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 8 

Abstract 9 

For many good and practical reasons, lumped rainfall-runoff models are widely used 10 

to represent a catchment‟s response to rainfall. However, they have some 11 

acknowledged limitation, some of which are addressed here using a neuro-fuzzy 12 

model to combine, in an optimal way, a number of lumped-sub-models. For instance, 13 

to address temporal variation, one of the sub-models in the combination may perform 14 

well under flood conditions and another under drier conditions and the neuro- fuzzy 15 

system would combine their outputs for each time-step in a manner depending on the 16 

prevailing conditions. Similarly to address spatial variation, one of the sub-models 17 

may perform well for the upland parts of the catchment and another for the lowland 18 

parts and again the neuro-fuzzy system is expected to combine the different outputs 19 

appropriately. The proposed combination method can use any lumped catchment 20 

model, but has been tested here with the Simple Linear model (SLM) and the Soil 21 

Moisture and Accounting Routing (SMAR) models. Eleven catchments with different 22 

hydrological and meteorological conditions have been used to assess the models with 23 

respect to temporal variations in response while one catchment is used to address the 24 

effect of spatial variation. The neuro-fuzzy combined-sub-models of SLM and SMAR 25 

modelled the temporal and spatial variation in catchment response better than the 26 



 2 

lumped version of each model. Also the SMAR model significantly outperformed the 1 

SLM either as a lumped model or as a sub-model in any of the combinations.  2 

 3 

Keywords: Neuro-fuzzy; lumped model; combined-sub-models; Simple Linear 4 

model; Soil Moisture and Accounting Routing model; rainfall-runoff modelling 5 
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1. Introduction 1 

Mathematical models are widely used in water resources applications despite 2 

considerable difficulties arising from catchment heterogeneity, strong non-linearity in 3 

its response to precipitation and uncertainties in parameter estimation. In many 4 

practical cases, simple lumped models of either the black-box or conceptual type 5 

often perform adequately, and compare well with the more complex distributed-6 

models, particularly for flood modelling in small catchments and for behaviour within 7 

the range of the data used to calibrate its parameters (Beven, 2000). Larger 8 

catchments can be modelled by associating different sub-lumped-models with 9 

different spatial units within the catchment (e.g. Chen and Adams, 2006; Marechal 10 

and Holman, 2005; Ajami et al., 2004). Similarly different sub-models could be used 11 

to represent the various temporal patterns in the system‟s response (e.g. Shamseldin 12 

and O‟Connor, 1996; Ahsan and O‟Connor, 1994; Kachroo and Natale, 1992). The 13 

success of this approach is primarily because of its ability to capture some of the non-14 

linearity in the catchment behaviour resulting from its spatial heterogeneity and time-15 

varying character. The choice of a suitable lumped model for use in each of the sub-16 

catchments is critical to its success and practicality. It should have a small number of 17 

parameters to reduce the total number to be estimated for the combined model thereby 18 

reducing the computational requirements. This also is likely to reduce potential 19 

problems caused by model over-parameterisation, such as ill-conditioning (Bruen and 20 

Dooge, 1992), or equifinality (Beven, 1993) in which a number of different 21 

combinations of parameter values give similar model fits and so a single optimal 22 

parameter set is difficult to determine. 23 

 24 



 4 

One obvious symptom of non-linearity is the very different responses of the 1 

catchment to different flow regimes. The direct way of dealing with this is to build the 2 

complicated non-linear physical relationships into the model. An alternative is to have 3 

a different, but simple, sub-model for each different flow regime. For instance, Chen 4 

and Adams (2006) used a number of sub-models to simulate spatial variation in the 5 

rainfall-runoff relationship. The estimated runoffs from all sub-models were 6 

combined together using an artificial neural network to estimate the total runoff. 7 

Moreover, they investigated the suitability of using sub-models of three different 8 

conceptual models including the Xinanjiang Model (Zhao and Liu, 1995), the Soil 9 

Moisture Accounting and Routing (SMAR) Model (O‟Connell et al., 1970) and the 10 

Tank Model (Sugawara, 1995). A significant improvement was obtained when using 11 

different sub-models compared to a single lumped model. Kachroo and Natale (1992) 12 

also used three sub-models using the same Simple Linear Model (SLM) (Nash and 13 

Foley, 1982) structure with different parameter sets to represent the response during 14 

low, medium and high flow regimes. Although the total number of parameters is 15 

tripled, all of the sub-lumped-model parameters could be calibrated using the least-16 

squares criterion. The choice of which of the sub-model to use at each time step is 17 

guided by a type of wetness index taken as the current observed discharge in this case. 18 

When no observed discharge is available at the current time step, (e.g. when either (a) 19 

simulating or (b) forecasting beyond a single time step) the discharge simulated by the 20 

lumped model is used for this index. The combined-sub-lumped models have shown 21 

significant improvement over the lumped one.  22 

 23 

Building on these efforts to improve the performance of combined-sub-lumped-24 

models, this paper reports the investigation of a fuzzy method proposed to combine 25 
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sub-lumped-models of two types, black box model and conceptual model. The former 1 

is the Simple Linear Model (SLM) (Nash and Foley, 1982) and the latter is the Soil 2 

Moisture Accounting and Routing model (SMAR) (O‟Connell et al., 1970). Each of 3 

the two models has been included into a framework of a special type of Neuro-Fuzzy 4 

Model (NFM), called an Adaptive Neuro-Fuzzy Inference System. The first objective 5 

is to produce a combined-lumped-model better able to represent the spatial and 6 

temporal variability of the catchment‟s response to rainfall. The resulting NFM 7 

addresses the temporal variations in response by using a number of sub-models for the 8 

SLM and the SMAR models for different regimes (e.g. separate sub-models for floods 9 

and low flow situations). Each of the sub-models describes a particular feature in the 10 

temporal pattern of the catchment‟s response. The NFM is assessed by applying it to 11 

eleven different catchments from around the world. In the second part of this study an 12 

NFM (for the SLM and for the SMAR model) is developed that is able to identify 13 

homogenous spatial units within a catchment on which the sub-models can be based. 14 

In this, the NFM structure of the first part is further coupled to a subtractive fuzzy 15 

clustering algorithm (Vernieuwe et al., 2005) to determine the homogeneous spatial 16 

units using a number of spatial variables specified on a catchment grid. Finally, using 17 

one of the catchments which has the required spatial database, namely, the Brosna, the 18 

NFM developed in the second part of the study is tested and its results compared with 19 

those of the corresponding model developed in the first part of the study. 20 

 21 

 The proposed method is described in section 2 and the NFM is reviewed in section 3. 22 

The two rainfall-runoff models, SLM and SMAR, are briefly described in sections 4 23 

and 5 respectively. In section 6, a detailed description is given of the two NFMs 24 

applied in this study. In the final sections, 7 and 8, the results of the NFM applications 25 



 6 

are presented and conclusions are drawn. Suggestions for further work are added in 1 

section 9. 2 

 3 

2. Interpretation of the proposed sub-models combination method 4 

The method of sub-model combination used in this study is different from the flood 5 

forecast model combination methods proposed in earlier work (e.g. Shamseldin et al., 6 

1997; See and Openshaw, 2000; See and Openshaw, 1999; Xiong et al., 2001; 7 

Abrahart and See, 2002; Coulibaly et al., 2005; Fenicia et al. 2007). In those methods, 8 

a number of models each with different internal structures were individually applied 9 

to the entire study catchment and their simulated outputs were combined. Each model 10 

was attempting the same task, to simulate the entire catchment. In contrast, in our 11 

approach each model is truly a sub-model, assigned to simulate a particular part of the 12 

catchment or a specific range of responses, e.g. for a particular flow regime. 13 

 14 

Following the multi-linear model approach pioneered by Bruen (1985), Becker and 15 

Kundzewicz (1987), Kachroo and Natal (1992), and Todini and Wallis (1997), our 16 

proposed sub-model approach was previously used to build different rainfall-runoff 17 

models. For instance, Bruen (1985) constructed a quasi-linear model from a 18 

combination of linear sub-models. An illustration of the structure of this quasi-linear 19 

model, with a single threshold, is given in Fig. 1. Note: (i) The input series (I) is 20 

effectively divided into a number of separate series (e.g. I1, I2, etc.), each of the same 21 

length as the original. The division procedure is preformed in two steps. First, the 22 

range of values in the input series is divided into a number of parts by threshold levels 23 

(partitions) of fixed values. Then the magnitude of each input value determines the 24 

band or division in which it lies, and the entire input in that band is then assigned to 25 
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the corresponding time series. (ii) The output from each of the separated input series 1 

(e.g. O1, O2) is obtained from a number of separate models (e.g. model1, model2). (iii) 2 

The total output (e.g. Of) is the sum of the outputs from each of the different models 3 

applied to the corresponding separated inputs. This allows the overall model to 4 

respond differently to low rainfall compared to high rainfall. 5 

 6 

In essence a number of sub-models are constructed to describe the relationship 7 

between the input and the output for different ranges of their values representing 8 

different hydrologic conditions. This requires that each input value should be assigned 9 

to a specific sub-set (e.g. low values, medium values, high values). Such an approach 10 

assumes the inputs can be assigned to the sub-sets with certainty but there are times 11 

where uncertainty might occur, such as when the magnitude of an input value is close 12 

to a partition threshold value. The method proposed addresses this uncertainty using 13 

fuzzy logic theory whereby different levels of memberships of input to all sub-sets are 14 

estimated. These degrees of memberships can be taken as the weights given to the 15 

outputs from the models corresponding to each of the input sub-sets.  16 

 17 

To illustrate our proposed method Fig.1 has been extended in Fig. 2 which shows, still 18 

for the case of a single threshold, how the concept of the membership of fuzzy sub-19 

sets is used to define weights given to the sub-models. Unlike in Bruen‟s method 20 

(Bruen, 1985), the input series (e.g. I) is not separated here but alternatively it is 21 

assumed that for certain hydrologic conditions there is a sub-model (e.g. model1, 22 

model2) and a membership function (e.g. mf1, mf2) associated with it. The former 23 

produces the output (e.g. O1, O2) from the sub-model while the latter calculates 24 

membership values used to estimate the weight given to that output (e.g. w1, w2). The 25 
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final output value (e.g. Of) from the combination is the weighted average of the 1 

outputs from the models used for each sub-set. It is worth mentioning that the method 2 

described above is valid for the case of a lumped catchment. However, if the 3 

catchment is divided into sub-catchments, then the method can be applied separately 4 

to each sub-catchment and the final output can be estimated as the area-weighted 5 

average of the outputs of each of the sub-catchments (where routing to the catchment 6 

outlet is considered part of the sub-model). 7 

 8 

3. Neuro-Fuzzy Model (NFM) 9 

The Neuro-Fuzzy Model (NFM) used in this study implements the Takagi-Sugeno 10 

fuzzy approach (Takagi and Sugeno, 1985) to obtain a direct crisp value for the output 11 

variable(s) from fuzzy input variable(s). Jacquin and Shamseldin (2006) explored the 12 

application of Takagi-Sugeno fuzzy inference systems to rainfall-runoff modelling. 13 

They developed two different fuzzy models to account for the non-linearity in the 14 

catchment response due to both antecedent catchment wetness and seasonality. 15 

Vernieuwe et al. (2005) also investigated fuzzy rule-based models of the Takagi-16 

Sugeno type relating rainfall to catchment discharge. Their models differed in the 17 

methods used to partition the spaces of the input and output variables and hence the 18 

identification of the number of membership functions and their locations for each 19 

variable. Earlier, the Takagi-Sugeno model was used by Xiong et al (2001) in the 20 

multi-model output combination context. All these studies produced models by 21 

combining different sub-models and this also has been followed in the present study. 22 

 23 

A fuzzy number consists of a number of sub-sets each of which has an interval of 24 

possible values between specified minimum and maximum limits. For every point in 25 
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the interval a corresponding membership function is defined that represents, within 1 

the interval, the degree of confidence one might have for a particular value of the 2 

fuzzy number (Ganoulis, 1994).  3 

 4 

Generally the NFM consists of five layers configured analogously to any multi-layer 5 

feed-forward neural network. Chen et al. (2006) named these five layers according to 6 

their operative function, as „input nodes‟, „rule nodes‟, „average nodes‟, „consequent 7 

nodes‟, and „output nodes‟ respectively. Fig. 3 illustrates an NFM with two input 8 

variables, x and y, each of which has two fuzzy sub-sets, A1 and A2 for x and B1 and 9 

B2 for y. The first layer in the Figure thus has four nodes, one for each of the two 10 

fuzzy sets of each of the two input variables. Each node in the first layer receives a 11 

crisp value of one of the input variables (e.g. x) and, for each fuzzy sub-set of this 12 

input variable, it uses a membership function (e.g. A1) to generate a membership 13 

grade (e.g. uA1). Different shapes for the membership function, such as Gaussian, 14 

Generalised bell shaped, trapezoidal shaped, and triangular, can be used.  15 

 16 

Although the second, third and fourth layers have different functions each has the 17 

same number of nodes. Each node in these three layers is assigned to a certain IF-18 

THEN rule, called “the antecedent part” of the NFM. The total number of IF-THEN 19 

rules is determined by the number of possible combinations of the fuzzy sub-sets of 20 

the input variables. This procedure gives the neuro-fuzzy model an advantage over the 21 

ordinary fuzzy logic model because the former does not require the modeller to 22 

specify in advance the number of rules. 23 

 24 
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The function of each node in the second layer is to multiply the membership grades of 1 

all fuzzy sub-sets involved in a specific IF-THEN rule (e.g. uA1 and uB1) to obtain the 2 

weight for this rule (e.g. w1) which is normalised in the corresponding node in the 3 

third layer. The normalised weight (indicated by a bar 1



w ) is obtained by dividing the 4 

weight assigned to that particular IF-THEN rule by the sum of the weights for all 5 

rules (e.g. )/( 432111 wwwwww 


). The nodes in the fourth layer compute the 6 

fractional contribution to the final model output(s) of each IF-THEN rule and this 7 

layer represents “the consequent part” of the NFM. This fraction is the product of the 8 

normalised weight of the associated IF-THEN rule (e.g. 1



w ) by a value calculated 9 

from a function associated with this rule to transform the crisp values of the inputs 10 

into a scalar output (e.g. f1(x,y)). In the original NFM formulation, a first order 11 

polynomial model, such as a Linear Transfer Function (Box and Jenkins, 1976), was 12 

used for this purpose. However, in this study the black-box SLM and conceptual 13 

SMAR catchment models are used instead. 14 

 15 

In the fifth layer, each output variable is represented by a neuron. The final output 16 

produced by each neuron in the fifth layer is the aggregation of the outputs 17 

contributed by all the associated IF-THEN rules. Fig. 3 illustrates the case of a single 18 

output Z, from the single neuron in the fifth layer, having the form: 19 

        yxfwyxfwyxfwyxfwZ ,*,*,*,* 44332211



    (1) 20 

 21 

4. Simple Linear Model 22 

The Simple Linear Model (SLM) was introduced by Nash and Foley (1982) as a 23 

naïve, benchmark, model against which the performance of more substantive and 24 
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sophisticated rainfall-runoff models could be compared. The SLM assumes a linear 1 

time invariant relationship between rainfall and discharge, expressed by a convolution 2 

summation relation. Here, an additional term has been added in order to include, 3 

albeit crudely, losses due to evaporation in the modelling, giving the equation: 4 

 iij

m

j

jii ehrGq   


 .
1

1        (2) 5 

where qi, ri, and ei are the discharge, rainfall and evaporation respectively at the i
th

 6 

time step, hj is the j
th

 ordinate of the discrete pulse response function, m is the memory 7 

length of the system, G is the gain factor,   is the coefficient of the evaporation term 8 

(this can be set to zero if evaporation is to be ignored) and i  is the error term. 9 

Usually, the sum of the hj terms is unity. 10 

 11 

This is a multiple linear regression of the observed discharge on the m previous 12 

observed rainfall values and the current evaporation value. For the pulse response 13 

terms, hj, either a parametric or non-parametric form can be used, and the two-14 

parameters Nash cascade model (Nash, 1957) is used here. The discrete hj terms are 15 

calculated from its impulse response function h(t) which has the following form: 16 

    ktn
ktnkth /1

exp//1)( 
        (3) 17 

where  n  is the gamma function.  18 

 19 

Thus the SLM, with the pulse response function in parametric form, has four 20 

parameters, G, n, k, and  .  21 

 22 

5. Soil Moisture Accounting and Routing (SMAR) model 23 
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O‟Connell et al. (1970) developed a quasi-physical rainfall-runoff model known as 1 

the layers model but later on renamed the Soil Moisture Accounting and Routing 2 

(SMAR) model. This model consists of two complementary components. The first 3 

implements a water balance (the soil moisture accounting procedure) between rainfall, 4 

evaporation, runoff, and simulated soil storage for each time step. The second routes 5 

the calculated runoff to the catchment outlet, taking account of attenuation and wave 6 

diffusive effects. A number of modifications to the original structure of the model 7 

have been introduced (Khan, 1986; Liang, 1992) and the latest version by Tan and 8 

O‟Connor (1996) is used here. It has eight parameters in the water balance component 9 

and three parameters in the routing component. In addition, the initial condition of the 10 

groundwater storage is considered as a parameter bringing the total number of 11 

parameters to twelve.  12 

 13 

6. Description of the proposed NFM 14 

Ozelkan and Duckstein (2001) described any catchment model as a system composed 15 

of sub-modules to represent the sub-elements of this modelled system coupled 16 

together in order to produce a synergic effect reflected at the output of the system. 17 

The representation of the catchment model in this modal structure is equivalent to the 18 

branching structure in an algorithm flow diagram resulting from „IF-THEN‟ fuzzy 19 

rules (Gupta and Sorooshian, 1983). In the present work, the aim is not to utilise the 20 

„IF-THEN‟ fuzzy rules as the model core but rather to improve the performance of 21 

deterministic catchment models by using a number of „IF-THEN‟ fuzzy rules to create 22 

specific localised versions of these models which are better able to respond to local 23 

variations in the pattern of temporal and spatial data. The approach is similar to that of 24 

Jaquin and Shamseldin (2006) who investigated the combination of different 25 
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empirical sub-models, using a fuzzy logic model, to account separately for variation 1 

in catchment wetness and for catchment seasonality. 2 

 3 

In this study, temporal variations are accounted for in a separate modelling scenario, 4 

called NFM_T, and the spatial variations in another one, called NFM_S. The NFM 5 

structure for both scenarios is similar to the one illustrated in Fig. 1. All NFMs used in 6 

this study employ the Gaussian function to represent the membership function of all 7 

temporal input variables to the models. This function has the following analytical 8 

expression: 9 

    22
2/exp cxxu           (4) 10 

where u(x) is membership value of a variable x to certain fuzzy sub-set, and 11 

parameters c and   specify the location and spread of the function and require 12 

calibration. 13 

 14 

As mentioned earlier, the two models, SLM and SMAR, are used in the consequent 15 

part of the NFM in both modelling scenarios. It is worthwhile stressing at this point 16 

that the resulting consequent part of the NFM for each scenario can be visualised as a 17 

collection of either SLM or SMAR sub- or local-models determined according to the 18 

IF-THEN rules acting in parallel. Indeed it is the generation of such a configuration, 19 

as an alternative method of involving the temporal and spatial pattern variations of the 20 

variables in modelling the rainfall-runoff relationship, that is sought in this study.  21 

 22 

6.1. NFM_T modelling scenario 23 

In the NFM_T scenario there are two inputs, rainfall and evaporation, and the output, 24 

discharge, is calculated using one or other of the catchment models. To distinguish 25 
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between the NFM_T variant which uses SLM and the other which uses SMAR in the 1 

consequent part they are called NFM_T_SLM and NFM_T_SMAR respectively. For 2 

each model a total of ten possible rainfall and evaporation fuzzy sub-set combinations 3 

are formulated as indicated in Table 1. The performances of all ten cases are 4 

evaluated separately for eleven catchments from different parts in the world. Details 5 

of these eleven catchments are given in Table 2. 6 

 7 

The total number of parameters (npar) requiring calibration is determined from 8 

(i) number of fuzzy subsets for the rainfall (nrfsub) and the evaporation (nefsub);  9 

(ii) number of the IF-THEN rules (this is equal to nrfsub * nefsub); and  10 

(iii) number of the model parameters (P) ( 4 for SLM and 12 for SMAR).  11 

The relation used to calculate npar is as follow:  12 

    Pnenrnenrnpar fsubfsubfsubfsub ***2       (5) 13 

The first term in the above equation gives the total number of the Gaussian function 14 

parameters for all fuzzy sub-sets while the second term gives the total number of the 15 

SLM or SMAR model parameters. Thus there are two sets of parameters that need to 16 

be determined by the calibration process. The first set is the parameters of the 17 

Gaussian membership functions of the rainfall and evaporation. The second set is the 18 

parameters of the models (SLM and SMAR) which are used to relate the rainfall and 19 

evaporation (input variables) with the discharge (output variable). The overall 20 

optimisation problem is non-linear and it has been found that if the two sets of 21 

parameters are determined simultaneously the calibration is often poor. Hence the 22 

calibration is performed in a sequential iterative procedure as follows; (i) Initial 23 

values are given to the parameters of the SLM and SMAR models, (ii) Holding the 24 

SLM and SMAR model parameters constant, the parameters of the Gaussian function 25 
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sub-sets of the rainfall and evaporation are determined by using the Genetic algorithm 1 

(Holland, 1975). (iii) The Gaussian function parameters are then held constant and the 2 

parameters of SLM and SMAR models are recalibrated in a second optimisation step. 3 

The least squares method is used for the linear optimisation problem required by the 4 

NFM_T_SLM whereas the Genetic algorithm is used for the non-linear one in the 5 

NFM_T_SMAR. (iv) If the resulting objective function is less than a specified 6 

tolerance the calibration stops otherwise step (ii) to (iii) are repeated. Note that the 7 

initial values of the parameters of SLM and SMAR models in this case are the ones 8 

obtained from the calibration in step (iii).  9 

 10 

A split sampling approach was used for model testing, in which the available data for 11 

each catchment was split into two parts. The first part (67% of the data) was used in 12 

the model calibration while the second (33% of the data) was used in verifying the 13 

calibrated models. Two criteria are used in calibration and validation, (i) the Nash-14 

Sutcliffe index (R
2
) (Nash and Sutcliffe, 1970) and (ii) the average relative errors 15 

(ARE) of the estimated discharge peaks over a threshold, conservatively set here as 16 

the mean discharge. In addition to these numerical criteria, the observed and the 17 

simulated hydrographs for some catchments, for each calendar year, have been plotted 18 

to illustrate the fit of the hydrograph shapes. 19 

 20 

6.2. NFM_S modelling scenario 21 

Here the performance of the NFM_S model with the SLM and the SMAR sub-models 22 

is assessed. The first case is called NFM_S_SLM while the latter is called 23 

NFM_S_SMAR. However, unlike the NFM_T scenario the modelled catchment in the 24 

NFM_S scenario is divided spatially into a number of Homogenous Hydrologic 25 
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Characteristics Units (HHCUs). Although, analogous to Hydrologic Response Units 1 

(HRUs) (e.g. Quiroga et al., 1996), HHCUs are defined and determined in a 2 

somewhat different way. The inputs to each HHCU are the catchment averages of 3 

rainfall and evaporation.  4 

 5 

If the rainfall and evaporation for each HHCU are used as fuzzy variables then their 6 

fuzzy sub-sets can be used to determine the number of IF-THEN rules in the 7 

consequent part of each sub-NFM model for each HHCU. However, as only one 8 

fuzzy sub-set is used for rainfall and likewise only one for evaporation the resulting 9 

combined sub-NFM models is essentially a model describing different homogenous 10 

spatial units, i.e. each IF-THEN rule represents a sub-model describing the rainfall-11 

runoff relationship for a given HHCU and the final estimated runoff value is the 12 

weighted sum of the contribution from all the HHCUs. This is a type of semi-13 

distributed modelling that can be easily implemented either within or in conjunction 14 

with a GIS by overlaying three map layers, the catchment boundary, land use map, 15 

and soil map. The number of the HHCUs obtained with this GIS procedure is based 16 

only on elevation, land use and soil type and here they are determined with an 17 

innovative approach based on the subtractive clustering algorithm (Vernieuwe et al., 18 

2005). 19 

 20 

6.2.1. Determination of the HHCUs for the Brosna catchment 21 

Each HHCU is expected to have a unique rainfall-runoff relation used to estimate its 22 

contribution to the catchment outflow. A large number of spatially-related parameters 23 

such as elevation, soil permeability, soil roughness, bedrock transmissivity, etc. could 24 

influence the rainfall-runoff response and could be used to characterise the HHCU. 25 
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However, for this study, the number of such variables is limited to elevation, land use, 1 

soil type and these were used to test the NFM_S for the Brosna catchment only. From 2 

these three basic maps, four spatial variables are calculated by the GIS (i) elevation, 3 

(ii) slope, (iv) land use, and (iv) soil type. Although the original land use map had 4 

nineteen different categories, here land use has been aggregated into four main types, 5 

agriculture, urban, forest, and wetland. Similarly the slopes obtained directly from the 6 

DEM have been assigned to one of three groups: (i) for slopes between 0 % and 8 % a 7 

slope index is taken as 4 %; (ii) for slopes between 8 % and 15 % a slope index is 8 

taken as 12 %; and (iv) for slope greater than 15 % a slope index is taken as 20 %. 9 

The original categories of soil types and elevation bands are used without any changes 10 

since they are primary governing parameters in characterising the response to the 11 

rainfall.  12 

 13 

Various combination alternatives, summarised in Table 3, of the four input spatial 14 

variables are passed on to the subtractive clustering algorithm in order to obtain 15 

different number of HHCUs. The resolution of the resulting clusters in each 16 

combination alternative can be adjusted by changing the parameters in the subtractive 17 

clustering algorithm. In this study, the reject ratio (RR) (c.f. Vernieuwe et al., 2005) 18 

had the most influence on the cluster resolution. The RR is used by the subtractive 19 

clustering algorithm as a stopping criterion to halt any further attempts to determine 20 

new clusters. For each combination alternative the RR was varied from 0.1 to 0.5 in 21 

increments of 0.1 and from 0.5 to 1 in increments of 0.05. The calculated numbers of 22 

clusters are plotted against reject ratio in Fig. 4. It is clear that for all combination 23 

alternatives changing the RR value between 0.1 and 0.65 did not change the number 24 

of the resulting clusters. Then there is a gradual drop in the number of clusters 25 
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corresponding to an increase in RR up to 0.8 which is followed again by a constant 1 

number of clusters until RR reaches the value of 0.95. The RR value of 1 corresponds 2 

to one cluster and this is consistent with a lumped catchment. Note that for the 3 

combination alternatives 3A and 4 the number of clusters corresponding to RR values 4 

less than and equal to 0.75 is significantly higher than the corresponding values for 5 

the other cases.  6 

 7 

6.2.2. NFM_S_SLM and NFM_S_SMAR modelling cases 8 

For each combination of spatial variables an upper limit of 40 clusters (shown by 9 

section ¢-¢ in Fig. 4) is applied to select cases to be considered in the NFMs tested 10 

here. The choice of 40 is aimed to avoid an excessive number of parameters in the 11 

NFMs. As the number of clusters remains constant for a range of RR values, the 12 

number of cases tested for the NFM_S_SLM and NFM_S_SMAR models in the 13 

Brosna catchment, varies from one combination alternative to another (Table 4).  14 

 15 

Generally when multiple fuzzy sub-sets are used for banding the rainfall and 16 

evaporation then the number of parameters to be calibrated for each case in the 17 

NFM_S scenario is obtained by multiplying the number of parameters for the NFM_T 18 

scenario, given by Eqn. 5, by the number of clusters or HHCUs involved. However, 19 

as one fuzzy sub-set is used for both the rainfall and evaporation in the NFM_S 20 

scenario only the parameters of the models (SLM and SMAR) must be calibrated. 21 

Therefore there is no need for the sequential iterative procedure used in the NFM_T 22 

scenario and instead only the least squares method is used for the linear optimisation 23 

problem in the NFM_T_SLM whereas the Genetic algorithm is used for the non-24 

linear one in the NFM_T_SMAR. 25 



 19 

 1 

7. Results 2 

The key issue is to determine whether the introduction of combined sub-models to 3 

account for temporal or spatial pattern variations improves the simulation compared 4 

to that of a single lumped catchment model. First, the results corresponding to the 5 

lumped case (case 1 in Table 1 for NFM_T, and cases 1 of all combination 6 

alternatives in Table 4 for NFM_S) are calculated. These provide a baseline to be 7 

used in assessing the second set of results corresponding to the best combined case. In 8 

each scenario, the best combined case can be described as the one with the highest R
2
 9 

during the calibration period compared to the others in the same group. The best 10 

combined case is an improvement over the lumped case if it scores a higher value for 11 

the R
2
 criterion and a smaller value of the ARE criterion. In addition to these two 12 

numerical criteria, a graphical comparison of the simulated and the observed 13 

hydrographs allowed a visual assessment of model fit.  14 

 15 

In addition, the suitability of using a linear model, such as SLM, or a non-linear 16 

model, such as SMAR, in the fuzzy model is also addressed in the discussion.  17 

 18 

7.1. Results of the NFM_T scenario 19 

7.1.1. Lumped case vs. the best combined case  20 

For the NFM_T_SLM and NFM_T_SMAR models, the R
2
 and ARE values for the 21 

calibration and validation periods are summarised for the eleven test catchments in 22 

Table 5. There is an improvement in the R
2
 values during calibration for the best 23 

combined case over the lumped case. However, the best combined case improved the 24 

R
2
 values for validation in nine catchments, the exceptions being Halda and Sg. 25 
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Bernam, for the NFM_T_SLM and in seven catchments, the exceptions being Halda, 1 

Kelantan, Sg. Bernam, and Shiquan-3, for the NFM_T_SMAR model. Only in one of 2 

these catchments, Sg. Bernam, the R
2
 values during validation of the best combined 3 

case were markedly lower than the corresponding values for the lumped case in both 4 

the NFM_T_SLM and NFM_T_SMAR models, the differences being insignificant in 5 

the rest of the catchments. 6 

 7 

For the ARE criterion during calibration, the best combined model case was better 8 

than the lumped case for the NFM_T_SLM in all but three catchments (Bird Creek, 9 

Kelantan, and Sg. Bernam). During validation the combined models of the 10 

NFM_T_SLM gave better ARE values than the lumped case in five catchments but 11 

was worse in six catchments (Blue Nile, Halda, Kelantan, Nan, Sg. Bernam, and 12 

Wolombi Brook). The values of ARE for calibration of the NFM_T_SMAR model 13 

exhibited a consistent improvement of the best combined case over the lumped case 14 

whereas the values of the corresponding validation were worse in six catchments 15 

(Bird Creek, Halda, Nan, Sg. Bernam, Sunkosi-1 and Wolombi Brook).  16 

 17 

The best combined case was not consistent for the NFM_T_SLM and 18 

NFM_T_SMAR models. For the former model each of cases 8 and 9 was the best in 19 

four catchments while case 10 was the best in three catchments. Different trends was 20 

obtained in the latter model as each of cases 4, 5, and 10 was the best in three 21 

catchments and case 7 was the best in two catchments. 22 

 23 

7.1.2. NFM_T_SLM vs. NFM_T_SMAR 24 



 21 

The values of R
2
 and ARE criteria shown in Table 5 for the eleven catchments and for 1 

both the lumped case and the best case did not show which of NFM_T_SLM or 2 

NFM_T_SMAR is the overall best model. For the lumped case, the R
2
 values for the 3 

calibration of NFM_T_SMAR were higher than the values of NFM_T_SLM in all 4 

catchments. The same occurred in validation except in two catchments, Sg. Bernam 5 

and Wolombi Brook. For the best case, only in Shiquan-3 catchment was the value of 6 

R
2
 for calibration of NFM_T_SMAR lower than for NFT_T_SLM and in validation 7 

the same was true for three catchments, Sg. Bernam, Shiquan-3, and Sunkosi-1. 8 

 9 

The ARE values showed even more mixed results as NFM_T_SMAR did not 10 

outperform SFM_T_SLM in terms of ARE for the lumped case at two catchments 11 

(Chu and Shiquan-3) for calibration and at five catchments (Blue Nile, Chu, Sg. 12 

Bernam, Shiquan-3, and Wolombi Brook) for validation. Similar results hold for the 13 

best combined case in calibration. It holds also in validation but with the addition of 14 

two more catchments (Halda and Sunkosi-1).  15 

 16 

7.1.3. Hydrographs matching in the NFM_T scenario 17 

The observed and simulated hydrographs of the best combined cases of 18 

NFM_T_SLM and NFM_T_SMAR for four catchments, Blue Nile, Brosna, Chu, and 19 

Wolombi Brook, are plotted in Figs. 5 to 8. Each of the four catchments exhibits 20 

different hydrological behaviour and this is reflected in the shape of its hydrograph. In 21 

addition, the period of each hydrograph is chosen to be within the validation period 22 

for two reasons: (i) to verify the model parameters; and (ii) to ensure minimal 23 

influence of the initial conditions on the models comparison. 24 

 25 
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The four graphs demonstrate the ability of the NFM_T_SMAR to capture most of the 1 

hydrograph features. This model showed an outstanding performance in reproducing 2 

the observed hydrograph in the Chu catchment, (Fig. 7), and to some extent the one in 3 

the Blue Nile catchment, (Fig. 5). However, in the Brosna and Wolombi Brook (Figs. 4 

6 and 8 respectively), features such as rising limb, recession, and base flow were 5 

better generated by this model than the individual peak values.  6 

 7 

The NFM_T_SLM was able to match the non-linearity in the two flashy catchments, 8 

Chu and Wolombi Brook, Figs. 7 and 8 respectively. In contrast, this model, with its 9 

linear component, was particularly bad for the Brosna, which has a large base flow 10 

component, and for the Blue Nile, which has a strong seasonal pattern. 11 

 12 

7.2. Results of the NFM_S scenario in the Brosna catchment 13 

7.2.1. Lumped case vs. the best combined case  14 

Table 6 shows the values of the R
2
 and ARE model efficiency criteria for the 15 

NFM_S_SLM and the NFM_S_SMAR model for both calibration and validation and 16 

for the lumped case and the best case for all spatial combination alternatives in the 17 

Brosna catchment. The results for the lumped case (treating the catchment as a single 18 

unit) of each of the NFM_S_SLM and the NFM_S_SMAR models were identical for 19 

all combination alternatives since this involved a single HHCU and only one fuzzy 20 

sub-set for rainfall and evaporation. 21 

 22 

The R
2
 results for calibration and validation for the NFM_S_SLM do not differ 23 

significantly from each other. In contrast, for the NFM_S_SMAR the R
2
 values for 24 

calibration for the best cases were significantly higher than for the lumped case. In 25 
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validation, a significant improvement in R
2
 was obtained by the best case of the 1 

combination alternatives 2A, 2B, and 4 for which the ARE values were amongst the 2 

lowest. There were no significant differences among the ARE values for the 3 

NFM_S_SLM and likewise among those of the NFM_S_SMAR models. However, 4 

the ARE values of the NFM_S_SLM were all much greater than those of the 5 

NFM_S_SMAR. The results in Table 6 suggest that, while the 2A combination 6 

alternative performs significantly better than the lumped case, the improvement is not 7 

as impressive as that obtained for the NFM_T scenario. 8 

 9 

7.2.2. NFM_S_SLM vs. NFM_S_SMAR 10 

The superiority of SMAR over SLM can be easily seen from the R
2 
and the ARE 11 

values. The introduction of non-linearity in the SLM through the combination of its 12 

sub-models did not produce any significant improvement. This is not surprising 13 

because the use of HHCUs in this context has no effect on the SLM itself but it rather 14 

assigns weights to similar sub-models with the same characteristics as the lumped 15 

model. In contrast, in the SMAR model each sub-model adds to the non-linearity of 16 

the combined model and this in turn provides the greater flexibility required in 17 

modelling the rainfall-runoff relationship. 18 

 19 

For both NFM_S_SLM and NFM_S_SMAR models, using large number of HHCUs, 20 

i.e. sub-models, did not improve the results significantly and this means there is an 21 

upper limit for the number of HHCUs above which no significant improvement can 22 

be expected. Thus using an excessive number of HHCUs might result in including 23 

some redundant HHCUs which add little to the model‟s performance. Again this 24 

behaviour is not surprising because the spatial parameters of the HHCUs have no 25 
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influence on the models. Different responses would be expected if some inputs to the 1 

sub-models depended on the characteristics of HHCUs. 2 

 3 

7.2.3. NFM_T vs. NFM_S 4 

The important question arising out of the results for the two combination scenarios is 5 

which combination NFM scenario performs best. To answer this requires a 6 

comparison between the best models of the two scenarios. For illustration only, we do 7 

this here for the Brosna catchment as the NFM_S was applied for that catchment only. 8 

From Table 5 and 6 it is possible to identify the NFM_T_SMAR_4 (case 4) and 9 

NFM_S_SMAR_4_14 (combination alternative 4 and HHCUs = 14) as the best 10 

models for the two scenarios respectively in the Brosna catchment. The R
2
 and ARE 11 

results for these two models are not substantially different from each other. The fit 12 

between the observed hydrograph and the simulated hydrographs for each model are 13 

shown in Fig. 9 and they represent the same period used in Fig. 4. The visual 14 

comparison between the observed hydrograph and the two models does not show any 15 

major differences between models to the extent that one can be declared consistently 16 

superior to the other. Thus the use of the NFM_S scenario, which requires more data 17 

than the NFM_T scenario, is not justified if the intention of the modelling is to 18 

produce outputs only for the outlet of a catchment.  19 

 20 

8. Conclusions 21 

In this study, the NFM has been proposed to account for spatial and temporal 22 

variations in modeling the rainfall-runoff relationship. The proposed procedure was 23 

implemented with two simple lumped models, SLM and SMAR. For each model two 24 

scenarios (NFM_T and NFM_S) were used to construct sub-models to address the 25 



 25 

temporal and spatial pattern variations respectively. In the NFM_T scenario, the two 1 

models NFM_T_SLM and NFM_T_SMAR, were applied to eleven catchments from 2 

around the world. A split sample technique was used and in most cases the neuro-3 

fuzzy combined sub-models were better than the lumped model. The NFM_T_SMAR 4 

model was, in general, better than the NFM_T_SLM. 5 

 6 

To address spatial variation in response, a subtractive clustering algorithm was used 7 

in the NFM_S scenario to derive a number of HHCUs which exhibit homogenous 8 

hydrologic responses. Three spatial layers representing DEM, land use and soil maps 9 

of the Brosna catchment (Ireland) have been processed by a GIS software to prepare 10 

data of four variables (elevation, slope index, generalised land use types, and soil 11 

types) used in the clustering algorithm. For all possible combination alternatives 12 

between the four variables the relation between the reject ratio parameter (RR) of the 13 

subtractive clustering algorithm and the resulting number of HHCUs was 14 

investigated. A remarkable improvement was achieved by the best case of the sub-15 

models of NFM_S_SMAR compared to the lumped model. The NFM_S_SMAR 16 

model significantly outperformed the NFM_S_SLM and this is probably due to its 17 

inclusion of non-linearity. Only a small number of HHCUs were required to obtain 18 

improved results and using a larger number of HHCUs did not improve the results of 19 

the NFM_S_SMAR model. 20 

 21 

9. Further work 22 

This work has shown that combinations of relative simple models can extend their 23 

ability to model a range of catchment behaviour without requiring fully distributed 24 

time-varying, physically-based models. While the combination approach has proved 25 
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useful in our Brosna catchment, it should be applied to other catchments with a wider 1 

range of climatic variation and conditions to test its generality. In addition, it should 2 

be possible to extend the approach to modelling other types of data, particularly water 3 

quality time series, where the output at a single point is all that is required. In such 4 

cases, the effort to generate and calibrate a physically-based distributed model may 5 

not be justified and a calibrated combination of simple models may suffice. The 6 

method can be used in all investigations that compare time-series or model the 7 

relationship between two time-series, such as investigating tele-connections between 8 

climate variables at different locations. 9 

 10 
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Figure Captions 1 

Figure 1. Structure of quasi-linear model proposed by Bruen (1985) 2 

 3 

Figure 2. Sub-models combination using fuzzy logic principle of membership 4 

function 5 

 6 

Figure 3. NFM architecture 7 

 8 

Figure 4. Number of clusters vs. reject ratio (RR) for all combination 9 

alternatives used in the subtractive clustering algorithm 10 

 11 

Figure 5. Simulated and observed hydrographs of the Blue Nile catchment 12 

 13 

Figure 6. Simulated and observed hydrographs of the Brosna catchment 14 

 15 

Figure 7. Simulated and observed hydrographs of the Chu catchment 16 

 17 

Figure 8. Simulated and observed hydrographs of the Wolombi Brook catchment 18 

 19 

Figure 9. Comparison between NFM_T and NFM_S best models in the Brosna 20 

catchment 21 

 22 

 23 

 24 

25 
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Tables 1 

Table 1. Cases representing the rainfall and evaporation fuzzy sub-sets 2 

combination for the NFM_T_SLM and NFM_T_SMAR 3 

Model Case* 
No of fuzzy sub-sets 

Rainfall evaporation 

NFM_T_SLM_*, 

NFM_T_SMAR_* 

1 1 1 

2 1 2 

3 2 1 

4 2 2 

5 3 1 

6 3 2 

7 3 3 

8 4 4 

9 5 5 

10 6 6 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 
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Table 2. Details of the test catchments 1 

Catchment 

name 

Country Area 

(km
2
) 

Starting 

date of data 

No. of 

data 

points 

Memory 

length (day) 

Bird Creek USA 2344 1-Jan.-1955 2922 15 

Blue Nile Sudan 175125 1-Jan.-1992 1461 15 

Brosna Ireland 1207 1-Jan.-1969 3652 30 

Chu Vietnam 2370 1-Jan.-1965 3652 15 

Halda Bangladesh 779 1-Jan.-1980 2556 15 

Kelantan Malaysia 12867 1-Jan.-1975 2922 20 

Nan Thailand 4609 1-Jan.-1978 3287 20 

Sg. Bernam Malaysia 1090 1-Jan.-1977 2556 25 

Shiquan-3 China 3092 1-Jan.-1973 2922 15 

Sunkosi-1 Nepal 18000 1-Jan.-1975 2922 30 

Wolombi 

Brook 

Australia 1580 1-Jan.-1963 1826 15 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 
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Table 3. Combination alternatives of the four spatial variables used in the 1 

subtractive clustering algorithm 2 

id. No of variables Variables 

2A 2 Elevation + Land use 

2B 2 Elevation + Soil 

2C 2 Slope index + Land use 

2D 2 Slope index + Soil 

2E 2 Land use + Soil 

3A 3 Elevation + Land use + Soil 

3B 3 Slope index + Land use + Soil 

4 4 Elevation + Slope index + Land use + Soil 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 
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Table 4. Description of the NFM_SPT_SLM and NFM_SPT_SMAR cases tested 1 

in the Brosna catchment for each combination alternative 2 

Model Case* No of HHCUs 

NFM_S_SLM_2A_*, NFM_S_SMAR_2A_* 1 1 

2 9 

3 12 

4 29 

5 36 

6 37 

NFM_S_SLM_2B_*, NFM_S_SMAR_2B_* 1 1 

2 32 

NFM_S_SLM_2C_*, NFM_S_SMAR_2C_* 1 1 

2 10 

NFM_S_SLM_2D_*, NFM_S_SMAR_2D_* 1 1 

2 2 

3 3 

4 4 

5 15 

NFM_S_SLM_2E_*, NFM_S_SMAR_2E_* 1 1 

2 4 

3 5 

4 7 

5 20 

NFM_S_SLM_3A_*, NFM_S_SMAR_3A_* 1 1 

2 23 

NFM_S_SLM_3B_*, NFM_S_SMAR_3B_* 1 1 

2 5 

3 6 

4 8 

5 37 

NFM_S_SLM_4_*, NFM_S_SMAR_4_* 1 1 

2 14 

 3 
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Table 5. R
2
 and ARE results for the lumped case and the best combined case of the NFM_T_SLM and NFM_T_SMAR models 

in the eleven catchments 

Model Catchment Best 

case 

R
2
 ARE 

Lumped case Best combined case Lumped case Best combined case 

Calib. Valid. Calib.  Valid. Calib. Valid. Calib. Valid. 

NFM_T_ SLM Bird Creek 9 15.86 23.34 24.37  42.54 71.99 81.57 72.99 79.31 

Blue Nile 10 71.69 71.38  87.44 77.82 28.94 22.45 25.43 24.08 

Brosna 8 49.36 32.36 60.24 40.53 29.92 34.37 28.35 33.27 

Chu 9 15.23 29.13 39.27 56.95 57.64 55.73 55.01 52.72 

Halda 8 53.43 69.84 67.63 67.78 38.95 49.57 38.60 52.75 

Kelantan 10 28.88 22.78 52.39 34.78 33.16 29.25 26.79 30.45 

Nan 10 65.29 68.94 69.57 69.54 39.05 33.69 39.98 44.46 

Sg. Bernam 8 60.35 52.14 62.73 47.90 24.88 26.77 27.00 31.47 

Shiquan-3 8 13.45 6.32 28.33 24.40 54.16 49.95 51.76 49.80 

Sunkosi-1 9 77.80 78.78 80.73 82.10 27.86 25.95 27.35 23.55 

Wolombi 

Brook 

9 10.27 -17.03 30.03 17.31 80.33 71.88 71.60 92.62 

NFM_T_ SMAR Bird Creek 7 85.85 66.58  89.72 75.27 67.70 60.50 67.45 63.73 

Blue Nile 4 93.26 83.00  94.57 86.53 17.37 29.65 16.22 24.28 

Brosna 4 87.93 83.86 89.81 86.18 15.66 19.17 15.37 18.01 

Chu 10 35.30 43.20  81.46 64.72 69.68 70.52 59.56 65.51 

Halda 10 62.42 69.56  83.76 68.82 34.45 43.35 33.26 54.25 

Kelantan 5 84.67 47.70  87.26 46.81 20.06 27.70 19.70 27.63 

Nan 7 76.36 80.48  83.88 80.70 34.71 26.29 33.29 27.30 

Sg. Bernam 4 73.51 21.49  76.40 5.93 23.38 43.05 23.22 46.19 

Shiquan-3 5 19.69 17.96  23.32 17.24 78.37 83.93 75.46 79.82 

Sunkosi-1 5 80.49 79.90  82.78 80.28 26.57 24.93 25.64 25.56 

Wolombi 

Brook 

10 34.74 -33.82  89.15 58.39 70.41 108.54 59.11 112.46 



 37 

Table 6. R
2
 and ARE results for the lumped case and the best combined case for all 

the combination alternatives of the NFM_S_SLM and NFM_S_SMAR models in the 

Brosna catchment 

Model id. case No of HHCUs R
2
 ARE  

Calib. Valid. Calib.  Valid. 

NFM_S_SLM 2A,2B,…,4 1 1  

(lumped model) 

49.36 32.36 29.92 34.37 

2A 2 9 50.18 32.68 29.47 33.98 

2B 2 32 48.87 31.04 30.26 34.71 

2C 2 10 50.07 32.65 29.54 33.99 

2D 3 3 50.44 32.93 29.15 33.76 

2E 3 5 50.42 32.92 29.29 33.90 

3A 2 23 49.26 31.75 30.29 34.75 

3B 2 5 50.22 32.95 29.34 33.90 

4 2 14 49.94 32.35 29.81 34.32 

NFM_S_SMAR 2A,2B,…,4 1 1  

(lumped model) 

87.96 84.18 15.44 18.60 

 2A 6 37 91.17 87.91 13.68 16.38 

2B 2 32 90.25 86.50 14.08 16.67 

2C 2 10 90.31 82.90 14.19 19.64 

2D 4 4 91.28 85.82 13.63 17.86 

2E 4 7 91.16 84.53 13.86 19.23 

3A 2 23 90.67 85.68 14.44 18.03 

3B 3 6 91.23 85.59 13.99 17.98 

4 2 14 91.42 86.00 13.47 17.57 
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