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Abstract

This work concerns itself with the analysis of voiced speech signals, in particular

the analysis of the glottal source signal. Following the source-filter theory of speech,

the glottal signal is produced by the vibratory behaviour of the vocal folds and is

modulated by the resonances of the vocal tract and radiation characteristic of the lips

to form the speech signal. As it is thought that the glottal source signal contributes

much of the non-linguistic and prosodical information to speech, it is useful to develop

techniques which can estimate and parameterise this signal accurately.

Because of vocal tract modulation, estimating the glottal source waveform from

the speech signal is a blind deconvolution problem which necessarily makes assump-

tions about the characteristics of both the glottal source and vocal tract. A common

assumption is that the glottal signal and/or vocal tract can be approximated by a

parametric model. Other assumptions include the causality of the speech signal: the

vocal tract is assumed to be a minimum phase system while the glottal source is

assumed to exhibit mixed phase characteristics. However, as the literature review

within this thesis will show, the error criteria utilised to determine the parameters

are not robust to the conditions under which the speech signal is recorded, and are

particularly degraded in the common scenario where low frequency phase distortion
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is introduced. Those that are robust to this type of distortion are not well suited to

the analysis of real-world signals.

This research proposes a voice-source estimation and parameterisation technique,

called the Power-spectrum-based determination of theRd parameter (PowRd) method.

Illustrated by theory and demonstrated by experiment, the new technique is robust

to the time placement of the analysis frame and phase issues that are generally en-

countered during recording. The method assumes that the derivative glottal flow

signal is approximated by the transformed Liljencrants-Fant model and that the vo-

cal tract can be represented by an all-pole filter. Unlike many existing glottal source

estimation methods, the PowRd method employs a new error criterion to optimise

the parameters which is also suitable to determine the optimal vocal-tract filter order.

In addition to the issue of glottal source parameterisation, nonlinear phase record-

ing conditions can also adversely affect the results of other speech processing tasks

such as the estimation of the instant of glottal closure. In this thesis, a new glottal

closing instant estimation algorithm is proposed which incorporates elements from

the state-of-the-art techniques and is specifically designed for operation upon speech

recorded under nonlinear phase conditions. The new method, called the Fundamental

RESidual Search or FRESS algorithm, is shown to estimate the glottal closing instant

of voiced speech with superior precision and comparable accuracy as other existing

methods over a large database of real speech signals under real and simulated record-

ing conditions.

An application of the proposed glottal source parameterisation method and glottal

closing instant detection algorithm is a system which can analyse and re-synthesise

voiced speech signals. This thesis describes perceptual experiments which show that,
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under linear and nonlinear recording conditions, the system produces synthetic speech

which is generally preferred to speech synthesised based upon a state-of-the-art time-

domain-based parameterisation technique.

In sum, this work represents a movement towards flexible and robust voice-source

analysis, with potential for a wide range of applications including speech analysis,

modification and synthesis.
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Chapter 1

Introduction

Speech is a complex, information-dense acoustic pressure wave. In addition to the

basic lexical contents of the message, the speech signal also contains information

beyond the linguistic level. This paralinguistic information conveys details about the

physical and emotional state of the speaker in a manner which is intertwined with

the spoken words. Following analog-to-digital conversion, the samples of the speech

signal, and indirectly the linguistic and paralinguistic information represented by

those samples, can be processed and analysed using digital signal processing (DSP)

techniques.

This thesis describes DSP techniques which estimate and analyse the voice-source

signal. According to the source-filter theory of speech production (Fant, 1970), voiced

speech may be separated into a source signal resulting from the periodic vibrations

of the vocal folds and the response of the vocal-tract filter. The voice-source signal,

often referred to as the glottal source signal as it results from the opening and closing

of the space between the vocal folds called the glottis, provides the acoustic energy
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source for speech. This signal is thought to be the main conveyer of the paralinguistic

information within speech (Gobl, 2003).

Estimation and parameterisation of the voice signal is useful for a wide range

speech processing applications. Below is an list of various applications:

Speech Synthesis As was found in (Rosenberg, 1970), the inclusion of more accu-

rate glottal source waveform shape increased the naturalness of synthetic vowel

signals produced by a speech formant synthesiser. Recently, this technique is

witnessing a resurgence of interest with the advent of HMM-based speech syn-

thesis (Cabral, 2010; Raitio et al., 2011).

Voice Modification Parameterisation of the speech signal allows for straightfor-

ward modification of those parameters which can produce various physically re-

lated transformations (Childers, 1995; Lu, 2002; Vincent, 2007; Degottex, 2010).

Voice Quality Characterisation (Childers and Lee, 1991) identified factors of glot-

tal flow signal could be used to characterise voice quality.

Speaker Identification In (Plumpe et al., 1997) it was demonstrated that param-

eterisation of the voice-source signal could be used to supplement vocal tract

information in order to increase the accuracy of speaker identification systems.

Voice Conversion Voice conversion is the application of DSP techniques to speech

signals for the purposes of converting the characteristics of a source speaker to

those of a target speaker (Sündermann, 2008). Researchers have found that the

inclusion of glottal source information improves the performance of a voice con-

version system in terms of voice quality (del Pozo, 2008; Pérez and Bonafonte,
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2011) and the retention of speaker identity (Pérez and Bonafonte, 2011).

Speech Coding Speech coding utilises signal processing techniques in order to re-

duce the necessary bandwidth for the transmission and storage of speech signals

(Spanias, 1994). Low bit rate speech coding is possible using the Glottal Ex-

cited Linear Prediction (GELP) speech coder (Hu and Wu, 2000), where the

system was shown to be superior to a similar coding scheme in a Mean Opinion

Score (MOS) test.

For these applications and others, tools which enable the analysis and parameteri-

sation of the voice-source signal are of great interest to the speech research community.

Intertwined with the problem of estimation and analysis of the voice-source signal,

glottal closing instant (GCI) estimation is also a critical issue for many voice-source

analyses. Knowledge of the time interval of glottal closure is an important speech

processing task, particularly for voice-source estimation and parameterisation (Wong

et al., 1979; Fujisaki and Ljungqvist, 1986; Vincent et al., 2005). GCI estimation is

useful for other purposes including speech synthesis (Stylianou, 2001) and prosodical

modifications (Moulines and Laroche, 1995), as GCIs indicate the relative positions

of the glottal pulses. Because of its importance for voice-source analysis and related

issues, this thesis will also investigate accurate GCI estimation.

1.1 Thesis Aims and Scope

This thesis proposes DSP methods for the analysis of the voice-source signal which

are more robust than existing technologies. In particular, this work focuses upon
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developing techniques which are insensitive to the presence of low frequency phase

distortion commonly imparted by electro-acoustic equipment. This phenomenon dis-

turbs the phase relationship of the components of the speech signal and can change

the time-domain signal shape, with little or no perceptual effect. As it is often neces-

sary that the speech signal exhibit a certain preconceived time-domain shape, speech

processing algorithms which are robust to this common distortion are of great benefit

to the speech research community.

Speech which has been recorded using phase linear equipment is exceptional; in-

deed, it has been claimed that most electro-acoustic equipment imparts some degree of

phase distortion (Doval and d’Alessandro, 2006). Researchers avoid this phenomenon

by utilising specialised recording equipment (Lehto et al., 2007). Alternatively, the

distortion is corrected by inversely applying a transfer function which approximates

the phase response the recording instrumentation (Holmes, 1975; Berouti et al., 1977;

Hedelin, 1986; Brookes and Chan, 1994). However, specialised recording equipment

is often unavailable and, as will be discussed, correcting the distortion is often unfea-

sible. For these reasons, speech processing methods which exhibit robustness to the

phase spectrum of a signal are potentially very useful.

Many voice-source estimation methods are particularly sensitive to the phenomenon

of phase distortion. The analysis of the acoustic voice source is already a difficult prob-

lem because of the intrinsic hidden nature of the waveform. The ill-posed question of

voice-source estimation then has the consequence that circular logic is necessary to

estimate it: before determining the voice source, one must make assumptions regard-

ing some or all of its characteristics. A common assumption is that the glottal signal

can be approximated by a time-domain parametric model or exhibit certain time-
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domain characteristics (e.g. a closed phase). As mentioned above, phase distortion

makes assumptions based upon the time-domain shape of the signal unreliable. Like

many existing voice-source estimation methods, this thesis proposes a method which

also utilises parametric voice-source and vocal-tract models. However, rather than

adopting a time-domain-based approach, the method proposed in this work operates

upon the power spectrum. The method is presented in Chapter 6.

Another common speech processing task which can also be adversely affected by

phase distortion is glottal closing instant estimation. Unlike voice-source estimation,

these methods do not necessarily rely upon strict assumptions regarding signal shape,

however the auxiliary signals which they employed to locate the GCIs occasionally do.

A GCI estimation method which is explicitly robust to phase distortion is presented

in Chapter 7.

Finally, corroborating results of voice-source analysis algorithms is difficult, owing

to the lack of an appropriate benchmark. This work will follow the path taken by

other researchers and compare the algorithms with synthetic speech signals whose

parameters are known, but also exploit ElectroGlottoGraph (EGG) signals where

appropriate. Additionally, the subjective preference of a group of listeners in a per-

ceptual experiment is also utilised to validate the approach presented in this work.

As low frequency phase distortion is the focus of this work, the transfer function used

to represent this phenomenon have been measured from a professional studio. Ad-

ditional examples of low-frequency-phase-distorted transfer functions are taken from

those described by other researchers.
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1.2 Thesis Structure

This thesis contains eight main chapters, which can be roughly segmented into three

parts: Background (Chapters 2 to 5), Investigation (Chapters 6 to 8), and Conclusions

(Chapter 9). In addition to these sections, there are also four appendices which

describes some technical details which were inappropriate for the main thesis body.

Background The Background section informs the reader of the general area of in-

vestigation and reviews the state-of-the-art technology.

Chapter 2 discusses the speech production system and introduces the models

which are used to engineers to conceptualise it, including the models utilised

within this work. Emphasis is given to the source-filter theory of speech which

lays the foundation for glottal source estimation. The models which feature in

this study are also introduced in this chapter.

A literature review was undertaken of voice-source estimation and parameter-

isation techniques in Chapter 3. There it is shown that the efficacy of many

voice-source parameterisation techniques may be seriously degraded in the pres-

ence of low frequency phase distortion. Even in the case of ideal recording con-

ditions, certain techniques may give inaccurate results due to the position of

the analysis frame. Additionally, existing power-domain-based approaches are

not well designed for real speech signals.

A review of glottal closing instant techniques is given in Chapter 4. Though

more robust to phase distortion than voice-source parameterisation techniques,

glottal closing instant algorithms may also be degraded. Without certain modi-
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fications, the performance of the state-of-the-art can be seriously compromised.

The issues with the state-of-the-art methods for voice-source estimation and

GCI estimation are collated in Chapter 5, which then serves as the departure

point for the contributions of this study.

Investigation The Investigation section proposes new techniques for voice-source

analysis which solve the issues identified in the previous Background section.

A novel power-spectrum-based approach for voice-source estimation and pa-

rameterisation is proposed in Chapter 6, and called the PowRd method. By

transforming the data, unreliable phase information may be separated from

the signal. Similar approaches have exploited this transformation, but have

assumed that the filter order necessary for parameterisation was known. Ad-

ditionally, these methods make no attempt to avoid the high frequency noise

which is often present in real speech signals. The PowRd method utilises a novel

error criterion which is suitable for the identification of the optimal filter order,

in addition to the optimal voice-source parameters. Experiments with real and

synthetic speech validate the approach.

A new glottal closing instant estimation method is proposed in Chapter 7.

Drawing from the various state-of-the-art algorithms, the new FRESS algorithm

estimates the glottal closing instant of voiced speech with superior precision

and comparable accuracy as other existing methods over a large database of

real speech signals under real and simulated recording conditions. Unlike other

algorithms, the method is explicitly robust to any phase disturbances which

may have been imparted upon the signal.
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Amongst the applications for the proposed voice-source analysis algorithms is

speech synthesis. Chapter 8 describes a perceptual experiment where the syn-

thetic speech synthesised with parameters extracted by a power-spectrum-based

approach similar to the PowRd method is compared with a time-domain param-

eterisation approach for a variety of phase conditions, real and simulated. The

synthetic speech produced using parameters based upon the power spectrum

approach are found to be generally preferred by a group of listeners, further

validating and showing the potential of the method for robust speech analy-

sis/synthesis.

Conclusions Finally, Chapter 9 summaries the findings of this research. The main

conclusions of the work are drawn and the drawbacks and limitations of the

developed techniques indicate possible directions for future work.

1.2.1 Summary of Contributions

Contribution 1: Robust Voice Source Parameterisation Algorithm The

first contribution of this work is a glottal source parameterisation method which is

robust to phase distortion and which also chooses the optimal filter order. The method

is based upon the power spectrum of the speech signal, and is thus not sensitive to the

phase spectrum of the speech signal and any distortions that may have been imparted

to it. The technique has the considerable advantage that it is robust to the time

position of the analysis frame, therefore not requiring accurate timing information

regarding pulse location. Additionally, the proposed method attempts to avoid high-

frequency noise in the signal by adopting a harmonic plus noise type signal model.
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The approach, called the PowRd method, is described in Chapter 6.

In order to determine the filter order, the use of a novel error criterion, the Relative

Itakura-Saito error function, is proposed. The usual Itakura-Saito error generally

decreases with increasing filter order; this new function does not have this property

and can be used to obtain a robust estimate of the order of the vocal tract all-pole

filter. This parameter is usually fixed by other vocal-tract filter estimation methods.

Experiments demonstrate that the new function lends the PowRd method increased

robustness over existing state-of-the-art methods in the typical situation where the

filter order is unknown.

Contribution 2: Robust Glottal Closing Instant Estimation Algorithm

Another contribution of this work is the FRESS algorithm for glottal closure in-

stant estimation, described in Chapter 7. This approach is an extension of existing

GCI detection methods with certain modifications and extensions to improve accu-

racy of estimation of the epochs of the speech signal which have been recorded under

non-ideal conditions. The method uses a low order Infinite Impulse Response (IIR)

filter to determine the fundamental sinusoidal signal which oscillates with the funda-

mental frequency. Landmarks are then extracted from this simple signal, which are

then aligned with the peaks of the normalised energy contour signal. The realigned

landmarks indicate likely regions of glottal closure. Epoch candidates are extracted

from a search for maxima of the low pass Linear Predictive Coding (LPC) residual

signal. The most likely sequence of glottal epochs is then determined by a dynamic

programming algorithm.

A comparative experiment shows that the FRESS algorithm offers similar accu-
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racy and higher precision than other approaches in both linear and nonlinear phase

conditions.

Contribution 3: Speech Analysis/Synthesis System The third contribution

of this work is a speech analysis/synthesis system, introduced in Chapter 8. The

system smooths the obtained speech parameters of a method similar to the PowRd

approach. The synthetic speech is produced using an overlap-add scheme similar to

existing approaches.

The system is robust to phase distortion of the analysed speech signal and is there-

fore suitable for the analysis/synthesis of recorded speech, regardless of the phase

characteristics of the recording equipment. A comparative perceptual experiment

with 50 listeners demonstrate that the new system is capable of synthesising speech

which generally preferred to a similar method based on a time-domain speech param-

eterisation scheme.

Minor Contribution For the voice-source estimation/parameterization portion of

this study, the determination of the frequency-domain information of many LF model

pulses is required. This is a computationally demanding operation, owing to the nu-

merous correlation operations required. As a minor contribution, this study describes

two methods which substantially improves the speed of these calculations in an infor-

mal comparison test. These methods and the experiment are described in Appendix

D.
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Chapter 2

Speech Anatomy and Models

This chapter presents the fundamental of speech production, its anatomy and models.

In order to make the complex operation of speech production both comprehensible and

amenable to mathematical analysis, engineers and linguists have developed a model

based upon a basic understanding of the physical speech process - the acoustic theory

of speech production (Fant, 1970). The model is often referred to as the source-filter

model of speech as it broadly parallels the conceptualisation of the speech production

system as phonation and articulation, modeling speech as a phonating source shaped

by a filter representing the articulators. Though an acknowledged simplification,

this model has experienced success across many areas of speech processing including

synthesis, recognition and modification.

Source-filter theory is also the theoretical foundation upon which voice-source

analysis rests. The theory supports the voice-source estimation algorithms reviewed

in Chapters 3 and 4 in addition to the proposed techniques in 6 and 7.

This chapter will discuss the anatomy of the human speech production apparatus,
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and detail the process of speech production following the functions of phonation and

articulation. Following the introduction of the anatomical structure and function of

human speech production, the source-filter model of speech is discussed and some

prevalent models for both source and filter are described.

2.1 Anatomy of the Speech Production System

The production of speech is an elaborate process resulting from the motor coordi-

nation of many constituent parts. In addition to producing speech, the organs of

the speech production system have multiple functions within the body including ali-

mentation and respiration. For the purposes of speech production, these organs can

be roughly divided into two categories: those of phonation and those of articulation

(Honda, 2007). The speech organs of phonation include the lungs and larynx, while

the organs of articulation include the various cavities above the larynx in addition

to the tongue, teeth and lips. A sagittal plane representation of these apparatus is

shown in Figure 2.1. This section briefly discusses both processes of phonation and

articulation and the associated anatomical organs.

2.1.1 Phonation

The word phonation derives from the ancient Greek φωνη (pronounced “foni”) mean-

ing “voice”; indeed, the phonatory organs generate the acoustic energy source from

which the articulators form spoken speech. The largest organs of phonation are the

lungs. The lungs are the primary organ of respiration, but for phonatory purposes the

lungs can be considered air reservoirs which through the contraction of the diaphragm
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Figure 2.1: A sagittal perspective of the human speech production system, from (Flana-

gan, 1972).

have the capability to force air through the trachea to the larynx.

The second organ of phonation is the larynx, a diagram of which is given in

Figure 2.2. The larynx is an organ in the neck, composed of soft tissue and encased

in cartilage. The laryngeal cartilage may protrude under the skin of the neck to form

the laryngeal prominence or “Adam’s apple”. Housed within the larynx are the vocal

folds, which can be held open or sealed together by muscular coordination. The area

between the vocal folds is referred to as the glottis.

The primary purpose of the larynx is to form a protective closure above the

respiratory system during swallowing. The sealed larynx can also be used to increase

abdominal pressure during certain human functions such as heavy lifting. During
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Figure 2.2: Coronal plane perspective of the human larynx, from (National Cancer Insti-

tute, Retrieved September 12th, 2009).

speech production however, the larynx is the conduit through which air flows from

the trachea to the pharynx where a quasi-periodic phonatory source can be generated

due to the behaviour of the glottis.

Speech phonation is divided into two broad categories: voiced and unvoiced. Dur-

ing unvoiced phonation, air from the lungs is expelled through the trachea into the

vocal tract, unhindered through the open glottis. This results in a noisy signal which

is used to generate many consonant sounds including fricatives (e.g. /s/, /f/), and

plosives (e.g. /p/). During voiced phonation however, the laryngeal muscles tighten

the vocal folds, resulting in their quasi-periodic oscillation between open and closed

states, exciting the vocal tract with bursts of air. This excitation source is used for

many vowels and sonorant type sounds.

The myoelastic-aerodynamic theory (Van den Berg, 1958) hypothesises that the

vibration is a result of the interplay between two forces and is illustrated in Figure 2.3.

The vocal folds are held shut by muscular tension (top left in Figure 2.3), which are
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then forced open as a result of increased air pressure from the lungs (top right). Note

that the vocal folds may not fully close along their length for certain speakers/voice

qualities etc. The subsequent movement of air through the space between the vocal

folds causes a pressure drop between the folds which produces a suction effect, forcing

the folds back together (bottom). This phenomenon is known as Bernoulli’s principle.

The process then repeats for the duration of the tension placed upon the vocal folds.

The cycle of vibration produces an acoustic signal which is often referred to as the

glottal flow signal.

Figure 2.3: A schematic view of the vocal fold vibratory cycle, showing the opening and

closing of the vocal folds (in grey) during voiced phonation. Adapted from (Honda, 2007).

Constrictions within the vocal tract can introduce a second turbulent noise source

into the speech. When a constricted vocal tract is articulating a voiced source from

the larynx, this can result in a mixed excitations combining periodic and aperiodic

sound sources. Voiced fricatives such as /z/ and /v/ are such examples of phones
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which are produced in this manner.

The characteristics of the phonation source are generally thought to contain many

perceptual indicators of voice quality (Klatt and Klatt, 1990; Childers and Lee, 1991),

where voice quality is defined on a breathy to pressed scale. It also contains most

of the prosodical information of an utterance, and is responsible for the fundamental

frequency of the speech signal (related to the glottal vibratory cycle) and the duration

of a utterance.

2.1.2 Articulation

The organs of articulation are generally thought to be the major contributor to the in-

telligibility of speech. During speech, the articulators, i.e. the tongue, teeth and lips,

move between various geometrical configurations in coordination with the behaviour

of the organs of phonation. Different configurations exhibit different resonant char-

acteristics which are imprinted upon the laryngeal excitation signal. These spectral

peaks are called formants1.

For many sounds, the vocal tract forms a single multi-chambered tube from the

top of the larynx to the lips during which the velum or soft palate at the top of the

pharynx is closed. However, during nasalised sounds, e.g. /m/ and /n/, the velum is

lowered and mouth cavity sealed, which couples vocal tract with the nasal cavities,

producing a more complex geometry. A schematic diagram of the speech production

system is given in Figure 2.4.

1The word formant comes from the Latin verb formāre meaning “to shape”.
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Figure 2.4: A schematic view of the speech production system, showing the various cham-

bers of the vocal tract. From (Flanagan, 1972).

2.2 Source-Filter Theory of Speech

The division of the speech production process into two separate functions - phonation

and articulation - also serves as the starting point from which speech processing

interprets and analyses speech as it gives rise to the idea that speech can be interpreted

as a source signal exciting a filter, the so-called source-filter theory of speech (Fant,

1970). The basic idea is that the acoustic energy source of speech - quasi-periodic

puffs of air or a turbulent air stream - is shaped by the resonances and anti-resonances
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of the vocal tract and then radiated at the lips or nostrils.

As the articulators move relatively slowly, the speech signal can be assumed to be

time-invariant over small time intervals - generally taken to be on the order of 25ms.

Additionally, if the relationship between the source and filter is assumed to be linear,

the source-filter theory of speech can be stated in the Z-domain:

S(z) = G(z)V (z)L(z) (2.1)

where S(z) is the Z-transform of the speech signal, comprising the multiplication of

three components: G(z) the glottal flow, V (z) the vocal-tract filter and L(z) the lip

radiation.

Through the simplifying assumption that speech production can be approximated

as a linear time-invariant system, the source-filter theory forms the basis for high

quality rule-based speech synthesis systems (Klatt, 1987), efficient speech coding al-

gorithms (Rabiner and Schafer, 1978), inverse filtering techniques (Wong et al., 1979)

and many other applications.

2.2.1 Source-Filter Model Limitations

The core assumption of the linear source-filter theory is that the operation of the

source and filter are independent of each other. In actuality, they interact in a com-

plex non-linear fashion that has yet to be satisfactorily described (Plumpe et al.,

1997). This interaction violates the linear, time-invariant assumption of source-filter

theory. Instead, there is a nonlinear relationship between the activity of the source

and the filter transfer function, which causes the filter to vary in time. In (Anantha-

padmanabha and Fant, 1982), an electrical circuit was derived to model the glottis
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which demonstrated that the subglottal coupling during the open phase of the glottal

signal tended to modulate the formant frequencies and bandwidths of the vocal-tract

filter, most noticeably for the first formant. If the vocal-tract filter is assumed to be

unchanging during the open phase of the laryngeal cycle, the modulation of the vo-

cal tract resulting from the interaction appears as a ripple component superimposed

upon the glottal signal. Interaction effects may also produce asymmetric glottal

pulses. Figure 2.5 shows a synthetic glottal pulse with super-imposed ripple compo-

nent imparted by increasing first formant bandwidth and center frequency during the

open phase.

Figure 2.5: A synthetic glottal pulse with ripple component superimposed over the open

phase, resulting from first formant modulation.

However, it has been claimed that the interaction is weak and that it is common

to ignore it (Rabiner and Schafer, 1978). Additionally, it is thought not to contribute

largely to speech perception (Nord et al., 1984; Gobl, 2003).
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2.3 Source-Filter Models

Following from the previous section, the linear source-filter theory of speech produc-

tion can be decomposed into three elements:

• a glottal flow signal G(z),

• a vocal-tract filter V (z), and

• the radiation characteristics of the lips, L(z).

This section will discuss the prevalent models of these three components.

2.3.1 Lip Radiation

Though more closely modeled as a source upon a sphere, it is reasonable to approxi-

mate the radiating surface of the lips as set in an infinite plane baffle, which avoids

the calculation of complex diffraction effects (Rabiner and Schafer, 1978). In the

digital domain, this characteristic L(z) attenuates low frequencies, and is modeled as

a first order differentiating filter (Rabiner and Schafer, 1978):

L(z) = 1− z−1 (2.2)

The amplitude response of L(z) is given in Figure 2.6.

More complex models of lip radiation have also been proposed (Laine, 1982), yet

the approximation of Equation 2.2 has seen wide adoption due to its simplicity.

2.3.2 Vocal Tract

The vocal tract is defined as the various cavities which exist between the larynx

and the lips through which a sound wave may pass during speech and includes the

20



Figure 2.6: The amplitude response of the digital lip radiation characteristic L(z), follow-

ing Equation 2.2.

pharynx, mouth and nasal cavities. Physical models of the vocal tract begin with

the approximation of the structure as a simple tube, to which wave propagation

models can be applied in order to determine its spectral characteristics. The simplest

approximation is a single dimensional tube model which is explained in detail here,

but higher dimensionality models have also been proposed (Mullen, 2006; Birkholz

et al., 2006). However, the spectral model which derives from the single dimensional

case (i.e. the all-pole vocal-tract filter model) has witnessed a wide deployment across

a number of different applications including voice-source analysis and is thus focused

upon in this section.

As a initial approximation, the tract is modeled as a uniform lossless acoustic

tube which is open at one end. Additionally, it is useful to assume that acoustic

waves from the larynx travel through the vocal tract along a single dimension as a

plane wave (Rabiner and Schafer, 1978). Planar wave propagation assumes that the

acoustic pressure wave moves in a direction perpendicular to the walls of the vocal

tract otherwise complicated scattering may occur. This assumption is reasonable for

frequencies whose wavelength is large in comparison with the diameter of the vocal
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tract. As the vocal tract varies along its length during articulation between 0.01 to

0.03 m in diameter, planar wave propagation is assumed valid for frequencies less

than 5kHz.

By solving the wave equations defined by this system, the acoustic behaviour of

the tube can be shown to have an infinite number of poles equally spaced along the

imaginary axis in the Laplace domain (Rabiner and Schafer, 1978). Each complex

conjugate pole pair comprises a formant. The analog transfer function of the acoustic

tube Va(s) can then be described by the equation (Rabiner and Schafer, 1978):

Va(s) =
2e

−sL
c

1 + e
−s2L

c

(2.3)

where L represents the length of the tube and c represents the speed of sound. The

poles sn of Va(s) are therefore given by:

sn = ±j (2n+ 1)πc

2L
, n = 0,±1,±2, · · · (2.4)

The magnitude response of the above equations for an acoustic tube of the length of

a average male vocal tract (17cm) with the speed of sound at sea level (340ms−1) is

given in Figure 2.7.

Note that this first approximation of the vocal tract as an idealised tube lacks the

ability to model a varying shape. A more sophisticated vocal tract model is that of a

non-uniform acoustic tube, where the cross-sectional area of the tube changes along

its length, which can be approximated as a set of concatenated tubes of different

dimensions (Atal and Hanauer, 1971; Rabiner and Schafer, 1978; Markel and Gray,

1982), as shown in Figure 2.8. It can be shown that, although the transfer function

can still be represented using only poles, the formants of the cavity are no longer
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Figure 2.7: A detail of the frequency response of an idealised lossless acoustic tube of

length similar to male vocal tract. ∞ implies a infinitesimally small bandwidth.

equally spaced as with the uniform model and are a function of the dimensions of the

tube (Rabiner and Schafer, 1978).

While acoustic tube models are useful for giving an approximation of the vocal

tract transfer function, they differ from the actual vocal tract in a number of respects

excluding the effects of, for example, vocal tract wall vibration, viscous friction, ther-

mal conduction and the curvature of the vocal tract. The mathematical derivations

of these effects result in intractable frequency-dependent equations of motion, though

by implementing a number of simplifying assumptions regarding this complex be-

haviour (Rabiner and Schafer, 1978), numerical solutions to the equations of motion

can be determined. The net effect of these components is to broaden the bandwidths

of the vocal tract formants and shift them slightly in frequency. The reader is re-

ferred to (Rabiner and Schafer, 1978) (pp. 66-70) for the detailed mathematics of

this approach.

In the digital domain, an all-pole filter such as a nonuniform acoustic tube rep-
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Figure 2.8: Above gives a representation of a non-uniform acoustic tube comprising of

concatenated cylinders of differing diameters, often used to model to vocal tract. Taken

from (Bäckström, 2004).

resenting the vocal tract can be described in terms of its formants. The transfer

function V (z) of such a system with p complex conjugate poles2 can be expressed:

V (z) =
1∏p/2

k=1(1− ckz−1)(1− c∗kz
−1)

(2.5)

where ck and c∗k are the complex conjugate pairs describing the kth formant. ck is of

the form:

ck = e
−Bkπ

fs

(
cos

2πFk
fs

+ i sin
2πFk
fs

)
(2.6)

2In the case that the transfer function has real poles, V (z) assumes a similar slightly different

form to the one expressed by Equation 2.5.
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where Fk and Bk represent the center frequency and bandwidth in hertz of the kth

formant, respectively, and fs the sampling frequency.

The vocal-tract filter order p is dependent on the length of the vocal tract accord-

ing to the equation:

p =
2Lfs
c

(2.7)

where L is the length of the vocal tract and c the speed of sound. As a typical male

vocal tract is 17cm in length and the speed of sound in air is approximate 340ms−1,

the usual “rule of thumb” for choosing the filter order is given by the equation:

p =
2× 0.17 fs

340
(2.8)

=
fs

1000
(+γ) (2.9)

Thus, for male speech, the vocal tract is characterised by a two-pole formant for

every 1kHz of signal bandwidth (Markel and Gray, 1982). Often a “fudge factor” γ

is introduced to supply an extra flexibility to the analysis with a small number of

additional poles (1 or 2) (Markel and Gray, 1982).

The parameters and amplitude responses of a variety of vocal-tract filters are given

in Appendix A.

Though the all-pole model of the vocal tract is appropriate for many speech sounds

when the vocal tract approximates a nonuniform acoustic tube, there exists certain

sounds where zeros may be introduced into the frequency response. For example,

during certain phones the nasal cavity may be coupled with the pharynx deviating

from the nonuniform tube model, being better described as a branched tube. The

sealed oral cavity (e.g. at the lips for /m/, the alveolar ridge and tongue for /n/, etc.

) can then trap frequencies, creating zeros in the spectrum. Additionally, zeros may
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occur in other non-continuant type phones. However, as noted in (Atal and Hanauer,

1971), poles are more salient than zeros and spectral zeros can be approximated by

multiple poles.

2.3.3 Glottal Source

As previously mentioned, phonation can be loosely categorised into two different

states: voiced and unvoiced. During the voiced state of phonation, quasi-periodic

pulses of acoustic energy, resulting from the opening and closing of the glottis, are

introduced into the vocal tract. This section discusses this signal, known as the glottal

flow waveform, and its prevalent models.

Although not a focus of this work, the presence of noise in the glottal waveform

is also very important for both voiced and unvoiced phonatory states. This section

also briefly discusses the phenomenon.

Physical Models Like the vocal tract, the complex biological system of the vocal

folds is simplified in order to model its physical behaviour: mechanically-coupled

masses are the typical approach, e.g. the two-mass model (Ishizaka and Flanagan,

1972), the one-mass model (Drioli and Avanzini, 2000) and the three-mass model

(Story, 2003). These systems can be described by equations of motion, which, when

coupled with a similar vocal tract simulation, can be used to calculate the synthetic

speech waveforms numerically (Ishizaka and Flanagan, 1972).

The main drawback of physical glottal models is the number of parameters which

are required to produce the glottal pulses (e.g. the two-mass model (Ishizaka and

Flanagan, 1972) has 19 parameters), and determining these parameters has proved
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difficult and intricate. Additionally, the complex relationship between glottal physi-

ology and the parameters of the models make control of these models difficult (Scia-

marella and d’Alessandro, 2004)

Acoustic Models Unlike the vocal tract, it is common to model the characteristics

of the acoustic glottal waveform directly, without explicit reference to the physical

process which created it. Instead of the glottal flow signal, it is usually the derivative

glottal flow signal which is modeled. This follows from a rearrangement of the source-

filter representation of speech. Because of the linearity of the speech production

system, the order of operations can be changed. Thus, the differentiator representing

the lip radiation characteristic L(z) is often applied directly to the glottal flow signal

G(z) to give the derivative glottal flow signal G′(z):

G′(z) = G(z)L(z) (2.10)

Given this combination, linear speech production is equivalent to the derivative glottal

flow exciting the vocal tract:

S(z) = G′(z)V (z) (2.11)

Throughout this work, the term voice source refers to representations of G′(z), i.e.

the voice source is the acoustic signal which results be inverse filtering the speech

signal by the vocal tract.

Though the models differ in their formulation, derivative glottal flow models ex-

hibit broadly similar characteristics as discussed in (Doval and d’Alessandro, 2006).

When discussing time-domain glottal models, it is useful to divide the flow into three

different stages which correspond to the phases of the glottal voicing cycle: an open
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Figure 2.9: The figure above gives the time-domain representations of synthetic glottal

flow g[n] and derivative glottal flow g′[n] pulses, in addition to the time intervals of the

various phases of the glottal cycle.

phase corresponding to when the vocal folds are open, a return phase corresponding

to when the folds are rapidly closing and a closed phase corresponding to when the

folds are closed. Figure 2.9 shows a synthetic time-domain waveform of a both a

glottal pulse and a derivative glottal pulse waveform.

In the frequency domain, the main features of the glottal source signal are a

spectral maximum, sometimes termed the “glottal formant”, and spectral tilt. Figure

2.10 illustrates these two characteristics. The glottal formant is a peak of spectral

energy in the region of the signal’s fundamental frequency. The term glottal formant

is in fact a misnomer as there is no resonance effect like in the vocal tract: rather,

the position of the spectral energy boost is dependent mostly upon the shape and

duration of the signal’s opening phase as well as the fundamental frequency.

The other salient characteristic of derivative glottal flow models is its decrease in

spectral energy with increasing frequency. The signal’s spectral tilt has been shown
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to be of the utmost importance for the perception of voice quality (Klatt and Klatt,

1990). Contrary to the glottal formant, the spectral tilt is a result mainly due to the

change of the time-domain waveform from its opening phase into its return phase.

The most abrupt change, i.e. no return phase, imparts the least spectral tilt and

therefore introduces the most high frequency energy into the spectrum while a more

gradual change introduces less.

Figure 2.10: The above figure give the magnitude spectrum of a synthetic derivative

glottal flow pulse, illustrating the low frequency energy peak known as the glottal formant,

and the frequency roll-off referred to as the pulse’s spectral tilt.

2.3.3.1 Glottal Flow Models

Two Pole Glottal Flow Model Traditionally, the glottal flow was modeled in

the Z-domain as a two-pole anti-causal filter of the form:

G(z) =
1

(1− eαz−1)2
(2.12)
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where α ≃ 0. In the time domain, the truncated impulse response of G(z) is similar

to Figure 2.11. This model has experienced some success for early linear predictive

voice models (Atal and Hanauer, 1971; Markel and Gray, 1982).

Figure 2.11: The above figure gives the truncated impulse response of the two pole model

of G(z), as given by Equation 2.12.

As α is close to zero, the single zero of the lip radiation differentiator is often

thought to approximately cancel one of the glottal poles during speech production.

Thus, the derivative glottal flow G′(z) related to the two-pole glottal flow model can

often expressed:

G′(z) =
1

1− eαz−1
(2.13)

This model exhibits the −6 dB/oct roll off generally attributed to the spectrum of

the derivative glottal source, though the glottal formant is not represented.

Rosenberg and KLGLOTT88 Models In experiments exploring the effect of

shape of the glottal pulse on the perception of synthetic speech (Rosenberg, 1970),

a simple polynomial model of the glottal flow was proposed. It describes derivative
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glottal flow in a piecewise fashion: the open phase as an inverted parabola, with no

flow during the closed phase. The shape of the model are given by the pitch period

T0 and open quotient Oq, defined as the ratio of the opening time of the pulse to the

pitch period, while a third parameter b defines its scale. The time-domain shape of

the model is given by the equation:

uRO(n) =


b(2 OqT0 n− 3 n2) 0 < n ≤ OqT0

0 OqT0 < n ≤ T0

(2.14)

The KLGLOTT88 voicing source is a model of the glottal flow originally incor-

porated into Klatt’s formant synthesiser KLSYN88 (Klatt and Klatt, 1990) which

extends the Rosenberg polynomial model.

The piecewise formulation of Rosenberg model offers no other possibility than

an immediate abrupt closure with a fixed spectral tilt; in order to allow for a more

gradual closure, the KLGLOTT88 model (Klatt and Klatt, 1990) extends the basic

Rosenberg shape by applying a spectral tilt filter to the waveform. This spectral

tilt filter TL(z) is first order IIR filter, parameterised by a single pole a distance µ

away from the origin in the Z-plane. The transfer function of TL(z) can therefore be

written:

TL(z) =
1

1− µz−1
(2.15)

In addition to imparting a more gradual return phase upon the pulse, the filtering

operation also affects the open phase of the pulse in a manner that is difficult to

predict. The time-domain shapes of the basic Rosenberg and KLGLOTT88 pulse

shapes are given in Figure 2.12.

In their analytical study of the spectra of glottal models, (Doval and d’Alessandro,
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Figure 2.12: Above are the time-domain shapes of the Rosenberg and KLGLOTT88

models of derivative glottal flow. The models have been normalised in amplitude to facilitate

comparison.

2006) notes the relative simplicity of the KLGLOTT88 model compared with other

models. The quadratic polynomial that forms the open phase implies a fixed asym-

metry coefficient for the model. A consequence of this is that this position of the

glottal formant is dependent upon only the open quotient.

Liljencrants-Fant Model The LF model, proposed in (Fant et al., 1985), repre-

sents the general flow shape of the derivative glottal flow over one glottal cycle. Like

the Rosenberg model, the LF model is described in the time domain by a piece-wise

function, given as follows:

uLF (n) =



E0e
αn sinωgn 0 ≤ n < Te

−Ee

ϵTa
(e−ϵ(n−Te) − e−ϵ(Tc−Te)) Te ≤ n ≤ Tc

0 Tc ≤ n < T0

(2.16)

The first segment is an exponentially increasing sinusoid of angular frequency
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ωg, bandwidth α, and scaled by E0. This portion of the waveform characterises the

derivative glottal flow from the instant of glottal opening at 0, through the time axis

at Tp, to the maximum negative extreme Ee at instant Te.

At this point the return phase of the LF model begins. This portion models the

glottal closure as a modified exponential function which returns to zero at a rate

determined by the steepness of the slope of the tangent to the function at Te. The

distance of this tangent’s time axis intercept from Te is called Ta, and is referred to

as the effective duration of the return phase. The parameter ϵ is the decay constant

of the exponential. The total number of samples in the pulse is the pitch period, T0.

An example LF model pulse is given in Figure 2.13.

Figure 2.13: This figure gives a representation of a synthetic glottal pulse generated

according to the LF model, as given by Equation 2.16.

Another often used parameter set of the LF model are theR parameters, {Ra, Rg, Rk},
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which are calculated:

Ra =
Ta
T0

(2.17)

Rk =
Te − Tp
Tp

(2.18)

Rg =
T0
2Tp

(2.19)

Because of the natural covariation of the LF model parameters observed in real

speech, researchers have attempted to reduce the degrees of freedom of the LF model

and describe the entire glottal shape using a single parameter. The so-called basic

waveshape parameter Rd, proposed in (Fant, 1995), is calculated:

Rd =
fac
dpeak

1

T00.11
(2.20)

where fac and dpeak are given in Figure 2.14.

Figure 2.14: The above figure illustrates the amplitude and time-interval measurements

necessary to calculate the Rd parameter of a glottal pulse, according to Equation 2.20.

Following a statistical analysis of vowels and voiced consonants (Fant, 1995), the

following statistical relationships were devised to predict the Ra and Rk parameters
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from the Rd parameter:

Ra =
−1 + 4.8Rd

100
(2.21)

Rk =
22.4 + 11.8Rd

100
(2.22)

The Rg parameter is not predicted using statistical analysis, rather it is found by

solving the following relationship to ensure that pulse which conforms to the LF

model is produced:

Rg =
RdRk

4
0.11

(0.5 + 1.2Rk)− 4RaRd

(2.23)

Thus, given an amplitude scale and fundamental frequency, a limited range of

Rd values (0.25 ≤ Rd ≤ 3) can be utilised to generate LF model pulses. At low

values, the Rd parameter generates to LF model pulse with small open and return

phases, corresponding to a pressed phonation type, while at high values, both open

and return phases are longer, corresponding to breathy phonation. Figure 2.15 gives

three LF model pulses generated from three Rd different values.

Figure 2.15: The figure above gives example LF model pulses generated using different

Rd values.
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Fujisaki-Ljungqvist Model The six parameter Fujisaki-Ljungqvist model, pro-

posed in (Fujisaki and Ljungqvist, 1986), represents the derivative glottal flow pulse

with four segments represented by polynomial functions. The formula is given by:

uFL(n) =



A− 2A+Rα
R

n+ A+Rα
R

n2, 0 < n ≤ R

α(n−R)− 3B−2Fα
F 2 (n−R)2 + 2B−Fα

F 3 (n−R)3, R < n ≤ W

C − 2(C−β)
D

(n−W ) + C−β
D2 (n−W )2, W < n ≤ W +D

β, W +D ≤ n < T0

(2.24)

where

α =
4AR− 6FB

F 2 − 2R2
(2.25)

β =
CD

D − 3(T0 −W )
(2.26)

Sudden or gradual discontinuities are permitted at glottal closure in addition to

glottal opening from the parameter A. The pulse is represented from glottal opening

to peak flow (the first zero crossing of the derivative glottal flow signal) by an inverted

parabolic function, from peak flow to the minimum derivative flow by a cubic function,

while the return phase is modeled using another parabolic function.

Causal-Anti-causal Linear Model In (Doval et al., 2003), a new glottal source

model was proposed. As the glottal flow signal exhibits some causal and anti-causal

characteristics, the Causal-Anti-causal Linear Model (CALM) consists of the impulse

responses of a mixed phase filter, using a single causal pole to represent the return

phase of the pulse and a pair of complex conjugate anti-causal poles to model the open
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phase. The proposal of such a model combines the spectral and time-domain interpre-

tations of the glottal flow signal with explicit emphasis upon the phase characteristics

of the glottal source signal.

The time-domain representation of the pole configuration is calculated in two

passes: the first calculates the impulse response of the anti-causal portion of the

waveform backward in time from the impulse at 0. A second pass calculates the

return phase. In order to generate the time derivative of the glottal flow, a real zero

at 1 is simply added to the Z-plane. An example of the CALM glottal model is given

in Figure 2.16.

Figure 2.16: The above figures give the time-domain representations of the CALM model

of (a) glottal flow and (b) derivative glottal flow.

Other Models Many other models for the glottal flow exist, including the Rosen-

berg++ model (Veldhuis, 1998), Fant model (Fant, 1979), Hedelin model (Hedelin,

1984), Childers polynomial model (Childers, 1995), etc. However, the models men-

tioned in this review are the most prevalent in the literature.

37



2.3.3.2 Glottal Noise

Turbulent noise theory dictates that noise occurs when a fluid passes through a narrow

constriction. In terms of speech, this constriction may appear and thus noise may

be generated when glottal aperture is small or at some other point in the vocal

tract. Indeed, aspiration noise makes an important contribution to the perception of

speech (Klatt and Klatt, 1990) and can enhance the naturalness of synthetic speech

(Childers, 1995). In this study, experiments with synthetic speech employ a noise

model to simulate this phenomenon.

Predominantly, time- and frequency-modulated Gaussian noise is used by re-

searchers to model glottal noise. Such a model was implemented by (Hermes, 1991),

who experimented with the perception of breathy vowels using a simplified source

model. The source signal comprised a low-pass filtered pulse train combined with

high-pass filtered Gaussian noise. The filter cut-off frequency of each filter was in the

range 1.2 to 2 kHz, thus giving the excitation signal a flat frequency response. In

the time domain, the noise was temporally modulated so that it appeared in bursts

around the pulses. This step is important so that the noise signal perceptually fuses

with the periodic portion of the waveform (Hermes, 1991).

Similar noise models have been employed by other researchers for speech synthesis

utilising glottal signals. (Lu, 2002) models the aspiration signal as high-pass filtered

Gaussian noise, temporally modulated by a scaled and modified Hann window, cen-

tred above a point a given lag away from the instant of glottal closure. The Hann

window is modified by adding a constant, ensuring a noise floor during the signal. (del

Pozo, 2008) notes the difficulty in obtaining these parameters from the speech signal
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and simply applies to scaled Gaussian noise the estimated glottal derivative pulse

model waveform. Reportedly, this gave similar results to the model in (Lu, 2002).

Other researchers have often used the model waveform in constructing the temporal

envelope of the glottal noise signal (Agiomyrgiannakis and Rosec, 2008, 2009; Gobl,

2006).

2.4 Conclusions

Though speech results from complex anatomical motor-coordination, simplifying as-

sumptions can be made to develop tractable models for speech signal processing. The

prevalent source-filter model of speech has been widely adopted by speech engineers

and is fundamental to many speech processing applications, including a focus of this

study: voice-source estimation. This model interprets speech production as a linear

time-invariant system, which can be separated into a phonatory source signal from

within the larynx and filtering operations resulting from the geometric configuration

of the articulators.

In order to model the acoustic behaviour of the vocal tract, one can adopt the all-

pole model or other spectral approaches, e.g. cepstral-type envelopes. In this study,

the all-pole filter is adopted. The main reason for this is that the all-pole filter logically

follows from the acoustic tube physical model of the vocal tract. Additionally, the

model has often previously been applied for this purpose, e.g. (Atal and Hanauer,

1971; Wong et al., 1979; Markel and Gray, 1982; Alku, 1992; Lu, 2002; Vincent et al.,

2005).

This work will employ multiple models of the voice-source signal. For GCI es-
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timation, the two pole glottal flow model is adopted in order to produce the linear

predictive deconvolutive residual signal where the instants of glottal closure appear

as discontinuities (see Chapters 4 and 7). For voice-source estimation, a more de-

tailed model is desirable and therefore this study adopts the transformed LF model.

As mentioned above, this model produces a subset of possible LF model shapes us-

ing a single parameter which predicts the full LF parameter set in an attempt to

incorporate the natural covariation which exists between them (Fant, 1995). Thus,

the shapes produced by the transformed LF model are more likely to be physiologi-

cally relevant. Additionally, in the context of voice-source estimation, the parameters

of the full LF model are not independent and may introduce ambiguous unrealistic

parameterisations (e.g. very high Te and Tp values) (Fröhlich et al., 2001; Vincent,

2007). Finally, regarding the ability of the transformed LF model to characterise

the glottal signal, (Fant, 1995) qualified the waveshape parameter Rd as “the most

effective single measure for describing voice qualities”.
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Chapter 3

Voice-Source Estimation and

Parameterisation

While the previous chapter discussed prevalent models of the components of the

speech signal, this chapter discusses how those models are utilised for voice-source

estimation and parameterisation. Based upon the source-filter theory of speech, state-

of-the-art methods of voice-source estimation attempt to remove the spectral effects

of the vocal tract in order to reveal the acoustic voice-source signal.

This chapter presents a review of state-of-the-art voiced speech estimation and pa-

rameterisation techniques, categorised according to the domain where they operate.

It will be shown that time-domain techniques are well-suited for voice-source estima-

tion and parameterisation, but that these approaches are sensitive to the location of

the analysis frame and not robust to phase distortion that may be imparted on the

signal e.g. during recording. Phase-based techniques also suffer from a similar lack of

robustness for this phenomenon. Conversely, frequency-domain approaches are more
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robust to these issues. These observations form the basis for the PowRd method of

voice-source estimation and parameterisation, proposed in Chapter 6.

3.1 Theory and Strategies

Voice-source estimation is the estimation of the glottal flow waveform (or its deriva-

tive) from the acoustic speech signal without the influence of the vocal tract (Miller,

1959). As the vocal tract and voice source are convolved together and both unknown,

voice-source estimation is a blind deconvolution problem which can only be solved

if certain assumptions are made about the nature of both the glottal source and

vocal-tract filter.

The theoretical basis for glottal inverse filtering comes directly from a rearrange-

ment of the linear source-filter theory of speech:

S(z) = G′(z)V (z) (3.1)

⇒ G′(z) =
S(z)

V (z)
(3.2)

Thus, voice-source estimation is the inverse of the speech production process: the

derivative glottal flow source is revealed by inverse filtering the speech signal by the

vocal-tract filter. Figure 3.1 illustrates both speech production and glottal inverse

filtering.

There are two basic strategies for glottal source estimation. The first is to make as-

sumptions regarding some characteristic of the speech signal which can be attributed

only to either the vocal tract or to the glottal flow, e.g. that the maximum phase

components of speech result from the derivative glottal flow or that the glottal closed
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Figure 3.1: The above figures give a conceptual view of both the source-filter theory of

speech production (top) and the process of glottal inverse filtering (bottom). For speech

production, the time-domain glottal signal g′[n] excites a vocal-tract filter V (ω) to produce

s[n] the speech signal. For glottal inverse filtering, the speech signal is inversely filtered by

the vocal tract to give the derivative glottal flow signal.

phase represents only the decaying vocal tract resonances. Once this characteristic

has been identified, the speech signal may be deconvolved by some means, e.g. by

determining and inversely applying a parametric model.

The second general strategy of voice-source estimation involves the parametric

modeling of the entire glottal contribution. By removing this model from the speech

signal, the remaining vocal tract can be subsequently (or simultaneously) parame-
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terised. The parameters modeling the voice-source signal can be fixed throughout

analysis, adapted to measurements taken from the speech signal or varied until some

optimum is found. Because these methods parameterise both the vocal tract and

the voice source, these procedures are sometimes referred to as joint estimation tech-

niques.

Following the estimation of the voice-source signal, it is often parameterised in

order to quantify its features (Alku et al., 2002). The voice-source estimate is pa-

rameterised by directly estimating the parameters from the characteristics of the

signal, e.g. extracting signal landmarks, etc. Following direct estimation of the de-

sired parameters, they can also be refined by minimising an error criterion using an

optimisation algorithm. The means by which this is performed depends upon the

domain where the parameterisation occurs.

3.2 Time-Domain-Based Approaches

This section will review voice-source estimation and parameterisation techniques

based upon time-domain assumptions of the glottal flow signal. Firstly, the mathe-

matical details behind these methods are explained in terms of linear systems. Follow-

ing this, different state-of-the-art approaches to solving these equations are outlined

and reviewed.

In the Z-domain, a generalised representation of the source-filter model of speech
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is the so-called AutoRegressive-Moving Average eXogenous (ARMAX) model:

S(z) = G′(z)V (z) (3.3)

=
B(z)G′(z)

A(z)
(3.4)

where the vocal tract V (z) comprises B(z) and A(z), the filter polynomials repre-

senting its zeros and poles respectively. The speech signal S(z) is produced by the

excitation of V (z) by the voice-source signal G′(z). Transforming into the time do-

main, S(z) at time n becomes s[n], and the above equation can be expressed:

s[n] =

p∑
k=1

aks[n− k] +

q∑
j=0

bjg
′[n− j] + e[n] (3.5)

where ak and bj are the filter coefficients, p and q the filter orders, g′[n] is the voice-

source signal and e[n] the residual modeling error signal, assumed to have a flat

frequency spectrum.

The ARMAX speech model is a generalised speech representation which reduces

to other speech models as special cases. If the all-pole assumption is imposed upon

the vocal tract, the bj coefficients can be reduced to a single gain parameter, b0,

yielding the AutoRegressive eXogenous (ARX) model of speech (Ding et al., 1994):

s[n] =

p∑
k=1

aks[n− k] + b0g
′[n] + e[n] (3.6)

As noted in Section 2.3.2, the nonuniform acoustic tube model of the vocal tract

dictates that the unbranched vocal tract exhibits the characteristics of an all-pole

filter, and so this model has seen wide application.

In the case that g′[n] = 0, the standard autoregressive speech model is obtained

(Markel and Gray, 1982):

s[n] =

p∑
k=1

aks[n− k] + e[n] (3.7)
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A time-domain least-squares (TD-LS) solution for coefficients of the vocal-tract

filter V (z) of the general ARMAX model can be determined in terms of p, q, s[n] and

u[n]. Assembling the filtered signals to one side expresses the residual signal e[n] in

terms of the speech s[n] and voice-source waveforms u[n]:

e[n] = s[n]−Mn−1x (3.8)

where

Mn−1 = [s[n− 1] s[n− 2] · · · s[n− p] g′[n] g′[n− 1] · · · g′[n− q]] (3.9)

x = [a1 a2 · · · ap b0 b1 · · · bq]T (3.10)

Evaluation of Equation 3.8 over a certain interval n = 0 · · ·N − 1 can be expanded

into matrix form:

E = S−Dx (3.11)

where

E = [e[0] e[1] · · · e[N − 1]]T (3.12)

S = [s[0] s[1] · · · s[N − 1]]T (3.13)

D = [M−1;M−2; · · · ;MN−2]
T (3.14)

By minimising the energy of the error ||E||2, the vocal-tract filter parameters x can

be found. This solution is given by:

x =
(
DTD

)−1
DTS (3.15)

This solution forms the basis for many time-domain voice-source estimation meth-

ods. However, of the elements of Equation 3.5, usually only the acoustic speech signal

s[n] is known. It is not possible to determine the solution x without estimates of:

46



• the filter orders p and q,

• the interval of analysis, n, and

• the time-domain shape of the glottal excitation signal within the analysis inter-

val, g′[n].

Under the all-pole vocal-tract filter assumption, the vocal-tract filter order p is

related to its length and the sampling frequency, and is given by Equation 2.9. Ex-

ploiting this assumption, voice-source estimation methods determine x require knowl-

edge of an appropriate analysis interval n and the voice-source shape g′[n] within that

interval.

3.2.1 Closed-Phase Inverse Filtering

Ultra high-speed cinematography of the larynx has enabled scientists to visually ob-

serve the cycle of the glottal pulses during voiced phonation (Childers, 2000). These

films, utilising frame-rates of greater than 4,000 frames per second, have shown that

for certain voices, the glottis is often fully sealed during the pulse cycle, during what

is referred to as the glottal closed phase. If the vocal-tract filter is determined during

this small interval, the estimated filter can be inversely applied to the speech signal

in an operation known as Closed-Phase Inverse Filtering (CPIF)(Wong et al., 1979).

A fully closed glottis implies that during the closed phase, the glottal contribution

to the speech signal is zero, i.e. g′[n] = 0. Therefore, during this interval if the vocal

tract is represented by an all-pole filter, the speech signal can be stated as Equation

3.7. In other words, the speech signal results solely from the decaying resonances

of the vocal tract and residual error signal. If the glottal closed-phase interval can
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be located and an appropriate value for p is known, the vocal tract is parameterised

according to Equation 3.15, where D and x are modified to account for the closed

glottal phase and all-pole vocal tract assumptions. This method of all-pole filter

coefficients parameterisation is often called the covariance method of linear prediction

as the inversion of this equation involves the evaluation of a covariance matrix (Markel

and Gray, 1982). Figure 3.2 shows an example of a speech signal, the demarcated

closed phase and the estimated voice-source signal.

Figure 3.2: The figure above shows the derivative glottal flow waveform g′[n] (red) esti-

mated from the speech signal s[n] (blue) by inverse filtering the speech segment using the

all-pole filter coefficient determined by covariance linear prediction over the closed-phase

interval ncl, delimited in black.

Though speech engineers have been aware since at least the late 50’s of the poten-

tial of the closed-phase condition for glottal inverse filtering (Miller, 1959), the theory

behind closed-phase inverse filtering method was first formalised by (Wong et al.,

1979). It has since become a prevalent method of voice-source estimation (Larar
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et al., 1985; Veeneman and BeMent, 1985; Krishnamurthy and Childers, 1986; Chan

and Brookes, 1989; Brookes and Chan, 1994; Childers, 1995; Moore and Clements,

2004). In practice, however, some heuristic rules are imposed upon filter coefficients

determined by the closed-phase analysis before it is taken as an estimate of the vocal

tract parameters. The roots of the filter polynomial are obtained by factorisation,

where certain properties are enforced:

Reflections of Maximum Phase Poles There is no guarantee that the vocal-tract

filter estimated by covariance linear prediction is stable (Markel and Gray, 1982;

Alku et al., 2009) (contrary to autocorrelation linear prediction (Markel and

Gray, 1982) or Stabilised Weighted Linear Prediction (SWLP) (Magi et al.,

2009)). However, the stable vocal tract system implies that all poles must lie

within the unit circle. For this reason, any roots z of the filter polynomial with

a magnitude great than one are replaced by their mirror image partners 1
z∗
,

where z∗ is the complex conjugate of z.

Removal of Real Poles (Alku et al., 2009) remarks that “[poles on the positive

real axis of the Z-plane are] unrealistic from the point of view of Fants source-

tract theory of vowel production and its underlying theory of tube modeling”.

Because the theory cannot associate this pole with the vocal tract, any pole that

appears on the positive real axis is removed (Wong et al., 1979; Childers and Lee,

1991; Alku et al., 2009). Failure to remove this pole can lead to distortions in

the time-domain signal around the instant of glottal closure called “jags” (Wong

et al., 1979; Alku et al., 2009). DC-constrained closed-phase linear prediction

(Alku et al., 2009), where the filter magnitude response is fixed a 0dB using
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constraints upon the solution of x, is in part motivated to increase the likelihood

that closed-phase analysis will yield pole locations at more realistic Z-domain

coordinates.

Removal of Low Frequency Poles Other researchers also suggest the removal of

poles whose centre frequency fall beneath a given threshold (Childers and Lee,

1991; Swerts and Veldhuis, 2001), which may result from an improperly placed

analysis frame (thus corresponding to the glottal signal, not the vocal tract).

3.2.2 Time-Domain-Based Joint Estimation Techniques

In order to extend the analysis frame used for vocal tract estimation the closed-phase

interval, the shape of the glottal excitation source during the glottal open phase,

g′[n] in the ARMAX and ARX speech models (Equations 3.5 and 3.6) above, must

also be known. By assuming that g′[n] is approximated by a voice-source model

g′θ[n] with parameters θ, the corresponding optimal vocal-tract filter coefficients x

can be determined by solving the linear system according to Equation 3.15. Methods

which attempt to determine the optimal vocal tract parameters x simultaneously with

optimal voice-source parameters θ are called joint estimation techniques.

An example of a joint glottal source and vocal-tract filter estimation technique is

illustrated in Figure 3.3. Like CPIF, time-domain joint estimation techniques operate

in a pitch-synchronous manner, deconvolving and parameterising each voiced speech

pulse. Also like CPIF, time-domain joint estimation techniques are sensitive to the

placement of the analysis frame, which is usually supplied in terms of the glottal

closing instant and the local pitch period T0. However, determining the optimal
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solution for both θ and x is complicated by their nonlinear relationship, which can

substantially increase computational requirements depending upon the degrees of

freedom of g′θ[n] (Fujisaki and Ljungqvist, 1986). Generally, this problem is solved by

separating the optimisations into successive stages of voice-source parameterisation

followed by vocal tract estimation. For this operation, researchers have adopted

different strategies which are reviewed here. Note that for all methods no strategy

is employed to determine p or q unless otherwise mentioned; it is assumed that this

parameter is known a priori (e.g. by following Equation 2.9).

Figure 3.3: The figure above illustrates the convex optimisation time-domain joint es-

timation of the vocal-tract filter and the glottal excitation source g′[n] from the speech

signal s[n], as described in (Lu, 2002). The method simultaneously fits a KLGLOTT88

model g′θ[n] to the estimated voice source waveform g′[n].

Hill Climbing (Fujisaki and Ljungqvist, 1986, 1987) In experiment compar-

ing the abilities of different glottal models to satisfactorily model the speech signal,

(Fujisaki and Ljungqvist, 1986) proposes a hill-climbing method to optimise the pa-
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rameters of the ARX model. An iterative procedure generates the glottal model

waveform according to θ, obtains a solution for x and modifies θ by changing a single

element incrementally, searching for the minimum of the prediction error ||E||. In

(Fujisaki and Ljungqvist, 1987), this method was extended to the ARMAX model,

using the FL model for g′θ[n].

Glottal LPC (Hedelin, 1986) An LPC-based vocoding system was described in

(Hedelin, 1986) which determined the optimal parameters of their own glottal model

along with the all-pole vocal tract. An iterative algorithm is described to solve the

system, which is supervised to ensure that reasonable glottal parameters (e.g. no

negative durations) and stable vocal-tract filters are obtained.

Simulated Annealing and Kalman Filtering (Ding et al., 1994, 1997) An-

other ARMAX model parameterisation method is presented in (Ding et al., 1994).

The method approximates the voice-source signal using the KLGLOTT88 model,

applies simulated annealing (Kirkpatrick et al., 1983) to solve the nonlinear minimi-

sation process for obtaining θ and the Kalman filtering algorithm (Kalman, 1960) to

obtain the vocal tract system coefficients. The computational requirements of the

algorithm was reduced in (Ding et al., 1997), which also proposed a model order se-

lection technique based on the assumption that the formants with centre frequencies

below 3kHz should exhibit an average minimum bandwidth value not below a given

threshold. g′θ[n] is given by the KLGLOTT88 model.

Genetic Algorithm and Simulated Annealing (Funaki et al., 1997) (Funaki

et al., 1997) proposes the “Glottal-ARMAX” speech model similar to the ARMAX
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speech model above, though the system has an additional noise signal w[n] which is

not assumed to be white rather is shaped by spectral envelope defined by a Moving-

Average (MA) filter, defined by t number of coefficients ch. The model may be

expressed:

s[n] =

p∑
k=1

aks[n− k] +

q∑
j=0

bjg
′[n− j] +

t∑
h=0

chw[n− h] + e[n] (3.16)

The form of the solution of the system is therefore slightly different from Equation 3.15

and an additional layer of complexity it added with the addition of a further element

of the speech model. The method adopts the KLGLOTT88 model to represent g′θ[n]

and employs a hybrid genetic algorithm (Holland, 1992) and simulated annealing

approach to determine the optimal system parameters.

Convex Optimisation (Lu, 2002) A convex optimisation approach to glottal

inverse filtering based upon the ARX was proposed in (Lu, 2002) and utilised and

extended in (del Pozo, 2008; Pérez and Bonafonte, 2005, 2009). The glottal signal

g′θ[n] is approximated by the simplified Rosenberg model and the additional spectral

tilt filter of the model TL(z) which extends the Rosenberg model to the KLGLOTT88

model is incorporated into the estimated all-pole vocal-tract filter. Following analysis,

the single real positive pole characterising TL(z) is extracted from filter polynomial.

As review in Section 2.3.3.1, the glottal model has two parameters: the open

quotient Oq and pitch period T0. This simplicity yields a convex error function (Lu,

2002) ensuring that by varying Oq across its range, a global minimum can be found,

see Figure 3.4.

In (del Pozo, 2008; Pérez and Bonafonte, 2009), TL(z) is estimated from the speech

signal by a first order linear predictive analysis and removed by inverse filtering before
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Figure 3.4: The above figure gives the error surface for the convex optimisation inverse

filtering method (Lu, 2002) for a synthetic speech token with respect to the Oq parameter

of the KLGLOTT88 model.

estimating the all-pole vocal-tract filter. This procedure, referred to as adaptive pre-

emphasis (see Section 3.3.1), is used to increase robustness of analysis and improve

the time-domain fitting of the return phase.

Low-band/Full-band ARX-LF (Vincent et al., 2005) An iterative method to

determine the ARX speech model parameters was proposed in (Vincent et al., 2005),

where g′θ[n] is represented by the LF model, giving the ARX-LF speech model (ARX

model of speech with LF model of the derivative glottal pulse). This method windows

the speech signal s[n] and glottal signal g′[n] using a Hann function 2T0+1 in length,

centred over the glottal closing instant. This ensures that, unlike other methods of

ARX estimation, the analysis window does not change during estimation, which lends

itself to increase computational speed (Vincent et al., 2005).

Due to the complexity of the LF model, the method performs the vocal-tract fil-

ter estimation in two passes, a low frequency optimisation, followed by a full band
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optimisation. The first step estimates the open phase parameters of the LF model

using the signal frame down-sampled to 2kHz. Decimating the frame in this manner

serves to reduced the bandwidth of analysis so that the open phase parameters of the

LF model waveform, which are mainly responsible for the glottal formant character-

istics, can be estimated with decreased influence of the return phase characteristics.

Initial estimates are taken from a discrete subset of LF model parameter configura-

tions (Vincent et al., 2005), and then refined using the simplex optimisation method

(Nelder and Mead, 1965). Once the low bandwidth estimates of the open phase pa-

rameters are obtained, full bandwidth analysis is performed, optimising only for the

return phase parameters.

The prediction error evaluated with a filter order p and glottal model parameters θ,

||Ep
θ ||, will always decrease with increasing p. This makes the error function unsuitable

for determining the optimal filter order. However, by normalising this error by the

standard prediction error ||Ep
0 || (calculated similarly to ||Ep

θ || following from Equation

3.7), a new error function which does not exhibit this behaviour E
p

θ, termed the

normalised prediction error, is obtained. This value is calculated as:

E
p

θ =
||Ep

θ ||
||Ep

0 ||
(3.17)

As ||Ep
θ || will always smaller than ||Ep

0 ||, the normalised prediction error is always

between 0 and 1 and independent of signal amplitude.

Iterative ARX (Fu and Murphy, 2006) Another two pass method for the ARX

parameterisation was presented in (Fu and Murphy, 2006). First, the ARX problem

is simplified by using the Rosenberg model to approximate the glottal flow, similar

to the method of (Lu, 2002). The determined Rosenberg parameters are then used
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to obtain robust initial estimates of the more complex LF model. These parameters

form the initial estimation for subsequent pass to identify the vocal tract and glottal

model parameters using an interior trust-region to refine the LF model parameters,

while the Kalman filtering algorithm adaptively identifies the vocal tract coefficients.

3.2.3 Time-Domain Voice-Source Parameterisation

Glottal inverse filtering yields an estimate of the voice-source signal: an example is

given in Figure 3.5. This section discusses how time-domain parameterisation of a

glottal model may be obtained from these estimates.

Figure 3.5: In the above figure are three derivative glottal flow pulses g′[n], estimated

from natural speech using CPIF and fitted by the LF model ĝ′[n], using a method similar

to (Strik, 1998).

Generally, time-domain glottal pulses are parameterised individually in two stages.

The first stage obtains initial estimates of the model parameters. Once the parameters

have been appropriately estimated, the parameters are then refined during a second
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optimisation. This section will detail these operations.

Initial parameter estimation Initial parameters are usually required in order to

begin an optimisation procedure. For glottal signals, many initial parameters can be

estimated directly from landmarks of the glottal pulse, though some parameters e.g.

the LF models Ta parameter, may be more difficult (Strik, 1998; Lu, 2002). These

landmarks correspond to various points along the time-domain signal, such as local

extrema, zeros crossings, etc.

As estimated glottal flow waveforms are often corrupted by high frequency noise,

the signal is often pre-processed by low-pass filter to reduce its effects (Strik, 1996).

Convolution with a Blackman window 1ms in length is typical (Strik, 1998; Lu, 2002).

It is important to note that any filtering operation will also affect the shape of the

pulse - it is therefore advisable that the glottal pulse model to be fit on the signal

also be filtered in the same way (Strik, 1996).

As many glottal source estimation techniques model the glottal pulse signal in

some way, an alternative strategy to obtain the initial LF model parameters is to map

them from the model used for glottal inverse filtering; for example, (Pérez and Bona-

fonte, 2005, 2009; Fu and Murphy, 2006) map the parameters of the KLGLOTT88

model used during glottal inverse filtering to LF model parameters.

Optimisation Once initial parameters have been estimated, they are then passed

to an optimisation function which refines them by minimising an error criterion. The

error criterion utilised is the energy of the residual signal (Strik, 1998; Lu, 2002; Fu

and Murphy, 2006; Pérez and Bonafonte, 2005, 2009). Mathematically, the residual
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energy signal Eg between an estimated derivative glottal pulse g′[n] spanning from

glottal opening to to closure tc and an derivative glottal model pulse model g′θ[n] can

be expressed:

Eg =
tc∑

n=to

(g′[n]− g′θ[n])
2 (3.18)

Attempts to use other perceptually weighted error and combined time/frequency-

domain criteria have proved difficult (Strik, 1998).

The optimisation routines used for refining the initial estimations have varied. Re-

garding the fitting of the LF model to voice-source estimates, the work in (Strik, 1998)

uses two algorithms: the simplex method (Nelder and Mead, 1965) to correct gross

errors in the initial parameter estimations, followed by the Levenberg-Marquardt algo-

rithm (Marquardt, 1963) to correct any final errors. However, (Tooher and McKenna,

2003) found that the fit was not improved and occasionally degraded by the second

algorithm. (Lu, 2002; del Pozo, 2008) uses a constrained nonlinear optimisation which

can be used to limit the parameter values to within a certain interval of the initial

estimations.

Figure 3.5 shows the fitted LF model waveforms overlaid upon the estimated

derivative glottal waveforms, following the method outlined in (Strik, 1998).

3.2.4 Discussion

As was shown in this section, the mathematical framework in which time-domain

speech systems are described is straightforwardly posed, efficiently solvable and well-

suited to the estimation and parameterisation of the voice-source signal. However,

there are some issues which make time-domain methods difficult or inappropriate for
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this task.

Analysis Frame Location The main difficulty with time-domain voice-source es-

timation techniques is locating the analysis interval. For CPIF, determining the

glottal closed phase from the speech signal requires the determination of two glottal

events: glottal closure and glottal opening. As discussed in (Alku et al., 2009) and

illustrated in Figure 3.6, inaccuracies in the location of the closed phase can lead to

large errors in the estimated glottal waveform. This is a result of the least squared

energy criterion minimising the energy over the analysis interval when in actuality

some energy from the glottal signal is present. While also requiring information of the

glottal closing instant, joint estimation techniques do not require an estimate of the

glottal opening instant, as this parameter will be estimated by the included glottal

model, though they do impose the further assumptions about the glottal open phase

and usually necessitate an estimate of the pitch period.

In order to identify the instants of glottal closure and opening, many researchers

have utilised an ElectroGlottoGraph (EGG) signal synchronously recorded with the

speech signal (Larar et al., 1985; Veeneman and BeMent, 1985; Krishnamurthy and

Childers, 1986; Chan and Brookes, 1989). Researchers have also developed algo-

rithms to determine the glottal closed interval directly from the speech signal itself

(see Chapter 4) - estimating the instant of glottal opening is a more difficult problem

because it is usually a lower energy glottal event, though also for this reason, it has

been claimed that knowledge of its exact location is not crucial (Brookes and Chan,

1994). (Plumpe et al., 1997) proposes a closed-phase detection method based upon

the stability of the estimation of the first formant of the vocal tract. An automatic
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Kalman-filtering-based approach which excluded open phase data from the analy-

sis was proposed in (McKenna, 2001). Other researchers have developed techniques

which determine reasonable voice-source estimation results with imperfect glottal

closed interval information. (Moore and Clements, 2004) proposed a fully automatic

technique which would determine the best interval of analysis based upon the lin-

ear predictive analysis of the estimated glottal flow waveform given an approximate

location of the glottal closing instant.

Figure 3.6: The figure above shows the CPIF-estimated glottal pulses using closed-phase

interval offset by (a) 0 ms (b) +2.5 ms and (c) −2.5 ms.

Phase Distortion In addition to the position of the time-domain analysis frame,

phase distortion from electro-acoustic equipment can also create difficulties for time-

domain glottal estimation and parameterisation techniques (Holmes, 1975; Berouti

et al., 1977; Wong et al., 1979; Hedelin, 1984; Akande, 2004; Walker and Murphy,

2007). A signal is phase distorted when the phase relationship between the compo-

nents of the signal are altered in some way in a manner that is not necessarily per-
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ceived by a listener. Phase distortion is often attributed to audio equipment (Holmes,

1975; Berouti et al., 1977; Strik, 1998) - (Doval and d’Alessandro, 2006) claims that

most electro-acoustic equipment, e.g. studio microphones, non-anechoic chambers,

tape recorders, etc. will introduce phase distortion. In addition to electro-acoustic

equipment, phase distortion can also result from DSP operations subsequent to signal

digitisation, e.g. high-pass filtering (Strik, 1996; Tooher and McKenna, 2003). This

is a significant problem for time-domain-based analysis techniques.

Specifically in the context of voice-source analysis, the glottal waveform of phase-

distorted signals may be have their shapes significantly changed, thus invalidating

the assumptions that the voice-source signal exhibits a specific time-domain shape.

Indeed, both (Berouti et al., 1977) and (Akande, 2004) stated that phase distortion

may eliminate the closed phase of a glottal cycle, particularly for low frequency voices.

Time-domain-based error criteria for voice-source estimation (Equation 3.8) and pa-

rameterisation (Equation 3.18) are therefore inappropriate. Figure 3.7 shows the

impact of a nonlinear linear recording system transfer function on synthetic glottal

pulses.

In order to correct phase distortion, the transfer function of the recording system

must be known and then inversely applied to the signal or implicitly canceled. It can

be measured from the recording system itself using DSP approaches, e.g. via Maxi-

mum Length Sequences (Airas and Alku, 2007). Alternatively, the phase response can

be explicitly canceled by inputting the time-reversed recorded signal into the record-

ing system (Smith III, 2007). However, these methods require access to the recording

system itself. If a reference signal of known signal shape (e.g. a square wave, an

impulse train, etc. ) has been recorded using the system, post-recording analysis can
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Figure 3.7: The above figure shows a synthetic glottal pulse overlaid with the corre-

sponding phase-distorted pulse, obtained by filtering the original signal with the impulse

response of a professional recording system. The glottal closed phase does not appear in

the phase-distorted pulse.

be performed in order to construct a representation of the transfer function (Holmes,

1975; Berouti et al., 1977; Brookes and Chan, 1994; Akande, 2004). These methods

require the existence of a suitable reference.

(Hedelin, 1986) incorporates the estimation of a phase compensation filter along

with the parameters of an ARX speech model. The filter T (z) is assumed to be an

all pass filter of the form:

T (z) =
D(z−1)

D(z)
(3.19)

The coefficients of D(z) are estimated by comparing the speech signal and the pro-

posed ARX model using a linear prediction type approach - in this way it is similar

to phase correction methods which use a reference signal. However, there are a num-

ber of issues with this approach. First, the order of D(z) is unknown. Second, the

filter stability is not assured. Third, the method cannot determine a linear phase
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offset (which relates to the problem of analysis frame position). Finally, though it is

reported that T (z) improves the perception of nasal sounds, its experimental utility

for correcting phase distortion was not examined in (Hedelin, 1986). Instead, vali-

dation of the proposed approach utilises speech signals recorded using phase linear

equipment. Therefore, rather than correcting phase distortion, the extra flexibility

of this expanded speech model can compensate for deficiencies of the vocal tract and

voice-source models and may then invalidate conclusions drawn from them.

3.3 Frequency-Domain-Based Approaches

Frequency-domain voice-source estimation methods work upon the second principle

of glottal inverse filtering, where the derivative glottal flow signal is removed from

the speech frame before estimation of the vocal tract. In this way, all of the following

methods can be viewed as joint estimation approaches.

Removal of the glottal derivative signal can be performed by applying a transfer

function representing the inverse of the derivative glottal flow model to the speech

signal. Theoretically, this follows from source-filter theory:

S(z) = G′(z)V (z) (3.20)

⇒ V (z) =
S(z)

G′(z)
(3.21)

Though based upon frequency-domain assumptions of the behaviour of the glottal sig-

nal, these algorithms can be performed in the time domain by utilising the difference

equation representation of G′(z).

A power spectrum interpretation representation of Equation 3.21 can be expressed
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by evaluating the Z-transform along the unit circle z = ejω and squaring:

|V (ω)|2 = |S(ω)|2

|G′(ω)|2
(3.22)

Therefore, source-filter theory dictates that power spectrum division can serves to

remove the contribution of the derivative glottal flow from the speech signal.

The following glottal inverse filtering methods utilise these frequency-domain in-

terpretation of source-filter theory as their foundations.

3.3.1 Pre-Emphasis Filtering Based Methods

Pre-emphasis-based voice-source estimation techniques use filter models of the glottal

contribution, which are applied to the speech signal in order to cancel the glottal

contribution G′(z), as is outlined by Equation 3.21. The section describes these

filtering based approaches.

First Order IIR Pre-Emphasis (Markel and Gray, 1982) In Section 2.3.3.1,

a two pole model of the glottal flow signal G(z) was reviewed. The poles of this

model are of low frequency and near the unit circle (Markel and Gray, 1982; Doval

and d’Alessandro, 2006). Following this model, G(z) can be expressed:

G(z) =
1

(1− eαz−1)2
(3.23)

where α ≃ 0.

Recalling that the lip radiation characteristic L(z) can be modeled as a first order
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differentiator, the linear source-filter of speech can be re-expressed:

S(z) = G(z)V (z)L(z) (3.24)

=
1

(1− eαz−1)2
V (z)(1− z−1) (3.25)

As the value of α is very small, one of the poles of the glottal flow is approximately

canceled by lip radiation, and the equation can be expressed:

S(z) =
1

(1− eαz−1)
V (z) (3.26)

The remaining pole of G(z) can therefore be canceled by a single pole high-pass filter

similar to L(z): this filter is referred to as a pre-emphasis filter P (z). P (z) is of the

form 1−βz−1, where β is usually of the range 0.94 ≤ β < 1. The parameter β may be

fixed at a particular value, or adaptive, where its value is estimated from the speech

frame, e.g. using linear prediction techniques.

Pre-emphasis filters therefore flatten the contributions of the glottal derivative

flow before estimating the vocal-tract filter (Markel and Gray, 1982). Essentially,

this operation compensates for the influence of the spectral slope of the entire glottal

derivative signal and thus improve the accuracy of the estimates of the vocal tract’s

upper formants. If it is assumed that the vocal tract impulse response is modeled as

that of an all-pole filter, autoregressive filter estimator can be applied to the resulting

signal frame in order to determine the optimal coefficients (Markel and Gray, 1982).

Figure 3.8 illustrates the signals involved in this method of glottal inverse filtering.

IAIF (Alku and Laine, 1989) Iterative Adaptive Inverse Filtering (IAIF), in-

troduced in (Alku and Laine, 1989), models the derivative glottal flow signal using

a low-order all-pole filter, whose parameters are estimated in an iterative fashion
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Figure 3.8: The above figures illustrate first-order FIR pre-emphasis filter voice-source

estimation. (Top Panel) Speech signal. (Middle Panel) Pre-emphasised speech, using the

filter P (z) = 1 − 0.98z−1 (Bottom Panel) Voice-source waveform, obtained by inverse

filtering the speech segment using the filter estimated from the pre-emphasised signal.

directly from the speech signal. The first stage follows the adaptive pre-emphasis

glottal inverse filtering method described above, but the resulting derivative glot-

tal flow estimate is then parameterised using another autoregressive analysis. This

refined estimate of the glottal flow signal can then be used as a higher order pre-

emphasis filter, which in a second pass further refines the vocal tract estimate. A

figure illustrating the IAIF procedure is given in Figure 3.9.
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Figure 3.9: The above figure gives a schematic rendition of the IAIF algorithm, and is

adapted from (Airas, 2008a). The blocks marked “AR Modeling” indicate an autoregres-

sive analysis of given order. See text for details.

In (Alku and Laine, 1989), the autoregressive estimation was performed using

autocorrelation method of linear prediction (Markel and Gray, 1982). However, this

technique has a well known bias towards the peaks of the signal, due to the error can-

celling property of the aliasing which occurs when the spectrum is sampled at discrete

frequencies (El-Jaroudi and Makhoul, 1991; Makhoul, 1975). An improved IAIF al-

gorithm using the Discrete All-Pole (DAP) modeling (El-Jaroudi and Makhoul, 1991)

algorithm which avoids this error cancelation by employing a different error criterion,

the Itakura-Saito distance measure (I-S) (Itakura and Saito, 1968), was proposed

in (Airas, 2008a). Both the DAP and LPC algorithms and the Itakura-Saito error
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function are discussed in Appendix B.

AEVT (Akande and Murphy, 2005) The Adaptive Estimation of the Vocal

Tract transfer function (AEVT) (Akande and Murphy, 2005) also uses pre-emphasis

filters to remove the influence of the glottal signal. However, unlike the above pre-

emphasis methods, the AEVT method uses a “dynamic, multi-pole, zero-phase lag

high-pass” filter in order to remove the glottal contributions. The parameters of this

filter are chosen according to low frequency gain criterion upon the resulting vocal

tract estimate. If the glottal signal is appropriately canceled, the pre-emphasis gives

an extended “pseudo-closed” phase, which can then be analysed using covariance

linear prediction in order to estimate the vocal tract. The analysis window and filter

order are also varied until certain criteria regarding the phase characteristics and

formant bandwidths are satisfied.

Though this method is described as a pre-emphasis voice-source estimation tech-

nique because of the filters utilised to cancel the glottal signal, the subsequent pseudo-

closed-phase analysis has much in common with CPIF.

3.3.2 Power-Spectrum-Based Joint Estimation Techniques

As opposed to transfer function representations of the derivative glottal flow, some

researchers have opted to use power spectrum representations of time-domain models.

As these methods assume an all-pole vocal-tract filter, these methods are similar to

time-domain ARX approaches, albeit in a different domain.

Examples of this approach are given in (Fröhlich et al., 2001; Arroabarren and

Carlosena, 2003) which are broadly similar. They operate upon the power spectrum
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of a signal which is estimated using the Discrete Fourier Transform (DFT). Once in

the frequency domain, the prominent peaks of the spectrum, representing samples of

the spectral envelope, can then be extracted.

These spectral peaks represent the sampled speech signal envelope. The effect of a

derivative glottal flow model of a given parameter configuration is removed by spectral

division (or equivalently, log magnitude domain subtraction) yielding an estimate of

the vocal tract. A pth order all-pole model is then fit to the resulting spectrum using

the DAP algorithm, which gives the Itakura-Saito error quantifying the goodness

of fit of the envelope to the estimated vocal tract, and indirectly the glottal model

parameter configuration.

If the derivative glottal flow model approximates the actual derivative glottal flow

and the pth order all-pole filter is appropriate for the vocal tract, the Itakura-Saito

error will be minimised. Thus, similarly to time-domain methods of joint estimation

glottal inverse filtering, the parameters of the glottal source model are searched over

their ranges via an exhaustive search to yield a robust estimate of their parameters.

SIM (Fröhlich et al., 2001) The Simultaneous Inverse filtering and Model match-

ing (SIM) method (Fröhlich et al., 2001) is a power-spectrum-based voice-source esti-

mation/parameterization method which follows the above routine. It utilises the LF

model for the derivative glottal flow and a modified version of the DAP algorithm

where the initialisation and termination conditions of the iterative loop are slightly

altered.

Additionally, following the exhaustive search of a discrete set of parameter config-

urations, the SIM method refines the LF model parameters using a two step approach
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due to the complex error surface of such an optimisation. First, the initial parameters

controlling the pulse shape {tp, te, ta} are refined using two optimisation algorithms:

the simplex algorithm (Nelder and Mead, 1965) followed by Powell’s method (Powell,

1964). Second, in order to estimate the LF model scale parameter Ee, a time-domain

error criterion is used between the synthesised LF model pulses and estimated deriva-

tive glottal flow waveform. This error is then minimised using a Brent’s method

optimisation (Brent, 2002), while adjusting the lag to ensure the signals are matched

in phase.

An example of the SIM algorithm is given in Figure 3.10.

GSBIF (Arroabarren and Carlosena, 2003) Glottal-Spectrum-Based Inverse

Filtering (GSBIF) is another power-spectrum-based voice-source estimation/parameterization

method, introduced in (Arroabarren and Carlosena, 2003). However, unlike the SIM

method, this approach utilises the KLGLOTT88 model of glottal flow. Like the

time-domain convex optimisation method (Lu, 2002), the spectral tilt filter of the KL-

GLOTT88 model TL(z) is also estimated simultaneously with the vocal tract. Simi-

larly, the model’s open quotient parameter is determined via an exhaustive search.

3.3.3 Frequency-Domain Voice-Source Parameterisation

In contrast with time-domain methods, frequency-domain attempts to fit voice-source

model signals are less prevalent in the literature. This is probably due to the fact

that most derivative glottal flow models are defined in the time domain.

One method is described in (Swerts and Veldhuis, 2001), a study where the effect of

the pitch contour of speech is compared against the characteristics of the source. This
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Figure 3.10: The above figures give a overview of the SIM method of voice-source

estimation/parameterization (Fröhlich et al., 2001). The figures shows: (a) The speech

signal. (b) The speech and LF model spectra. The LF model spectrum approximates the

derivative glottal flow signal. (c) The vocal tract spectrum and all-pole filter envelope.

method uses the Kullback-Leibler distance function (Kullback, 1987) for probability

distributions to quantify the distance between the estimated glottal derivative flow
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spectrum G′(ω) and the model spectrum G′
θ(ω), given by the LF model. The error is

expressed:

EKL =
L∑
k=1

|G′
θ(ωk)|2 ln

|G′
θ(ωk)|2

|G′(ωk)|2
(3.27)

where wk is the k
th harmonic of the spectrum and L represents the number of harmon-

ics in the available bandwidth. Both spectra are power normalised before comparison,

i.e.
∑L

k=1 |G′(ωk)|2 =
∑L

k=1 |G′
θ(ωk)|2 = 1. This method therefore does not fully pa-

rameterise the glottal model signal: its scale factor is not estimated. However, not

mentioned in (Swerts and Veldhuis, 2001) is the method of obtaining initial parame-

ters or the algorithm used to optimise them.

The frequency-domain voice-source parameterisation method described in (Kane

et al., 2010) more closely follows the procedure of the time-domain methods above

where initial values are found and then refined using an optimisation algorithm used to

minimise some error. The voice-source estimate is fit using the LF model. The method

determines an initial estimate of the LF model parameters by calculating H1−H2,

the difference between the first two harmonic of the voice-source estimate (Klatt and

Klatt, 1990) supposedly indicative of the open quotient of the signal, and matching

with values contained in a look-up table. Similarly to (Vincent et al., 2005), a two

stage low-band, full-band approach is then adopted to refine these initial parameters.

The simplex optimisation method (Nelder and Mead, 1965) is used to minimise the

residual difference error between the magnitude of the lowest 6 harmonics of the

estimated and model voice source. The error is weighted so as to double the error

the first two harmonics, which are known to be important for voice quality:

EU =
6∑

k=1

(|G′(ωk)| − |G′
θ(ωk)|)

2
+

2∑
k=1

(|G′(ωk)| − |G′
θ(ωk)|)

2
(3.28)
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Once the low frequency portion of the frame has been optimised, the full band-

width signal is refined to obtain a better match for the return phase value. Though

this parameter mostly affects the upper frequencies, a certain effect is also imparted

upon the lower frequency portion of the spectrum, due to the principle of area bal-

ance. In order to lessen the effect of the second high frequency optimisation upon

the already-fitted lower frequencies, (Kane et al., 2010) relaxes the area balance con-

straint. Figure 3.11 shows the estimated glottal source and fitted LF model spectra.

Figure 3.11: The figure above shows the amplitude spectrum of an estimated glottal

waveform and a fitted LF model spectrum, following the procedure given in (Kane et al.,

2010).

3.3.4 Discussion

Frequency-domain approaches overcome the main drawback of time-domain voice-

source estimation, namely sensitivity to the phase spectrum, whether in the position

of the analysis frame or the presence of phase distortion. Time-domain voice-source
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estimation techniques demand a magnitude and phase match of the signal in order to

parameterise the speech model, implicit in the time-domain residual energy criteria.

Conversely, power spectrum and pre-emphasis filtering methods (AEVT excluded)

model the magnitude spectrum of the signal only and are largely robust to the phase

spectrum. This results from the determination of the all-pole envelope of the analysis

signal from its power spectrum (utilised by DAP) or its autocorrelation coefficients

(utilised by LPC and trivially calculated from the power spectrum) (Appendix B

contains more details).

This make these approaches an attractive option for the robust analysis of the

voice-source signal. However, other factors prove disadvantageous. While both the

basic pre-emphasis and IAIF methods of glottal inverse filtering are computationally

inexpensive and can yield reasonable results, the methods are not robust across all

speech types and phonemes due to the determination of the glottal model parameters.

Particularly with speech segments containing a first formant of low centre frequency

(e.g. /i/), the first and glottal formants may overlap with the consequence that the

first formant not be successfully removed from the voice-source estimate (Alku, 1992).

In order to achieve increased robustness in these scenarios, a brute force approach

using a large set of different glottal models may be preferred. In this way, even if

the spectral properties of the analysis signal are such that an accurate glottal model

cannot be determined directly, an exhaustive search can potentially do so. Moreover,

the IAIF and first order pre-emphasis methods use low order all-pole glottal model

filters: it is more useful to simultaneously parameterise a more sophisticated glottal

model, without requiring a separate optimisation stage.

This is the approach taken by the power-spectrum-based joint estimation tech-
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niques outlined in this section. However, these methods assumed that the filter order

is known a priori (the SIM method follows the usual rule of thumb, while the method

of (Arroabarren and Carlosena, 2003) utilises unusually high filter orders). Addition-

ally, signal samples are obtained throughout the frequency band, without regards for

any noise components which may corrupt the spectrum. Further, the scale factor of

the incorporate model is not estimated by the SIM method in the frequency, rather

determined in the time domain, where the approach adopts the usual time-domain

least-squares error and implicitly the associated phase matching requirement.

3.4 Phase-Spectrum-Based Approaches

There is some evidence that the voiced speech signal may be interpreted as a mixed

phase system, containing both minimum and maximum phase components (Bozkurt,

2005). Maximum phase characteristics are exhibited by a signal which exponentially

increases with time, while a signal exhibits minimum phase characteristics when it

decays with time (Quatieri, 2001). In the case of a pulse of voiced speech, the maxi-

mum phase components are attributed to the open phase of the derivative glottal flow

signal, while the minimum phase components of speech signal are determined by the

vocal tract and the return phase of the glottal signal. Thus, if these components of

the speech signal can be separated, it also serves to deconvolve the speech signal into

glottal open phase and vocal tract/return phase contributions. Figure 3.12 illustrates

the principle behind these separation methods. These methods are also some times

referred to as causal-anticausal decomposition approaches.
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Figure 3.12: The above figures give the principles of minimum/maximum phase decom-

position glottal inverse filtering. The above figures show, in three different domains (left,

time domain; middle, log magnitude frequency-domain; right, Z-domain), representations

of the glottal derivative flow (top), the vocal-tract filter (middle) and the speech signal

(bottom).
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3.4.1 Minimum/Maximum Phase Speech Decomposition

Two methods of source-filter decomposition based on the mixed-phase properties of

speech have been proposed: the Zeros of the Z-Transform (ZZT) (Bozkurt, 2005) and

Complex Cepstrum Decomposition (CCD) (Drugman et al., 2009a). Both techniques

achieve similar decompositions, but are based on slightly different mathematical ap-

proaches. Unlike other voice-source estimation methods, minimum/maximum phase

separation techniques do not impose a parametric model upon the speech pulse: they

only separate the estimated minimum and maximum phase components of the anal-

ysis frame.

ZZT (Bozkurt, 2005) The ZZT approach is based upon the fact that the unit

circle separates the minimum and maximum phase components of a signal. Thus, by

determining the zeros of a signal using the Z-transform, the signal decomposition can

be performed. The Z-transform of the signal x(n), spanning from n = 0 · · ·N − 1, is

calculated as follows:

X(z) =
N−1∑
n=0

x(n)z−n (3.29)

The zeros zm of X(z) can then be determined by factorisation:

X(z) =
x(0)

∏N−1
m=0(z − zm)

zN−1
(3.30)

=
x(0)

∏Ni

k=0(z − zin,k)
∏No

k=0(z − zout,k)

zN−1
(3.31)

Once factorised, the zeros zm are subdivided into two categories depending on their

distance from the origin. The maximum phase zeros zout are the subset of zm which

satisfy |zm| > 1, while minimum phase zeros zin are the subset of zm which satisfy

|zm| < 1. Zeros which lie on the unit circle itself are said to be neither maximum
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nor minimum phase, but for the purposes of this kind of decomposition it is usual to

associate it with the glottal source.

CCD (Drugman et al., 2009a) CCD exploits the relationship between the com-

plex cepstrum of a signal and the roots of the Z-transform. The complex cepstrum x̂n

of a signal x is defined as the inverse discrete-time Fourier transform (DTFT) of the

complex logarithm of the X(ω), where X(ω) is the DTFT of the signal (Oppenheim

and Schafer, 1975). Mathematically, it can be expressed:

x̂n =
1

2π

∫ π

−π
lnX(ω)ejωndω (3.32)

The complex logarithm function is calculated:

ln z = ln |z|+ i̸ z (3.33)

where ̸ z represents the unwrapped phase envelope of the set of complex numbers z.

It can be shown that the zeros of the Z-transform are related to the complex

cepstrum by the following relationship (Oppenheim and Schafer, 1975):

x̂n =



−
∑Ni

k=1

znin,k

n
, n > 0∑No

k=1

znout,k
n
, n < 0

|x(0)| n = 0

(3.34)

Decomposition of the signal can be performed by inverting the cepstrum transform

upon the appropriate portion of the complex cepstrum corresponding to the minimum

and maximum phase components.

Both techniques are heavily dependent upon the careful placement and shape of

the analysis window for proper separation (Bozkurt et al., 2004; Drugman et al.,
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2009a), as the signal frame must be such that the minimum/maximum phase model

of the pulse is preserved. Blackman windows, 2T0 + 1 in length where T0 is the local

pitch period, centred over the instant of glottal closure are typically employed.

CCD is “sensibly” identical to the ZZT approach (Drugman et al., 2009a), but

because the approximation of the complex cepstrum can exploit the Fast Fourier

Transform (FFT), it can be performed more efficiently than the ZZT approach, which

depends on the factorisation of high order polynomials (Drugman and Dutoit, 2009;

Pedersen et al., 2010). However, differences between the ZZT and CCD are due to

the time aliasing which may occur in the calculation of the complex cepstrum using

the DFT, as an approximation of the DTFT. Additionally, the CCD requires the

calculation of the complex logarithm which necessitates knowledge of the unwrapped

phase envelope, which must be estimated from the wrapped version. These issues

may be alleviated by sufficiently zero-padding the DFT (Drugman and Dutoit, 2009).

3.4.2 Phase-Spectrum-Based Joint Estimation Techniques

Similarly to the joint estimation techniques were proposed using power spectrum and

time-domain signal information, several joint parameterisation approach based upon

the minimum/maximum phase model of the speech signal have also been proposed

(Degottex et al., 2011). These methods are based upon the properties of the phase

spectrum of a convolutive residual signal dependent only upon the parameters of the

shape of the glottal signal and a linear offset. The minimum phase components of

the speech signal can be canceled using a minimum phase envelope estimator while

the maximum phase components are minimised using a glottal model. If the glottal
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model approximates the voice-source signal correctly, the phase spectrum of the con-

volutive residual is minimised. These methods therefore attempt to optimise glottal

parameters based upon the least-squares phase (ϕ LS) of the convolutive residual and

related error criteria.

Given a sinusoidal speech model S(ωk) defined at harmonically related frequencies

ωk = kω1, the convolutive residual signal R(ωk) is obtained by the spectral division

by an approximated model:

R(θ,ϕ)(ωk) =
S(ωk)

Ŝ(θ,ϕ)(ωk)
(3.35)

=
S(ωk)

ejkϕG′θ(ωk)V θ
−(ωk)

(3.36)

where Ŝ(θ,ϕ)(ωk) is the modeled speech signal, comprising the derivative glottal flow

modelG′θ(ωk) parameterised by shape parameter θ, minimum phase vocal tract model

V θ
−(ωk) and linear phase component ejkϕ to account for the difference in time position

of the model. The minimum phase vocal tract model V θ
−(ωk) is obtained by following

equation:

V θ
−(ωk) = E−

(
S(ωk)

G′θ(ωk)

)
(3.37)

where E− is a function which calculates the minimum phase envelope of its argument.

Throughout (Degottex et al., 2011), this information is obtained via the real cepstrum

(Oppenheim and Schafer, 1975).

Assuming that the magnitude spectrum of the estimated vocal tract is approx-

imated sufficiently well, the convolutive residual is flat across all frequency bands,

i.e.

|R(θ,ϕ)(ωk)| = 1, ∀ωk (3.38)
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Therefore, any errors within the model of the speech spectrum Ŝ(ω) can be attributed

to the phase spectrum of R(θ,ϕ)(ωk).

The phase spectrum of R(θ,ϕ)(ωk) is minimised when θ approximates the actual

derivative glottal flow and the ϕ matches the appropriate linear phase shift. If the

phase of R(ωk) is perfectly minimised, i.e. ̸ R(ωk) = 0, as |R(ωk)| = 1 the convolutive

residual signal is equivalent to the Dirac delta function δ[n], i.e.

δ[n] = F−1 (R(ωk)) (3.39)

where

δ[n] =


1, n = 0

0, n ̸= 0

(3.40)

and F−1 represents the inverse discrete Fourier transform.

(Degottex et al., 2011) introduces several techniques which parameterise the speech

signal based upon this approach, using the transformed LF model as the approxima-

tion of G′θ(ωk).

MSP The first error criterion for the estimation of the glottal source parameters θ

and offset ϕ is given by the Mean Squared Phase (MSP):

MSP (θ, ϕ) =
1

N

N∑
k=1

(
̸ R(θ,ϕ)(ωk)

)2
(3.41)

where N is the number of harmonics, i.e. k = 1 · · ·N . Figure 3.13(a) shows the gives

the error surface of the MSP function of a synthetic signal frame.

MSPD If the parameters θ and ϕ exactly model the speech spectrum given by

S(ωk), the convolutive residual will represent a Dirac delta function. However, in the
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Figure 3.13: The above figures give the error surfaces of the (a) MSP, (b) MSPD and

(c) MSPD2 functions for a synthetic speech signal. For each analysis, N = 12 and the

optimal parameters are Rd = 0.8 and ϕ = 1.

case that the glottal model shape parameter θ is correct and ϕ is incorrectly estimated,

R(θ,ϕ)(ω) is given by an offset Dirac delta function, i.e. F−1 (R(ωk)) = δ[n−n0] where

n0 is the offset. Instead, the phase spectrum is given by a linear function, the slope

of which is a constant. This is similar to the observations utilised for glottal closing

instant estimation based upon the group delay function, reviewed in Section 4.2.

Thus, the sensitivity of the convolutive residual to the position of the analysis

frame can be reduced by applying a difference operation (denoted by ∆) to the phase

angle of the convolutive residual:

MSPD(θ, ϕ) =
1

N

N∑
k=1

(
∆ ̸ R(θ,ϕ)(ωk)

)2
(3.42)

The minimum of the MSPD function is the same as MSP , however errors in the

position of the pulse are now added to the error, instead of scale it. Figure 3.13(b)
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shows the gives the error surface of the MSPD function of a synthetic signal frame

which shows less sensitivity to the analysis position.

MSPD2 Though of reduced influence, the MSPD function is still sensitive to the po-

sition error, as the error corresponds to the (scaled) average group delay of R(θ,ϕ)(ωk).

As noted above, if the group delay is the same throughout all frequency bands, i.e.

R(θ,ϕ)(ωk) represents an offset Dirac function, that is sufficient condition to indicate

a successful parameterisation of the glottal source. Therefore, by applying a sub-

sequent difference operation to the MSPD function, the dependency upon ϕ can be

removed. (Degottex et al., 2011) also then performs a subsequent anti-difference

operation (∆−1). This operation produces the MSPD2 function:

MSPD2(θ) =
1

N

N∑
k=1

(
∆−1∆2 ̸ Rθ(ωk)

)2
(3.43)

Figure 3.13(c) gives the two dimensional error function of the MSPD2 function for

a synthetic speech segment.

3.4.3 Discussion

Methods which decompose the speech signal based upon its phase characteristics

are promising considering the relatively few assumptions about the speech signal is

required - unlike other methods which assume that the vocal tract is a minimum

phase all-pole filter, these methods allow that it also contain zeros, an thus allow

better modeling of nasals and other speech sounds known to invalidate the all-pole

assumption. However, like time-domain glottal inverse filtering methods, phase-based

methods of glottal source estimation also require precise information regarding the
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placement of the analysis frame and impose assumptions upon the time-domain shape

of the signal.

The critical time reference point for these approaches is given by the GCI, as this

instant demarcates the boundary between the maximum and minimum phase portions

of the speech pulse. In order to satisfy the minimum/maximum phase speech model,

the glottal contributions generally decrease in amplitude to the left of this point,

while the minimum phase component decrease to the right of this point - windowing

of the signal is also critical. Speech waveforms which do not adhere to this signal

shape (e.g. phase-distorted waveform, incorrectly-placed analysis frames) may give

spurious results. Methods based on the chirp Z-transform (where the Z transform is

analysed at a boundary other than the unit circle (Rabiner et al., 1969)) have also

been proposed (Drugman and Dutoit, 2010) in order to increase the robustness of the

method to the analysis frame time placement.

In addition to being sensitive to the position of analysis, the performance of mini-

mum/maximum phase decomposition approaches also deteriorates significantly in the

presence of noise (Drugman, 2011).

The maximum phase portion of the derivative glottal waveform is only attributed

to the open phase of the glottal cycle - the return phase is included along with the

vocal tract in the minimum phase portion of the waveform. For this reason, a strictly

maximum/minimum phase decomposition is insufficient for obtaining a full represen-

tation of the glottal waveform. However, the method can be used in conjunction with

other analysis algorithms, for example, it is used to narrow the necessary exhaustive

parameter search of the ARX-LF time-domain joint estimation technique of glottal

inverse filtering (Vincent et al., 2005) in (d’Alessandro, 2009). Similarly, the joint

84



estimation methods (MSP, MSPD, MSPD2) utilise the transformed LF model to ap-

proximate the maximum phase characteristics of the signal, which then also imply a

return phase.

Compared with the CCD and ZZT, the phase-based joint estimation methods are

more robust to noise as these methods are based upon a sinusoidal model of the speech

signal which can then be used to adopt a two band speech model. Additionally, these

methods are also more robust to the position of the analysis frame. However, as the

error criteria is based upon phase minimisation, accounting only for the minimum

phase vocal tract and mixed phase glottal source model, inaccurate parameters will

be obtained for phase-distorted signals.

3.5 Conclusions

This section has reviewed state-of-the-art techniques for the estimation and param-

eterisation of the voice-source signal. The theoretical and practical details of the

operation of glottal estimation techniques were explained and reviewed, in addition

to glottal model parameterisation methods.

Because it is a blind-deconvolution problem, methods of glottal source estimation

are required to make certain assumptions regarding the glottal source and/or the

vocal-tract filter. Time-domain methods of voice-source estimation and parameterisa-

tion, in addition to causal-anticausal based separation techniques, make assumptions

about the time-domain shape of the signal. While these methods are useful, their sen-

sitivity to the signal shape means that they are generally not robust to the position of

the analysis frame or to phase distortion, which are common in otherwise high-quality
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recordings (Doval and d’Alessandro, 2006). Methods to correct phase distortion are

generally unfeasible or prohibitively difficult without access to the original equipment

or signals of known time-domain shape which have been passed through them. For

these reasons, frequency-domain-based methods are an attractive option for robust

voice-source estimation and parameterisation.

Of the frequency-domain glottal source estimation techniques, those utilising pre-

emphasis filters to model the voice source can often fail in certain speech scenarios,

due to the difficulties in differentiating between source and filter contributions (Alku,

1992). Those which adopt a codebook approach to the removal of the glottal con-

tribution can avoid situations where these ambiguities may take place. Indeed, a

joint power domain approaches, like (Fröhlich et al., 2001) and (Arroabarren and

Carlosena, 2003), is highly desirable as both the source and filter are both optimal in

some sense. However, these methods, like many voice-source estimation methods, do

not determine an optimum filter order. Additionally, they do not attempt to differen-

tiate the noise portion of the waveform from the periodic part, which may introduce

spurious spectral samples into the deconvolution operation. Finally, they also do not

determine the scale of the glottal model in a phase-distortion-robust manner.

In light of these difficulties, Chapter 6 proposes a novel power-spectrum-based

voice-source parameterisation technique called the PowRd method. Because it oper-

ates upon the power spectrum, the method can avoid unreliable phase information,

to which time-domain and phase-based methods are sensitive. The method avoids

high frequency information which has been corrupted by noise. Finally, the PowRd

method utilises a novel error criterion, the Relative Itakura Saito error, which is suit-

able for determining the filter order and coefficients of the vocal tract and the scale
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parameter of the included voice-source model.
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Chapter 4

Glottal Closing Instant Estimation

Glottal closing instant estimation is the determination of the time location of the

instants of glottal closure, either from the acoustic speech signal or from other mea-

surements of glottal activity, e.g. EGG signals. The relative timing of these instants,

sometimes referred to as the glottal epochs, are important for the perception of pitch

(de Cheveigné and Kawahara, 2002), linguistic cues (Klatt and Klatt, 1990) and voice

pathologies (Silva et al., 2009). Accordingly, the ability to locate these pulses in time

is an important operation for many speech processing tasks, including voice-source

estimation (Wong et al., 1979; Bozkurt et al., 2004), prosodic modifications (Charp-

entier and Moulines, 1989) and speech synthesis (Stylianou, 2001).

This chapter reviews methods of estimating the instant of glottal closure, firstly

from EGG signals which is sometimes recorded synchronously with the speech sig-

nal, and secondly from the speech signal itself. Many techniques reviewed in this

section and discussed in the following chapter are not explicitly robust to phase dis-

turbances often experienced by speech signals. This deficiency lays the foundation for
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the FRESS algorithm proposed in Chapter 7, which is designed for generally recorded

speech signals.

4.1 GCI Estimation from EGG Signals

Electroglottography, introduced in (Fabre, 1957), is a noninvasive technique used to

measure glottal activity with a device called an electroglottograph1. This device

measures the electrical impedance across the larynx using two electrodes, carefully

placed on the outer surface of the neck. Figure 4.1 shows a voiced speech signal

s[n] and its corresponding EGG and Derivative ElectroGlottoGraph (DEGG) signals

(denoted l[n] and l′[n] throughout this chapter). As the glottis opens and closes during

phonation, the impedance measured by the EGG signal varies from large when the

glottis is open to small when the glottis is closed. Sudden decreases in the measured

impedance are thought to indicate vocal fold contact, while sudden increases indicate

glottal opening - these instants appear as negative and positive discontinuities in the

DEGG signal.

The simple sinusoidal variation of the EGG signal and impulse-like behaviour of

the DEGG signal facilitates measuring glottal activity; the EGG is therefore a useful

secondary signal when recorded synchronously with the acoustic speech waveform

(Veeneman and BeMent, 1985; Krishnamurthy and Childers, 1986). The EGG sig-

nal has been used as a benchmark for voiced/unvoiced classification, pitch estimation

(Bagshaw et al., 1993; Camacho, 2007), and the estimation of glottal closing and open-

ing instants (GCIs/GOIs)(Drugman and Dutoit, 2009; Thomas et al., 2011). Note

1Also known as a laryngograph.
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Figure 4.1: The above figure compares three signals: (Top) a speech signal s[n] during

an unvoiced-to-voiced transition, the synchronously recorded EGG signal l[n] (middle)

and DEGG signal l′[n] (bottom).

that before the absolute time references can be extracted from the EGG signal and

related to speech events, it is necessary to account for the acoustic wave propagation

delay between the larynx and the microphone (Veeneman and BeMent, 1985).

Several different approaches are used to determine the GCI/GOIs from the EGG

signal. Glottal closure can be assumed to be closed when the impedance indicated

by the EGG signal exceeds a given threshold (Veeneman and BeMent, 1985). Estab-

lishing an absolute threshold to determine the glottal closed state can be avoided by

observing the changing impedance of the EGG signal: sudden increases or decreases in

impedance (corresponding to vocal fold contact) are easily identifiable on the DEGG

signal and indicate glottal opening and closing respectively. These peaks can then

be located by thresholding approaches (Acero, 1998), choosing extrema from parsed

DEGG segments (Krishnamurthy and Childers, 1986), or by using a group delay

function (Thomas and Naylor, 2009).
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4.2 GCI Estimation from Speech Signals

For many speech recordings, an EGG signal is unavailable and the GCIs must be es-

timated from the speech signal alone. However, unlike the EGG signal, voiced speech

is a more complex waveform and exhibits an elaborate time-domain structure which

complicates GCI estimation. These elaborations are due to phenomena such as the

resonances of the vocal tract, the presence of turbulent noise, etc. In order to facili-

tate GCI estimation, GCI estimation algorithms which operate on the speech signal

alone utilise processes and transformations which generate simpler signals where the

glottal activity information is less ambiguous.

One simplifying process adopted by many GCI estimation techniques is the re-

moval of the effects of the vocal tract and glottal source (Childers and Lee, 1991; Smits

and Yegnanarayana, 1995; Naylor et al., 2007; Drugman and Dutoit, 2009). This op-

eration yields the deconvolutive residual signal from which the GCI is a more easily

identifiable landmarks. Removing the vocal tract alone (Degottex, 2010; Thomas

et al., 2011) reveals the voice-source signal from which GCIs are also more easily

identifiable than the speech signal itself. Additional less complex signals which facil-

itate GCI estimation include the energy contour, the multiscale product, the funda-

mental sinusoidal signal, etc. Often, GCI estimation algorithms use these signals in

combination to accurately determine the instant of glottal closure.

Following the determination of possible glottal closing instants, many estimation

methods refine these candidates by employing dynamic programming algorithms to

determine the most likely sequence of GCIs. These algorithms attempt to impose

certain heuristic rules based upon characteristics of voiced speech signals which pe-
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nalise unlikely GCI candidates or sequences of candidates. This operation is useful

to discard candidates which in isolation appear as GCIs but fail to sufficiently qualify

from a more general perspective.

The following is a review of the various signal transformations, speech signal char-

acteristics and DSP methods utilised by various state-of-the-art methods to determine

the GCI from the speech signal alone.

Deconvolutive Residual Signal Neglecting a noise term, a simple sinusoidal

model interpretation of the source-filter theory of the voiced speech signal can be

expressed in the frequency domain:

S(ωk) = ej(ωk+kϕ)G′(ωk)V (ωk), k = 1 · · ·N (4.1)

where ωk represents the N harmonically related angular frequencies and ej(ωk+kϕ)

represents a harmonic comb which samples G′(ω) and V (ω) at frequencies ωk and a

linear phase offset.

If S(ωk) is deconvolved into transfer functions Ĝ′(ω) and V̂ (ω), a deconvolutive

residual signal R(ωk) can be formed via spectral division.

R(ωk) =
S(ωk)

G′(ωk)V (ωk)
(4.2)

⇒ R(ωk) =
ej(ωk+kϕ)G′(ωk)V (ωk)

Ĝ′(ωk)V̂ (ωk)
(4.3)

Provided that the models Ĝ′(ω) and V̂ (ω) approximate the actual G′(ω) and V (ω),

these components will cancel producing a signal which, after transformation into the
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time domain, produces a periodic, bandlimited, impulse train r[n]:

R(ωk) = ej(ωk+kϕ) (4.4)

⇒ r[n] =
N∑
k=1

cos(ωkn+ kϕ) (4.5)

The discontinuities of this function are then indicative of the moment of excitation

of the voice source, usually taken to be the instant of glottal closure (Childers and

Lee, 1991; Smits and Yegnanarayana, 1995; Naylor et al., 2007). Figure 4.2 shows the

relationship between the deconvolutive residual signal and the speech waveform for a

synthetic speech segment.

Many methods of glottal closing instant detection rely upon this deconvolutive

residual signals in order to determine the GCI. The most prevalent example of the

deconvolutive residual in the literature is the LPC residual signal, where Ĝ(ω) and

V̂ (ω) are simultaneously estimated using a linear predictive analysis. In (Degottex

et al., 2011), the deconvolutive residual signal is approximated by the transformed LF

model for Ĝ(ω) while V̂ (ω) is modeled by a minimum phase cepstral envelope. An

example of voiced speech signal and its corresponding DEGG and LPC deconvolutive

residual signal is given in Figure 4.3.

Though similar to GCI determination from the DEGG signal, extracting these

discontinuities from the deconvolutive residual signal is complicated due to signal

noise and imperfect separations. Methods have been devised which rely upon peak

picking and thresholding (Childers and Lee, 1991), peak picking within a specifically

parsed regions (Drugman and Dutoit, 2009), and group delay functions (Smits and

Yegnanarayana, 1995; Naylor et al., 2007).

Note that generally for these methods, the polarity of the signal must be known. If
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Figure 4.2: The above figures illustrate the construction of the deconvolutive residual

from a synthetic speech signal, in both the time domain (left) and magnitude frequency

domain (right). Top, the original speech signal. Middle, the deconvolved vocal tract

(green) and voice source (red). Bottom, the deconvolutive residual signal.

the polarity is inverted, the local maxima of the deconvolutive residual signal appear

instead as local minima. Several algorithms methods have been proposed for this

purpose (Ding and Campbell, 1998; Saratxaga et al., 2009; Drugman and Dutoit,

2011).

Energy Contour As the impulse response of the vocal-tract filter decays with time,

high energy events are imparted in the speech signal following the points of excitation.
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Figure 4.3: The above figure compares three signals: (Top) a speech signal s[n] during

an unvoiced-to-voiced transition, the synchronously recorded DEGG signal l′[n] (middle)

and LPC residual signal r[n] (bottom).

Accordingly, the peaks of the energy function have been proposed as indicators of

glottal closure2 (Ma et al., 1994). Pre-emphasising the speech signal may heighten

these energy bursts, as it serves to partially remove the glottal contribution. The

energy e[n] of the speech signal s[n] can be calculated:

e[n] =
N∑

m=−N

(w[m]s[n+m])2 (4.6)

where w[n] is an appropriate window and N defines the window length. A variant of

this signal is the Frobenius norm F [n], which is can be calculated according to:

F [n] =

√√√√ m∑
i=1

p+1∑
j=1

s[n+ i− j + p+ 1]2 (4.7)

2As the instant of excitation usually takes place some time before the peak of these energy

functions, it is common to delay them by a small interval (< 1ms) so that their peaks may align

more closely with the instants of excitation (Ma et al., 1994).

95



where p and m define the size of the matrix of which the Frobenius norm is taken3,

recommended in (Ma et al., 1994) to be 0.001fs and 0.003fs, respectively, where fs

is the sampling frequency. An example of a voiced speech signal, its corresponding

DEGG signal and Frobenius norm energy contour is given in Figure 4.4.

Figure 4.4: The above figure compares three signals: (Top) a speech signal s[n] during

an unvoiced-to-voiced transition, the synchronously recorded DEGG signal l′[n] (middle)

and Frobenius norm energy contour F [n] (bottom).

Pitch Contour The pitch of a voiced speech pulse is often given by the distance

between adjacent instants of glottal closure (Bagshaw et al., 1993). Thus, an accu-

rate estimation of the pitch contour of a speech signal gives the relative positions of

the GCIs, which can then be utilised to estimate their absolute time position. The

find pmarks algorithm (Goncharoff and Gries, 1998) is based upon this concept. The

algorithm first obtains an estimate of the pitch contour from the maxima of the energy

3A more efficient calculation of F [n] is given by the square root of the convolution of s[n]2 with

an isosceles trapezoidal window m+ p+ 1 samples in length.
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contour function. The relative positions defined by the pitch contour is then located

upon the speech signal using a dynamic programming algorithm which maximises the

amplitude of their samples locations.

Group Delay Function Given a frequency-domain signal Xn(ω) where

Xn(ω) =
M−1∑
m=0

xw[m]e−jωm (4.8)

and

xw[m] = w[m]x[n+m] (4.9)

where w[m] is an appropriate window function, the group delay τn is the negative

rate of change of phase with respect to frequency. It is calculated according to the

following equation:

τn(ω) = −∆̸ Xn(ω)

∆ω
(4.10)

Note that the phase of signal Xn(ω) must be unwrapped.

If xw[m] contains a single impulse at m = n0, it can be shown that τn(ω) = n0 ∀ω.

Because the group delay is independent of the magnitude of the signal, locating im-

pulses using this signal avoids the necessity of establishing thresholds. By performing

a sample-by-sample analysis upon a clean impulse train with an appropriately sized

window, a time varying group delay function τ̂ [n] can be determined by setting

τ̂ [n] = τn(ω) (4.11)

τ̂ [n] then indicates the locations of the impulses as negative-going zero crossings4.

4Some researchers utilise the “phase slope” function for this purpose which is distinguished from

the group delay only by sign; impulses are indicated by positive-going zero crossings of this function.
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(Smits and Yegnanarayana, 1995) proposed the use of a group delay function in

order to determine the GCIs of a voiced speech signal from its LPC residual signal.

However, when applied to noisy imperfect impulsive signals such as the LPC residual,

τn(ω) will generally not equal a constant for all ω. Thus, an averaging procedure is

necessary to determine the value of the group delay function τ̂ [n]. (Smits and Yegna-

narayana, 1995) proposed fitting a linear function to τn(ω), followed by a smoothing

zero-phase Finite Impulse Response (FIR) filter upon τ̂ [n] itself before extraction of

the GCIs.

Figure 4.5 illustrates the behaviour of the group delay function τ̂ [n] upon the LPC

residual signal, compared with the voiced speech and DEGG signal.

Figure 4.5: The above figure compares three signals: (Top) a speech signal s[n] during

an unvoiced-to-voiced transition, the synchronously recorded DEGG signal l′[n] (middle)

and LPC residual signal r[n] and group delay function τ̂ [n] (bottom).

DYPSA While the approach of (Smits and Yegnanarayana, 1995) accurately iden-

tifies many epochs, it also exhibits many spurious zero-crossings for noisy signals and
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is computationally costly (Brookes et al., 2006). Instead, (Brookes et al., 2006) pro-

posed the use of the energy-weighted group delay signal τ̂EW [n] to determine glottal

closing instant candidates. This signal can be calculated as:

τ̂EW [n] =

∑
ω |X(ω)|2τn(ω)∑

ω |X(ω)|2
(4.12)

An alternative, more efficient formulation is given by:

τ̂EW [n] =

∑M−1
m=0 mxw[m]2∑M−1
m=0 xw[m]2

(4.13)

where it is seen that the average energy-weighted group delay can be interpreted as

the centroid of the analysis signal frame. Figure 4.6 gives this signal taken from the

LPC residual, and the corresponding DEGG and voiced speech signals.

Figure 4.6: The above figure compares three signals: (Top) a speech signal s[n] during

an unvoiced-to-voiced transition, the synchronously recorded DEGG signal l′[n] (middle)

and LPC residual signal r[n] and energy weighted group delay function τ̂EW [n] (bottom).

The DYnamic programming projected Phase Slope Algorithm (DYPSA) (Naylor

et al., 2007) relies upon this function to determine glottal closing instant candidates
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from the LPC residual signal. In order to capture those GCIs which may have been

missed by τ̂EW [n], a phase projection technique is used where the midpoints between

local maxima and minima of τ̂EW [n] which did not result in a zero-crossing are in-

cluded. This results in a large set of GCI candidates, including many false positives.

In order to remove false positives from the final sequence of GCIs, an N-best

dynamic programming algorithm (Chow and Schwartz, 1989) is applied to the candi-

dates. This algorithm chooses the sequence of glottal closing instants which minimises

a cost function based upon voiced speech heuristics. This cost function consists of

five elements, the first three of which are fixed according to the characteristics of

the glottal closing instant candidate cr, while the last two correspond to the possible

transitions of the glottal closing instant sequence. Additionally, these values are op-

timally weighted by training them upon a small speech data set (Naylor et al., 2007).

The costs are:

Projected Candidate Cost (CJ) Candidates which do not result from the zero-

crossing of the group delay function (i.e. those obtained via phase slope projec-

tion) are attributed a cost of CJ = 0.5, while those that do are given no penalty,

CJ = 0. The weight given to this cost is 0.4.

Ideal Phase Slope Deviation Cost (CS) The group delay function of an ideal im-

pulse train will cross the time axis with a slope of −1. The DYPSA algorithm

penalties candidates which deviate from this ideal. The penalty is calculated

according to the equation:

CS(r) = 0.5 +mτ (cr) (4.14)
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where mτ (cr) is the estimated slope of the τ̂EW [n] function at sample cr calcu-

lated as:

mτ (cr) =
1

υ
(τ̂EW [cr +

υ

2
]− τ̂EW [cr −

υ

2
]) (4.15)

where υ is an even length in samples. Candidates projected from the group

delay function are given the ideal unit slope. The weight given to this cost is

0.1.

Normalised Energy Cost (Cf ) As mentioned above, GCIs are thought to be the

most significant excitation event during the pulse cycle, and thus correspond

to high energy in the speech signal. Thus, it follows to penalise glottal closing

instant candidates which do not correspond to high energy in the speech signal.

Such a penalty is given by the equation:

Cf (r) = 0.5− F [cr]

F̆ [cr]
(4.16)

where F [n] is given by Equation 4.7 and the signal F̆ [n] is a local maximum

energy function, given by the following expression:

F̆ [n] = max
k
F [n− k], 0 < k ≤ L (4.17)

L is chosen to be large enough to capture at least one excitation; DYPSA is

implemented such that L is set to 60
fs
, where fs is the sampling frequency.

This cost will be small for those glottal closing instant candidates which exhibit

F [n] values which are similar to the local maximum F̆ [n]. The cost is large

for those candidates which exhibit smaller F [n] values compared with the local

maxima and are likely attributable to other events such as glottal noise or glottal

opening. The weight given to this cost is 0.3.
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Waveform Similarity Cost (Cρ) Speech signals are hypothesised to be relatively

slowly changing, and therefore it follows that during speech, adjacent speech

pulses should exhibit a high degree of similarity. This cost is given by the

equation:

Cρ(r, r − 1) = −0.5
γr,r−1√

γr,rγr−1,r−1

(4.18)

where γr,r−1 is a covariance function which compares the two windows extracted

from speech signal x centred about the GCI candidates cr and cr−1:

γr,r−1 =
K∑

n=−K

x[cr + n]x[cr−1 + n] (4.19)

The size of the windows over which to calculate these values 2K + 1 is chosen

to be 10ms. As γr,r−1√
γr,rγr−1,r−1

is limited between 1 and −1, the cost Cρ(r, r − 1)

will be smallest for those glottal closing instant candidates which are identical,

with increasingly larger penalties for speech segment which are less similar. The

weight given to this cost is 0.8.

Pitch Deviation Cost (CP ) As previously mentioned, the pitch of a voiced utter-

ance is often defined as the distance between successive GCIs. While a certain

amount of pitch deviation occurs during voicing, it is reasonable to assume that

for normal voices this is a slowly changing parameter. Thus, it is appropriate

to choose glottal closing instants which conform to a smoothly changing pitch

contour. This is accomplished by the addition of the following penalty cost:

CP (r, r − 1, r − 2) = 0.5− e−(ψ(∆P−1))2 (4.20)

where

∆P =
min(cr − cr−1, cr−1 − cr−2)

max(cr − cr−1, cr−1 − cr−2)
(4.21)
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The cost of pitch deviation then increases nonlinearly depending upon the value

of ψ, which is 3.3, giving no penalty until pitch deviations surpass 25%. The

weight given to this cost is 0.5.

ZFR A different approach to GCI estimation was taken in (Murty and Yegna-

narayana, 2008). Excitation discontinuities like those which occur at glottal closure

exhibit energy over all frequency bands, and thus (Murty and Yegnanarayana, 2008)

proposed the output of a 0Hz resonator for the determination of the glottal epochs,

the so-called Zero Frequency Resonator (ZFR) method. Deviations from this zero

frequency gives an indication of the locations of the excitation events (Murty and

Yegnanarayana, 2008). The speech signal s[n] is passed through a filter with transfer

function H0(z) chosen to resonate the zero frequency. The transfer function H0(z) is

given by:

H0(z) =
1− z−1

(1− αz−1)4
(4.22)

where α is very close to 1, e.g. α = 0.999. The resonance frequency is much lower

than the vocal tract resonances, thus the resulting signal is least effected by the them.

Such low pass filtering of the speech signal creates a signal y[n] which may increases

or decreases exponentially. In order to see the trend of the signal, the mean is removed

using a sliding window:

ŷ[n] = y[n]− 1

2M + 1

M∑
k=−M

y[n+ k] (4.23)

where the window length 2M + 1 is chosen be approximately 10ms. This operation

may required repetitions in order to fully remove the DC component of the signal.

The total magnitude spectrum effect of the these filtering operations is given in
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Figure 4.7. This filtering operation essentially determines a sinusoidal signal ŷ[n]

which oscillates with the fundamental frequency of voicing. Therefore, landmarks

extracted from it can indicate the glottal pulse (though not necessarily the GCI).

(Murty and Yegnanarayana, 2008) suggests that the positive zero crossings of ŷ[n]

can be taken as the glottal closing instants.

Figure 4.7: The above figure gives the low frequency detail of the magnitude spectrum

of the filtering operations of the ZFR method for GCI estimation.

SEDREAMS The Speech Event Detection using the Residual Excitation And a

Mean-based Signal (SEDREAMS) algorithm (Drugman and Dutoit, 2009) for GCI

detection also uses a fundamental sinusoid signal (referred to as a “mean-based signal”

in (Drugman and Dutoit, 2009)) in order to determine the regions within the LPC

residual signal where the glottal closing instant is likely to occur. Once this region

determined, the largest sample in the LPC residual during this interval is chosen as

the glottal closing instant.

The mean-based signal used to determine the “fuzzy” regions of glottal closure is
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calculated from the speech signal s[n] according to the following equation:

y[n] =
1

2N + 1

N∑
m=−N

w[m]s[n+m] (4.24)

where w[m] is typically a Blackman window function 2N + 1 samples in length. The

parameter N controlling the length of the window must be chosen careful as for each

local minima of y[n], a glottal closing instant is chosen from the LPC residual signal.

Thus, too short a window will lead to many false positives, while too long a window

will increase the chance of missing a glottal cycle. N is chosen so as to minimise these

opposing factors; (Drugman and Dutoit, 2009) chooses N = 7
8
T 0 as a compromise,

where T 0 is the mean pitch period of the analysis utterance. Figure 4.8 shows the

mean-based signal, in addition to the corresponding DEGG, voiced speech and LPC

residual signals.

The relationship between the minima of the mean-based signal and the locations

of glottal closing instant is found to be relatively static (Drugman and Dutoit, 2009).

Given ycmin and yc+1
min the cth and c + 1th local minima of the mean-based signal y[n],

the following expression is used to locate cth glottal closing instant nc:

nc = argmax
n

r[n] ycmin ≤ n ≤ 0.65ycmin + 0.35yc+1
min (4.25)

In this expression, r[n] represents the LPC residual signal. These boundaries were

determined by a survey of relative distance of mean-based signals from real speech

data and GCIs as determined by synchronously recorded EGG signals (Drugman and

Dutoit, 2009).

In a new version of the algorithm (Drugman, Retrieved October 8th, 2011), the

search region is not located using this fixed relative distance from the minima. In-
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stead, the median ratio η of the time interval of residual signal’s prominent peaks5

to the nearest minima of y[n] relative to the distance between the minima and the

following maxima is used to define a fixed interval. Thus, if ycmin and ycmax are the

cth local minimum and following maximum of the signal y[n], the cth glottal closing

instant estimate nc is located according to:

nc = argmax
n

r[n] ycmin − 0.25η∆yc ≤ n ≤ ycmin + 0.35η∆yc (4.26)

where ∆yc = ycmax − ycmin.

Figure 4.8: The above figure compares three signals: (Top) a speech signal s[n] during

an unvoiced-to-voiced transition, the synchronously recorded DEGG signal l′[n] (middle)

with LPC residual r[n] and mean-based signal y[n] (bottom).

YAGA The Yet Another GCI/GOI Algorithm (YAGA) (Thomas et al., 2011) was

proposed as a technique to estimate both GCIs and GOIs from voiced speech, based

on a DYPSA-type framework. Like the DYPSA algorithm, the algorithm consists

5Prominent peaks are defined to be those samples of the LPC residual signal larger than 40% of

the global maximum.
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of two stages: first candidate detection, where glottal closing instants are estimated

based upon the energy weighted average group delay function and missed candidates

are added to the set using a phase slope projection technique, followed by candidate

selection, where an N-best dynamic programming algorithm chooses the most likely

sequence of glottal closing instants. However, the YAGA method contains significant

differences to the DYPSA approach. Firstly, while DYPSA utilises the LPC residual

in order to locate the glottal epochs, the YAGA algorithm utilises p−[n], the half-wave

rectified, jth1 root of the Stationary Wavelet Transform (SWT) multiscale product of

the derivative glottal flow signal. SWT multiscale products have been previously

applied to EGG signals (Bouzid and Ellouze, 2008) for similar purposes.

The p−[n] signal is formed as follows:

• Firstly, the derivative glottal flow signal g′[n] is estimated using the pre-emphasis

or IAIF technique (see Section 3.3).

• The discontinuities of this signal at glottal opening and closing are reinforced us-

ing the multiscale product of the SWT. The YAGAmethod utilises the biorthog-

onal spline wavelet with one vanishing moment, and corresponding detail and

approximation filters q[n] and t[n].

The SWT of g′[n] is given by:

dj[n] =
∑
k

qj[k]aj−1[n− k] (4.27)

aj[n] =
∑
k

tj[k]aj−1[n− k] (4.28)

The detail and approximation filter coefficients are up-sampled by a factor of

2j−1 at the jth level of the SWT and a0[n] = g′[n].
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The multiscale product p[n] is calculated as the point multiplication of the

output of the detail signal determined by the SWT:

p[n] =
J∏
j=1

dj[n] (4.29)

where J is the level of the transform, chosen in (Thomas et al., 2011) to be 3.

• While p[n] exhibits desirable impulsive behaviour, performance of the YAGA

algorithm is improved by taking the J th root of the half-wave rectified p[n]

signal. The resulting signal p−[n] is given by

p−[n] =


J
√
p[n] p[n] ≤ 0

0 p[n] > 0

(4.30)

Figure 4.9 shows the signal p−[n], in addition to the corresponding DEGG, voiced

speech and estimated voice-source signals.

Candidates are detected in this signal by determining its energy weighted group

delay function, followed by phase slope projection technique in order to supply addi-

tional possibly missed candidates. As this approach determines both GCI and GOI

candidates, two sequential dynamic programming stages are used to distinguish them:

first, to determine the GCIs from all glottal event candidates, and subsequently to

determine the GOIs.

Like the DYPSA algorithm, the N-best dynamic programming algorithm is applied

in order to determine the likely sequence of GCIs which minimises a set of costs. In

addition to the costs utilised by the DYPSA algorithm outlined above, a closed-phase

energy cost is added in order to further differentiate GCIs from GOIs.
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Closed-Phase Energy Cost, (CC) Glottal closure cause the energy between the

glottal closure instant and its the following opening instant to be low. Thus,

an appropriate cost to distinguish glottal closing instants from adjacent glottal

opening instants is that the interval following the GCI must contain low energy:

CC(r) = −0.5 +

∑cr+1−1
n=cr

g′[n]2

maxk
∑cr+k+1−1

n=cr+k
g′[n]2

, k = 0, 1, · · · , R̆ (4.31)

where cr is the glottal event extracted from the signal p−[n] and R̆ is the number

of intervals under analysis.

This cost has the effect of penalising candidates which delimit the beginning of

interval of high energy in the estimated glottal source signal, i.e. glottal opening

instants.

Finally, once the glottal closing instants have been selected from the global set,

they are adjusted to coincide with the peaks of the p−[n] function. Note that this

refinement is performed only when the negative peak of the p−[n] closest to the

glottal closing instant estimate falls below a certain predefined threshold. This stage

is necessary due to the behaviour of the energy weighted group delay function to

non-ideal impulse signals (Thomas et al., 2011).

4.3 Discussion

As phase distortion has a dramatic impact upon the results of voice-source estimation,

it is interesting to analyse the effect of this phenomenon upon the common voice-

source analysis technique of GCI estimation. Below is a discussion of the different key
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Figure 4.9: The above figure compares four signals: (Top) a speech signal s[n] during an

unvoiced-to-voiced transition, the synchronously recorded DEGG signal l′[n] (middle-top),

IAIF-estimated voice-source signal g′[n] (middle-bottom) and rectified 3rd root multiscale

product of the voice-source estimate p−[n] (bottom).

signals utilised by glottal closing instant estimation techniques and their robustness

to low frequency phase distortion, and general suitability for GCI estimation.

Deconvolutive Residual Signal During voiced speech, deconvolutive residual sig-

nals, of which the LPC residual is an example, approximate an impulse train

function, with impulses at the instants of glottal closure, which are then searched

for by many different glottal closing instant algorithms (Smits and Yegna-

narayana, 1995; Naylor et al., 2007; Drugman and Dutoit, 2009). How closely

aligned the peaks of the residual signal are with the actual instants of glottal

closure is determined by the suitability of the adopted speech model, in addition

to noise present in the signal. Therefore, the usefulness of the residual peaks for

glottal closing instant detection is speaker- and situation-dependent. However,

for approximate speech models like the all-pole model, it is often the case that
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this instant is in the region of the glottal closing instant, though because of the

noisy nature of the residual signal, it does not appear as a peak in the signal.

Simple low pass filtering can reduce the noisiness.

The effect of phase distortion upon LPC residual signals can be understood

if one considers an ideal impulse train. Because these signals require that its

sinusoidal components align in phase at the beginning of each period, any degree

of phase distortion will alter the signal. However, if the phase disturbance

confined to a specific spectral region e.g low frequencies, a certain degree of

phase alignment will occur and thus the impulsive character of the residual will

be retained.

Energy Contour The excitation of the vocal-tract filter can result in large ampli-

tude pulse in the voiced speech signal. Assuming these pulses are the result

of glottal closure, peaks in the speech signal energy contour are indicative of

glottal closure (see Section 4.2). However, the relationship of these peaks to

the instant of glottal closure is dependent upon the speaker. Additionally, the

peaks are not reliable by themselves as an indicator of glottal closure and often

glottal closure may not correspond to a contour peak, e.g. during regions of

rapidly changing amplitude.

In terms of phase distortion, the energy contour signal is relatively robust,

provided that the window size used to generate it (see Equation 4.6) is of ap-

propriate size.

Fundamental Frequency Sinusoid This signal is obtained by low pass filtering

the voice speech signal above the fundamental frequency, and is utilised by the
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SEDREAMS and ZFR algorithms for glottal closing instant estimation. How-

ever, if phase distortion is present at this frequency (via recording conditions or

the variety of filter used to obtain the signal), the relationship of this signal to

glottal closing instants will change. Thus, the performance of the SEDREAMS6

and ZFR algorithms will be affected by this type of distortion, the extent of

which is dependent upon the degree of phase distortion.

Glottal Source Signal As discussed in Section 3.2.4, the glottal source signal can

significantly change in the presence of phase distortion. This has the implication

that algorithms which place an expectation upon the time-domain shape of

the estimated voice-source signal, like the YAGA method, may experience a

degradation in performance.

Following on from this discussion, it can be postulated that certain GCI estimation

technique will be relatively unaffected by phase distortion phenomena. The group

delay method of (Smits and Yegnanarayana, 1995) and the DYPSA algorithm, which

rely upon the LPC residual signal and group delay derived functions, will be relatively

unaffected. Additionally, the find pmarks algorithm which derived source information

from the energy contour signal, will also be relatively immune to phase disturbances.

Conversely, some GCI estimation methods may be severely affected. The original

SEDREAMS algorithm is unlikely to operate correctly in the case of low frequency

phase distortion because the relationship of the fundamental sinusoid signal minima

6The most recent version of the SEDREAMS algorithm, available from (Drugman, Retrieved

October 8th, 2011), will exhibit improved performance in the case of phase-distorted speech because

it does not assume a fixed relationship between the minima of the fundamental sinusoid and the

peaks of the LPC residual signal, rather a flexible one which is determined at analysis time.
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to the discontinuities of the LPC residual signal may have changed. Additionally,

during the dynamic programming stage, the YAGA algorithm weights candidates

according to the energy found between them in the estimated glottal source waveform.

If the waveform does not approximate the expected shape, this weighting will penalise

potentially appropriate GCI candidates. As these algorithms have produced the best

results in comparative experiments (Cabral et al., 2011; Drugman, 2011; Thomas

et al., 2011), it is useful to develop extensions and modifications which make them

more robust for this kind of error.

4.4 Conclusions

This chapter has reviewed state-of-the-art GCI estimation techniques. The methods,

along with the various operations, transforms and DSP techniques involved, were

given in detail. Additionally, some of these techniques were observed to be sensitive

to the common phase distortion that can be imparted by electro-acoustic equipment.

Interestingly, the YAGA and SEDREAMSmethods which are judged to be amongst

the best performing of GCI estimation methods in comparative experiments (Cabral

et al., 2011; Drugman, 2011; Thomas et al., 2011) are also those not robust to phase

distortions. While the most recent version of the SEDREAMS algorithm attempts

to locate the regions of glottal closure dynamically, the original version assumed that

it was a fixed distance from the minima of the mean-based signal. The YAGA al-

gorithm penalties GCI candidates based upon the amount of energy between it and

the following glottal event. These and similar assumptions can be invalidated if the

speech signal are recorded using non-linear phase equipment.
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From these observations, it is concluded that a method of GCI estimation which

is explicitly robust to phase disturbances and can perform similarly to these algo-

rithms would be useful to the speech research community. In Chapter 7, a new GCI

estimation technique which exhibits these characteristics is proposed.
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Chapter 5

Review Conclusions

The previous chapters have reviewed state-of-the-art voice-source estimation and pa-

rameterisation techniques in addition to glottal closing instants estimation methods.

In those chapters, certain deficiencies of those methods were highlighted. This chap-

ter recapitulates and summaries those deficiencies, before beginning the investigation

section of this study.

5.1 Voice-Source Estimation and Parameterisation

As voice-source estimation is a blind deconvolution problem, assumptions must be

made about the glottal source and the vocal-tract filter in order to separate them.

Table 5.1 summaries the reviewed methods of voice-source estimation and their as-

sumptions and error criteria. The following is a discussion of these methods and a

justification of the chosen approach.
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Voice-Source Assumptions As the voice-source signal is generally parameterised

following estimation, joint parameterisation approaches are preferable as they can

avoid the necessity of a second separate parameterisation stage. Additionally, the

source and filter parameterisation are both optimal in the same sense, whether giving

the minimal Itakura-Saito distance, least-squares time-domain energy, etc. This work

will therefore adopt a joint approach for voice-source estimation and parameterisation.

Ideally, the model used to parameterise the glottal signal should be interpretable

in ways which are useful. For this reason, specific voice-source models such as the LF

or KLGLOTT88 models are preferable to the all-pole filter model of the IAIF method

because they give an direct indication of salient glottal features and characteristics,

e.g. the pulse’s open quotient. In this study, the transformed LF model is adopted.

This model produces physiologically relevant LF model pulses based on statistical

analyses undertaken to identify the covariations and characteristic trends of a large

database of LF model parameters fitted onto real voice-source signals (Fant et al.,

1994; Fant, 1995). Additionally, it avoids certain unrealistic parameterisations which

may occur when using LF model (Fröhlich et al., 2001). Finally, its single parameter

Rd was qualified in (Fant, 1995) as “the most effective single measure for describing

voice qualities”.

Vocal Tract Assumptions The assumption that the vocal tract can be repre-

sented by an all-pole filter is prevalent, and as can be seen in Figure 5.1, is utilised by

many voice-source estimation methods. For phonemes produced by an unbranched

vocal tract, this assumption is well justified, following from the geometry of a con-

catenated tube, as discussed in Section 2.3.2. The assumption is also convenient for
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time-domain analysis due to the tractable linear systems that derive from all-pole

system analysis.

However, phonemes produced using a more complex geometrical configuration will

require spectral zeros in addition to poles (Markel and Gray, 1982). Additionally,

the planar wave assumption, necessary for the application of the all-pole vocal tract

model, becomes invalidated at frequencies above 4kHz. ARMA vocal tract models

are therefore more appropriate for these sounds, as they can represent the zeros in the

signal, though it is not clear how to estimate q, the order of the FIR filter polynomial

of the ARMA model. Alternatively, the assumption that the vocal tract can be

represented by a minimum phase system is also capable of modeling these sounds,

provided that both the poles and zeros of the vocal tract lie within the boundaries of

the unit circle.

However, when operating only upon power spectrum information to decompose

the speech signal (for reasons of an unreliable phase spectrum), it is always possible

to recover a minimum phase spectral envelope e.g. using cepstral techniques (Cappé

et al., 1995; Röbel and Rodet, 2005; Degottex et al., 2011). With ARMA modeling it

is difficult to predict the number of zeros that may be necessary, while the order of the

all-pole vocal tract model is related to its length (Markel and Gray, 1982). ARMA

modeling is also a difficult nonlinear optimisation problem (Makhoul, 1975). Finally,

to re-iterate the conclusions of Chapter 2, the acoustic tube model of the vocal tract

implies an all-pole spectrum. For these reasons, it is adopted by this study.

Error Functions Voice-source parameterisation methods determine optimal pa-

rameters by minimising a certain error criteria. However, not all of these functions
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are robust to nonlinear phase recording conditions, as is discussed here.

A common function to minimise for glottal inverse filtering and parameterisation

is the time-domain least-squares energy. The use of this error function implies a time-

domain matching of the signal and thus an expectation of the time-domain shape is

imposed upon the signal, as is discussed in Section 3.2. For example, closed-phase

inverse filtering assumes null signal flow during the closed phase of the glottal cycle.

Because a phase distortion may alter the time-domain shape of the signal ((Akande,

2004) specifically notes that it may eliminate the closed phase), it is not reasonable

to estimate the glottal source signal in this fashion. The phase sensitivity of time-

domain-based glottal source estimation methods also explains the lack of robustness

to the position of the analysis frame (Wong et al., 1979; Alku et al., 2009).

Similarly, voice-source estimation methods based upon the phase criteria are ad-

versely affected. The necessity of ideal phase conditions for these types of anal-

yses is briefly mentioned in (Degottex, 2010), while the sensitivity of the maxi-

mum/minimum phase model to the analysis window is referred to in (Drugman et al.,

2009a). An alternative interpretation of the time-domain signal shape expectation

is an expectation upon both the magnitude and phase spectrum of the signal. If

this phase coherence has been disturbed, the phase minimisation is no longer reliable

indicator of an appropriate parameterisation.

5.1.1 Robust Voice-Source Estimation

Of the methods of voice-source estimation, the only general approach which jointly

estimates and parameterises the voice-source signal without relying on a phase-related
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error criterion is the power-spectrum-based joint estimation techniques, of which SIM

(Fröhlich et al., 2001) and GSBIF (Arroabarren and Carlosena, 2003) are examples.

These methods utilise a power spectrum signal representation and the Itakura-Saito

distance function for voice-source estimation; the transformation and subsequent sep-

aration of signal magnitude and phase information makes the approach robust to

phase-related errors. However, a number of issues arise with the methods which

make it difficult or inappropriate for the analysis of continuous speech:

Analysis Frame Size As the SIM method was designed for clinical analysis of sus-

tained vowels, throughout (Fröhlich et al., 2001) a frame size of 200ms is sug-

gested. For continuous speech, however, the usual time interval assumed for

stationarity is approximately 25ms. Thus, in order to make the method more

appropriate for continuous speech, the size of the analysis frames should be

of a similar scale of duration. In order to determine the spectral information

accurately using the DFT, frame sizes should be approximately 3 to 4 local

pitch periods in length (Harris, 1978; Serra, 1989) or alternatively, if an accu-

rate estimate of the fundamental frequency is available, using a least-squares

harmonic analysis (Laroche et al., 1993). Both methods of sinusoidal model

parameterisation are discussed in Appendix C.

Vocal-Tract Filter Order The GSBIF method uses inappropriately large filter or-

ders, e.g. p = 17 with a sampling frequency of 12kHz. The SIM method is

validated on experiments with synthetic speech, where the vocal-tract filter or-

der was known a priori. Though it is not mentioned explicitly, during real

speech experiments, it is assumed that the filter order was chosen following the
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usual rule of thumb discussed in Section 2.3.2. However, during running speech,

the length of the vocal tract is unlikely to be constant, due to the extending

of the lips or rising of the larynx, thus an alternative solution which permits

a dynamic filter order is desirable. According to Equation 2.9, at a sampling

rate of 10kHz, a filter order suitable for a vocal tract length 14cm and 20cm is

approximately 8 and 12, respectively.

Glottal Model Scale Parameter For certain applications, e.g. speech coding, speech

synthesis, the speech signal must be fully parameterised, including its scale.

However, GSBIF does not parameterise the scale factor of the voice-source

model. In addition, the SIM method estimates the scale factor of the glottal

model following the determination of the its shape parameters using a time-

domain error criteria. This implies both a phase and amplitude match of the

signal. The SIM method accommodates linear phase offsets by employing an ex-

haustive search, but is otherwise not robust to more complex phase distortions

which may be present.

Speech Signal Noise Noise will be present in every speech signal, particularly at

the upper frequencies. This is a well-known problem for voice-source estima-

tion, where the noise components of the speech signal make it more difficult

to estimate various parameters, particularly the spectral slope of the glottal

signal (Strik, 1998). The situation is illustrated in Figure 5.1. When extracting

spectral samples for voice-source estimation, neither the SIM of GSBIF meth-

ods make a distinction between harmonic and noise peaks which may lead to

inaccurate parameterisations, particularly the underestimation of the spectral
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tilt.

In (Strik, 1998; Lu, 2002), the effect of this noise upon time-domain glottal

model fitting is reduced by a low pass filter - in the spectral domain, this is

equivalent to choosing only low frequency spectral samples for source estima-

tion/parameterization. An equivalent perspective is to adopt a harmonic-plus-

noise type model, where the speech signal is divided into two frequency bands,

the lower consisting of harmonic sinusoids and the upper consisting of noise.

Such schemes have been adopted by other voice parameterisation methods,

e.g. phase minimisation techniques (see Section 3.4.2). However, this solution

presents another problem, intertwined with the issue discussed above: the filter

order appropriate for the lower band is unknown.

Figure 5.1: The figure above shows two glottal signals with differing noise content in (a)

the time-domain glottal signals and (b) the magnitude frequency domain. The intrusion of

high frequency noise can prevent accurate parameterisation of the spectral slope.
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Following on from this discussion, a new voice-source parameterisation scheme,

representing the first contribution of this thesis listed in Section 1.2.1, is proposed

in Chapter 6: the PowRd method. The method adopts a power spectrum approach

in order to avoid issues of phase distortion and the position of the analysis frame.

The vocal tract, represented by an all-pole filter, and glottal flow signal, which is

modeled by the transformed LF model, are simultaneously estimated. In these ways,

the technique is similar to the SIM method. However, unlike the SIM method, the

PowRd method minimises a novel error function, the Relative Itakura-Saito error.

This new function is similar to the usual Itakura-Saito error, yet it is scaled by

a factor based on a relationship between the analysis frame and filter order which

makes it appropriate for determining an optimal filter order value, the details are

given in Section 6.2.2. The use of the Relative Itakura-Saito error gives the analysis

the flexibility to avoid high frequency noise present in the signal, not require a priori

knowledge of the filter order, and can be utilised to determine also the scale parameter

of the transformed LF model.

5.2 GCI Estimation

Phase distortion disrupts the time-domain signal shape of the speech signal which

has the consequence that various derived signals utilised for GCI estimation behave

in a manner which is unreliable. Section 4.3 gives a detailed discussion of this phe-

nomenon, which is summarised here.

The characteristics of certain signals are only slightly impacted by nonlinear phase

disturbances. In order to exhibit impulsive time-domain behaviour, the components of
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the deconvolutive residual signal must be in phase. Although phase distortion can by

alter this relationship, numerous components may still align and the signal will retain

its impulsive character. The energy contour of the signal is similarly robust to phase

distortion, provided that the window used to generate the signal is an appropriate

length.

Conversely, other signals derived from speech are adversely affected by phase

distortion. Specifically, the phase of the fundamental sinusoid signal, obtained by low

pass filtering the speech signal and utilised by the ZFR and SEDREAMSmethods, can

be significantly changed, depending upon the filter used to generate it and the degree

of phase distortion. Additionally, as mentioned in the previous section above, the

estimated voice-source signal utilised by the YAGA algorithm can also be significantly

altered by phase distortion.

According to comparative experiments (Cabral et al., 2011; Drugman, 2011; Thomas

et al., 2011), the SEDREAMS and YAGA algorithms are both among the best per-

forming GCI estimation methods. As these methods are affected by phase distortion,

a GCI estimation technique which is robust to this phenomenon is potentially very

useful.

5.2.1 Phase-Distortion-Robust GCI Estimation

This work proposes a new method for glottal closing instant determination in Chapter

7, the second contribution of this work listed in Section 1.2.1. The new method utilises

the LPC residual searching strategy of the SEDREAMS algorithm to determine likely

regions of glottal closure, combined with the dynamic programming algorithm of the
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DYPSA and YAGA algorithms to determine the most likely sequence of glottal closing

instants. However, in order to ensure that the algorithm is explicitly robust to phase

distortion, the search regions are aligned with the peaks of the energy contour. In

this way, the likely regions of glottal closure have a dynamic relationship with the

signal under analysis in a manner that is robust to phase distortion.

5.3 Voiced Speech Analysis/Synthesis

Voice-source estimation and parameterisation methods have been applied to speech

synthesis and related areas (Lu, 2002; Vincent, 2007). As a third contribution of this

study, this application is demonstrated using a power-spectrum-based voice-source

estimation and parameterisation approach similar to the PowRd method in Chapter

8. The analysis/synthesis system has at its core a modified PowRd method which

accommodates a larger variety of voice-source shapes and a parameter smoothing

procedure which utilises dynamic programming and filtering operations to obtain

continuous parameters from voiced speech utterances.

In a preference test of 50 listeners, the synthetic speech produced by this system

is compared with a state-of-the-art time-domain procedure parameterisation system,

similar to the systems presented in (Lu, 2002), (del Pozo, 2008) and (Pérez and

Bonafonte, 2011). The approach proposed by this study is generally preferred in both

linear phase and nonlinear phase recording conditions, justifying the power-spectrum-

based approach taken by this study and giving encouraging results for future work.
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Chapter 6

Power-Spectrum-Based

Voice-Source Parameterisation

This chapter proposes a new method to parameterise the glottal source signal which is

robust to noise and phase distortion, introduced as Contribution 1 of this thesis. The

proposed method, referred to as the Power spectrum determination of the Rd parame-

ter (PowRd) method, estimates the optimal waveshape parameter of the transformed

LF model Rd from a speech frame in a manner which is robust to the time-domain

location and phase spectrum of the analysis frame. Additionally, it is also robust to

noise which can dominate the high frequency regions of the speech signal.

The PowRd method draws from the power-spectrum-based approach adopted by

(Fröhlich et al., 2001). The SIM method, reviewed in Section 3.3.2, is robust to both

phase disturbances which may have been imparted to the speech signal and also the

location of the analysis frame. However, a number of factors make it unsuitable for

the analysis of many speech signals. Firstly, the method is not robust to the presence
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of high frequency noise in the speech signal, as the approach extracts spectral samples

from across the entire bandwidth of analysis, including noisy high frequency regions.

Secondly, the method assumes that vocal-tract filter order is known and relies upon

the usual rule of thumb (given in Section 2.3.2), which may be inappropriate. Finally,

the SIM method does not estimate the LF model scale parameter Ee in the power

domain, switching instead to the time-domain and a least-squares error criterion to

determine it, which as discussed in Section 5.1 is inappropriate for phase-distorted

recordings.

Conversely, the PowRd method retains the advantages of the SIM method and

offers solutions to the above issues. As signal noise in the speech signal is often

confined to the high frequency portions of the signal, the method adopts a two-band

Harmonic plus Noise Model (HNM) type speech model. The upper noise portion of

the spectrum beyond a maximum voiced frequency is ignored and the lower band

alone undergoes analysis. The appropriate filter order for this new lower bandwidth

analysis is simultaneously determined with the optimal Rd parameter using a novel

error criterion based on the Itakura-Saito error proposed in this chapter named the

Relative Itakura-Saito error function. The Relative Itakura-Saito error has the same

characteristics as the usual Itakura-Saito error, yet it can determine the optimal filter

order. Finally, this chapter also describes a method for the determination of Ee

parameter in the power spectrum alone, without resorting to the time domain.

In order to validate the PowRd method, experiments are performed under linear

phase and simulated nonlinear phase conditions. Comparative experiments with syn-

thetic speech with 4 other state-of-the-art glottal source parameterisation methods

will show that the PowRd method is the most robust voice-source parameterisation
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algorithm under the tested conditions. Experiments are also performed with real

speech, where the open quotients predicted from the Rd parameters are compared

with those obtained from simultaneously recorded EGG signals. The PowRd method

is shown to perform similarly to other state-of-the-art approaches, yet not requiring

strict time placement of the signal frame, phase linear recording conditions nor a

pre-determined filter order.

This chapter begins by restating the theory behind the power-spectrum-based

voice-source parameterisation, and a detailed description of the PowRd approach.

The new error function, the Relative Itakura-Saito error, used to determine the pa-

rameters is also described. Experiments on synthetic speech validate the technique,

and additional experimental results on real speech signals are then given. Finally, the

results are discussed, summarising the main strengths and weaknesses of the various

approaches, and the chapter is concluded.

6.1 Theory

The theoretical underpinnings of the PowRd algorithm are the same as other power-

spectrum-based joint estimation methods. This approach is briefly recapitulated here.

The relationship between the vocal tract power spectrum |V (ω)|2 and the power

spectrum of the speech signal |S(ω)|2 and the underlying glottal contributions |G′(ω)|2

is restated:

|V (ω)|2 = |S(ω)|2

|G′(ω)|2
(6.1)

It is clear from this equation that for any given voice-source contribution, a cor-

responding vocal tract can be calculated. Thus, power-spectrum-based methods of
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voice-source estimation and parameterisation require strict assumptions regarding the

magnitude behaviour of both the vocal tract and glottal source: the minimum phase

envelope assumption is not sufficiently restrictive to determine a solution. For this

reason, the all-pole assumption is imposed upon the estimated vocal tract spectrum.

If |S(ω)|2 can be approximated by a transformed LF model pulse exciting an all-

pole vocal-tract filter, there exists a parameter value Rd and a set of all-pole filter

coefficients ak which characterises |G′(ω)|2 and |V (ω)|2 respectively. Thus, given an

Rd value, the corresponding derivative glottal flow model power spectrum
∣∣G′Rd(ω)

∣∣2
can be calculated and the vocal tract power spectrum

∣∣V Rd(ω)
∣∣2 necessary to pro-

duce |S(ω)|2 from
∣∣G′Rd(ω)

∣∣2 can be determined. This is expressed in the following

equation: ∣∣V Rd(ω)
∣∣2 = |S(ω)|2

|G′Rd(ω)|2
(6.2)

If the given Rd parameter characterises the actual derivative glottal flow signal,∣∣V Rd(ω)
∣∣2 can be seen as the scaled power spectrum of an all-pole filter. This filter can

be determined by applying an all-pole envelope estimator to
∣∣V Rd(ω)

∣∣2, the fitting

error of which will be small. However, if the Rd parameter is not suitable or the

order of the filter is inappropriate, then the error determined by the envelope-fitting

operation will be large. Thus, this error quantifies the suitability of both the given

glottal shape parameter Rd and the filter order to approximate the speech signal.

Minimising this error will serve to optimally parameterise the speech signal in terms

of the assumed speech model.
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6.2 The PowRd Algorithm

The practical implementation of the PowRd algorithm can be described in four general

steps:

• A power spectrum representation |S(ω)|2 of a voiced speech signal frame is

obtained. The pitch period of the signal within the analysis frame is assumed

to be known a priori and denoted T0.

• The Rd parameter is discretely sampled across its range and, together with the

estimated T0 value, is used to generate the power spectra of the corresponding

voice-source signals, |G′Rd(ω)|2. These representations are then inversely applied

to the speech power spectrum |S(ω)|2 according to Equation 6.2 in order to yield

an estimate of the corresponding vocal tract power spectrum |V Rd(ω)|2.

• All-pole spectral envelopes are then fit to each |V Rd(ω)|2, and the fitting error

is calculated using the Relative Itakura-Saito distance function.

• The lowest error initial estimates from this approach are then refined using an

optimisation procedure, yielding the lowest error Rd parameter for the signal

frame.

This section will discuss each of these steps in detail.

6.2.1 Power Spectrum Representations

The periodicity of the time-domain voiced speech signal s[n] has the consequence

that its spectrum S(ω) can only be reliably estimated at discrete quasi-harmonic
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frequencies. Typical methods to obtain this information include peak selection from

the magnitude spectrum or using a least-squares analysis. These methods are briefly

summarised here, and more details are given in Appendix C.

Signal periodicity implies strong correlation with the basis sinusoids of the discrete

Fourier transform, which then sample the spectrum at quasi-harmonic frequencies.

These sinusoidal components of signals appear as prominent peaks in the DFT magni-

tude spectrum, which can then be selected using a simple search algorithm (McAulay

and Quatieri, 1986; Serra, 1989). To ensure that these peaks can be properly resolved

following the transformation into the frequency domain, a minimum of 3 to 4 periods

are needed in the analysis frame depending on the windowing function used (Harris,

1978; Serra, 1989). Additional spectral resolution may be obtained by interpolation

procedures, e.g. zero-padding the time-domain signal frame or fitting a parabola to

peaks of the log power spectrum and their neighbouring points.

An alternative method for determining spectral samples is possible if the fun-

damental frequency of the signal is known. By assuming the signal is composed

of harmonically-related sinusoids, the complex amplitudes of the harmonics may be

determined more accurately and with smaller frame sizes than DFT approaches by

using a least-squares approach (Laroche et al., 1993; Stylianou, 1996). This method is

more accurate than peak picking from the DFT magnitude spectrum as the spectral

smearing introduced by time-domain windowing is not accounted for by this approach.

With the least-squares harmonic approach, as the frequencies of the harmonics are

known a priori, their mutual influence upon each other can be considered in their

estimation. Smaller frame sizes can be utilised as the number of unknown variables

depends upon the bandwidth of the signal and fundamental frequency of the analysed
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signal frame.

Two Band Speech Model Researchers have previously utilised a two band model

of the speech signal for speech synthesis and modification purposes (Stylianou, 2001;

Pantazis et al., 2008). It is assumed that the voiced speech signal is composed of two

bands, the lower band containing quasi-harmonic sinusoids, the upper band containing

noise. The frequency separating these two bands is referred to as the maximum voice

frequency Fm, which can be determined algorithmically (Stylianou, 1996; Erro et al.,

2011) or fixed at specific frequency (Drugman et al., 2009b). By adopting this signal

model and ignoring spectral information beyond Fm, the PowRd algorithm avoids the

noisy signal components which may adversely affect the glottal signal. This spectral

perspective of avoiding noisy high frequency information is equivalent to the low

pass filtering operation taken by other authors also for the purposes of voice-source

parameterisation, e.g. (Strik, 1998) and (Lu, 2002).

The new signal only contains frequency components ωk in the bandwidth 0 ≤

ωk ≤ ωm, where ωm = 2π Fm

fs
. A frequency transformation function is then used to

map these boundaries of spectral envelope to the range between 0 and π. A straight

forward transformation function can be used for this purpose:

ω′
k =

π

ωm
ωk (6.3)

The operation is similar to the selective linear prediction technique discussed in

(Makhoul, 1975), where a portion of the spectrum is isolated by a frequency trans-

formation and fit by the usual full band linear predictive techniques. It allows better

approximation of the frequencies closer to Fm. Following this transformation, the
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assumptions of the PowRd method are more stated as the voice-source signal is ap-

proximated by the transformed LF model and the bandlimited vocal tract is modeled

by an all-pole filter.

G′Rd(ω) Determination In order to determine V Rd(ω) from the estimated speech

power spectrum, the transformed LF model spectrum G′Rd(ω) is required. As the

pulse can be generated without periodic interference and windowing artifacts, its

harmonics can be accurately calculated using a phasor correlation approach. How-

ever, as the formula of the LF model maybe be re-expressed solely in terms of expo-

nentials, the phase correlations can be reexpressed as scaled and summed geometric

summations. Compared with the phasor correlation approach, this method reduces

the computational effort by more then 85%. Additionally, a faster though inexact

approximation of the spectral parameters can be achieved by interpolating the DFT.

This constitutes a minor contribution of this thesis, the details of which are given in

Appendix D.

6.2.2 Vocal-Tract Filter Estimation

Once the power spectrum of the vocal-tract filter has been estimated, it is assumed

that it represents a sampled all-pole filter envelope. A prevalent approach for the

determination of all-pole filter coefficients from discrete spectral samples is linear

prediction (Makhoul, 1975). However, it is well known that the all-pole envelopes

estimated by linear prediction contains a bias towards the harmonics of the spectrum,

which is particularly an issue for female speech where harmonic spacing is generally

wider. For this reason, Discrete All-Pole (El-Jaroudi and Makhoul, 1991) is preferred.
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The DAP algorithm obtains a more accurate filter measurement by refining the

filter estimated by spectral linear prediction by using an iterative algorithm and

a different error criterion. The new error criterion is the discretised Itakura-Saito

error function (Itakura and Saito, 1968), which has been qualified as a “subjectively

meaningful measure of speech distortion” (Gray et al., 1980). Given two power spectra

P (ωn) and P̂ (ωn) defined at a set of discrete frequencies ωn for n = 1 · · ·N , the

discretised Itakura-Saito error is calculated according to following equation:

EIS =
1

N

N∑
n=1

W (ωn)

(
P (ωn)

P̂ (ωn)
− ln

P (ωn)

P̂ (ωn)
− 1

)
(6.4)

where W (ωn) is a frequency dependent weighting function. The technical details of

both DAP and spectral linear prediction are discussed in Appendix B.

By applying the DAP algorithm to an estimated vocal tract power spectrum∣∣V Rd(ω)
∣∣2, the Itakura-Saito error ERd,p

IS which quantifies the goodness of fit of a

pth order all-pole filter ak to
∣∣V Rd(ω)

∣∣2 can be calculated according to the following

equation:

ERd,p
IS =

1

N

N∑
n=1

W (ωn)

(∣∣V Rd(ωn)
∣∣2

P̂ (ωn)
− ln

∣∣V Rd(ω)
∣∣2

P̂ (ωn)
− 1

)
(6.5)

where P̂ (ωn) is the power spectrum of the DAP-optimised all-pole envelope sampled

at frequencies ωn. As it is assumed that an all-pole envelope will fit the vocal-tract

filter, ERd,p
IS gives an indication of the goodness of fit of the transformed LF model

parameter Rd used to generate the power spectrum.

Determination of the Optimal Vocal-Tract Filter Order While the Itakura-

Saito distance function is useful for quantifying the distance between two spectra, it

is not appropriate for choosing the order of the vocal-tract analysis since increasing
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the order of analysis will generally decrease the distance between the original and

modeled spectra. For this reason, a novel error criterion is proposed for determining

the filter order, named the Relative Itakura-Saito distance function.

The Relative Itakura-Saito distance function is calculated by the following equa-

tion:

ERd,p
rIS =

ERd,p
IS

E0,p
IS

(6.6)

where E0,p
IS is the minimum Itakura-Saito distance between the speech power spectrum

and the sampled power spectrum of the DAP-estimated best fitting pth order all-pole

envelope.

As it is simply a scaled version of the Itakura-Saito distance function, for fixed filter

orders the error surface described by Relative Itakura-Saito error function possesses

the same characteristics of that error. However, since both ERd,p
IS and E0,p

IS generally

decrease together, ERd,p
rIS has the key property that it no longer decreases as the filter

order increases, and therefore it can be used to choose p. This behaviour is due to

the fact that the glottal contributions to the speech signal can be approximated by

a low order all-pole filter (Markel and Gray, 1982; Alku and Laine, 1989; Doval and

d’Alessandro, 2006); once the order of analysis is sufficiently high, the general shape

of the speech spectrum is captured by the all-pole approximation and any further

order increase serves only to model the finer spectral details. However, if the glottal

derivative power spectrum is approximated by Rd, E
Rd,p
IS will be small before the filter

order is large enough to capture both the vocal tract and the glottal model.

Figure 6.1 shows the behaviour of E0,p
IS , E

Rd,p
IS and ERd,p

rIS for a synthetic speech

frame, with fixed Rd parameter and increasing filter order.
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Figure 6.1: The figures above help to illustrate the operation of the Relative Itakura-

Saito error for determining the optimal filter order. In the top-left figure is a voiced speech

segment overlaid with the appropriate glottal signal. The 16th order all-pole vocal-tract

filter is represented by the top-right figure. In the bottom figure, the behaviour of the

ERd,p
IS and E0,p

IS can both be seen to decrease with increasing filter order. However, the

Relative Itakura-Saito error (the ratio of these two errors) indicates the correct filter order

(16).
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Ee Determination The gains within with the speech signal are interdependent,

meaning that an increase of the gain of the vocal tract can be offset by a decrease

of the gain upon the voice-source signal. This makes it difficult to estimate the gain

upon the source signal accurately. However, if the vocal-tract filter is normalised in

some respect (for example, such that the first filter coefficient a0 = 1), the amplitude

variations of the signal can be attributed solely to the gain upon the voice source.

Because the DAP algorithm necessarily uses non-normalised filter coefficients (i.e.

a0 ̸= 1) to match the scale and shape of the discrete spectrum under analysis, nor-

malising the filter (by dividing all coefficients by a0) gives the factor which must be

applied to the input spectrum in order to match the sampled all-pole filter envelope.

This gain factor b0 is simply the reciprocal of the first filter coefficient:

b0 =
1

a0
(6.7)

However, this is only correct in relation to the amplitude of the speech power

spectrum, the determined vocal-tract filter, and the gain of the LF model spectrum

used to calculate the voice-source model spectra. Two conditions are necessary for

accurate determination of the Ee parameter:

Speech spectrum normalisation. The amplitude speech spectrum must be nor-

malised by sum of the analysis window, as the amplitude of the spectral com-

ponents is dependent upon the size of the window.

LF model spectrum normalisation. In addition to also being normalised by the

length of the analysis window used to calculate its spectrum, the LF model

spectra G′Rd(ω) used to estimate the vocal tract all-pole filter V Rd(ω) must be

determined such that its scale parameter Ee = 1.
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If these conditions hold, then b0 = Ee. This novel perspective avoids the necessity for

any time-domain parameter estimation, as necessitated by the SIM technique.

6.2.3 Rd Determination

The previous sections discuss how the all-pole filter coefficients, filter order and gain

parameter of the incorporated glottal model may be determined from the vocal-tract

filter power spectrum which has been estimated using a given transformed LF model

shape parameter Rd. This section will discuss how this parameter is determined.

Brute Force Initialisation In order to obtain initial estimates of the parameters

of a voice-source model, researchers have often utilised a codebook approach (Fröhlich

et al., 2001; Lu, 2002; Vincent et al., 2005). The codebook contains a pre-determined

set of glottal model parameter configurations which cover a subset of the available

glottal shapes of that model. To obtain initial estimates of the Rd parameter, this

work uses a similar brute force approach.

A codebook of Rd parameters is generated by sampling the span of the parameter

across its range, i.e. 0.209 ≤ Rd ≤ 3. Two opposing practical considerations must be

taken into account when designing such a codebook:

• Adequate coverage over the subspace is required such that the initial parameter

supplied to the optimisation procedure is close to the actual parameter.

• The codebook should not contain more entries than necessary to ensure efficient

calculation.

These considerations oppose one another in that the first tends to increase the number
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of codebook entries, while the second demands a smaller subset. This work has found

that 100 entries is adequate.

The PowRd algorithm determines the filter order in a similar, brute force fashion.

As previously discussed, the order of the vocal-tract filter is related to the bandwidth

of the speech signal. As the PowRd method essentially bandlimits the speech signal

to the maximum voiced frequency Fm, the filter order is related to this frequency.

The following equation, related to the usual rule of thumb where each kilohertz of

bandwidth yields another formant, can be derived:

pFm = ⌊ 2Fm
1000

+ 0.5⌋ (6.8)

= ⌊Fm
500

+ 0.5⌋ (6.9)

where ⌊x⌋ maps the real number x to the largest previous integer. However, as

previously mentioned, the filter order is also related to the geometry of the vocal

tract. Thus, the PowRd method tests over a range of filter orders in the region of

pFm . This work utilises the range pFm − 2 ≤ p ≤ pFm + 2.

Vocal Tract Heuristics During the brute force initialisation, the estimated vocal-

tract filters are factorised and the parameter configurations (shape parameter Rd and

filter order p) corresponding to those tract containing positive real poles are removed

from further consideration. This removal of positive real poles from estimated vocal-

tract filters is a common procedure (Wong et al., 1979; Childers and Lee, 1991; Alku

et al., 2009) as the vocal tract is assumed to be a resonating system and real poles

contribute to the spectral tilt and not the filters resonant characteristics.

Additionally, there is no guarantee of filter stability. If the final estimated filter has
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Figure 6.2: The above figure shows the extraction of the initial parameters from the

Relative Itakura-Saito error matrix. Colder colours represent lower error values, and the

optimal Rd = 1.3.

pole outside the unit circle, they are simply replaced by their mirror image partners,

as explained in Section 3.2.1.

Refining the Estimates Following the brute force processing of the Rd codebook

and filter order range, the initial estimates of the waveshape parameter and filter

order, R̂d and p̂ respectively, can be extracted from the error surface, see Figure

6.2. The initialisation procedure gives a robust estimation of filter order, though

the voice-source parameter may need to be refined in order to compensate for the

discrete nature of the codebook. Thus, fixing the filter order p̂, the Itakura-Saito

error function ERd,p̂
IS is minimised using R̂d as the starting point of an optimisation

routine.

This parameter is refined using the downhill simplex method algorithm (Nelder
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and Mead, 1965), which has been applied successfully in other voice-source param-

eterisation methods (Strik, 1998; Tooher and McKenna, 2003; Vincent et al., 2005;

Kane et al., 2010). The method functions without derivatives and is reputed to be

relatively robust against bad initial estimates (Press, 2007). The implementation of

this algorithm was performed by the Matlab (MATLAB, 2010) function fminsearch.

Experiment has found that it suffices to allow a maximum of 100 iterations of the

algorithm, with a function tolerance of 0.001.

6.2.4 PowRd Algorithm Summary

The PowRd method can be summarised as follows:

Algorithm 1: The PowRd algorithm.
Input: Speech frame s[n], pitch period T0, maximum voiced frequency Fm

Output: Shape parameter Rd, scale parameter Ee, filter coefficients ak

Transform s[n] into power spectrum representation |S(ωk)|2, up to Fm;

Transform ωk to ω′
k using Eq. 6.3;

Calculate pFm according to Eq. 6.8;

foreach p from pFm − 2 to pFm + 2 do

Use DAP algorithm to calculate E0,p
IS using |S(ω′

k)|
2
;

foreach Rd in codebook do

Calculate
∣∣G′Rd(ωk)

∣∣2;
Calculate

∣∣V Rd(ω′
k)
∣∣2 =

|S(ω′
k)|2

|G′Rd (ωk)|2
;

foreach p from pFm − 2 to pFm + 2 do

Use DAP algorithm to calculate âk and E
Rd,p
IS using

∣∣V Rd(ω′
k)
∣∣2;

Factorise âk into roots z;

if Any ̸ z = 0 then

Set ERd,p
rIS = ∞;

else

Calculate E
Rd,p
rIS using Eq. 6.6;

Locate minimum of ERd,p
rIS to obtain p̂ and R̂d ;

Use simplex search algorithm to minimise E
Rd,p̂
IS with initial parameter R̂d;

Given final Rd value, calculate ak and Ee with DAP algorithm.
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6.3 Validation/Testing

In order to test its performance, the PowRd algorithm is compared with four other

state-of-the-art voice-source estimation/parameterization methods. These methods

are CPIF1 (Wong et al., 1979), IAIF2 (Alku, 1992; Airas, 2008b), CCD3 (Drug-

man et al., 2009a) and an adapted SIM method4 (Fröhlich et al., 2001). As the

first three methods are voice-source estimation algorithms, a second parameterisa-

tion stage is necessary to obtain an estimate for the voice-source parameter. A time-

domain method similar to the one described in (Strik, 1998) was used. Furthermore,

as the original description of the SIM method utilised the LF model rather than the

transformed LF model, it was adapted slightly from the one described in (Fröhlich

et al., 2001).

6.3.1 Synthetic Speech

Because synthetic speech are generated under fully controlled circumstances, the sen-

sitivities of each voice-source parameterisation algorithm to various phenomena can

be observed. In this work, different scenarios were undertaken to test each algorithm.

Those scenarios are:

• fundamental frequency, f0

• glottal noise, SNRg

• first formant centre frequency, F1

1Own implementation.
2Own implementation.
3Implementation available from (Drugman, Retrieved October 8th, 2011).
4Own implementation.
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• filter order, p

• interaction effects

• phase distortion

Further details of each phenomenon is given in the results section below.

The performance of the different algorithms upon synthetic speech is quantified

by the difference between the estimated Rest
d parameter and its actual value Ract

d . The

error is calculated simply as:

∆Rd
= Ract

d −Rest
d (6.10)

By experimenting over a wide variety of scenarios, the mean µ∆Rd
and standard

deviation σ∆Rd
of this error is a good indicator of the performance of each method.

The synthetic speech tokens were generated using 500 randomly generated Rd

parameters across its range of variation from 0.209 to 3, and different combinations

of three variables: fundamental frequency, glottal noise level and vocal-tract filter.

For each token, the amplitude parameter Ee was fixed at 1, though the estimation

error upon this parameter is not measured in this chapter5. Additionally, for the

experiments where the impact of a specific phenomenon is being observed, the other

variables are set to fixed values - f0 was fixed at 140Hz, the glottal noise to signal

ratio was fixed at 30dB, and the vocal-tract filter was filter (xiii) (see Appendix A).

Unless otherwise specified, each experiment was conducted using the non-interactive

speech model under linear phase conditions and, with the exception of the PowRd

method, given the correct filter order.

5Experiments validating the PowRd approach to Ee estimation are presented in Chapter 8
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6.3.2 Real Speech

Objective quantification of the quality of the voice-source parameterisation of real

speech is a difficult problem as in this case there is no ground truth available. How-

ever, the waveshape parameter Rd and local pitch period T0 can be used to predict

the open quotient ORd
q of the waveform under analysis (using the equations found in

Section 2.3.3.1), which can be corroborated with the open quotient parameter esti-

mated from a synchronously recorded EGG signal, OEGG
q . The open quotient error

∆Oq is calculated as the difference between the open quotient estimates:

∆Oq = OEGG
q −ORd

q (6.11)

Conversely to the previous experiment which utilised the mean and standard devi-

ation of the calculated error, for the real speech experiments the performance of each

approach is indicated by the median µ 1
2
and the interquartile range iqr of ∆Oq . The

median and interquartile range are used in this case because they are more robust to

outliers in the data which are more likely to appear in the real speech experiments

due to, e.g. inaccurate glottal closing instant estimations from the SIGMA analysis

of the EGG signal, noisy analysis frames, aperiodicities, etc.

The algorithms were tested upon 15 utterances spoken by three voices taken from

the CMU-ARCTIC database (Kominek and Black, 2003): two male voices (bdl and

jmk) and one female voice (slt). These voices were recorded in a sound-proof booth at

32kHz sampling rate with simultaneous EGGmeasurements, and their lexical contents

represents phonetically balanced American English. Before testing, both signals were

down-sampled to 16kHz following processing using a zero phase low pass anti-aliasing

filter. Additionally, the speech and EGG signals were time-aligned to compensate
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for delay introduced by the propagation of the acoustic signal from the glottis to the

microphone (Veeneman and BeMent, 1985). This delay was assumed constant over

the entire database for each speaker and was estimated to be approximately 0.94ms

for speakers bdl and slt while a delay of approximately 0.69ms was suitable for speaker

jmk. This delay is similar to the one used by another study (Cabral et al., 2011).

Following pre-processing, the SIGMA algorithm6 (Thomas and Naylor, 2009) is

applied to the EGG signal to determine the instants of glottal closure which are used

to centre the analysis frames for each technique. The reference open quotient values

OEGG
q are calculated from the EGG signal using the thresholding method described

in (Howard, 1995). Using the glottal closing instants which can be robustly detected

from the DEGG, this method establishes a threshold which is used to determine the

time during which the glottis is open, see Figure 6.3. The threshold τOq was set to

3
7
(max−min), as has been established experimentally by (Davies et al., 1986). This

robust open quotient estimation method does not rely on the presence of strong peaks

in the DEGG waveform to estimate the glottal opening instant (Howard, 1995).

6Available from (Brookes, Retrieved January 22nd, 2009).
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Figure 6.3: The above figure illustrates the thresholding method of glottal cycle open

quotient estimation from the EGG and DEGG signals, as described in (Howard, 1995).

6.4 Results and Discussion

This section discusses and interprets the results of the various experiment undertaken.

Figures 6.4 to 6.8 illustrate the performance of the source estimation algorithms upon

synthetic speech, while Figure 6.10 to 6.13 and Tables 6.1 to 6.2 gives the results for

analysis of real speech signals.
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6.4.1 Synthetic Speech

Glottal Noise A certain level of noise will be found in real speech. In order to

observe the impact of this phenomenon, modulated Gaussian noise was added to the

source signal at six different signal to noise ratios, from 60dB SNR to 10dB SNR

in steps of -10dB SNR, while maintaining the pitch and vocal-tract filter constant.

The noise was amplitude modulated using a raised glottal flow signal determined by

the LF model parameters, and passed through a differentiation filter representing lip

radiation, in a manner similar to (Agiomyrgiannakis and Rosec, 2008). The results

of this experiment can be seen in Figure 6.4.

It is clear that all voice-source parameterisation methods suffer from by the ad-

dition of noise, and generally follow the trend that the greater the amount of the

noise, the further degradation to the parameterisation. In particular, CCD and CPIF

suffer from this phenomenon, while conversely the IAIF method does not exhibit pro-

nounced performance degradation with increasing noise levels. This corroborates the

findings in (Drugman et al., 2011a), which also observed the sensitivity of the CCD

and CPIF methods to noise and robustness of the IAIF method.

With increasing noise, both power-spectrum-based approaches PowRd and SIM

tend to underestimate the correct Rd parameter. This is due to the intrusion of

high frequency noise, which boosts the amplitude of high frequency spectral samples,

and thus underestimates the spectral slope. However, due to the HNM-type model

adopted by the PowRd algorithm, it does not experience such a loss of performance

until the noise levels reach a certain level. It is expected that if the maximum voiced

frequency parameter Fm, which controls the analysis signal bandwidth, was assigned
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in a dynamic fashion and not fixed (at 3kHz, also the cutoff frequency of the low-

pass utilised during time-domain parameterisation) as it was in these experiments,

improved performance would be observed.

Figure 6.4: The above figure gives the impact of glottal noise upon voice-source param-

eterisation methods.

Fundamental Frequency In the frequency domain, higher fundamental frequen-

cies imply wider spacing between the spectral samples and thus less information

within a given bandwidth. Similarly in the time domain, higher pitch implies shorter

pulse periods. While keeping the vocal-tract filter and noise characteristics of the

signal the same, the fundamental frequency of synthetic speech is varied in order to

observe the performance of each algorithm relating to this variable. The range of fun-

damental frequency are from 80Hz to 240Hz in steps of 20Hz. The results of which

can be seen in Figure 6.5.
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Though is was expected that a decrease in accuracy would be witnessed with in-

creasing frequency, due to the shorter analysis frames, the data implies that almost

all of the methods under analysis are relatively robust to increases in fundamental

frequency. However, the PowRd method does see a jump in the standard deviation

of the parameterisation error ∆Rd
once the fundamental frequency increases beyond

180Hz, possible due to the decreasing number of spectral samples. Another excep-

tion can be made for the CCD approach which actually improved performance with

increasing frequency, contradicting the findings of (Drugman et al., 2011a), where

increasing f0 had little impact.

Figure 6.5: The above figure gives the impact of fundamental frequency upon voice-

source parameterisation methods.

First Formant It is well known that interference between the first formant F1

and the glottal formant can prevent successful deconvolutions of the source and filter.
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Twenty-two different vocal tract functions covering the vocalic trapezoid with varying

first formant frequencies are used during experimentation. The parameters and dia-

grams of these functions are given in Appendix A, and the results of the experiments

is contained in Figure 6.6.

The glottal formant of the voice-source signal depends on the waveshape param-

eter of the glottal flow, and spans the approximate range from 0.9f0 to 3.5f0. In

these experiments where the fundamental frequency is held constant at 140Hz, the

glottal formant and first formant will overlap at frequencies below 500Hz. As can

be seen in Figure 6.6, all methods show some influence of this effect, though it is

most pronounced for the IAIF method. This iterative procedure adopted by this ap-

proach attempts to remove low frequency information of the speech signal which it

is assumed, represents the glottal contributions. However, the assembled low order

model can occasionally “lock” onto a low frequency formant instead. Unlike the IAIF

approach, the power-spectrum-based approaches are relatively robust to these low

first formant errors as they avoid confusion with the vocal tract by brute force, and

do not use the characteristics of the speech signal itself to determine an appropriate

glottal model.
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Figure 6.6: The above figure gives the impact of the first formant centre frequency upon

voice-source parameterisation methods.

Filter Order The order of the vocal-tract filter is an unknown parameter and

estimated using the usual rule of thumb. An experiment measuring the impact of

varying this parameter is undertaken using a range of filter orders, from p±2 where p is

the ideal filter order of 16. Obviously because the CCD does not impose a parametric

model upon the vocal tract, that method is excluded from this experiment. As the

Relative Itakura-Saito error is capable of recovering the parameters nearly perfectly

for the PowRd algorithm, it is included for reference purposes.

As can be seen in Figure 6.7, choosing the incorrect filter order does have some

impact upon the results. This is particularly noticeable when the order is underesti-

mated, which can give substantial degradation to the effectiveness of each algorithm,

particularly regarding the spread of the results.

The closed-phase inverse filtering method actually achieves optimal filter order at
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p + 1. This is most likely because the extra flexibility of the additional pole allows

the method to model a nonzero mean in the analysis frame caused by, for example,

the return phase of the glottal cycle. The closed-phase inverse filtering routine used

in this work removes real poles from the estimated filter for this reason.

Finally, it is also noted that the frequency-domain approaches to vocal-tract filter

estimation (SIM and IAIF) achieve similar performance once the filter order rises to

the correct filter order.

Figure 6.7: The above figure gives the impact of the filter order upon voice-source

parameterisation methods.

Interaction Effects As mentioned in Section 2.2.1, interaction between the be-

haviour of the glottal source and the resonances of the vocal tract are known to be

present in real speech. Thus, a basic modeling of the effect was introduced in a more

realistic speech model by implementing a different vocal-tract filter during the open
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phase of the glottal signal. The open-phase filter was determined by interpolation

from the closed-phase filter to another such that the centre frequency and bandwidth

of the first formant are increased by 10%, consistent with the experimental findings

(Ananthapadmanabha and Fant, 1982; Krishnamurthy, 1992). The interpolation was

performed linearly using line spectral frequencies (Itakura, 1975). The results of sim-

ulating this natural speech effect is seen in the middle row of Figure 6.8. When

compared with the reference performance in the top row of Figure 6.8, it can be seen

that it degrades slightly the performance of all methods.
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Figure 6.8: The above figures show the ∆Rd
error distributions for three scenarios,

using 500 randomly generated glottal pulses. (Top) Reference set, (middle) source-filter

interaction effects, and (bottom) phase distortion.

Phase Distortion Finally, the effect upon the algorithms of phase distortion is also

observed in the bottom row of Figure 6.8. Methods relying on error functions which

are sensitive to phase disturbances are expected to be compromised by this common
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phenomenon. When compared with the reference performance under phase linear

conditions in the top of Figure 6.8, it can be seen that the power-spectrum-based

methods are virtually unaffected by the introduced distortion, while unsurprisingly,

the effectiveness of the IAIF, CPIF and CCD methods are severely compromised.

In this experiment, phase distortion is imposed upon synthetic speech segments

by spectral multiplication of the estimated spectral nonlinear phase characteristics

of a professional recording studio. These characteristics were measured using refer-

ence waveforms of known shape, similar to the manner proposed in (Holmes, 1975)

and (Berouti et al., 1977). This transfer function, a low frequency detail of which

is given in Figure 6.9, affects mainly the low frequencies of the signal and severely

alters the signal shape but has little to no impact upon the signal perceptually. As

characteristics of the phase distortion are system-dependent, it is expected that the

performance of phase sensitive algorithms will differ if different recording equipment

is utilised. However, the performance exhibited by the power-spectrum-based ap-

proaches can be generalised to clean speech signal recordings, as they explicitly ignore

phase information as much as possible.
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Figure 6.9: The above figure shows the low frequency detail of a transfer function

estimated from a professional studio recording equipment used for distorting the phase of

the speech segments in the experiments.

6.4.2 Real Speech

The results of the real speech experiments are presented as the distribution of the

open quotient error ∆Oq in Figures 6.10 to 6.13, which are also described by their

medians (µ 1
2
) and interquartile ranges (iqr) in Tables 6.1 and 6.2.

Under phase linear speech recordings, where the phase conditions of the signal

were not perturbed in any way, a similar performance in accuracy is noted between

all methods for speakers bdl and slt. For these two speakers, only the closed-phase

inverse filtering method distinguishes itself by producing the most consistent (i.e.

exhibiting the lowest iqr) results in both cases. Indeed, closed-phase inverse filtering

also produces the most consistent result for the all voices including speaker jmk,

however for this voice, it is the power-spectrum-based approaches which produce

markedly the most accurate results.
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Table 6.1: The table below gives the Oq estimation performance, for three speakers with

utterances recorded under linear phase conditions.

Speaker PowRd SIM+Rd IAIF+Rd CPIF+Rd CCD+Rd

bdl
µ 1

2
−0.052 −0.060 −0.066 −0.070 −0.075

iqr 0.135 0.143 0.111 0.100 0.283

jmk
µ 1

2
−0.053 −0.065 −0.119 −0.141 −0.137

iqr 0.132 0.146 0.142 0.107 0.449

slt
µ 1

2
−0.197 −0.198 −0.201 −0.214 −0.198

iqr 0.135 0.113 0.150 0.084 0.155

Table 6.2: The table below gives the Oq estimation performance, for three speakers with

utterances recorded under simulated nonlinear phase conditions.

Speaker PowRd SIM+Rd IAIF+Rd CPIF+Rd CCD+Rd

bdl
µ 1

2
−0.037 −0.047 −0.136 −0.144 0.165

iqr 0.134 0.142 0.243 0.264 0.109

jmk
µ 1

2
−0.031 −0.044 0.106 −0.152 0.295

iqr 0.144 0.162 0.406 0.227 0.075

slt
µ 1

2
−0.191 −0.192 −0.197 −0.242 0.165

iqr 0.140 0.112 0.213 0.157 0.112

As shown in Figures 6.10 and 6.11, the CCD method yields a bimodal distribution

for both male speakers. Distributions of this type have been observed previously with

approaches based upon the minimum/maximum phase model of the voiced speech sig-

nal e.g. (Drugman and Dutoit, 2010), where it is presumed that the minor mode of

the distribution is indicative of incorrectly decomposed analysis frames. Incorrectly
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Figure 6.10: The above figures give the Oq estimation performance upon speaker bdl :

(Top) phase linear conditions, (bottom) nonlinear phase conditions.

decomposed frames generally give noise-type waveforms, see Figure 6.12; the subse-

quent glottal model fitting operation will tend to low Rd values, thus yielding high

∆Oq values when compared with the reference. The results presented here seem to

corroborate this conclusion as it is noted that if these samples were excluded from

the analysis, error distribution similar to those exhibited by the other methods would

be obtained.

Though generally similar to the closed-phase inverse filtering method, the iterative

adaptive inverse filtering is generally less precise than that method giving larger iqr
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Figure 6.11: The above figures give the Oq estimation performance upon speaker jmk :

(Top) phase linear conditions, (bottom) nonlinear phase conditions.

values and, like the CCD approach, yielding a bimodal distribution for the speakers

jmk and slightly slt.

It is clear that the power-spectrum-based methods give the most accurate results

in all cases, particularly in the case of speaker jmk, where the difference between

the PowRd and SIM methods is notably lower that the other approaches. Between

themselves, the PowRd method gives generally a slight improvement in accuracy and

precision over the SIM method, though it is less precise with the female voice analysed

in this experiment (iqrPowRd = 0.14 versus iqrSIM = 0.11).
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Figure 6.12: The above figure shows two adjacent voiced speech pulses decomposed by

CCD, correctly (left) and incorrectly (right).

When comparing the error distributions in both phase scenarios, it is clear that,

as expected, the power-spectrum-based approaches are robust to the phase distor-

tions as the overall shape and position of the distributions is very similar. Similarly

unsurprising, the disturbed phase conditions can adversely affect the performance of

the other approaches relying on time-domain parameterisation; this follows from the

marked dissimilarity of the error distributions to the phase-linear case.

Curiously, the precision of the CCD method increases when analysing phase-

distorted speech. This is probably indicative of consistently incorrectly decomposed

speech frames.

The IAIF and CPIF approaches yield the error distributions are more widely

spread and less accurate than the phase-linear case. However, there is a less dramatic

shape change in the case of the female voice slt. This is perhaps due to the low
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frequency impact of the simulated phase distortion which would impact lower pitched

voices more greatly than higher pitched ones.

Figure 6.13: The above figures give the Oq estimation performance upon speaker slt :

(Top) phase linear conditions, (bottom) nonlinear phase conditions.

6.5 Conclusions

This chapter has described a new method of voice-source parameterisation, referred

to in the introductory chapter as Contribution 1, called the PowRd method. The

PowRd method is closely related to the SIM method, with certain extensions which:
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• improves the performance of the algorithm in noise,

• determines the filter order automatically using a novel error criterion, the Rel-

ative Itakura-Saito error, and

• estimates the optimal Ee parameter simultaneously with the vocal-tract filter.

Experimental testing confirms the improvements of the PowRd method over the

SIM method and also tested against 3 other state-of-the-art voice parameterisation

methods: IAIF, CPIF and CCD. The efficacy of the methods were tested upon syn-

thetic speech considering different phenomena likely to be encountered when analysing

natural speech. Those phenomena were:

• differing levels of glottal noise,

• a range of fundamental frequencies,

• different vocal tract configurations,

• incorrectly supplied filter orders,

• simulated source-filter interaction and

• the presence of phase distortion effects.

The addition of noise degraded all methods, though the two-band model adopted

by the PowRd approach demonstrated increased robustness than the SIM technique.

The CCD technique was found to be particularly sensitive to noise. All techniques

showed a similar robustness to rising fundamental frequencies except for CCD which

actually improved, while only the lowest formant affected the voice parameterisation
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methods, in particular the IAIF technique. Interaction effects degrade all algorithms

slightly, while only the power-spectrum-based methods demonstrated robustness to

simulated phase distortion. Of the two power spectrum methods, the PowRd tech-

nique consistently shows superior performance in synthetic testing in its ability to

recover the Rd parameter, accurately and precisely.

Due to the more challenging conditions of natural speech, for example, the sta-

tionarity of the speech frame, pitch irregularities etc. real speech experiments are

more difficult to interpret. However, using the EGG signal as a benchmark from

which open quotients could be estimated, the real speech experiments broadly con-

firm the findings of the previous synthetic speech tests, particularly the robustness

of the power-spectrum-based voice-source approaches to phase distortion. In the

phase-linear case, closed-phase inverse filtering was found to give the most consistent

results, provided that accurate glottal closing instant information can be provided.

While the results obtained were similar in the case of speakers bdl and slt, the power

spectrum approaches were markedly more accurate for speaker jmk. Finally, the

complex-cepstrum-based decomposition is determined to be the least robust of the

other tested voice-source estimation approaches for open quotient parameterisation,

in almost every case yielding the largest interquartile range values.
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Chapter 7

Phase-Distortion-Robust Glottal

Closing Instant Estimation

This chapter introduces Contribution 2, a new method for the determination of the

glottal closing instants of a voiced speech signal, called the Fundamental RESidual

Search (FRESS) method. The FRESS method is inspired by other extant meth-

ods, however, it is specifically designed to handle speech signals that may have been

recorded using nonlinear phase equipment. Like the SEDREAMS and ZFR methods,

it passes the speech signal through a low pass filter of very low cut-off frequency, so

as to reveal only the first harmonic of the speech signal. However, as identified in

Chapter 5, the fundamental frequency sinusoidal is not robust to phase distortions

which may be have imparted upon the signal. In order to produce a GCI estimation

method robust to possible phase disturbances, landmarks extracted from this sinu-

soidal signal are aligned with the peaks of the speech signal’s energy contour, a signal

relatively more robust to phase distortion.

164



Realigned landmarks from the fundamental sinusoid signal indicate likely intervals

of glottal closure, removing the necessity to make assumptions about the GCIs as does

both the SEDREAMS and ZFR algorithms. Searching these regions for peaks of the

LPC residual signal yields a set of glottal closing instant candidates. Like the DYPSA

and YAGA methods, dynamic programming is used to select the likely sequence of

candidates based upon certain speech heuristics.

In this chapter, the FRESS method is compared with eight state of the art glottal

epoch estimation techniques. The experiment shows that comparable performance is

obtained for the case where the signal has been recorded using phase linear equip-

ment, while in the case of a simulated nonlinear recording environment, the FRESS

algorithm determines the instants of glottal excitation more reliably and accurately

than other approaches.

The chapter first describes the two stages of the FRESS algorithm, comprising

glottal epoch selection and dynamic programming. Following this section, the com-

parative experiment is described, after which the results are discussed and conclusions

given.

7.1 The FRESS Algorithm

Briefly stated, the FRESS method, like the SEDREAMS (Drugman and Dutoit, 2009)

method and ZFR methods, uses a mean-based signal to determine glottal epoch

candidates and then, like the DYPSA (Naylor et al., 2007) and YAGA (Thomas

et al., 2011) methods, refines the candidates using the N-best dynamic programming

algorithm. This step penalises candidates which deviate from heuristic properties of
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the glottal epochs of speech. This section will detail each stage of implementation.

7.1.1 GCI Candidate Selection

The first stage of the FRESS algorithm is the selection of likely glottal epoch candi-

dates. In the DYPSA and the YAGA methods, these candidates are initially found

by locating where a group delay function crosses the time axis in response to impulse-

like behaviour found in the signal under analysis. Unfortunately, this leads to many

spurious candidates, which must then be rejected by the subsequent dynamic pro-

gramming algorithm. For this reason, the SEDREAMS algorithm has the advantage

whereby many spurious peaks are avoided by searching for the prominent impulse

events in isolated regions of the LPC residual waveform. The FRESS algorithm at-

tempts to exploit the ability of the SEDREAMS algorithm to locate likely regions of

the glottal epochs in such a way that the spurious candidates are minimised.

The ability of the SEDREAMS technique to partition the LPC residual signal into

the regions likely to contain glottal epochs come from a mean-based signal. As its

construction is equivalent to zero phase low pass filtering, the mean-based signal can

be interpreted as the fundamental sinusoid of the voiced speech signal. This signal is

assumed to have a relatively static relationship with the position of the glottal closing

instants1. However, if the signal has been phase distorted, imparting a certain delay,

this relationship can be altered. Therefore, a fixed search area in relation to the mean

signal may not necessarily contain the glottal epoch.

1This is true for the original SEDREAMS algorithm. As mentioned in Section 4.2, a new im-

plementation uses an median-based approach to determine the relationship of the minima of the

mean-based signal to the likely regions of glottal closure.
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The FRESS algorithm attempts to realign the minima extracted from the funda-

mental harmonic signal with an energy function which is more robust to the position

of the glottal epochs and less affected by phase distortion.

Thus, the first stage of the FRESS algorithm is to generate the fundamental sinu-

soidal signal. Because the minima of this signal will be realigned after filtering, the

signal can be formed by using any low pass filter which has the ability to isolate only

the fundamental harmonic of the voiced speech segment, i.e. the zero-phase property

of the filter is unimportant. Should the filtered signal introduce any harmonics above

this single fundamental, the resulting signal will exhibit additional extrema which

may increase the false positives identified by the approach. In this work, the fun-

damental harmonic signal is created using a sixth order low pass Butterworth filter.

A sixth order filter provide ensure good rejection of the unnecessary high frequency

signal information. The only remaining parameter is the cut-off frequency fc of this

filter. Given an estimate of the mean fundamental frequency of the signal f0, a cut-

off frequency of 1.1f0 gives a good compromise between the false positive, miss and

identification rates (as defined below in Section 7.2), see Figure 7.1.

Landmarks are then extracted from this oscillating signal. If it is assumed that

each glottal pulse is represented by a single sinusoidal cycle, then many landmarks

are appropriate: like the SEDREAMS algorithm, the each local minima of the filtered

speech signal are then located, and are denoted ymin. An impulse signal i[n], the same

length of the speech signal, is constructed such that:

i[n] =


1 n ∈ ymin

0 n /∈ ymin

(7.1)
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Figure 7.1: The above figure illustrates the effect of the filter cut-off frequency fc utilised

by FRESS algorithm to generate the fundamental sinusoid signal upon the various GCI

estimation errors.

These peaks of this signal give an indication of the relative positions of the glottal

epochs, including some spurious peaks due to improper filtering and others due to

unvoiced regions of the analysed signal. In order to align this signal with the likely

regions of glottal excitation, it is cross-correlated with a normalised energy signal.

It is this realignment step which makes the FRESS method more robust to phase

distortions as the peaks of the function i[n] are explicitly re-positioned such that they

are situated in regions of likely glottal closure.

The normalised energy signal FN [n] is determined such that

FN [n] =
F [n]

F̆ [n]
(7.2)

where F [n] and F̆ [n] are defined as in Section 4.2. This function is normalised between

0 and 1 and is maximal near the peaks of the energy contour, near the instants of

vocal tract excitation.
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The FN [n] and i[n] signals are correlated according to the equation:

R[τ ] =
∞∑

n=−∞

FN [n]i[n− τ ] (7.3)

where the signals FN [n] and i[n] are defined to be zero outside their lengths. The lag

corresponding to the maximum of the correlation function R is the amount of delay

necessary that the signal i maximally aligns with the signal FN [n].

Once the signal i[n] has been realigned, each peak of the signal is used as an anchor

point about which to search for the glottal epoch in the LPC residual signal, much like

the SEDREAMS algorithm. However, due to the noisy character of the LPC residual

signal, the largest value within this area does not necessarily correspond to the actual

glottal epoch. Thus, the residual signal is smoothed using a low pass zero phase FIR

filter, the cut-off frequency of which has been set to 4kHz. Once smoothed, the 5

most prominent candidates are selected from the signal. Five candidates are chosen

because experimentally the number was found to offer a compromise between the ac-

curacy of the results and computational load of the subsequent dynamic programming

algorithm.

7.1.2 Dynamic Programming

Once the set of candidate glottal epochs is given, the sequence of most likely glottal

epochs is determined using the N-best dynamic programming approach, previously

utilised for the same purpose by the DYPSA and YAGA algorithms. The algorithm

attempts to minimise a set of costs which are attributed to the candidates themselves

and the transitions between candidates. For the FRESS algorithm, the cost attributed

to the rth candidate at sample number cr is given by:
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• Waveform Similarity Cost, Cρ.

• Pitch Deviation Cost, CP .

• Normalised Residual Amplitude Cost, Cr.

The first two costs are calculated as with the DYPSA algorithm, described in

Section 4.2. The third cost, the Normalised Residual Amplitude cost, is attributed

each glottal closing instant candidate by the following equation:

Cr = −0.5r̂[cr] (7.4)

where r̂ is the amplitude-normalised LPC residual signal. This cost has the effect

of penalising glottal epoch candidates which represent low amplitude samples of the

LPC residual signal, as from the theory of deconvolutive signal, they should be high

amplitude events.

The costs are weighted before they are input into the dynamic programming algo-

rithm. The weighting factors were optimised by brute force upon 15 sentences from

the CMU-ARCTIC database not used for testing, and set to: [0.4, 0.5, 1] for Cρ, CP ,

and Cr, respectively.

7.2 Validation/Testing

An experiment was undertaken comparing the FRESS algorithm against six other

state of the art glottal epoch estimation algorithms: the Group Delay method2 (Smits

2The implementation utilised is available at (Fernandez, Retrieved November 14th, 2010)
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and Yegnanarayana, 1995), the find pmarks algorithm3 (Goncharoff and Gries, 1998),

the DYPSA method4 (Naylor et al., 2007), the ZFR method5 (Murty and Yegna-

narayana, 2008), the SEDREAMS method6 (Drugman and Dutoit, 2009), and the

YAGA method7 (Thomas et al., 2011).

Two additional methods are also included, a new SEDREAMS method (Drugman,

Retrieved October 8th, 2011) and a modified YAGA method, which are more robust

to phase-distorted speech, giving a total of eight algorithms against which the FRESS

algorithm is compared. The modified YAGA algorithm is as follows. As mentioned in

Section 4.2, the algorithm weights each glottal closing instant candidate according to

the closed-phase energy between successive cycles. As phase distortion can eliminate

the closed phase of the cycle, this additional cost can mislead the subsequent dynamic

programming algorithm by penalising actual glottal closing instants inappropriately.

A modified YAGA algorithm is then proposed which does not impose any assumption

upon the shape of the glottal source signal by setting the weighting factor upon this

cost to zero. In the comparative experiment, this algorithm is denoted YAGA∗.

Similarly, the new SEDREAMS algorithm is denoted SEDREAMS∗.

Like the experiments in the previous chapter, the algorithms were tested upon

synthetically-generated speech segments and real speech utterances spoken by three

voices (two male, bdl and jmk, and one female, slt) taken from the CMU-ARCTIC

3The algorithm was utilised was an implementation available from (Goncharoff, Retrieved July

6th, 2011), though slight modification was necessary to operate upon signal with sampling rates

above 8kHz.
4Algorithm available at (Brookes, Retrieved January 22nd, 2009)
5Own implementation.
6Own implementation.
7Original author’s implementation, not publicly available.
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database (Kominek and Black, 2003). Also as with the experiment of Chapter 6, in

order to simulate nonlinear recording conditions, the transfer function estimated from

a nonlinear recording system was applied to the test signals.

For the synthetic speech experiment, 1000 utterances were generated, using randomly-

chosen vocal-tract filters (from those listed in Appendix B) and glottal source param-

eters (Rd, f0 and signal-to-noise ratio). All parameters were held constant for the

duration of each synthetic utterance, which was set to be 100 pulses in length. Be-

cause the glottal closing instants of the synthetic speech are known, imprecisions and

inaccuracies of the results are determined only by the approaches themselves and any

subsequent phase-distorting filter operation.

For the real speech signals, these instants are determined from the synchronously

recorded EGG signal. For the real speech signals, all pairs of EGG and speech signals

(of which there were 3300) were down-sampled to 16kHz and time-aligned as in the

previous chapter. In both phase conditions, the simultaneously recorded EGG signals

served as the benchmark against which to compare the estimations of the glottal

epochs. The reference glottal epochs nc were identified in the EGG signal using the

SIGMA algorithm (Thomas and Naylor, 2009).

The description of the performance of each algorithm follows the convention es-

tablished in (Naylor et al., 2007), which uses a three way classification scheme for

each reference larynx cycle. The cth larynx cycle spans a range of samples to either

side of the cth glottal epoch nc and is given by:

1

2
(nc + nc−1) < n ≤ 1

2
(nc+1 + nc) (7.5)

where nc−1 and nc+1 are left and right neighbouring glottal epochs respectively. In
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the case where one of these adjacent points is unavailable, e.g. at the beginning or

end of a voiced segment, the length of the search interval is taken to be the same on

each side of the epoch in question.

Each reference larynx cycle is classified according to one of three categories, de-

pending on the detection of a glottal closing instant in its larynx cycle: identified,

missed and false alarm. The total performance of each algorithm can then be cate-

gorised by three percentages:

Identification Rate (IR) The percentage of larynx cycles for which exactly one

GCI is detected;

Miss Rate (MR) The percentage of larynx cycles for which no GCI is detected;

and,

False Alarm Rate (FAR) The percentage of larynx cycles for which more than

one GCI is detected.

Additionally to these classifications, an indication of the identification accuracy (ζ) of

the identified glottal epochs is given by the distribution of the time intervals between

estimated and actual glottal epochs, characterised by mean µζ and standard deviation

σζ . Figure 7.2 illustrates this scheme.
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Figure 7.2: The figure above shows the classification of estimated glottal closing instants

following testing, taken from (Naylor et al., 2007).

7.3 Results and Discussion

7.3.1 Synthetic Speech

The results of the synthetic speech experiments under phase linear and nonlinear

phase recording conditions are given in Tables 7.1 and 7.2, respectively.

As can be seen in Table 7.1, all of the methods except for the find pmarks method,

achieve extremely high identification rates of greater than 98.5% in the linear phase

synthetic speech case. Indeed, the SEDREAMS∗ technique successively identifies all

of the glottal closing instants. Such high rates are unsurprising as the model upon

which these GCI estimation methods are based are followed exactly in these cases.

For the find pmarks approach, this experiments show that the use of the peaks of

the energy contour of the speech signal alone are inappropriate for accurate glottal
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Table 7.1: The table below gives the performance of GCI estimation methods upon syn-

thetic speech under linear-phase recording conditions.

Method IR(%) MR(%) FAR(%) σζ(ms) µζ(ms)

Group Delay 98.65 0.00 1.35 0.68 −0.33

find pmarks 83.13 0.01 16.86 0.11 0.09

DYPSA 99.02 0.05 0.93 0.71 −0.02

ZFR 99.70 0.00 0.30 0.44 −0.35

SEDREAMS 99.78 0.12 0.11 0.73 0.46

SEDREAMS∗ 100.00 0.00 0.00 0.60 −0.07

YAGA 99.82 0.00 0.18 0.11 0.10

YAGA∗ 99.56 0.00 0.43 0.36 0.09

FRESS 99.81 0.16 0.03 0.57 0.10

closing instant estimation for a wide range of source-filter based synthetic speech.

The table of results for the nonlinear synthetic speech experiment, Table 7.2,

similarly high identification rates are seen. However, the precision and accuracy of the

identified glottal closing instants of many of the approaches suffer. The ZFR, original

SEDREAMS and YAGA algorithms in particular see large increases in the standard

deviations of the identification accuracy ζ. This is expected as these methods were

reviewed in Chapter 4 as being particularly sensitive to the shape of the speech signal.

Curiously, the find pmarks approach actually improves in this scenario, probably due

to the more precise alignment in the nonlinear phase case of the glottal instant and

local energy maximum of the speech signal. Conversely, the FRESS algorithm sees

no large deviation from its performance in the nonlinear phase case from the linear

phase scenario.
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Table 7.2: The table below gives the performance of GCI estimation methods upon syn-

thetic speech under nonlinear-phase recording conditions.

Method IR(%) MR(%) FAR(%) σζ(ms) µζ(ms)

Group Delay 98.81 0.00 1.19 0.64 −0.22

find pmarks 92.60 0.01 7.39 0.21 0.09

DYPSA 98.28 0.04 1.68 0.50 0.02

ZFR 98.56 0.37 1.07 3.52 −0.81

SEDREAMS 99.94 0.03 0.03 1.38 −1.31

SEDREAMS∗ 99.99 0.01 0.00 0.92 −0.14

YAGA 98.78 0.34 0.88 1.72 0.05

YAGA∗ 99.30 0.00 0.69 0.50 0.16

FRESS 99.91 0.07 0.02 0.39 0.10

7.3.2 Real Speech

The results of the classifications of the glottal epochs for each method are given in

Tables 7.3 and 7.4, for the linear phase and nonlinear phase conditions, respectively.

Additionally, the distributions of the identification accuracy ζ are given for each

algorithm in Figures 7.3 to 7.11.

In the case of speech recorded using nonlinear phase equipment, as anticipated the

phase disturbance imparts significant performance degradation for the ZFR, original

SEDREAMS and YAGA algorithms. This is clearly noticed viewing the differences in

ζ distributions, Figures 7.6, 7.7 and 7.9, respectively. In particular with the speaker

jmk, the SEDREAMS algorithm suffers a reduction of almost 20% in the identifica-

tion rate. This results from the demarcated LPC residual search regions capturing

impulsive events other than the peak corresponding to glottal closure. This incorrect
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Table 7.3: The table below gives the performance of GCI estimation methods upon real

speech under linear-phase recording conditions.

Speaker Method IR(%) MR(%) FAR(%) σζ(ms) µζ(ms)

bdl

Group Delay 90.97 5.41 3.62 0.66 0.28

find pmarks 92.72 5.14 2.14 1.14 −0.14

DYPSA 90.71 6.21 3.08 0.63 0.02

ZFR 89.81 3.50 6.70 0.42 −0.66

SEDREAMS 93.81 3.73 2.46 0.45 0.12

SEDREAMS∗ 93.69 3.71 2.60 0.47 0.06

YAGA 93.47 3.21 3.31 0.41 0.08

YAGA∗ 93.12 3.36 3.52 0.45 0.10

FRESS 94.70 3.47 1.83 0.42 0.13

jmk

Group Delay 81.89 6.76 11.35 1.06 0.28

find pmarks 93.06 5.62 1.32 1.53 0.27

DYPSA 92.54 6.01 1.46 0.69 0.15

ZFR 94.56 4.90 0.53 0.70 −1.31

SEDREAMS 94.79 4.97 0.24 0.54 0.12

SEDREAMS∗ 94.80 4.96 0.24 0.62 0.04

YAGA 94.25 4.85 0.91 0.53 0.14

YAGA∗ 94.38 4.91 0.71 0.54 0.19

FRESS 94.62 5.04 0.33 0.47 0.20

slt

Group Delay 95.96 2.19 1.84 0.52 0.10

find pmarks 98.02 0.50 1.48 0.52 0.06

DYPSA 97.06 1.75 1.19 0.46 0.06

ZFR 99.18 0.38 0.44 0.24 −0.57

SEDREAMS 99.11 0.28 0.61 0.32 0.13

SEDREAMS∗ 99.09 0.30 0.61 0.33 0.12

YAGA 98.76 0.37 0.86 0.28 0.07

YAGA∗ 98.63 0.38 0.99 0.29 0.08

FRESS 99.00 0.41 0.59 0.25 0.07

decision has the consequence that adjacent glottal epochs are inconsistently misiden-

tified, thus increasing the missed and false alarm rates. In the scenario where the

search region is capable of uniquely identifying each laryngeal cycle, the identifica-

177



Table 7.4: The table below gives the performance of GCI estimation methods upon real

speech under nonlinear-phase recording conditions.

Speaker Method IR(%) MR(%) FAR(%) σζ(ms) µζ(ms)

bdl

Group Delay 91.04 4.97 3.98 0.63 0.50

find pmarks 92.92 5.09 1.99 1.09 −0.09

DYPSA 90.59 6.15 3.25 0.63 0.09

ZFR 82.44 8.28 9.28 3.37 −0.90

SEDREAMS 91.09 5.55 3.37 1.31 −2.05

SEDREAMS∗ 94.18 3.53 2.28 0.48 0.04

YAGA 84.79 3.68 11.53 1.15 −0.32

YAGA∗ 92.84 3.19 3.97 0.45 0.03

FRESS 94.94 3.31 1.75 0.40 0.06

jmk

Group Delay 84.64 6.42 8.94 1.01 0.46

find pmarks 93.03 5.68 1.30 1.54 0.18

DYPSA 91.92 6.21 1.86 0.81 0.24

ZFR 89.49 7.02 3.49 2.85 2.13

SEDREAMS 75.91 14.03 10.06 2.73 −1.24

SEDREAMS∗ 94.02 5.31 0.67 1.16 −0.28

YAGA 87.45 7.26 5.29 2.74 0.61

YAGA∗ 94.21 4.93 0.86 0.62 0.07

FRESS 94.59 5.05 0.36 0.45 0.09

slt

Group Delay 96.41 1.88 1.71 0.50 0.35

find pmarks 98.08 0.50 1.42 0.49 0.01

DYPSA 97.09 1.70 1.21 0.47 0.12

ZFR 96.95 1.71 1.33 0.77 −2.08

SEDREAMS 98.84 0.45 0.71 0.71 −0.48

SEDREAMS∗ 99.12 0.28 0.60 0.31 0.07

YAGA 97.16 0.77 2.07 0.98 −0.63

YAGA∗ 98.57 0.34 1.09 0.29 −0.01

FRESS 99.01 0.36 0.63 0.22 0.02

tion, missed and false alarm rates will be similar to the linear phase case, but the

identification accuracy ζ will suffer because the wrong impulsive events are selected,

as can be seen with female speaker slt.
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Figure 7.3: The figures above show for each speaker the ζ distributions for the Group

Delay algorithm.

Similar multi-modal distributions are observed for the other phase-sensitive al-

gorithms. Because the ZFR algorithm uses a fixed landmark of the fundamental

harmonic sinusoid signal to identify the glottal epochs, its accuracy is directly influ-

enced by phase disturbances that may have been applied to the speech signal. For

that reason, as the speaker changes pitch, a consistent performance of the algorithm

cannot be expected. The original YAGA algorithm also experiences difficulties with

phase disturbances. As explained above, the glottal epoch candidates are weighted

by the algorithm according to the presence of an adjacent closed phase. This cost can

serve to penalise otherwise accurate epoch candidates under nonlinear phase condi-

tions.

On the other hand, some of the algorithms are relatively unaffected by this dis-
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Figure 7.4: The figures above show for each speaker the ζ distributions for the

find pmarks algorithm.

tortion. As can been from the shape of the ζ distributions in Figures 7.3, 7.4, 7.5,

7.8, 7.10, and 7.11, the Group Delay, find pmarks, DYPSA, SEDREAMS∗, YAGA∗

and FRESS algorithms are reasonably static, though the bias of the distribution may

shift. This offset is due to the effect of the phase distortion upon the signal from

which the algorithms determines the glottal closing instant (Section 5.2 discusses

this in more detail). The modified SEDREAMS∗ algorithm is somewhat capable of

correcting the alignment introduced by phase distortion by dynamically determining

the search regions, but not with equal success across all speakers (e.g. speaker jmk).

Similarly, excluding the closed-phase energy weighting of the YAGA algorithm serves

to remove assumptions regarding the signal shape.

The Group Delay algorithm consistently under-performs in comparison with the all
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Figure 7.5: The figures above show for each speaker the ζ distributions for the DYPSA

algorithm.

other approaches, often exhibiting the highest miss and false alarm rates in addition

to the lowest hit rate. As was reviewed in Section 4.2, the group delay function

operates best upon ideal impulse train type signals, and thus is not very robust

to the noisy conditions common with LPC residual signals. Generally the energy-

weighted group delay function utilised by the DYPSA algorithm, combined with

dynamic programming and phase slope projection technique, improves the accuracy

of the basic group delay approach, in addition to lowering miss and false alarm rates,

particulary for the speaker jmk.

The find pmarks algorithm identifies many glottal cycles successfully, but is im-

precise regarding the location of the glottal closing instant, with the exception of

the female voice. Its operation does not degrade much with phase distortion, which
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Figure 7.6: The figures above show for each speaker the ζ distributions for the ZFR

algorithm.

is essentially the same under both conditions. This is unsurprising as the relative

positions of the glottal epochs is first determined from the energy contour of the

speech signal. However, its accuracy is improved under nonlinear phase conditions,

probably because the large amplitude samples of the analysed speech signals which

the algorithm attributed to glottal closure more closely aligns with the epochs in that

scenario.

The overall results of the phase linear experiment corroborate those reported in

(Drugman, 2011; Cabral et al., 2011), in that the SEDREAMS and YAGA algorithms

perform better in comparison with other existing approaches, with both methods

exhibiting high identification rates. To this group the FRESS method can be added

as all three techniques usually within 0.5% of each other in the phase linear case.
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Figure 7.7: The figures above show for each speaker the ζ distributions for the SE-

DREAMS algorithm.

In fact, referring to Figures 7.8, 7.10 and 7.11, the distributions are broadly very

similar. Of these approaches, no one method is clearly the most appropriate in terms

of accuracy as this result is seemingly speaker-dependent. However, for all voices and

phase conditions, the SEDREAMS∗ method exhibits a mean accuracy within 0.28ms,

the YAGA∗ method a mean accuracy within 0.19ms, and the FRESS method a mean

accuracy of less than or equal to 0.2ms.

The FRESS algorithm offers the highest precision compared with other approaches

under both phase conditions, achieving the narrowest ζ distributions when compared

with all other glottal epoch estimation algorithms (excepting the phase-linear bdl

results by the YAGA algorithm). This is probably a result of choosing a number

of glottal epochs from the LPC residual signal; thus, the most consistent candidates
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Figure 7.8: The figures above show for each speaker the ζ distributions for the

SEDREAMS∗ algorithm.

can be selected according to the heuristics imposed by the dynamic programming

algorithm.

Finally, at least some errors of the experiment can be attributed to the SIGMA

algorithm utilised to establish the reference glottal epochs from the EGG signal.

The performance of the algorithm was found to be dependent upon the speaker.

Additionally, as with the previous chapter, nonlinear phase recording conditions were

simulated using measurements taken from a professional recording studio set-up. In

the case of a different systems, different results can be expected, though the FRESS

algorithm has been designed to be robust to these conditions.
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Figure 7.9: The figures above show for each speaker the ζ distributions for the YAGA

algorithm.

7.4 Conclusions

This chapter introduces the second major contribution of this work outlined in in-

troductory chapter, a glottal epoch estimation approach specifically designed to be

robust to phase distortions, the FRESS method. The approach draws from existing

algorithms in that a fundamental frequency sinusoid obtained by low pass filtering

the speech signal is used to locate the regions of glottal closure. Landmarks from this

signal are used as an indication of the relative locations of the glottal epochs, and

a correlation operation is used to align the points with the peaks of the normalised

energy contour signal. A dynamic programming algorithm is then used to select

the most likely sequence of glottal epochs, based on continuities of pitch, waveform

similarity and the amplitude of the LPC residual signal.

185

0.2 1 0.1 
o 

f 0.2 1 
-g 0.1 
0:: 0 

0.2 1 0.1 . 
o 
-3 

YAGA 
bd( Linear Phase bdl, Non linear Phase 

111.. .. i I~~ ::~~q 1 III. 1 ~~ :: ~01~2 1 
jmk, Linear Phase .imk, Nonlinear Phase 

: tho I~~ :' ~.~; 1 r ' .. il. : I ~~ :: ~.~: .1 
stl, Linear Phase stl, Nonlinear Phase 

•.•• ..: •••••• 11:1 < 1~~:·~:~~1 r ••• •. : ••••••• ••••• • 11'1 ••• •••• : 1 ~~:· ~0~:3 ~ 
. . 1 __ __ ... . . j t ""_""'" .1 __ _ , . . ~ 

-2 -1 o 2 3 -3 -2 -1 
~ (ms) 

o 2 3 



Figure 7.10: The figures above show for each speaker the ζ distributions for the modified

YAGA algorithm.

A comparative experiment was then undertaken where the FRESS method was

compared with eight other state of the art algorithms. Simulated phase distortion

was shown to adversely affect some of the algorithms, while others were relatively

robust. While it has comparable identification rate and accuracy to other methods,

the FRESS algorithm is the most precise, probably due to the fact that a number of

candidates are extracted from the LPC residual signal in the region of glottal closure.

Following the results of the comparative experiment, making a qualified judgement

regarding the presented algorithms is dependent upon the desirable attributes the al-

gorithm must have. For example, it is feasible that for certain speech applications that

the identification rate be very high and the accuracy of the method is relevant. Under

phase linear conditions, the YAGA and SEDREAMS∗ algorithms may offer increased
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Figure 7.11: The figures above show for each speaker the ζ distributions for the FRESS

algorithm.

accuracy yet with slightly inferior identification rates than the FRESS method. Due

to the lack of a dynamic programming stage, the SEDREAMS algorithm is the most

appropriate for real-time implementations. Finally, it is concluded that the FRESS

algorithm represents the best choice of glottal epoch estimation algorithms in all

phase conditions if precise estimation is desired.
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Chapter 8

Voiced Speech Analysis/Synthesis

In this chapter, synthetic speech generated by a power-spectrum-based parameterisa-

tion technique closely related to the PowRd method is compared against an existing

time-domain-based, voiced-speech parameterisation approach in a listening test. The

experiment and system constitute Contribution 3 of this study. The experiment asks

listeners to compare the synthetic speech signal of both approaches and opine their

general preference. Linear phase equipment was utilised for the recordings of the

analysis speech signals, which were also tested following the application of phase dis-

tortion. It was found that the power spectrum approach was generally preferred, par-

ticularly in the phase-distorted case for which the method was specifically designed.

Essentially, this chapter performs two functions: it presents an extrinsic evaluation of

the power spectrum approach to voice-source parameterisation, while simultaneously

demonstrating an application of the tools described in this study.

In order to distinguish it from the PowRd technique, this alternative method is

referred to as the PowARXLF method, Power-Spectrum-based ARX-LF parameter-
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isation of voiced speech. This alternative technique is closely related to the PowRd

technique in that it also parameterises the voiced speech signal by operating upon

the power spectrum and using the Relative Itakura-Saito error function, yet differs

in that the voice-source signal is assumed to be approximated by the LF model, and

not the simpler transformed LF model. The subtle differences in its formulation of

the algorithm are described below.

Before describing the experiment, an overlap-add technique similar to existing

synthesis methods is detailed, which both the time and power spectrum methods

utilise to generate the speech segments. Additionally, as the parameters were es-

timated using disjoint frames, parameter smoothing stages are described which are

useful to impose certain speech heuristics upon the synthetic signal.

8.1 Analysis/Synthesis

This section elaborates the differences between PowARXLF and PowRd techniques,

in addition to describing the parameter smoothing stages, and synthesis procedures

necessary for the experiment. The time-domain ARX-LF parameterisation method

used for experiment, based upon the method proposed in (Lu, 2002) and extended

by (del Pozo, 2008) and (Pérez and Bonafonte, 2009), is also described.

8.1.1 The PowARXLF Method

The experiment described in this chapter utilises the PowARXLF method, rather

than the PowRd method described in Chapter 6. This alternative voice-source pa-

rameterisation method differs only in one respect: the assumptions placed upon the
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voice-source signal. While the PowRd method assumes that the voice-source signal

can be parameterised using the transformed LF model of a single parameter, the

PowARXLF method assumes that the voice source is parameterised by the original

LF model, which as reviewed in Section 2.3.3.1. This lends the PowARXLF method

greater flexibility regarding the characteristics of the source signal, yet Algorithm 1

is changed only in that the codebook of initial parameters is larger.

Codebook Assembly The PowARXLF codebook is constructed by sampling the

LF model shape parameters {Oq, αm, Qa} over their entire ranges. The shape pa-

rameters are the previously defined open quotient Oq =
Te
T0
, an asymmetry coefficient

αm = Tp
Te

which indicates the skewness of the glottal pulse, in addition to the return

phase coefficient Qa =
Ta

(1−Oq)T0
. The extrema of each parameters are:

Oq = {0.3, 0.95} (8.1)

αm = {0.65, 0.95} (8.2)

Qa = {0, 0.95} (8.3)

Parameter samples are taken at each point separated by a step-size of 0.01. This leads

to a codebook with almost 200,000 entries. In order to reduce its size, any parameter

set within it which generates an LF model pulse which is deemed too similar to any

other pulse within the codebook is removed.

The normalised correlation coefficient was proposed for determining similarity of

codebook entries in (Vincent et al., 2005) and is employed again here. The normalised

correlation coefficient ρ calculates the similarity between two signals x and y of length
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N using the following equation:

ρ =

∑N−1
n=0 x[n]y[n]∑N−1

n=0 x[n]
2
∑N−1

n=0 y[n]
2

(8.4)

When signals x and y are identical in shape and position, ρ takes the value 1 and is

less than 1 otherwise.

For the large codebook, the similarity coefficients are calculated between all pulses.

If the normalised correlation coefficient between any two pulses is larger than a thresh-

old value ρ̂, it is discarded. The value of ρ̂ is chosen to give a compromise between the

two opposing considerations mentioned previously in Section 6.2.3: the computation

efficiency and adequate subset coverage. In this work, like (Vincent et al., 2005),

ρ̂ = 0.99, leading to a final codebook size of 630 entries.

Full Band Analysis Both the PowRd and PowARXLF methods bandlimit the

analysis frame in order to avoid high frequency noise components of the speech sig-

nal. Thus, in order to obtain a full band representation of the vocal tract, following

the bandlimited analysis, the PowARXLF method estimates the full-band all-pole en-

velope of the vocal tract spectrum using voice-source parameters obtained during the

initial bandlimited analysis. The estimated filter order is set to p = ⌊ fs
1000

+ 0.5⌋+ 2.

Note that fixing the filter order in this case does not affect the voice-source parame-

terisation procedure as its contributions are removed from the signal before analysis.

8.1.2 Parameter Smoothing

The parameters determined by the PowARXLF method may not necessarily repre-

sent the best parameters if a requirement is also that the parameters of the speech
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segment change smoothly. For this reason, two smoothing operations are performed

upon the results of the analysis: firstly, a dynamic programming algorithm chooses

the parameters which represent the smoothest changes based upon certain criteria,

followed by an simple averaging operation.

Dynamic Programming Following the PowARXLF initial brute force initialisa-

tion of each signal frame, the usual procedure for each frame is to choose the LF model

parameter configuration which gives the lowest Itakura-Saito error and refine using

an optimisation algorithm. However, in this work, as smoothly changing parameters

are also desirable, an additional transition cost is added to this initial error such that

quickly changing parameters are penalised.

This is implemented using a dynamic programming method. Firstly, for each

voiced speech segment, the brute force initialisation is performed. Each analysis

frame then has associated with it, for each LF model parameter configuration within

the codebook:

• an all-pole filter representing the vocal tract, and

• an Itakura-Saito error measure, quantifying the goodness of fit.

A cost matrix is then created, populated by estimated Itakura-Saito errors. A

dynamic programming method is then implemented upon this matrix, which imposes

an additional discontinuity penalty between adjacent frames dependent upon the

distance between parameter configurations. These penalties are:

• The distance between adjacent LF model pulse signals λρ, calculated as:

λρ = 1− ρ (8.5)
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As explained above, if the pulses are exactly identical, ρ = 1 and thus the cost

is λρ will be 0.

• The distance between the estimated vocal-tract filters λk calculated as:

λk =

√√√√ N∑
n=1

(kin − kin+1) (8.6)

where kin and ki+1
n are nth reflection coefficients of the adjacent estimated vocal-

tract filters (Wakita, 1973). Reflection coefficients relate to the dimensions of

the simplified acoustic tube model of the vocal tract, which should change shape

slowly between analysis points. They have been previously used for purpose of

parameter smoothing in (Lu, 2002).

The dynamic programming algorithm then gives the most likely sequence of initial

voice-source and vocal-tract-filter parameters. The vocal-tract-filter parameters are

then refined using the simplex algorithm (Nelder and Mead, 1965).

Smoothing Filters Once the refined voice-source parameters are obtained, they

are further smoothed before re-synthesis by using a filtering operation, much like the

ones performed in (Lu, 2002; del Pozo, 2008). A three-point moving average filter is

used for this purpose, and are applied to the line spectral frequency representations

of the vocal tract and the R parameters of the LF model pulses (while retaining the

end-points). The line spectral frequencies (Itakura, 1975) of the vocal tract all-pole

filter are used because of their desirable interpolation properties compared with other

filter representations (Paliwal and Kleijn, 1995).
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8.1.3 Time-Domain ARX-LF Parameterisation

The PowARXLF method is compared with a two stage time-domain ARX-LF param-

eterisation method, based upon the method proposed in (Lu, 2002). This method has

found application in synthesis of singing voice with quality control (Lu, 2002), analy-

sis/synthesis of vowel segments (Pérez and Bonafonte, 2009) and speaker conversion

(del Pozo, 2008; Pérez and Bonafonte, 2011).

The first stage of the algorithm utilised the convex optimisation approach de-

scribed in Section 3.2.2 to jointly estimate the all-pole vocal-tract filter and parame-

ters of the KLGLOTT88 model by minimising the squared error of the residual signal

in the time domain using of KLGLOTT88 parameters. Adaptive pre-emphasis was

used to increase robustness (del Pozo, 2008; Pérez and Bonafonte, 2009). A dynamic

programming algorithm, using the reflection coefficients of the vocal-tract filter and

the parameters of the KLGLOTT88 model as described in (Lu, 2002), is applied to

find the lowest overall error. Like the method above, the vocal-tract filter coefficients

are then smoothed.

Once the vocal tract is estimated, it is used to inverse filter the analysis speech

signal and estimate the voice source. Each source pulse is then re-parameterised using

the LF model in an approach similar to (Pérez and Bonafonte, 2009): the initial

LF model parameters used to begin the refinement are mapped from the previously

optimised KLGLOTT88 parameters (which is more robust than direct estimation)

and a constrained optimisation algorithm is used to fine the optimal fit. Finally,

similar to the method described above, the R parameters of the final sequence of LF

parameters are also smoothed.

194



8.1.4 Overlap-Add Synthesis

Like analysis, synthesis of speech from ARX-LF parameters is performed in a pitch

synchronous scheme, similar to other existing methods. Each speech pulse is gen-

erated and overlap-added to produce the speech segment. The process is outlined

here.

The instants of synthesis correspond to the analysis instants, though the pitch and

duration may be easily changed using a simple mapping scheme (Stylianou, 1996).

For each synthesis point, the LF model pulse is generated and placed in frames 2T0+1

in length such that the glottal closure instant coincides with the center of the frame.

The pulse is convolved with the associated vocal-tract filter and windowed using a

Hann function. The frame is then overlap-added to the output signal, centred above

the synthesis instant. A diagram showing the scheme is given in Figure 8.1.

Figure 8.1: The above figure illustrates overlap-add synthesis from ARX-LF parameters:

LF model pulses are convolved with the estimated vocal-tract filter, windowed using a

Hann function, and then added using overlapping windows into the synthetic voiced speech

segment.
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8.2 Preference Test

Three experiments were performed to test the PowARXLF method against the time-

domain-based approach described above. The purpose of these tests is to investigate

whether a power-spectrum-based approach of voiced-speech analysis is preferred over

a time-domain-based method when the goal is to re-synthesise voiced speech. In

undertaking these experiments, this work aims to discover the utility of a power-

spectrum-based approach of voiced-speech analysis beyond the quantitative parame-

terisation advantages as shown in Chapter 6, but additionally on a perceptual level.

In order to achieve these goals, a perceptual experiment was designed where listeners

could compare speech synthesised using parameters obtained by both time-domain

and frequency-domain approaches and rate them upon a Likert-type scale.

The first experiment compared the performance of both parameterisation algo-

rithms using signals recorded using phase linear equipment. The second experiment

focused on the phase robustness of each technique and accordingly the test signals

were convolved with the impulse response of a non-linear phase recording device,

taken from the description given in (Berouti et al., 1977). These two experiments

used the same test data, the first five sentences from the CMU-ARCTIC database for

two speakers, one male (bdl) and one female (slt). A third experiment was performed

on speech obtained using an inexpensive headset microphone and a laptop computer

which does not exhibit linear phase characteristics. Five sentences from a male and

female speaker were recorded.

Both voice-source parameterisation methods were used to analyse the voiced

speech segments of the signals. The obtained parameters were then used to syn-
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thesise speech segments. As they are not parameterised by either method, unvoiced

speech segments are simply added into the output signal.

The glottal closing instant information required for the time-domain algorithm

was obtained from the DYPSA algorithm1 (Naylor et al., 2007). As this information

is particularly crucial for the time-domain algorithm, the glottal closing instants are

refined following a first pass of the algorithm by choosing the glottal derivative flow

signal minimum close the initial estimation. Pitch was estimated by the SWIPE’

algorithm (Camacho, 2007).

The signals from the time-domain and frequency-domain approaches were then

compared with each other using a listening test. The participants, of which there

were 50, were asked to listen to both versions of the sentence and to give a score

on a 7-point Likert-type scale, according to their general preference. The preference

scores ranged from −3 to +3 corresponding to a strong preference for either the time-

domain or frequency-domain method, while a 0 score denoted no preference for either

technique. A screen shot of the web interface used for testing is given in Figure 8.2.

The parameterisation methods are fully automatic and no further processing was

performed on the signals other than described. Due to some errors in the deconvo-

lution procedure, disagreeable discontinuity-type artifacts were generated from the

time-domain parameters of 4 sentences of the male speaker bdl, two from both the

linear phase and nonlinear phase experiments. These utterances were removed from

the data set. The mean preferences of the remaining signals and their 95% confidence

intervals are presented within Figure 8.3. Table 8.1 gives the means µ and standard

1The FRESS algorithm was not used as it was not mature at the time when this experiment was

undertaken.
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Figure 8.2: The above figure gives a screen shot of the web interface used for the per-

ceptual test.

deviations σ of the preference scores for each experiment, and their corresponding

t-scores and p-values. The full listening test results are given in Appendix E.

8.3 Discussion

The data from the listening tests clearly show a tendency of the participants to signif-

icantly (p < 0.05) prefer the speech synthesised with parameters of the PowARXLF

approach over the time-domain ARX-LF parameterisation method for almost all
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Table 8.1: This table contains the means and standard deviations of the preference scores

of the perceptual experiment and their corresponding t-statistics and p-values.

Gender Experiment µ σ t(49) p

Male

Linear Phase 0.06 1.84 0.23 0.41

Nonlinear Phase 0.77 1.52 3.57 4× 10−4

Laptop 0.33 1.42 1.66 0.05

Female

Linear Phase 1.24 1.59 5.52 1× 10−6

Nonlinear Phase 1.36 1.39 6.89 < 1× 10−6

Laptop 1.23 1.23 7.04 < 1× 10−6

recording conditions scenarios and both sexes.

Under phase linear conditions, one would expect that there would be generally

no preference for either ARX-LF parameterisation method, as neither method has an

obvious theoretical advantage. Indeed, this is what is observed for the male speaker

under linear phase conditions, where the preference for the PowARXLF approach is

slight. However, unexpectedly, the data shows that the synthetic speech of female

speakers generated using the frequency-domain approach was particularly preferred

over the time-domain method under phase linear conditions. This may be due to the

difficulty in obtaining accurate glottal closing instant for these voices, which, as dis-

cussed in Chapters 3 and 5, is critical for time-domain voice-source parameterisation.

As previously mentioned, the PowARXLF method is robust to the position of the

analysis frame.

Under nonlinear phase conditions, i.e. the scenarios where the signals were con-

volved with the impulse response from a nonlinear phase recording system and recorded

with inexpensive equipment, the PowARXLF approach was unsurprisingly superior to
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Figure 8.3: The above chart shows the average of the preference test results for the 3

experiments, separated into both male and female speakers. A positive score indicates a

preference for the frequency-domain approach to ARX-LF parameter estimation.

the time-domain-based method. PowARXLF parameterisation is robust to non-ideal

phase conditions by simply ignoring phase information. Conversely, time-domain ap-

proaches are not very robust to the time placement of the analysis frame. While

efforts were made to mitigate this error in this experiment, this was almost certainly

a source of some audible artifacts.

It is interesting to note the discrepancy in the relative preference increase in the

first two tested scenarios between the male and female speakers. The preference

for the power spectrum method for the male speaker increases substantially, while
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the increased preference for the female speakers is less. This can be understood

by considering the phase response utilised by this experiment to corrupt the phase

spectrum of the analysis utterances.

The response described in (Berouti et al., 1977) is most distorted at very low

frequencies (< 45Hz) and subsequently approaches linearity as frequency increases.

In this case, the system would introduce more time-domain changes to low frequency

signal components. Lower pitch male voices are therefore more likely to be affected

by this kind of distortion, meaning that in the nonlinear phase case, the synthetic

male speech would be more distorted. Therefore, it is then unsurprising that the

PowARXLF method preference increase for male voices is higher than the female

case.

8.4 Conclusions

This chapter presents Contribution 3, an extrinsic evaluation of a power spectrum

approach to voice-source parameterisation and demonstration of the potential of this

approach for speech synthesis and related applications. In order to accomplish this, a

power-spectrum-based voice-source parameterisation was extended using two smooth-

ing operations in order to obtain continuous parameters for an ARX-LF speech model.

A comparative experiment was then undertaken to compare the synthetic speech gen-

erated by the parameters estimated from real speech signals by this approach against

a reference system, a state-of-the-art time-domain-based ARX-LF parameterisation

technique. The analysis signals were both recorded using linear phase equipment,

convolved with a impulse response of a non-linear phase system, and also with signals
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recorded using generic non-linear phase audio recording equipment.

The experiment found that the power-spectrum-based approach to ARX-LF pa-

rameterisation is preferred over other techniques in all recording scenarios for all

voices, though the preference was slight for the case with male speakers under phase

linear conditions. This is an important and encouraging result, which justifies power-

spectrum-based approaches to voice-source parameterisation.
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

This study has focussed upon speech analysis, particularly voice-source estimation

and parameterisation. A literature review of these techniques finds that many of

them are not robust to the time position of the analysis frame and phase distortion

of the signal. Phase distortion is a prevalent phenomena affecting otherwise well-

recorded signals. Methods of voice-source parameterisation which are robust to phase

disturbances require assumptions of the filter order and do not attempt to avoid high

frequency noise, which can degrade the accuracy of these methods.

For these reasons, the first contribution of the study, a robust glottal source pa-

rameterisation technique, is proposed in Chapter 6. The novel PowRd technique

operates on the power spectrum of the speech signal and avoids high frequency noise

by adopting a two band, HNM-type speech model. The lower band is fit with an

all-pole filter envelope and transformed LF model glottal pulse using a new error
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criterion, the Relative Itakura-Saito error. The error is minimised using the DAP al-

gorithm. Testing the algorithm with synthetic data showed comparable performance

with other state of the art algorithms and superior robustness in the case of phase

distorted speech, for which the algorithm was specifically designed. Interpreting the

results of voice-source parameterisation algorithms on real speech is more difficult

due to the distant relationship between the estimated acoustic waveform of the voice

source and the interpretation of EGG data. However, the results indicate that the

PowRd method is at least as good as the existing voice-source parameterisation meth-

ods, with the considerable advantage of robustness to the shape and position of the

analysis frame.

The problem of glottal epoch estimation was also addressed in this work. A

review of the literature that nonlinear phase recording conditions also affect those

techniques, though to a lesser degree than voice-source estimation methods. It is

also observed that the application of dynamic programming techniques to the output

of a modified version of the SEDREAMS algorithm would give improved results for

generally recorded speech.

These observations led to the proposal of a new method of glottal epoch estimation

in Chapter 7, the second contribution of this work. Like the SEDREAMS method,

the FRESS algorithm searches for peaks of the LPC residual signal within regions

defined by the fundamental harmonic of the signal. Like the DYPSA and YAGA

methods, the FRESS technique then uses dynamic programming to determine the

most likely sequence of glottal epochs according to speech heuristics. In order to

improve the robustness of the approach to phase disturbances, the fundamental fre-

quency signal which defines the LPC residual search regions is aligned with the peaks
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of the normalised energy contour. The new technique is compared with other meth-

ods of glottal closure estimation by testing over a database of three speakers under

real and simulated phase conditions. It was found that, under phase linear recording

conditions, the FRESS method determines the glottal epochs with comparable accu-

racy and improved precision. Simulated nonlinear phase conditions are demonstrated

to adversely affect other methods of glottal closure estimation, and not the FRESS

method.

Finally, the third contribution was in the form of a speech analysis/synthesis sys-

tem, which demonstrates the potential of a power-spectrum-based voice-source pa-

rameterisation approach for speech synthesis applications. A perceptual experiment

was undertaken to compare the synthetic speech generated using the parameters

obtained by a method similar to the PowRd approach with speech utterances syn-

thesised using parameters obtained by a time-domain speech-parameterisation tech-

nique. The experiment analysed signals that were both recorded using phase linear

and phase nonlinear equipment and also those ideally recorded speech convolved with

a impulse response of a non-linear phase system. In order to synthesise the signals,

an overlap-add synthesis scheme similar to one utilised by other existing methods was

employed. The results of the listening test found that the power-spectrum approach

is preferred over the time-domain technique in both recording scenarios for all voices,

justifying the power-spectrum-based approach to voice-source parameterisation and

giving encouraging results for future research.
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9.2 Future Work

Some areas for future work are outlined in this section.

Voice-source estimation based on phase spectrum and Itakura-Saito min-

imisation The joint phase-spectrum-based voice-source parameterisation methods

(Degottex et al., 2011) discussed in Section 3.4.2 determine the optimum parameters

by minimising the phase spectrum of the analysis frame. Instead of the imposing

the assumption of an all-pole vocal tract, the methods assume that the vocal tract

can be described by minimum phase spectral envelope, which is determined by the

real cepstrum. This is a more general assumption because it permits spectral zeros,

however, it has the consequence that the magnitude of the resulting deconvolutive

residual signals R(ω) = 1, ∀ω. Therefore, magnitude-spectrum information of this

signal is useless for parameterisation purposes.

However, for vowel sounds representing an unbranched vocal tract, the all-pole

filter vocal tract assumption is suitable and can be utilised for voice-source parame-

terisation, as was demonstrated in this thesis. In this case, for signals recorded under

ideal conditions, both the magnitude and phase spectra indicate the suitability of the

speech model. This may give rise to new methods of voice-source parameterisation

which operate on the principle of phase minimisation in addition to, or in combina-

tion to, the minimum Itakura-Saito error. Agreement between the two approaches

may strengthen confidence in a particular glottal source estimate. A lack of agree-

ment could be used to indicate e.g. phase disturbances or the lack of generality in the

adopted models.
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Vocal tract ARMA model Throughout this work, the all-pole filter was adopted

as a model of the acoustic behaviour of the vocal tract. However, as discussed in

Chapter 2, the assumption of the all-pole vocal tract filter is based upon the un-

branched acoustic tube model. Certain sounds couple the nasal cavity with the main

vocal tract and produce sounds which no longer respect the acoustic tube behaviour

and may introduce zeros into the spectral envelope. Thus, the PowRd algorithm in

its present form is ill-designed to approximate nasal sounds.

However,despite the nonlinearities encountered in determining spectral zeros (Makhoul,

1975), spectral methods to determine ARMA parameters have been developed (Badeau

and David, 2008). Replacing the DAP algorithm in the PowRd method would enable

it to more closely approximate nasalised phonemes. This is particularly interesting

to experiment with the behaviour of the error criteria in this case, as it would be

necessary to determine the number of poles and zeros.

Incorporation into voice coding, modification and synthesis systems Chap-

ter 8 shows the potential of the described voice-source parameterisation algorithm for

speech synthesis purposes. Indeed, the need for accurate voice-source parameterisa-

tion is becoming more prevalent with rising interest in emotional speech synthesisers

(Cabral, 2010; Lanchantin et al., 2010), in addition to pseudo-physical voice modifi-

cation schemes (Lu, 2002; Vincent et al., 2007; Agiomyrgiannakis and Rosec, 2009;

Degottex, 2010). Because of the robustness of the PowRd method to phase distor-

tion, a wider range of speech signals are suitable for analysis. Furthermore, the fully

parametric nature of the voiced speech representation makes the method a suitable

candidate for low bit rate speech coding applications (Spanias, 1994).
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Appendix A

Vocal-Tract Filters

This appendix contains diagrams and parameters of the all-pole spectral envelopes

used for representing the vocal tract in Chapters 6 and 7. Uttered by trained pho-

neticians covering the IPA vocalic trapezoid (Figure A.1), all spectral envelopes were

estimated from real speech signals using the IAIF method and are given in Figures

A.2 and A.3; the recordings are available at (Wells et al., Retrieved November 19th,

2011). The bandwidth of each analysis signal was 8kHz.
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Figure A.1: Above is a diagram of the

IPA vocalic trapezoid which provided the

vocal tract filters utilised within this work.
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Table A.1: The table below gives the all-pole vocal-tract filter parameters used in Chapters

6 and 7.

Filter Formant

1 2 3 4 5 6 7 8

(i)
Fk (Hz) 228.84 295.95 2213.42 3607.46 4516.20 5618.05 6354.66 7279.11

Bk (Hz) 70.73 1204.73 277.44 494.04 135.42 1331.25 1349.15 952.80

(ii)
Fk (Hz) 230.94 1503.45 1942.68 3190.99 4273.56 5106.34 6643.11 7122.32

Bk (Hz) 26.30 179.27 280.33 300.81 393.52 412.18 789.47 1043.51

(iii)
Fk (Hz) 237.76 1776.89 2126.43 3611.60 4326.63 5113.57 6459.14 7594.27

Bk (Hz) 14.78 222.92 116.49 140.50 315.44 461.28 820.84 733.26

(iv)
Fk (Hz) 240.89 1151.11 2090.51 3357.41 4038.45 5528.84 6300.14 7326.56

Bk (Hz) 102.73 197.17 279.89 640.06 153.96 160.58 945.05 552.72

(v)
Fk (Hz) 272.63 1550.68 1977.15 3326.32 3990.32 4744.12 6059.92 7497.41

Bk (Hz) 45.73 128.92 346.28 2321.59 1383.86 569.94 589.93 602.49

(vi)
Fk (Hz) 285.04 1296.68 2003.54 3103.16 4184.74 5159.35 6705.98 8000.00

Bk (Hz) 82.39 37.18 144.70 107.50 383.56 222.84 598.96 529.69

(vii)
Fk (Hz) 294.33 724.07 2509.82 3349.70 4619.19 5157.64 6639.28 7034.30

Bk (Hz) 188.67 161.55 146.11 505.47 409.80 196.67 1801.25 26.64

(viii)
Fk (Hz) 326.37 994.56 2228.28 3331.74 4116.59 5298.55 5795.11 7056.05

Bk (Hz) 105.11 110.58 80.82 474.97 231.16 407.26 900.88 192.32

(ix)
Fk (Hz) 345.01 1520.98 1998.31 3249.68 4326.12 5063.71 5948.31 7683.52

Bk (Hz) 34.90 83.69 194.21 69.37 1681.61 265.58 1145.34 1037.56

(x)
Fk (Hz) 356.12 1834.92 2519.09 3185.47 4876.93 5141.56 5679.61 7433.97

Bk (Hz) 31.68 370.36 224.30 244.60 505.53 1310.71 547.99 270.66

(xi)
Fk (Hz) 366.28 2002.29 2657.72 2792.77 3928.55 5042.55 5779.97 7231.58

Bk (Hz) 97.03 179.44 227.62 3935.92 80.89 394.77 759.52 310.88

(xii)
Fk (Hz) 382.45 603.91 2417.36 3796.29 4267.19 5283.86 6517.42 7180.48

Bk (Hz) 136.78 263.20 113.60 1211.92 214.38 384.09 1013.11 338.76
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Table A.2: The table below gives the all-pole vocal-tract filter parameters used in Chapters

6 and 7 (cont’d).

Filter Formant

1 2 3 4 5 6 7 8

(xiii)
Fk (Hz) 397.45 805.36 2511.31 3382.55 4486.01 5381.45 6619.74 8000.00

Bk (Hz) 237.60 220.98 163.61 359.86 359.80 228.53 271.80 1078.48

(xiv)
Fk (Hz) 409.91 1142.92 2490.62 3412.60 4363.78 5473.25 5532.66 7243.60

Bk (Hz) 143.43 87.86 108.45 150.42 283.56 292.35 853.97 723.66

(xv)
Fk (Hz) 420.13 1314.11 2334.64 3503.30 4438.27 5215.35 5502.84 7613.07

Bk (Hz) 32.84 82.90 149.95 409.04 298.24 3734.32 175.50 378.06

(xvi)
Fk (Hz) 438.78 779.95 2497.28 3636.53 4464.95 5523.44 5849.79 7296.37

Bk (Hz) 105.26 256.87 115.47 557.63 320.61 408.74 1885.98 919.26

(xvii)
Fk (Hz) 530.42 1042.32 2637.03 3507.72 4363.58 5338.43 5709.63 7509.99

Bk (Hz) 181.58 92.39 149.38 260.53 860.81 1438.62 369.78 678.71

(xviii)
Fk (Hz) 554.39 1154.28 2624.00 3507.30 4788.89 5630.93 6215.78 8000.00

Bk (Hz) 274.26 234.21 308.13 145.42 709.58 342.10 1355.89 91.80

(xix)
Fk (Hz) 569.62 1746.89 2293.08 2545.74 4254.93 5126.68 5694.44 7237.06

Bk (Hz) 361.11 250.15 2025.81 510.67 443.16 364.04 244.56 225.87

(xx)
Fk (Hz) 588.44 1232.80 1869.99 3198.58 4760.92 5057.42 5894.51 7518.31

Bk (Hz) 203.52 173.15 275.49 138.64 6325.87 221.18 312.55 344.54

(xxi)
Fk (Hz) 635.31 1342.04 1841.56 3169.04 3892.81 5187.06 5767.76 7581.03

Bk (Hz) 178.82 92.74 432.85 3480.60 554.07 351.39 466.35 1233.19

(xxii)
Fk (Hz) 750.73 1262.18 1740.85 3189.57 4847.91 5146.95 5795.29 7058.78

Bk (Hz) 202.05 112.23 160.76 518.40 3073.75 200.29 234.29 1407.98
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Figure A.2: This figure contains the vocal-tract filters utilised in the synthetic speech

experiments outlined in this work. 236



Figure A.3: This figure contains the vocal-tract filters utilised in the synthetic speech

experiments outlined in this work (cont’d). 237



Appendix B

All-Pole Filter Envelope

Estimation of Discrete Power

Spectra

As discussed in Chapter 2, the all-pole model has been used to approximate both

the spectral envelope of the vocal tract and the spectral characteristics of the glottal

signal. Thus, for speech and many other signals, all-pole filter parameterisation is an

important and useful task.

For signals that are periodic e.g. voiced speech, the spectral envelope information

may only be available at discrete points. This appendix discusses two methods to

determine the optimum all-pole filter fitting a discrete spectrum: linear prediction

and Discrete All-Pole modeling (DAP).
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B.1 Spectral Linear Prediction

Given a set of N power spectrum samples at frequencies ωn, spectral linear prediction

determines the best fitting pth order all-pole envelope which minimises ELP , the mean

ratio between the given discrete spectrum P (ωn) and the spectrum of the all-pole filter

sampled at the same frequency points P̂ (ωn). ELP is given by:

ELP =
1

N

N∑
n=1

P (ωn)

P̂ (ωn)
(B.1)

The power spectrum P̂ (ωn) of a pth order all-pole filter ak may be calculated at

angular frequency ωn according to:

P̂ (ω) =
1

|
∑p

k=0 ake
−jωk|2

(B.2)

Note that for all-pole filters determined by linear prediction, a0 = 1.

The all-pole filter yielding the minimum ELP is determined by solving the normal

equations (Makhoul, 1975), which are solved according to:

a = R−1r (B.3)

where

a = [a1 a2 · · · ap]T (B.4)

R =



R0 R1 R2 · · · Rp−1

R1 R0 R1 · · · Rp−2

R2 R1 R0 · · · Rp−3

...
...

...
. . .

...

Rp−1 Rp−2 Rp−3 · · · R0


(B.5)

r = − [R1 R2 · · · Rp]
T (B.6)
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The function Rk is the autocorrelation function corresponding to the signal spec-

trum P (ωn). It is calculated:

Rk =
1

N

N∑
n=1

P (ωn) cos(kωn) (B.7)

Due to its Toeplitz symmetry, the inversion of the autocorrelation matrix R can be

efficiently performed (Musicus, 1988). The spectral linear prediction algorithm is

summarised in Algorithm 2.

Algorithm 2: Spectral linear prediction algorithm.

Input: Analysis signal, s[n], and filter order, p

Output: Optimal linear predictive filter, ak

Determine the power spectral samples P (ωn) of signal s[n] using e.g. a

sinusoidal model of the signal (see Appendix C);

foreach k from 0 to p do

Compute Rk using Eq. B.7;

Assemble R and r;

Determine ak by solving Eq. B.3, using e.g. the Levinson algorithm (Musicus,

1988);

B.2 Discrete All-Pole Modeling

Unfortunately, the criterion given by Equation B.1 contains an error cancelation prop-

erty due to the aliasing in the autocorrelation domain which occurs due to spectral

sampling (El-Jaroudi and Makhoul, 1991). Performance is particularly degraded when

spectral sampling is low, i.e. in the case of high pitched voices. In these cases, the

filters estimated by the linear prediction approach tend towards the positions of the
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harmonics, see Figure B.1.

Figure B.1: The above figure gives the log magnitude spectrum of a Hann-windowed

periodic all-pole signal, and three spectral envelopes: the actual (green), LP-estimated

(red) and DAP-estimated (dashed black). The DAP algorithm is able to recover an all-

pole envelope more similar to the original than linear prediction.

The DAP approach (El-Jaroudi and Makhoul, 1991) obtains a more accurate all-

pole filter estimate by refining the linear prediction filter using an iterative algorithm

and a different error criterion. The new error criterion is the discretised Itakura-

Saito error function which was introduced in (Itakura and Saito, 1968) and followed

from the estimation of short-time speech spectra using all-pole modeling. The error

has been qualified as a “subjectively meaningful measure of speech distortion” (Gray

et al., 1980).

Given two power spectra P (ωn) and P̂ (ωn) defined at a set of N discrete frequen-
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cies ωn, the Itakura-Saito error EIS is calculated according to:

EIS =
1

N

N∑
n=1

P (ωn)

P̂ (ωn)
− ln

P (ωn)

P̂ (ωn)
− 1 (B.8)

The value of EIS is always non-negative and is only zero in the case where P (ωn)

equals P̂ (ωn) for all frequencies ωn. This function has the additional property that it

is amenable to frequency dependent weighting (El-Jaroudi and Makhoul, 1991).

In order to determine an all-pole filter which minimises this error function, (El-

Jaroudi and Makhoul, 1991) exploits the property that the autocorrelation function

R̂k of an all-pole filter âk relates to its time-reversed impulse response ĥ[−i] by the

following equation:
p∑

k=0

âkR̂i−k = ĥ[−i] ∀ i (B.9)

This equation holds when R̂k is the true autocorrelation function of âk, calculated

using Equations B.7 and B.2. However, given a desired autocorrelation function,

Equation B.9 can be used to refine an all-pole filter estimate.

Re-arranging Equation B.9 in order to solve for âk, substituting R̂k by Rk and

restating in matrix form yields:

â = R−1ĥ (B.10)

where R is defined as in Section B.1, and

â = [a0 a1 · · · ap]T (B.11)

ĥ = [h[0] h[−1] · · · h[−p]]T (B.12)

Thus, given any time-reverse impulse response ĥ and an autocorrelation function R,

the corresponding all-pole filter can be determined. In (El-Jaroudi and Makhoul,
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1991), an iterative algorithm is proposed to determine a solution which terminates

when EIS falls below a threshold τIS, which is given below in Algorithm 3.

Algorithm 3: DAP algorithm.

Input: Analysis signal, s, filter order, p, and threshold τIS

Output: Optimal linear predictive filter, ak

Determine the power spectral samples P (ωn) of signal s;

Calculate LP all-pole filter estimate ak using Algorithm 2;

Initialise EIS to ∞;

while EIS > τIS do

Determine ĥ using Eq. B.9;

Calculate new â by solving Eq. B.10;

Sample the power spectrum of â to determine P̂ (ωn) using Eq. B.2;

Calculate EIS according to Eq. B.8;

Normalise â by dividing all coefficients by a0 to give ak;
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Appendix C

Sinusoidal Model Parameterisation

Based upon Fourier theory, the modeling of signals as a sum of sinusoidal components

is a powerful representation which can facilitate a great many applications. This ap-

pendix describes two methods the amplitudes, frequencies and phases of a signal’s

component sinusoids may be estimated. The first method is based upon peak pick-

ing the magnitude spectrum of the analysis signal, while the other reformulates the

problem into a linear system, the solution of which minimises the energy between the

analysis signal and its sinusoidal model.

C.1 Discrete Fourier Transform

The DFT transforms the time-domain signal s[n] of N equally-spaced time samples

into an frequency-domain representation of N equally-spaced frequency bins. The kth

frequency bin S[k] is calculated according to the equation:

S[k] =
N−1∑
n=0

w[n]s[n]e−i
2πk
N
n (C.1)
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where w[n] is an appropriate window function and k is an integer in the range 0 ≤

k ≤ N − 1. Each frequency bin S[k] is in general a complex number containing both

magnitude and phase information of the underlying sinusoidal basis function.

The time-domain periodicity of sinusoidal components in the analysis frame will

manifest itself as a spectral peak in the magnitude frequency domain at the frequency

of the sinusoid. Thus, the location of the bin where the peak is found gives an estimate

of the sinusoid’s frequency. Its amplitude and phase are given by the magnitude and

angle of peak bin’s complex amplitude (McAulay and Quatieri, 1986).

However, as the frequency resolution of the transform is related to the length of

the analysis frame, the certain frequency components, particularly low frequency com-

ponents, may not have been satisfactorily resolved. In order to increase the frequency

resolution, the spectrum can be interpolated by zero-padding the time-domain signal

before frequency-domain transformation. Furthermore, increased resolution can be

provided by parabolically interpolating the log magnitude spectrum and linearly in-

terpolating the unwrapped phase spectrum (Serra, 1989). Figure C.1 shows an typical

example.

Finally it is noted that while this simple approach is straightforward, not all peaks

of the magnitude spectrum can be classified as sinusoids and some will be attributable

to noise or other signal components such as windowing artifacts. In order to counter

this ambiguity, a more sophisticated peak pick schemes can be employed, e.g. the

sinusoidal likeness measure (Rodet, 1997).
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Figure C.1: The above figures show (a) a log-magnitude spectrum of a voiced speech

frame with the spectral peaks highlighted in red and (b) the effects of quadratic interpo-

lation for refining an estimate of a single spectral peak.

C.2 Least-Squares Analysis

In the previous section, the parameters of a signal’s sinusoidal components were esti-

mated by searching for the spectral peaks in the magnitude spectrum. The magnitude

domain search is required because the frequencies of the sinusoidal components are

unknown. However, if these frequencies are given a priori, a least-squares analysis can

be performed in order to locate them more accurately (Laroche et al., 1993; Stylianou,

1996).

It is assumed that the signal under analysis s[n] can be approximated by a sinu-

soidal model, ŝ[n]. The time-domain manifestation of ŝ[n] is given by:

ŝ[n] =
L∑

k=−L

Ake
iωkn (C.2)
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where wk are the angular frequencies of the sinusoidal components, L the number of

components and Ak is the complex amplitude of the kth sinusoid, containing both am-

plitude and phase information. The angular frequencies ωk are assumed to be known,

e.g. by imposing a harmonic model and determining a maximum voiced frequency

(Stylianou, 1996) or some other method.

An expression for the modeling error e[n] is then constructed:

e[n] = (s[n]− ŝ[n]) (C.3)

Summing the energy of this error signal over a given analysis window yields the

equation:

N∑
n=−N

e[n]2 =
N∑

n=−N

w[n]2 (s[n]− ŝ[n])2

=
N∑

n=−N

w[n]2

(
s[n]−

L∑
k=−L

Ake
iωkn

)2

(C.4)

where w[n] is an appropriate window function and 2N + 1 is the window length.

Equation C.4 defines a system of linear equations, the least-squares solution of

which is given by:

A =
(
E0

TWTWE0

)−1
E0

TWTWs (C.5)

= R−1b (C.6)

where

• A is a (2L+1)×1 vector containing the sought sinusoidal complex amplitudes,

• E0 is a (2N + 1)× (2L+ 1) matrix where each element on the nth row and kth

column En,k
0 is given by

En,k
0 = eiωkn (C.7)

247



• W is a (2N +1)× (2N +1) matrix containing the window function w[n] across

the main diagonal, and

• s is the (2N + 1)× 1 vector containing the analysis frame s[n].

In the case where the set of frequencies ωk are harmonically related, the matrix R

exhibits Toeplitz symmetry and can be efficiently inverted (Musicus, 1988).
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Appendix D

Generation of the LF Model Pulse

The LF model is utilised throughout this work as a model of the derivative glottal

flow signal. This appendix discusses the generation of the model in the time and

frequency domains.

Firstly, the LF model formulation is re-stated, and how the time-domain waveform

is constructed from the timing parameters is explained. It is illustrated how improper

sampling of the LF model pulse in the time domain can introduce significant distor-

tions into the waveform. Attempts to solve this problem by quantising the timing

parameters to integer values produce undesirable properties upon the error functions

necessary for optimisation routines. An alternative method based upon the shifting

of the time samples which produces smoother error functions is described.

Secondly, the computation efficiency of three methods to estimate the frequency-

domain information of the LF model is discussed. The fast determination of the

frequency-domain parameters are important for the PowRd algorithm, described in

Chapter 6, which undertakes a brute force initialisation and optimisation procedure
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which demands the determination many LF model spectra. For this, an analytical

expression for the spectral information of the LF model is derived. An informal

experiment shows that the new method can determine the exact solution for any

frequency with increased computational efficiency over a phasor correlation approach.

An alternative method using the Fast Fourier Transform (Cooley and Tukey, 1965)

and spectral interpolation the spectrum is also proposed, which further reduces the

computational time, yet provides an approximate solution.

D.1 Time-Domain Generation of the LF Model

The LF model is formulated in the time domain as a piecewise mathematical function:

uLF (n) =



E0e
αn sinωgn 0 ≤ n < Te

−Ee

ϵTa
(e−ϵ(n−Te) − e−ϵ(Tc−Te)) Te ≤ n ≤ Tc

0 Tc ≤ n < T0

(D.1)

When Ta is small relative to Tc− Te, the return phase of the signal is closely approx-

imated by an decreasing exponential curve. As this function returns asymptotically

to zero, it is convenient to combine the return and closed phases together such that

Tc coincides with T0. Under this formulation, both the return and closed phase can

be very closely approximated as the truncated impulse response of a single positive

real pole IIR filter. This arrangement is a suitable approximation for many voice

types, and relates the filter pole position µret to the Ta parameter by the equation

Ta =
−1

lnµret
(Ó Cinnéide et al., 2010), which can be related to the TL(z) filter of the

KLGLOTT88 model.
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As mentioned in Section 2.3.3.1, the LF model pulse is generated in the time

domain using its direct synthesis parameters α, ωg, ϵ, E0 which are calculated from its

time parameters Tp, Te, Tp, Tc and scale parameter Ee. The direct parameters ωg and

E0 are determined by the following identities:

ωg =
π

Tp
(D.2)

E0 =
−Ee

eαTe sinωgTe
(D.3)

while ϵ and α are given by the nonlinear equations:

ϵTa = 1− e−ϵ(Tc−Te) (D.4)

Tc∑
n=0

uLF [n] = 0 (D.5)

This second requirement is sometimes referred to the area balance of the LF model,

as the area of the return phase equals the area of the open phase, ensuring that there

no baseline drift over the course of pulse cycle. An algorithm to determine these

parameters is given below.

Algorithm 4: Algorithm to determine the LF model direct synthesis parameters

from its timing parameters.

Input: LF model timing parameters Tp, Te, Tp, Tc and scale parameter Ee

Output: LF model direct synthesis parameters: α, ωg, ϵ, E0

Calculate ωg using Eq. D.2;

Eq. D.4 is solved using e.g. Newton’s method to give ϵ;

Using Ee = 1, solve Eq. D.5 using a root finding algorithm;

Calculate E0 following Eq. D.3;
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This algorithm dictates that the LF pulse be sampled at various time points.

However, depending on the value of the pulse’s timing parameters, the breakpoints

defining the boundaries of the different phases of the glottal cycle may fall between

sample points therefore cause waveform discontinuities, as shown in Figure D.1. These

discontinuities may introduce audible artifacts.

Figure D.1: The above figure shows how sampling the LF model waveform can introduce

discontinuities in the waveform around the breakpoints of the signal. In the above scenario,

a large discontinuity is introduced around the instant of maximum negative amplitude.

This kind of distortion is inherent when using digital system where time seg-

ments can only be expressed in integer sample lengths. In order to avoid introducing

discontinuities, the timing parameters of the model which define non-integer length

segments can be snapped to the nearest integer value. While this may be acceptable

for LF model generation as the quantisation effect is unlikely to be perceptual (Hen-
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rich et al., 2003), it causes problems for LF model fitting algorithms as it produces

a “staircase” error function, which may have the consequence that the optimisation

algorithm becomes stuck in a local minimum (Strik, 1998), as shown in Figure D.2.

Figure D.2: The above figure shows the error surface of two LF model fitting techniques.

The first uses an LF model generating routine which quantises the timing parameters which

results in an undesirable staircase-like error function. This may cause the optimisation

program to become stuck in a local minimum. The other utilises a routine based upon the

timing parameter shifting described in the text, which produces a smoother error function

and is therefore more likely to converge to the global minimum.

An alternative solution is one which accepts the inherent fact of this distortion

and attempts to minimise it. The discontinuities introduced by incorrectly sampling

the LF model waveform occur when there is a large amplitude difference between

successive signal points. Thus, the greatest distortion is introduced when the signal

changes from between its open and return phases, in the interval of the cycle where
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it reaches its maximum negative amplitude. By ensuring that this important instant

is captured with a sample point, the inherent discontinuities of the waveform are

effectively shifted to the fringes of the pulse, at instants To and Tc, where the signal

amplitude is small and unlikely to introduce as large amplitude discontinuities. The

“staircase” phenomenon associated with parameterisation quantisation is eliminated

(see Figure D.2 in blue).

D.2 Frequency-Domain Generation of the LFModel

The PowRd method described in Chapter 6 necessitates the calculation of the frequency-

domain information of the LF model at specific frequencies. This information can

be obtained from the time-domain LF model pulse by correlation of the pulse with a

complex phasor signal at the desired frequency. However, because of the formulation

of the LF model, the problem can be re-expressed as a set geometric summations,

which can be solved more efficiently.

Frequency information can also be determined from the FFT of the pulse. How-

ever, the FFT determines this information at fixed frequencies equally spaced across

the signal bandwidth. In order to determine frequency information of specific frequen-

cies, interpolating procedures can be utilised. This method offers faster performance

at determining spectral information than the geometrical sum method, though at the

expense of decreased accuracy.
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D.2.1 Phasor Correlation

The complex amplitude of a sinusoidal component with angular frequency ω of an

N length signal x can be obtained by correlating the signal with a phasor at that

frequency:

X(ω) =
N−1∑
n=0

x(n)e−iωn (D.6)

Thus, for a single LF model pulse T0 samples in length, this sinusoidal component is

given by:

ULF (ω) =

T0−1∑
n=0

uLF (n)e
−iωn (D.7)

The phases values of ULF (ω) are dependent on the time positions of the complex

exponential basis functions, and are therefore a function of n. For the purposes of

generality, Equation D.7 can be multiplied by another complex exponential repre-

senting a general phase shift of n0 samples. This alters the summation above to the

following:

ULF (ω) = e−iωn0

T0−1∑
n=0

uLF (n)e
−iωn (D.8)

This shift may be necessary if it is desirable that the zero point align with an alter-

native time reference than To, e.g. Te (Degottex et al., 2011).
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D.2.2 Geometric Summation

Equation D.8 takes into account the entire cycle of the glottal pulse, but the signal

can also be separated into its different phases:

ULF (ω) = e−iωn0

T0−1∑
n=0

uLF (n)e
−iωn (D.9)

= e−iωn0

Te∑
n=0

uopenLF (n)e−iωn + e−iωn0

T0−1∑
n=Te+1

uretLF (n)e
−iωn (D.10)

where uopenLF (n) and uretLF (n) refer to the open and return phase, respectively. The

sinusoidal component ULF (ω) can then be calculated as the sum of the separate

contribution of each phase of the model, which can be reformulated as the scaled sum

of geometric summations.

The Open Phase By utilising the relationship

sinx =
eix − e−ix

2i
(D.11)

the open phase portion of the equation can also be rewritten as a sum of complex

exponentials:

E0e
αn sinωgn = E0e

αn e
iωgn − e−iωgn

2i
(D.12)

=
E0

2i
(eαn+iωgn − eαn−iωgn) (D.13)

=
E0

2i
(en(α+iωg) − en(α−iωg)) (D.14)
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The expression for U open
LF (ω) can therefore be expressed and simplified.

U open
LF (ω) = e−iωn0

Te∑
n=0

uopenLF (n)e−iωn (D.15)

=
E0

2i
e−iωn0

Te∑
n=0

(
en(α+iωg) − en(α−iωg)

)
e−iωn (D.16)

=
E0

2i
e−iωn0

Te∑
n=0

(en(α+iωg)−iωn − en(α−iωg)−iωn) (D.17)

=
E0

2i
e−iωn0

(
Te∑
n=0

en(α+i(ωg−ω)) −
Te∑
n=0

en(α−i(ωg+ω))

)
(D.18)

The complex amplitude of the sinusoidal component of U open
LF (ω) is now re-expressed

as the scaled sum of two geometric series. The sum of a geometric series can be ob-

tained analytically by the following equation:

N∑
n=0

arn = a
1− rN+1

1− r
(D.19)

Equation D.19 can be applied to the Equation D.18 to give:

U open
LF (ω) =

E0

2i
e−iωn0

(
1− e(Te+1)(α+i(ωg−ω))

1− e(α+i(ωg−ω))
− 1− e(Te+1)(α−i(ωg+ω))

1− e(α−i(ωg+ω))

)
(D.20)
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The Return/Closed Phase U ret
LF (ω) can be calculated in a similar fashion as the

open phase component.

U ret
LF (ω) = e−iωn0

T0−1∑
n=Te+1

uretLF (n+ Te)e
−iωn (D.21)

= e−iωn0

T0−1∑
n=Te+1

−Ee
ϵTa

(
e−ϵ(n−Te) − e−ϵ(Tc−Te)

)
e−iωn (D.22)

= e−iωn0
−Ee
ϵTa

T0−1∑
n=Te+1

e−ϵ(n−Te)−iωn − e−ϵ(Tc−Te)e−iωn (D.23)

= e−iωn0
−Ee
ϵTa

T0−1∑
n=Te+1

en(−ϵ−iω)+ϵTe − e−ϵ(Tc−Te)e−iωn (D.24)

= e−iωn0
−Ee
ϵTa

(
eϵTe

T0−1∑
n=Te+1

en(−ϵ−iω) − e−ϵ(Tc−Te)
T0−1∑

n=Te+1

e−iωn

)
(D.25)

In order to determine the analytic result, the limits of each summation are adjusted

and D.19 is applied.

U ret
LF (ω) = e−iωn0

−Ee
ϵTa

(
eϵTe

T0−Te−2∑
n=0

e(n+(Te+1))(−ϵ−iω) − e−ϵ(Tc−Te)
T0−Te−2∑
n=0

e−iω(n+(Te+1))

)
(D.26)

= e−iωn0
−Ee
ϵTa

(
eϵTe+(Te+1)(−ϵ−iω)

T0−Te−2∑
n=0

en(−ϵ−iω) − e−ϵ(Tc−Te)−iω(Te+1)

T0−Te−2∑
n=0

e−iωn

)
(D.27)

= e−iωn0
−Ee
ϵTa

(
e−ϵ−iω(Te+1)1− e(T0−Te−1)(−ϵ−iω)

1− e(−ϵ−iω)
− e−ϵ(Tc−Te)−iω(Te+1)1− e−iω(T0−Te−1)

1− e−iω

)
(D.28)

D.2.3 FFT/Interpolation

A third approach to determining frequency-domain information of the LF model

pulse exploits the computation efficiency of the FFT algorithm. The FFT algorithm
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computes the DFT of a signal more efficiently that the usual correlation method by

exploiting certain redundancies.

For an N -point signal x[n], the DFT is defined:

X[ωk] =
N−1∑
n=0

x[n]e−iωkn (D.29)

where

ωk =
2πk

N
, 0 ≤ k ≤ N − 1 (D.30)

However, as the complex amplitudes X[ωk] are available only for the harmonically

related frequencies ωk, an estimate of the value of the complex amplitude of the si-

nusoid with general angular frequency ω can only be approximated by interpolation.

The errors introduced by this approximation can be reduced by increasing the fre-

quency resolution of the spectrum via zero-padding, but this operation also increases

the computational load.

D.2.4 Computational Comparison

An experiment was performed to compare the computational efficiency of the three

different of methods of determining the frequency information of the LF model pulse.

One thousand frequency points were generated randomly and determined from the

parameters of 1000 LF pulses. Table D.1 below summaries the results of the experi-

ment.

The results of the experiment clearly show that the method based upon phasor

correlation gives the slowest results and that both other methods offer large improve-

ments in computational efficiency - the geometric-sum-based method offering the ex-

act solution with an computational decrease of 85%, and the FFT-interpolation-based
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Table D.1: The table below gives the computational load of different LF model frequency-

domain estimation techniques, relative to the correlation-based method.

Method Relative Computation Time

Correlation 1.00

Geometric Sum 0.14

FFT/Interpolation 0.04

method giving a 96% improvement, with an approximate solution.
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Appendix E

Results of Synthetic Speech

Perceptual Experiment

This appendix contains the full results from the listening test described in Chapter

8 in Tables E.1 to E.3. A positive score indicates a preference for the synthetic

speech segment produced using the techniques proposed in this thesis. Additionally,

for reasons discussed in Chapter 8, the results of Comparisons 3, 4, 11 and 14 were

ultimately removed from the final analysis.
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Table E.1: The table below gives the full listener preference scores of the perceptual

comparison of the analysis/re-synthesis of speech recorded using linear phase equipment.

Speaker, Sentence Percentage Score Speaker, Sentence Percentage Score

bdl, Arctic 1

14.00% 3

jmk, Arctic 1

8.51% -3

12.00% 2 8.51% -2

16.00% 1 10.64% -1

4.00% 0 6.38% 0

6.00% -1 14.89% 1

34.00% -2 29.79% 2

14.00% -3 21.28% 3

bdl, Arctic 2

6.00% -3

jmk, Arctic 2

2.08% -3

16.00% -2 4.17% -2

12.00% -1 8.33% -1

6.00% 0 6.25% 0

24.00% 1 18.75% 1

24.00% 2 35.42% 2

12.00% 3 25.00% 3

bdl, Arctic 3

28.00% 3

jmk, Arctic 3

34.69% 3

22.00% 2 28.57% 2

22.00% 1 24.49% 1

8.00% 0 4.08% 0

6.00% -1 2.04% -1

12.00% -2 0.00% -2

2.00% -3 6.12% -3

bdl, Arctic 4

2.04% -3

jmk, Arctic 4

34.69% 3

6.12% -2 26.53% 2

2.04% -1 16.33% 1

4.08% 0 14.29% 0

18.37% 1 2.04% -1

28.57% 2 2.04% -2

38.78% 3 4.08% -3

bdl, Arctic 5

2.08% 3

jmk, Arctic 5

12.00% 3

12.50% 2 16.00% 2

31.25% 1 30.00% 1

29.17% 0 24.00% 0

6.25% -1 12.00% -1

6.25% -2 4.00% -2

12.50% -3 2.00% -3
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Table E.2: The table below gives the full listener preference scores of the perceptual com-

parison of the analysis/re-synthesis of speech when simulating nonlinear phase equipment.

Speaker, Sentence Percentage Score Speaker, Sentence Percentage Score

bdl, Arctic 1

6.25% 3

jmk, Arctic 1

20.00% 3

22.92% 2 26.00% 2

16.67% 1 32.00% 1

33.33% 0 10.00% 0

16.67% -1 6.00% -1

4.17% -2 4.00% -2

0.00% -3 2.00% -3

bdl, Arctic 2

2.00% -3

jmk, Arctic 2

2.13% -3

4.00% -2 8.51% -2

10.00% -1 14.89% -1

10.00% 0 6.38% 0

22.00% 1 23.40% 1

28.00% 2 25.53% 2

24.00% 3 19.15% 3

bdl, Arctic 3

14.00% 3

jmk, Arctic 3

32.00% 3

28.00% 2 34.00% 2

30.00% 1 20.00% 1

10.00% 0 4.00% 0

10.00% -1 4.00% -1

4.00% -2 4.00% -2

4.00% -3 2.00% -3

bdl, Arctic 4

28.00% 3

jmk, Arctic 4

14.00% 3

34.00% 2 42.00% 2

22.00% 1 26.00% 1

10.00% 0 12.00% 0

2.00% -1 0.00% -1

2.00% -2 4.00% -2

2.00% -3 2.00% -3

bdl, Arctic 5

5.88% 3

jmk, Arctic 5

0.00% -3

9.80% 2 2.00% -2

21.57% 1 6.00% -1

33.33% 0 4.00% 0

9.80% -1 30.00% 1

15.69% -2 38.00% 2

3.92% -3 20.00% 3
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Table E.3: The table below gives the full listener preference scores of the perceptual com-

parison of the analysis/re-synthesis of speech recorded using non-linear phase equipment.

Speaker, Sentence Percentage Score Speaker, Sentence Percentage Score

Male, Sentence 1

2.04% -3

Female, Sentence 1

14.00% 3

4.08% -2 28.00% 2

4.08% -1 32.00% 1

12.24% 0 22.00% 0

34.69% 1 2.00% -1

28.57% 2 2.00% -2

14.29% 3 0.00% -3

Male, Sentence 2

2.00% 3

Female, Sentence 2

22.00% 3

8.00% 2 26.00% 2

16.00% 1 24.00% 1

38.00% 0 20.00% 0

16.00% -1 6.00% -1

16.00% -2 0.00% -2

4.00% -3 2.00% -3

Male, Sentence 3

4.00% 3

Female, Sentence 3

0.00% -3

10.00% 2 2.08% -2

18.00% 1 2.08% -1

38.00% 0 10.42% 0

22.00% -1 43.75% 1

6.00% -2 29.17% 2

2.00% -3 12.50% 3

Male, Sentence 4

2.00% -3

Female, Sentence 4

14.00% 3

10.00% -2 30.00% 2

8.00% -1 26.00% 1

28.00% 0 14.00% 0

16.00% 1 10.00% -1

28.00% 2 4.00% -2

8.00% 3 2.00% -3

Male, Sentence 5

8.00% 3

Female, Sentence 5

12.00% 3

12.00% 2 38.00% 2

22.00% 1 22.00% 1

14.00% 0 18.00% 0

24.00% -1 8.00% -1

14.00% -2 2.00% -2

6.00% -3 0.00% -3
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