. GISs consider both what 

an object is and where it is located. The mapping 

component is combined with the information compo-

nents in planning and resource management. The ear-

liest systems utilized a distinct file-based system of 

representing spatial features and the related attribute in-

formation in both vector and raster formats. ESRI’s 

Coverage and Shape file along with Mapinfo’s TAB 

format are examples of vector formats, while ESRI’s 

GRID, GRASS Raster, and ERDAS IMG formats are 

examples of GIS raster formats [2].  

 

   ESRI’s Coverage format uses an extensive set of files 

to support its feature topology and manage its tabular 

data in combined INFO files. ESRI’s Shapefile format 

is an open file system that uses basic dBASE file (DBF) 

tables to support its feature attributes and is capable of 

linking to external databases through Open Database 

Connectivity (ODBC). Further developments brought 

about ArcSDE, permit the integration and storage of 

spatial data on relational databases such as Informix, 

IBM’s DB2, Oracle’s Oracle Spatial and Microsoft’s 

SQL Server.  

  

   Later, an integrated approach to store the spatial ex-

tent (together with the attribute data) directly into the 

database (in the same table) was developed. This ap-

proach, which relied on the extensibility of relational 

DBMSs [i.e. the ability to add new types and operations 

to a Relational Database Management System 

(RDBMS)], produced the so-called Spatial Database 

Management System (SDBMS). This technology al-

lows management of all data within the same engine. 

Additionally, retrieval and manipulation of all data are 

facilitated through structured query language (SQL). 



An example of a commercial SDBMS is Oracle Spa-

tial (the spatial extension to Oracle DBMS). In the 

early 1990s, spatial data was predominantly stored in 

modified RDBMSs. In the late 1990s, a new para-

digm emerged called the Object-Relational Database 

Management System (ORDBMS). An ORDBMS al-

lowed geometry object types to be added to the data-

base.  

 

   Support for two-dimensional (2D) feature types and 

indexing techniques in systems dealing with spatial 

data sets has been well documented. As part of this, 

spatial indexing techniques evolved during in the 

middle of the 1980s with Guttman’s R-tree [3] being 

one of the most popular and enduring indexing tech-

niques developed.  

    

   Currently, GISs and SDBMSs aim to integrate true 

3D features. This is largely driven by the increased 

availability of 3D data (e.g. from aerial or terrestrial 

laser scanning). A 3D spatial system must support 3D 

data types, such as point, line, surface and volume in 

3D Euclidean space. Three-dimensional data types 

are based on a 3D geometric data model (i.e. vector 

and/or raster data with underlying geometry and to-

pology). A 3D spatial system must also offer opera-

tions and functions embedded into its query language 

that can operate with its 3D data types [4]. 

 

   This paper presents the development of 3D tech-

nologies for systematic handling of spatial data sets, 

with a particular emphasis on patents. First, spatial 

data representation is discussed, thereby introducing 

geometry features for vector and raster data. Com-

mercial systems offer different levels of support for 

each data type, which result in varying levels of func-

tionality. 

 

   The majority of currently available 3D data con-

tains elevation information. Support for DEM and 

Digital Terrain Models (DTM) by three main vendors 

– Oracle, PostGIS, and ESRI – will be presented be-

low, along with the major developments in data sto-

rage and processing.  

 

   DEM/DTMs can be represented in a raster format 

as index or floating point grids or in a vector format 

in the form of a TIN, which is a vector-based repre-

sentation particularly suitable for topological queries. 

Whereas TINs themselves only provide two-and-a-

half-dimensional (2.5D) support, a special form of 

TINs referred to as the Tetrahedral Irregular Network 

(TEN) supports true 3D volumes. A TEN is a promis-

ing new approach to increase the 3D capabilities of 

SDBMS. Unfortunately, current systems offer only 

limited TEN support. However, there is a growing 

body of research under development. As part of this, 

ESRI has developed the multipatch feature as a na-

tive surface geometry type for 3D support (as will be 

subsequently described). Other efforts have been made 

to implement freeform curves and surfaces for 3D sup-

port in SDBMSs. Both features are discussed subse-

quently.  

 

   In order to facilitate efficient execution of spatial que-

ries on these new spatial types, database indexes must 

be able to process spatial data. Two-dimensional spatial 

indexing has been well researched. Yet, support for true 

3D spatial indexing is still undergoing active develop-

ment and research and true 3D indexing will further the 

uses of 3D spatial databases. Current developments and 

vendor solutions are herein subsequently described. 

    

   To facilitate this discussion, this paper is structured 

into six additional sections. Section 2 explains the dif-

ference between the main forms of spatial data (vector 

and raster) and specific support provided by different 

SIS vendors. Section 3 outlines how spatial data is 

processed for manipulation and visualization including 

a detailed illustration of DEMs. As DEMs are 2.5D 

presentations of 3D data (describing a surface rather 

than the volume of a feature), there has been significant 

development in the automatic generation of 

DEMs/TINs from 3D laser scanning point clouds. 

 

   Section 4 presents true 3D representations of features 

through a 3D type called Multipatch, developed by 

ESRI. As described in section 5, NURBS (Oracle Spa-

tial 11g) offers a more flexible approach than Multi-

patch by employing freeform curves and surfaces, for 

the representation of 3D volumes.  

 

  Section 6 discusses the indexing of multi-dimensional 

data in SISs. This is particularly necessary in large data 

sets to facilitate the execution of queries in a timely 

manner. Contemporary approaches that aim to provide 

3D indexing are represented, as well as current vendor 

solutions. The paper concludes with Section 7 on cur-

rent and future developments 

 

   In summary, this paper presents current research on 

empowering SISs with true 3D capabilities. The state-

of-the-art, as reflected by research, patents, and vendor 

solutions, is presented with a view to providing a tho-

rough understanding of spatial databases and their ca-

pabilities. 

SPATIAL DATA REPRESE TATIO  

   Spatial data sets and geo-spatial data sets (i.e. spatial 

data that use the Earth as a reference system) contain 

collections of spatial features, which are represented in 

terms of spatial primitives, such as points, lines, poly-

gons and surfaces. For example, a point might indicate 

a tree or a specific address. A line could represent a 

road or a river. Polygons can be used in order to 

represent a building footprint or administrative boun-

dary. Surfaces are embedded in the 3D space (i.e. they 



possess a z-coordinate in order to describe the depth 

of an object). Spatial data sets may contain not only 

information about spatial characteristics, such as lo-

cation and geometry of the objects represented but 

the spatial relationships between such objects, such 

as connectivity, distance and orientation. In particu-

lar, topology models describe topological relation-

ships (i.e. connectivity and overlapping relation-

ships). Topology models rely on nodes, chains, and 

polygons to represent relationships between objects 

[5]. 

   Since spatial features and their relationships can be 

modeled in several different ways, facilitating intero-

perability is useful. As a critical part of this, the Open 

Geospatial Consortium, Inc. ® (OGC) is an interna-

tional, voluntary consensus standards organization 

that develops standards for geospatial and location 

based services. They have defined a conceptual mod-

el for a geometry object model, which is independent 

of the computing platform. The OGC’s conceptual 

model defines Geometry as an abstract class with 

several subclasses, such as Points, Lines, Linestrings, 

Linear Rings and Polygons [6]. The conceptual mod-

el is now standardized as ISO 19107 [7], however, 

these are defined only for a 2D space. 

   Such spatial data sets are primarily available in ei-

ther vector or raster format. Each data format offers 

specific advantages to certain tasks. The raster data 

model for instance is particularly efficient for 3D 

display and the integration of image data, whereas the 

vector data model is more adept in applications that 

require fast retrieval and topological queries. An SIS, 

thus, must be able to support both data models, in or-

der to facilitate a broad spectrum of applications. 

Figure 1 illustrates the different representations for 

raster and vector data.  

  

Fig. (1) Raster and vector data 

   Support for both formats, raster and vector data, are 

presented in the following two sections. Examples of 

their representation in an SIS with regard to their 

geometry and topology are used to illustrate the con-

cept of modeling spatial data. 

Vector Data Model 

   In this section, current technologies for storing, que-

rying and analyzing vector data are presented, including 

an analysis of the level of support offered by various 

products with regard to geometry and topology. 

   Spatial objects are geometrically represented by 

points, lines, and areas and within a vector format. 

These primitives are identified through discrete Carte-

sian x-, y-, and z-coordinates.  

   The commercial product Oracle Spatial for Oracle 

11g stores geometric vector data in the 

SDO_GEOMETRY data type. SDO_GEOMETRY 

supports the data types Point, Line String, Polygon 

(Area), Polygon with a hole, and Collection in both 2D 

and 3D. Those limited to 2D are Compound Line String 

and Compound Polygon. The exclusively 3D forms 

(shown in figure 2) are Composite Surface, Simple Sol-

id, Composite Solid, and Collection [5]. 

SDO_GEOMETRY is further disaggregated into ele-

ments as shown in figure 3.     

 

Fig. (2) Oracle 3D geometry types [8] 

 

 

Fig. (3) SDO_Geometry [9] 

 As shown in figure 3, the SDO_GTYPE specifies 

the dimension and shape/type of the geometry. 

SDO_SRID specifies the spatial reference system 

which can be Geographic3D, Geocentric and Com-

pound or a local coordinate system in case of 3D data. 



Geographic 3D specifies latitude and longitude and 

ellipsoidal height, based on a geodetic datum. Oracle 

Spatial 11g also offers a topology model as an alter-

native to the vector data geometry model stored in 

SDO_GEOMETRY.  

    A topology model defines relationships between 

objects. The geometry of an object can be derived 

from a topological data model, and the topology of 

objects can be derived from a geometry data model. 

Consequently, storing only one model and deriving 

the other from it, if needed, seems at first glance an 

efficient approach. However, while storing a topolog-

ical data model results in rapidly executable topolog-

ical queries, it is hampered by inefficient determina-

tion of object geometry. Conversely, storing a geo-

metry model results in efficient computation of geo-

metry queries but results in complex topological que-

ries. Furthermore, spatial features may share bounda-

ries, and a topological data model is more effective 

for storing shared geometric features. As such, how 

SDBMS vendors have attempted to solve this issue is 

of interest. In Oracle Spatial 11g the type 

SDO_TOPO_GEOMETRY is used to store shared 

geometric features.  Topological features are general-

ly stored as nodes, edges and faces. A node is a point 

geometry that is shared by one or more features. A 

node can be unconnected to any other node or con-

nected to one or more edges. An edge is a line-string 

geometry that connects to nodes. However, this line 

string may contain other vertices that are not consi-

dered as individual nodes and may, thus, contain sev-

eral line segments. In contrast, a face is a polygonal 

area that is surrounded by a closed set of edges (ring). 

A face may contain only one outer ring or that along 

with a number of inner rings.  

   Within Oracle Spatial, the topology model also 

supports hierarchical features in a bottom-up manner 

(i.e. a new feature layer can be derived from a pre-

vious feature layer constructed from the primitive 

elements, such as nodes, edges and faces). Oracle fa-

cilitates this by setting a feature ID within the 

SDO_TOPO_GEOMETRY constructor. The first 

feature layer is called a Level-0 feature. The feature 

layer derived from it is called a Level-1 feature. In 

general terms, a Level-n feature is derived from a 

Level-(n-1) feature. Overall, Oracle Spatial is a po-

werful product for managing spatial content and of-

fers in-depth support and documentation. Figure 4 il-

lustrates how SDO_TOPO_GEOMETRY is struc-

tured.  

   ESRI’s ArcGIS geo-database is another useful tool 

for handling spatial data. The ESRI geo-database 

ArcGIS offers the geometry types TriangleStrip, Tri-

angleFan, and Multipatch specifically for 3D storing 

and representation of vector data. Lower dimensional 

data can be represented through a myriad of geome-

try types, such as Point, Multipoint, GeometryBag, 

Line, Ring, Polygon and others; the Multipatch data 

type is discussed in Section 4. 

 

Fig. (4) SDO_TOPO_GEOMETRY [8] 

   Both Oracle Spatial and ESRI ArcGIS are commer-

cial products. Alternatively, the open source community 

offers PostGIS, a substantial tool for handling spatial 

data. PostGIS is an implementation of the OGC Simple 

Features for the SQL specification [6]. PostGIS follows 

the same approach as Oracle, which is to extend a 

RDBMS with functionalities to manage spatial data. 

PostGIS is a spatial extender for the open source 

RDBMS PostgreSQL. PostGIS stores vector data in 

compliance with the OGC simple features specification 

[10]. Seven different geographic data types are imple-

mented: POINT, LINESTRING, POLYGON, MULTI-

POINT, MULTISTRING, and MULTIPOLYGON (a 

collection of different polygon objects), and GEOME-

TRYCOLLECTION (a collection of elements, such as 

points, lines and polygons). Each can be 3D, and users 

can mix data from different sources, as each record has 

its own Spatial Reference ID (SRID) [7]. Additionally, 

PostgreSQL offers the opportunity to implement cus-

tom data types, as an extension to a native data type. 

The same mechanism theoretically works within Post-

GIS. However, little has been published on this issue. 

The challenge would be to register the new data type 

with the geometry_columns table that is used within 

PostGIS, in order to locate tables that contain geometry 

types. 

   The SIS vendors discussed within this section gener-

ally offer good support for vector data with regards to 

geometry and topology of spatial data. The following 

section discusses vendors’ support for the raster data 

model. 

Raster Data Model 

   A raster data model associates collections of cells to 

spatial entities by making a discrete approximation of 

spatial features into grid cells. In a geo-referenced ras-

ter, every cell represents a specific area on the ground. 

Common examples of raster data objects are satellite 

images. Within a raster data model, point primitives are 

represented through single cells within a grid. A line 



primitive is a string of cells with common values. A 

polygon primitive is represented by groups of cells 

with common values, and surface primitives are cells 

that represent an elevation. Figure 1 illustrates the ba-

sic concept of raster data in comparison with vector 

data. 

   The ESRI ArcGIS geo-database uses a native raster 

format for storing spatial data in a grid [11]. In Arc-

GIS a grid is constructed from a set of square cells. 

Each cell is called a tile. A tile is further subdivided 

into a grid of rectangular cells, known as blocks. The 

block contains the actual information in columns and 

rows and is stored in a file system. ArcGIS offers two 

types of grids:  integer grids for representing discrete 

data and floating-point grids for representing conti-

nuous data. Discrete data is sometimes also called ca-

tegorical or thematic. A discrete object has known 

and definable boundaries. Discrete objects include 

buildings and roads. Continuous data is also known 

as field or surface data. Continuous data represents a 

location as a measure of the concentration level (e.g. 

density of noise or pollution in a certain area or the 

location’s relationship from a fixed point). Fix points 

include elevation, such as sea level and aspect (e.g. 

north, south, east and west).  

   ESRI has further developed their geospatial struc-

ture by moving away from the simple shapefile and 

file based ArcInfo Coverages and Grids to the Geo-

database structure. The Geodatabase structure leve-

rages the power of relational databases and the tools 

available to create linkages between spatial and non-

spatial data, such as property records or environmen-

tal data. The implementation of ArcGIS Geodatabase 

systems is a layered system with the personal geoda-

tabase leveraging Microsoft’s Access database, 

which is limited to a single user editing a database of 

no more than 2GB. The file-based, geo-database de-

veloped by ESRI supports TINs in its terrain dataset. 

File size is also limited but in this case to 1TB. The 

database size on the other hand has no size restric-

tions. There is also support for the personal SDE da-

tabase in ArcEditor and ArcInfo, which uses Micro-

soft’s SQL Express database for workgroup spatial 

database support. Enterprise implementation of the 

Geodatabase is achieved by employing ArcGIS Spa-

tial Data Engine (SDE), which supports spatial data-

bases on Oracle Spatial, IBM DB2, Informix, and 

Microsoft’s SQL Server. Support for 3D features in 

the geo-database has evolved to presently support 3D 

points, lines, polygons, and multipatches (see Section 

4). There is now also support for 3D grid/raster fea-

tures, and TINs have been incorporated into the geo-

database as terrain features.  

   As discussed earlier, the ArcGIS grid is stored in 

tables and files, which include the unique value for 

each cell in the grid that stores its attributes in a value 

attribute table (VAT). A VAT is comprised of one 

record for each unique value in the grid. The VAT con-

tains three default columns at creation that are immuta-

ble:  object ID (OID), VALUE and COUNT. OID is a 

unique object identifier number for each row in the ta-

ble. VALUE is a list of each unique cell value in the 

raster data sets, as an integer value. Finally, COUNT is 

the amount of VALUE fields contained within the grid. 

For example, if there are ten cells that represent a lake, 

and the value for lake was 1, then the VAT would 

represent this by setting VALUE=1 and COUNT=10 

for each of the ten cells. Figure 5 illustrates how a grid 

translates into a VAT structure reconsidering the exam-

ple from figure 1. 

 

Fig. (5) VAT table for ESRI grid 

   In addition to the VAT, a separate table contains in-

formation about the grid boundaries, named the BND 

table. A header file (extension .hdr) contains informa-

tion about the grid cells themselves, such as size and 

type. While the STA table contains statistical informa-

tion about the grid, such as mean and standard devia-

tion. Two tile files store the data and the index of the 

first tile in a grid. Tiles are variable-length binary files. 

The log file, on the other hand, is an ASCII file that 

contains information about alterations performed on the 

grid.  

   In Oracle Spatial 11g, raster data is stored in the 

SDO_GEORASTER data type, which represents an n-

dimensional matrix of cells. The SDO_GEORASTER 

consists of RASTERTYPE, SPATIALEXTENT, RAS-

TERDATATABLE, RASTERID and METADATA. 

Among other things, the RASTERTYPE specifies the 

dimension of the data, which currently only supports up 

to two dimensions.  

   The previous sections outlined how vector and raster 

data can be employed to model spatial data by relating 

to its geometry and topology. Along with vector and 

raster data models, digital elevation models (DEM) are 

often presented as a third data model. Technically, 



however, DEMs can be represented in raster and vec-

tor format and are, thus, discussed separately below.   

DIGITAL ELEVATIO  MODEL 

   DEMs are one of the most commonly used data sets 

in the area of spatial research. They are particularly 

popular for visualization of 3D content. DEMs are 

digital representations of surfaces. A DEM forms the 

basis for a DTM or a Digital Surface Model (DSM). 

A DSM contains both location and elevation informa-

tion, as well as meta data information about urban 

features. A DTM is generated by digitally removing 

all of the urban features within the DSM, in order to 

expose the underlying terrain. A DEM is usually a 

raster model (regular spaced grids) or a triangular ir-

regular network (TIN). Each cell within the raster da-

ta model has a value that corresponds to its elevation.  

  DEM data sets are commonly collected using re-

mote sensing technologies, such as interferometric 

synthetic aperture radar, where two passes of a radar 

satellite produce a DEM with a resolution of approx-

imately ten meters. DEMs can also be generated by 

using digital image correlation, where two optical 

images that are taken from different angles are corre-

lated [12].  

Data collection for DEMs 

   Recently, data collection through light detection 

and ranging (LiDAR) technology has gained increas-

ing popularity for serving as input data, to generate 

DEMs. LiDAR data is acquired by employing a 

pulsed laser device, to record the distance from the 

camera to each point in an image [13]. The quality of 

a DEM is significantly determined by the roughness 

of the terrain, the sampling density that is determined 

by the data collection method, the resolution of the 

grid, the choice of interpolation algorithm, the vertic-

al resolution, and the choice of terrain analysis algo-

rithm. Figure 6 presents a DEM of a part of Dublin 

Ireland’s city center that roughly comprises Trinity 

College.  

Technology such as LiDAR challenges SDBMSs, 

with respect to the sheer volume of data points re-

ferred to collectively as a point cloud. Point clouds 

raise the question of how to allocate these sets of 

points to feature types within a database. Additional-

ly, point cloud data are collected by a scanner and 

then transferred in a format that is proprietary to the 

scanner manufacturer. In the following paragraphs 

several patents will be presented that address these 

issues. 

 

Fig. (6) DEM of a portion Dublin Ireland's city center 

  Patent US7065461 solves the problem of handling 

large data sets by providing a user interface through 

which the user selects a point cloud area, which is to be 

fitted into an “object”. A circle is created around an 

area of point clouds and points that are to be included 

are determined through a statistical method, such as 

least squares [14]. 

   Patent US7117116 also proposes a mechanism to au-

tomatically bound point clouds. In this case, a mesh 

point cloud module identifies and segregates only visi-

ble patches of a point cloud. With this approach, data at 

the edges of objects might be accidentally omitted. The 

patent, therefore, proposes a mechanism to generate ad-

ditional data points, in order to compensate for this ef-

fect [15]. 

   Patent application US20070257908, on the other 

hand, tackles the issue of proprietary data formats from 

scanner manufacturers. This system first determines, if 

the input file is in text or binary format. In case the 

source file is in a text format, it is routed directly into a 

parser that loads the point cloud into a data structure 

provided by a database. If the source file is in binary 

format, the innovation first transforms the data into a 

readable format [16]. 

   Of the SDBMS vendors however, only Oracle Spatial 

offers a built in data type for point cloud storage called 

SDO_PC. Meta data associated with the point cloud is 

stored in a base table, whereas the actual point cloud 

data is stored in a different table. Individual points 

within the point cloud are divided into subsets and then 

loaded into multiple rows, with the points stored as a 

BLOB data type [17]. Oracle Spatial offers further 

processing of the point cloud data into a TIN as to be 

discussed in section 3.3.   

Creation of a DEM 

   The other DEM format is the raster, which is a regular 

arrangement of pixel cells that are stored as a matrix. It 

can be used for a systematic analysis of the relationship 

between locations and their properties [18]. An example 



is the calculation of minimum, maximum, and aver-

age values.  

   Several challenges are associated with the genera-

tion of DEMs. The main one is how to extract a DEM 

automatically from the point cloud. Regions that have 

no clear boundaries, such as coastal sections and 

areas adjacent to rivers appear particularly prone to 

errors. Additionally, automatic DEM generation ap-

pears to be problematic, when distinguishing between 

actual buildings and material that is only covering the 

building, such as vegetation. In terms of visualizing 

DEMs, an interesting challenge is how temporal 

changes within a particular area can be represented in 

a meaningful manner. The following inventions strive 

to contribute solutions for the aforementioned diffi-

culties for DEMs. 

   Patent US6748121 provides an intelligent mechan-

ism for automatic extraction of digital elevation data 

[19], as conventional methods have falsely created 

lands near coasts and rivers. This innovation works in 

three steps. First, the Center-of-Gravity (COG) also 

known as the Empty-Center-Index (ECI) is eliminat-

ed from the result of a conventional DEM generating 

method, such as nearest neighbor, spline, or moving 

window average. The COG or ECI is an artificial 

elevation that is generated from edges by convention-

al interpolation methods. In the next step, a hole-

filling segmentation evaluates, whether the previous 

elimination should be reconstructed. The decision is 

based on the segment size. The last step removes  

noise from the initially interpolated area. The result-

ing DEM is particularly accurate with regards to open 

areas of coastal regions and around rivers.  

   Patent US7298891 [20], WO/2006/019595 [21] and 

EP1779291 [22] were all filed by the Harris Corpora-

tion and present a method for automatic extraction of 

a DEM from raw topographical points. The invention 

relies on two filtering steps of the volumetric input 

data. In the first step, the ground is estimated by fil-

tering ground points from aboveground obstructions. 

In the next step, the ground points are filtered in or-

der to construct a multi-dimensional shell of DEM 

points. 

   Another challenge for DEMs is to distinguish 

buildings from other objects, such as foliage. Patent 

US7191066 [23], EP185186 [24] and 

WO/2006/086252 [25] by Rahmes et al. propose a 

methodology for determining whether a certain ob-

ject within the DEM is a building or foliage. This in-

vention first establishes a “perimeter versus area pa-

rameter” for each individual object within the DEM. 

This value is then used to classify objects as either 

buildings or foliage. In the next step, the objects clas-

sified as foliage are compared with regard to their 

height value versus a height threshold. If the height 

value is greater than the threshold, the object is reclassi-

fied as a building. The following step examines all ob-

jects that were classified as a building within the first 

iteration. In this a “perimeter versus area parameter” 

evaluation is applied to this set of data. If the “perime-

ter versus area parameter” is greater than the threshold, 

the object is reclassified as foliage. The last step gene-

rates two different DEMs:  one for buildings and one 

for foliage. 

   Visualization of surface structures is particularly in-

teresting, if the surface is examined over a period of 

time and the identified changes are to be visualized. Pa-

tent WO01/26059 [26] presents a method of producing 

a survey animated digital model. Vertical stereoscopic 

photography is used as an input and is digitized. In the 

next step, the images are merged, and the vector data is 

extracted, which results in a 3D map of the area. The 

following step enriches the model with additional data, 

such as trees, hedges, buildings, and artificial bounda-

ries. The subsequent step uses ground level and string 

feature data attributes, as well as the ground point and 

breakline data to generate the DTM. The final step 

enriches the model with orthophoto data and micro re-

lief enhancement feature data, which results in an ani-

mated digital model. 

     DEMs often use 2.5D visualization. This designation 

of 2.5D is shorthand for 2.cD, with c denoting the vo-

lume filling capacity of a topographic surface. The di-

mension must lie between 2D (plane) and 3D (solid ob-

ject) due to the fact that a 2D surface, such as the Earth, 

is textured with GIS data. This is generally referred to 

as draping [18, 27].  

   In general, 3D data models can be classified into three 

categories: 

1. Surface based models, such as 3D Formal Data 

Structure (3D FDS) and Boundary-

Representation (B-Rep). 

2. Volume based models, such as Constructive 

Solid Geometry (CSG) and Tetrahedral Net-

work. 

3. Hybrids of the former two types, such as Oct-

ree-TEN and TIN-Octree. 

   The following section presents TINs and an ad-

vancement of TINs called TENs. 

Triangular irregular network 

   SISs mainly support TINS, the vectorial representa-

tion of DEMs. A TIN is vector-based digital, geograph-

ic data created by triangulating a set of vertices [9] that 

are usually provided by a DEM. A TIN is also a net-

work of vertices, the so called mass points. Mass points 



each have coordinates in 3D and are connected via 

edges to generate a triangular tessellation. A TIN is 

constituted of irregularly distributed nodes and lines 

with 3D coordinates (x,y,z) that are arranged in a 

network of non-overlapping triangles. The main dif-

ference between a raster DEM and a TIN lies in the 

distribution of points. In a raster, DEM points are ar-

ranged regularly, whereas in a TIN, an algorithm de-

termines the necessary points for terrain representa-

tion. Consequently, with a TIN fewer points need to 

be stored in a database than with a DEM [28]. Inte-

grated TINs take this one step further and incorporate 

feature data into the tinning process [29]. Like the 

DEM, a TIN offers support for 2.5D. A TIN is typi-

cally constructed using a form of Delaunay triangula-

tion, which generates triangles that are as equiangular 

as possible, in order to avoid long and thin triangles, 

because they are particularly unfavorable for approx-

imation problems. Three-dimensional visualization of 

TIN data is readily generated by rendering its trian-

gular facets. Figure 7 illustrates a TIN of Trinity Col-

lege Dublin’s square. 

 

Fig.(7) TIN of Trinity College Dublin 

   Topological queries, such as overlap, are extensive-

ly implemented for the 2D case, where two or more 

planar partitions intersect. However, implementing 

the intersections of 3D volumetric partitions is more 

complex.  A promising approach is TEN, which is 

basically a true 3D TIN. In a TEN the Delaunay tri-

angulation is extended to another point in order to 

construct a 3D object. Features are represented by 

their boundaries through a TIN and added one after 

the other into the TEN [30]. Overlap queries are, 

thus, supported by the TEN’s internal neighborhood 

search. TINs are typically used in order to represent 

2.5D elevations of a surface, whereas TENs triangu-

late 3D volumetric objects through tetrahedrons.  

   Oracle 11g offers the SDO_TIN_PKG for creation 

and querying of TINs. Oracle will create a Delaunay 

TIN, if no constraints are specified. Oracle relies on 

two tables in order to store the TIN data. A “base ta-

ble” that contains a column with the SDO_TIN type 

stores the meta data associated with the TIN. The actual 

points are stored in blocks within another table that is 

commonly referred to as the “block table”. The block 

table stores both the point information and the triangles’ 

information in a BLOB column. There is no upper limit 

in the number of points and triangles that can be stored 

in Oracle 11g. Oracle also offers an automatic clean-up 

of the block table, if a TIN object is deleted or a base 

table is truncated.  A TIN can be queried by specifying 

a so called query window with the 

SDO_TIN_PKG.CLIP_TIN function, which takes an 

SDO_TIN object, an SDO_GEOMETRY as a query 

window, and several other optional parameters and re-

turns a new block table as a result of the query. The 

query, thus, accesses only relevant blocks. Other que-

ries include retrieving the triangles in each block as a 

collection of SDO_GEOMETRY objects, and retrieving 

the IDs of the points returned by a query [17]. Addi-

tionally, a custom built TIN can be generated, which is 

particularly useful in cases where a coarser resolution 

TIN is to be retrieved from a given TIN. Oracle does 

not offer in-built support for coarser TINs, however, 

they can be generated manually and then associated 

with the original TIN. 

   The ESRI ArcGIS geo-database also supports the cre-

ation of TINs. Moreover, the latest version  ArcGIS 9.3 

includes Terrain Feature Classes, which store a hie-

rarchy of TINs for different map scales. Another option 

is their Z Feature Class, which stores elevation data in a 

z-value for each vertex in 2D polygons. ESRI’s multi-

patch feature class stores a 3D geometry that is con-

structed of planar rings and triangles; this feature class 

is discussed further in Section 4. In ESRI’s ArcGIS, 

however, a TIN is stored as a directory of binary files 

[11]. 

   PostGIS does not natively support the creation or sto-

rage of a TIN data type. Instead a patch from X3D 

creates a serialized mesh [31], similar to TINs. Howev-

er, this mesh is not as powerful as a single, large seria-

lized mesh, and it cannot handle large, region-spanning 

TINs with millions of faces. Another approach would 

be to implement a relational TIN model on the primi-

tives defined by the Simple Feature Specification [7]. 

However, this does not solve the issue of loading the 

TIN into the database. Additionally, it still leaves the 

task of providing useful operators on the TIN to each 

individual programmer. 

   The main advantage of TIN models over other ap-

proaches is their inherent multi-resolution capability. 

They are able to resolve fine regions and sudden 

changes on surfaces. Abrupt changes are often present 

in urban areas, where the interpolation of a raster DEM 

is not suitable to represent the abrupt changes in height 

caused by buildings and other urban objects. Patent 

WO/2004/097574 for instance uses this characteristic to 

generate a variable resolution model with an indexing 



function that indicates the impact of data in a model 

[32]. The input can either be general raster data or a 

DEM. The output can be a TIN or a Finite Elements 

Method mesh. From the original data, first an index 

function is selected and then applied to the data. The 

following step sorts data into “bins” based on the in-

dexing function. The subsequent step selects data 

from the bins according to a selection function. The 

output is a FEM mesh. 

   So far, terrain surfaces have been discussed, but 

they do not provide support for true 3D spatial ob-

jects. The following sections discuss advances within 

the area of true 3D feature types within SDBMS.  

MULTIPATCH 

   The ESRI geo-database models support 3D objects 

in a feature class called multipatch, which is just 

another geometry type in the ESRI database. Multi-

patch is constructed much like the OpenGL 3D pri-

mitive triangle, in that it is constructed of strips and 

fans and defines an object’s boundaries through tri-

angular faces. Multipatch can be created using 

ESRI’s ArcObjects from raw source data or from ex-

isting geometries. Raw data are often provided by 

ASCII text files that contain a sequence of x-, y-, and 

z-coordinates that can be loaded into ESRI’s ArcCa-

talog. Within the geometry definition, the geometry 

type must have the attribute “esriGeometryMulti-

patch” set in order to properly consider the z-

coordinate for the third dimension. After creating the 

feature class, it can be populated with data in the 

form of either “triangle strips” or “triangle fans”. 

Each is, in essence, a collection of points (IPointCol-

lection in ESRI), where each point is added to the 

point collection, until the “triangle strip” or “triangle 

fan” is complete. Figure 8 illustrates an example of a 

multipatch object. 

 

Fig. (8) Multipatch [11] 

   For the computation of normals on faces in ArcOb-

jects, the points in a triangle must be arranged clock-

wise. This way ArcObjects can determine which side 

is the outside of a face. Once the IPointCollection is 

filled with all points, the collection is added to the 

geometry collection object, which is basically the 

multipatch feature. One of the main limitations of 

multipatch is its size in the database. ESRI notes that 

1.5km of a pipeline can be stored as a simple line fea-

ture using less than 1MB of memory, whereas the same 

object may require up to 100MB, when represented as a 

multipatch object [17]. 

Multipatches are designed to represent 3D volume ob-

jects. Some natural occurrences might have undefined 

volume boundaries. Patent US6839632 [33] proposes a 

method for constructing a 3D polygonal model of a 3D 

irregular volume using ESRI’s geo-database and the 

multipatch feature. This was developed to represent ir-

regular volumes, such as natural fields, where bounda-

ries are not fully specified. The resulting representation 

allows a user to “visualize the geometric and attribute 

relationships” between the irregular 3D bodies. First, a 

solid 3D irregular volume is modeled within the Arc-

GIS. Within this step, at least one 2D polygon is identi-

fied that serves as a boundary of the 3D irregular vo-

lume. Additionally, the top and bottom faces of the vo-

lume are estimated. Then, the multipatches are con-

structed of a network of triangular panels for top sur-

face, bottom surface, and the sides. A more flexible 

manner of describing 3D objects within an SIS are free-

form curves and surfaces, which are mathematical con-

structs and are discussed in the following section. 

FREEFORM CURVES A D SURFACES 

   Freeform curves and surfaces are widely used within 

Computer Aided Design (CAD) applications in order to 

visualize surfaces. For instance, patent US5237647 uti-

lizes sensors in order to capture an object and then em-

ploys freeform lines in order to generate a representa-

tion [34]. 

    General freeform curves and surfaces are defined 

through several attributes, among which are control 

points and certain vectors. Bézier, B-spline, and 

NURBS are generally used in order to model freeform 

curves, of which NURBS is the most general form [35]. 

This means that B-spline is a special case of NURBS, 

and Bézier is a special form of B-spline. Figure 9 illu-

strates a cubic Bézier curve, which requires four control 

points. A B-Spline also requires a knot vector. In addi-

tion to these parameters, NURBS also requires weight 

values. A freeform surface on the other hand only re-

quires a knot vector, degree, and u- and v-vectors [10]. 

While figure 9 illustrates a Bézier curve with four con-

trol points, figure 10 illustrates a Bézier surface which 

is based on 16 points. 

 RDBMS’ capability to extend data types and opera-

tions can be exploited in order to represent features via 

freeform curves. Pu, for instance, used freeform curves 

and surfaces to construct a 3D data type in Oracle Spa-

tial 10g [9]. For each free form curve, data types are 

created individually. Another approach might have 

been to create a data type just for NURBS and then to 

describe B-spline and Bézier curves from the NURBS 



representation, as B-spline and Bézier are special 

cases of NURBS. Pu [9] argues that leaving empty 

values for some of the parameters would decrease 

system efficiency. Additionally, the OGC spatial 

schema recommends distinct data types for different 

shapes. Furthermore, some geometry algorithms dif-

fer among curves. Irrespective of these issues, there 

are two possible ways of implementing the new type 

in Oracle Spatial. One option is to extend the 

SDO_GEOMETRY type. The attribute of its 

SDO_GTYPE has still a free range of IDs available 

for storing new data types. The new type and the 

geometry type are stored within the same data type 

and internally stored within the same table. Conse-

quently, spatial operations like spatial data insertion, 

spatial querying, and spatial indexing are natively 

supported within Oracle Spatial. Moreover, the new 

type is particularly easy to implement, as the only 

steps required are to assign a new number to the 

SDO_GTYPE and to set up rules for the 

SDO_ELEM_INFO field. On the other hand, storing 

new data types in SDO_GEOMETRY results in the 

storage of significant amounts of redundant data. Ad-

ditionally, none of the existing spatial functions sup-

port freeform data. Geometric functions for simple 

data types are defined differently for 2D and 3D ob-

jects and, thus, require different mathematical algo-

rithms for operations such as insertion and length. Pu, 

however, followed a different approach, the one rec-

ommended by the OGC of implementing a separate 

data type for each identifiable geometry (a B-Spline 

data type for a B-spline geometry, etc.). Due to the 

fact that Pu’s implementation is not based on the 

SDO_GEOMETRY type within Oracle Spatial, im-

plementation should be exportable with little effort to 

create custom data types in other spatial DBMS, such 

as PostGIS. 

 

Fig. (9) Bézier curve with 4 control points [9] 

   Large data sets in particular need to be managed ef-

ficiently in order to allow for queries to be processed 

in a timely manner. In 2D, several standards have 

been implemented, with R-trees [3] being among the 

most popular approaches. Adapting these techniques 

to the third dimension is, however, not trivial. The 

following section presents current advances with re-

gard to indexing spatial data in SISs.  

 

Fig. (10) Bézier surface with 16 control points [9] 

I DEXI G 

   Indexing in a database is used to speed up operations. 

A spatial index organizes the space and the objects 

within this space in a particular manner, so that a spatial 

query or a spatial operator does not have to traverse 

through the complete table to retrieve specific data. 

SDBMS vendors typically offer two types of spatial in-

dexes:   quadtrees [36] and R-trees [3]. There are sever-

al derivates of these, however they are not implemented 

presently within SDBMS. R-trees seem particularly 

popular with SDBMS vendors, as most indexes are ei-

ther based on R-trees or use R-trees directly through a 

dedicated data structure. Alternatively they map spatial 

objects into one-dimensional space in order to use a 

standard index, such as a B-tree [37]. In 2D, an R-tree 

is constructed by enclosing an object into a minimum 

bounding rectangle (MBR) [3]. Theoretically, it should 

be trivial to extend a rectangle into 3D by enclosing an 

object by a box. Another approach to elevate a 2D spa-

tial index to 3D is the development of octree, which is 

based on a quadtree structure [36]. In this data structure 

each node can have up to four child nodes and by doing 

so decomposes the space into 2D cells. Contrary to the 

quadtree, each node in an octree can have up to eight 

child nodes and, thus, divides the space not into 2D 

cells but into 3D cubes. However, this approach is not 

implemented presently within commercial systems. 

   Indexing is implemented differently by particular 

vendors, which might be a function of historical prod-

uct development, where the current spatial index has 

evolved out of an existing technology. PostgreSQL, for 

instance, supports three indexing structures:  B-tree for 

data that can be sorted along one axis, R-tree for spatial 

data which is then broken up into rectangles, sub-

rectangles and sub-subrectangles, and the Generalized 

Search Tree (GiST) index, a “template data structure 

for abstract data types” that offers more robust support 

for spatial indexing than the PostgreSQL R-tree imple-

mentation [38]. GiST is a template for implementing 

other indexing methods, such as B-tree and R-tree, and 

is a balanced tree structure that contains <key, pointer> 

pairs. The key is a member of a user-defined class. It 



represents an attribute that is valid for all items that 

the pointer element can reach. A key in an R-tree like 

GiST refers to a bounding box. For instance:  all 

items that the pointer reaches are in Ireland. PostGIS 

consequently offers an R-tree index on top of GiST 

[39]. Figure 11 illustrates the concept of a GiST im-

plementation for data access methods. 

  Compared to a normal R-tree index, a GiST index is 

“null save” (i.e. GiST can index columns that contain 

null values). In addition to this, PostgeSQL allows a 

page size of 8K; R-trees fail when trying to index 

GIS data that exceeds 8K. As a consequence of this, 

GiST supports “lossiness”, which means that only 

important parts of an object (i.e. the bounding boxes) 

are stored in the index [39].  MS SQL also works 

with a limit of 8K for page sizes (they are called 

blocks in Oracle), whereas Oracle offers a variable 

page size of 2, 4, 8 or 16K. 

 

Fig. (11) Example Implementation of GiST [40] 

Oracle Spatial 11g also provides a spatial index 

on the basis of an R-tree and a partitioning function 

for logical tables, which includes their spatial index-

es. Partitioning delivers significant performance and 

manageability advantages. Additionally, the creation 

of a spatial index can be performed in parallel and 

spatial queries themselves can be performed in paral-

lel. This is particularly useful for “nearest neighbor”, 

“within distance”, and “relate” spatial queries [8].  

   ESRI’s ArcGIS geo-database offers a spatial index 

on their shapefile, as well as the ArcSDE geo-

database. In contrast to the previously presented spa-

tial databases, ArcGIS does not use a tree-structure 

for the storage of a spatial index, but instead uses a 

grid [11]. ArcGIS determines automatically which 

grid size is appropriate for a new feature class that 

has been generated and filled with data. If new fea-

tures are added to an existing feature class, the in-

dex’s grid size is not automatically computed, but has 

to be set by the user. The main advantage of a grid-

based spatial index over a tree structure is that since the 

spatial index structure can be created first, the added 

data does not require any changes to the index structure. 

On the other hand, a tree structure might be more effi-

cient as it is tied to the internal data storage structure 

[29]. Of notes is the fact that the Grid spatial index em-

ployed in ArcGIS does not support 3D aspects. 

   In most cases, indexes only support two dimensionali-

ty with simple 3D extensions [40]. Efficient querying of 

a spatial database however, requires a true 3D spatial 

index. A major challenge is processing the range of 

geometries that may need to be stored within the data-

base, without significant efficency losses. For instance, 

polygons that contain a multitude of vertices and span a 

wide area may significantly slow down querying opera-

tions. This might be solved through clipping polygons 

before applying an index [39]. The efficiency of grid 

index techniques depends on the efficient determination 

of the size of each cell in the grid. Furthermore, storage 

becomes an issue in spatial indexes, as they generally 

become quite large. 

   Patent application US20080133469 offers an im-

provement of a spatial grid index by determining the 

optimum grid cell size [41]. In particular, this invention 

improves the grid indexing process that locates the min-

imum bounding rectangle (MBR) and the associated 

geometric shape. First, an index performance evaluator 

was developed called the “Ne”. The “Ne” evaluates the 

grid performance and is based on statistical data of the 

grid and is used to evaluate the approach. The indexing 

mechanism works on a per level basis through the grid 

structure. The grid resembles a cube. Firstly, it deter-

mines whether more than four grid cells overlap any 

geometric shape. If yes, then the appropriate grid cell 

size is determined by analyzing information for each 

grid level by assessing the following information: 

• Geometric shapes and the number of grid cells 

that overlap 

• Average size of the geometric shape 

• Number of index entries/geometric shapes 

• Threshold to determine when a new indexing 

level should be used 

 

   The procedure then is to filter out level i-1 index en-

tries that are within the threshold. Next, a set of consol-

idation entries for the number of geometric shapes that 

overlap with the same number of grid cells must be de-

termined. These consolidation entries are sorted in des-

cending order according to the number of geometric 

shapes. From this, a consolidation entry based on the 

maximum number of geometric shapes that overlap 

with more than the threshold grid cells can be derived. 

The resulting grid cell size for that level “i” is the grid 

cell size of the maximum consolidation entry. The Ne 

shows that this procedure results in better performance 

for spatial search queries than previous methods. 



 

   Patent application US20080133559 also aims at 

improving spatial grid indexing [42]. This invention 

reduces the actual number of indexes in a grid index. 

A pool storage area is established, and a threshold is 

determined that regulates how many grid cells a 

shape may overlap. If the threshold number is not ex-

ceeded, the geometric shape is stored within the grid 

index. However, if the geometric shape exceeds the 

threshold number, it is saved within a “pool storage 

area”. This “interim area” is examined further in the 

next step. If a geometric shape in this step overlaps 

more than a predefined number of grid cells, the 

shape is then overlaid with a coarser level grid. If it 

does not exceed the number, this grid level is used for 

indexing. If after application of a coarser level grid, 

the geometric shape still overlaps a certain number of 

grid cells after two iterations of this procedure, the 

geometric shape is then stored in a general pool. If it 

does not overlap the maximum number of grid cells 

at this stage, this level of coarseness is used for in-

dexing. 

 

   Patent US6463180 suggests two methods to reduce 

storage of spatial data that is represented through an 

R-tree structure [43]. The first encodes the relation-

ship between parent and child nodes and stores this 

relationship in a file. The other method uses a poin-

ter-less preorder traversal.  With this, each node’s 

spatial extent is encoded with respect to the parent 

node’s extent. The encoded spatial identifier therein 

contains at least octant overlap.  

 

  With regard to producing efficient spatial indexes 

for multi-dimensional data, several strategies have 

been developed to increase index efficiencies. How-

ever, vendor support for these is limited, and creation 

of true 3D indexes is still an ongoing research prob-

lem.  

CURRE T A D FUTURE DEVELOPME TS 

   This paper presented developments on the support 

of 3D data types in SIS. DEMs and TINs provide 

2.5D support, which are often employed for the re-

presentation of surfaces. Native support for TINs is 

provided by Oracle spatial 11g, as well as by the 

ESRI ArcGIS geo-database but not PostGIS. Several 

advances in the area of DEMs have been presented in 

the form of recent patents that address the issue of 

automatic generation of DEMs for difficult areas, 

such as coastal regions and urban areas.   

   LiDAR point cloud data are increasingly used as 

input for DEMs due to the ease of acquiring highly 

accurate and fast survey information, but they pose 

significant challenges for SISs due to the need to as-

sign various portions of the vast data to feature types 

within spatial databases, along with their subsequent 

hosting and querying. Recent patents provide some ini-

tial solutions. 

   Support for 3D has been greatly improved by SIS 

vendors who now offer 3D data types, such as ESRI’s 

multipatch and 3D volumetric data types in Oracle, 

such as simple solids. Due to the extensibility of SISs, it 

is possible to implement new data types including those 

based on freeform curves. 

   In order to query these new data types spatial index-

ing mechanisms supporting 3D data are necessary. True 

3D indexing is still an emerging area of research within 

SISs. Approaches that are currently used by commercial 

as well as open source products have been presented. 

For example R-tree is the most popular indexing tech-

nology for spatial data. However, indexes can become 

quite large. While several patented innovations for effi-

cient storage of indexes have been presented, little has 

been documented on the support for indexing for true 

3D data types. Innovation in this area is likely to in-

crease as most SDBMS vendors are in need of efficient 

storage for querying of the new 3D data types. 

  In the near future, it is highly likely that more SIS 

vendors will incorporate 3D functionality into their 

products. Additionally, it can be expected that current 

technology will evolve towards offering greater flex-

ibility. For instance, it is not possible currently to up-

date a TIN within Oracle Spatial 11g once it has been 

created [17]. Research within this area can be expected 

soon to allow more dynamic usage of 2.5D and 3D 

technology. 

ACK OWLEDGEME TS 

This work was generously support by Ireland’s Nation-

al Digital Research Centre’s grant EoI/0701/008 “Host-

ing and analysis capabilities for 3D LiDAR point cloud 

data”, EoI/0701/008. Data for some of this work was 

provided by Science Foundation Ireland’s sponsored 

grant 05/PICA/I830 GUILD: Generating Urban Infra-

structures from LIDAR Data. 

REFERE CES  

[1]. Sheckhar S, Chawla S. Spatial databases - a tour, Prentice 

Hall, 2003. 

[2]. Ford A. ESRI ArcUser. January - March 2007. 
[3]. Guttmann A., R-tree: A dynamic index structure for spa-

tial searching, SIGMOD Conference, ACM Press, 1984.  
[4]. Bruening M, Zlatanova S. 3D Geo-DBMS. Directions 

Magazine, 2004. 

[5]. Davis B. GIS: A visual approach, One World Press, 1996. 
[6]. OGC. OGC Abstract specification. OpenGIS Project Doc-

ument  Number 01-101. [Online] OGC, 2008. [Cited: 15 

September 2008.] 
http://www.opengeospatial.org/standards/as. 

[7]. ISO. Geographic information - spatial schema. 2003. ISO 

19107. 
[8]. Oracle. Oracle Spatial 11g: Advanced Spatial Data Man-

agement for Enterprise Applications. [White Paper]. July 

2007. 



[9]. Pu S. Managing freedom curves and surfaces in a spa-

tial DBMS, The Netherlands : Delft University of 
Technology, 2005. Master Thesis. 

[10]. OGC. OpenGIS® Implementation specification for geo-

graphic information - simple feature access - Part 1: 
Common architecture. [ed.] J.R. Herring. 2006. 

[11]. ESRI. ArcGIS Desktop Help 9.2. [Online] 11 June 

2008. [Cited: 18 September 2008.]   
http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?T

opicName=welcome. 

[12]. Wilson JP, Gallant JC. Terrain analysis: Principles and 
applications, John Wiley and Sons, 2000. 

[13]. Shiode N. 3D urban models: recent developments in the 

digital modeling of urban environments in three dimen-
sions. Geo J 2001; 53: 263-269. 

[14]. Chang, C.K., Chen, L.H., Wu, X.Y.:  US7065461 

(2007). 
[15]. Chang, C.K.: US7117116 (2006). 

[16]. Chang, C.K., Wu, X.Y.: US20070257908 (2007). 

[17]. Kothuri, R., Godfrind, A. and Beinat, E. Pro Oracle 
Spatial for Oracle Database 11g, Apress, 2007. 

[18]. Cote P. Digital elevation models. [Online] Harvard 

University Graduate School of Design. [Cited: 15 Sep-
tember 2008.] 

http://www.gsd.harvard.edu/gis/manual/dem. 

[19]. Kim, S.B., Kim, T.G.: US6748121(2004). 
[20]. McDowall, T., et al., US7298891 (2007) 

[21]. McDowall, T., et al., WO06019595 (2006) 
[22]. McDowall, T., et al., EP1779291 (2007)  

[23]. Rahmes, M., et al., US7191066 (2007) 

[24]. Rahmes, M., et al. , EP1851686 (2007)  
[25]. Rahmes, M., et al. WO06086252 ( 2006)  

[26]. Roche, S., O'Neill, K., Shackelton, C.: WO0126059 

(2001). 
[27]. Longley, P.A., et al. Geographic Information Systems 

and Sciencee. Chichester : Whiley , 2001. 
[28]. Franklin, W.R. Triangular irregular network to approx-

imate digital terrain. Electrical, Computer and Systems 

Engineering Department, Rensselaer Polytechnic Insti-

tute. Troy, NY, US : s.n., 1994. Section 2.3 Research 
Interests. 

[29]. Stanzione T, Johnson K. GIS enabled modeling and si-

mulation (GEMS). ESRI. 2007. ESRI UC 2007. 
[30]. Pilouk S. A topological model for a 3-dimensional spa-

tial information system. ITC, The Netherlands. 1996. 

PhD Thesis. 
[31]. Courtin O, Jonglez D. PostGIS and X3D. [Presentation 

for the Free and open source software for geospatial 

Conference]. 2007. 
[32]. Bras, R.L., et al.: WO04097574 (2004). 

[33]. Grace, J.D.:  US6839632 (2005). 

[34]. Roberts, A.F. et al., US5237647 (1993). 
[35]. Farin G. Curves and surfaces for computer aided geo-

metric design: A practical guide, Academic Press, 1990. 

[36]. Samet H. Hierarchical spatial data structures. Int Sym-
posium on Advances in Spatial Databases. 1989; 89: 

17-18. 

[37]. Bayer R. Binary B-Trees for virtual memory, ACM 
SIGFIDET Workshop. pp. 219-235 San Diego, Califor-
nia, US, 1971.. 

[38]. Geo-Consortium. Introduction to spatial data manage-
ment with PostGIS. 2007. 

[39]. Ramsey P. PostGIS Manual. [Online] Refractions. 

[Cited: 15 September 2008.] 
http://postgis.refractions.net/documentation/. 

[40]. Arens C, Stoter J, van Oosterom P. Modeling 3D spatial 

objects in a geo-DBMS using a 3D primitive. J Comput  
Geosci 2005; 31: 165-177. 

[41]. Chen, Y., Rao, F. Stolze, K.: US20080133469 (2008). 

[42]. Adler, D.W., Stolze, K.: US20080133559 (2008). 
[43]. Krishnaswamy, R.P.: US6463180 (2002) 

 

 


	Three-Dimensional Spatial Information Systems: State of the Art Review
	Recommended Citation
	Authors

	Microsoft Word - bentham_galley proof.doc

