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Abstract

Regulating the temperature of building integrated photovoltaics (BIPV) using phase change materials (PCMs) reduces the loss of
temperature dependent photovoltaic (PV) efficiency. Five PCMs were selected for evaluation all with melting temperatures
~25 44 °C and heat of fusion between 140 and 213 kJ/kg. Experiments were conducted at three insolation intensities to evaluate the
performance of each PCM in four different PV/PCM systems. The effect on thermal regulation of PV was determined by changing
the (i) mass of PCM and (ii) thermal conductivities of the PCM and PV/PCM system. A maximum temperature reduction of 18 °C

was achieved for 30 min while 10 °C temperature reduction was maintained for 5 h at —1000 W/m? insolation.

© 2010 Elsevier Ltd. All rights reserved.

Keywords: Phase change materials (PCM); Building integrated photovoltaics (BIPV); Thermal regulation enhancement

1. Introduction
1.1. Thermal management of photovoltaics

The operating temperature of PV can be as high as 80 °C
at higher solar radiation intensities that raises the intrinsic
carrier concentration in crystalline silicon photovoltaic
(PV) cells causing a higher saturation current and lower
voltage of the cells (Mazer, 1997). The temperature induced

Abbreviations: PCM, phase change material; PV, photovoltaics; BIPV,
building integrated photovoltaics; CFD, computational fluid dynamics;
PV/T, photovoltaic thermal; DSC, differential scanning calorimetry; R-
T20, commercial paraffin based phase change material; SP22, commercial
blend of salt hydrate and paraffin phase change material; CL, eutectic
mixture of capric lauric acid; CP, eutectic mixture of capric—palmitic acid;
CaCl,, calcium chloride hexa hydrate.
* Corresponding author. Tel.: +353 14027963.
E-mail address: ahmad.hasan@dit.ie (A. Hasan).

0038-092X/$ - see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.solener.2010.06.010

increase in current is less than the concomitant decrease in
voltage yielding a net decrease in the power output of the
PV (Radziemska and Klugman, 2002). Measuring the
power-voltage characteristics of PV at different tempera-
tures enables a temperature-dependent power loss coeffi-
cient to be determined (Raziemska, 2003). Crystalline
silicon PV operating above 25 °C typically, shows a temper-
ature-dependent power decrease with a coefficient of
between 0.4%/K (Weakliem and Redfield, 1979; Krauter,
1994) and 0.65%/K (Raziemska, 2003). Overall integration
of PV into buildings has been shown to further rise PV oper-
ating temperature to such an extent that there has been
reported a 9.3% further decreased power output compared
to nonintegrated PV (Krauter et al., 1999). This emphasizes
a need for effective temperature regulation of building inte-
grated photovoltaics (BIPV). Different heat removal tech-
niques employed to maintain PV at lower temperatures
are summarised in Table 1.
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Nomenclature

l length of the duct (m)

D diameter of the duct (m)

0 heat absorbed by phase change material (kJ)
Cps specific heat capacity of phase change material

in solid phase (kJ/kg K)

specific heat capacity of phase change material

in liquid phase (kJ/kg K)

melting point of phase change material (°C)

initial temperature of phase change material

(°C)

T; final temperature of phase change material (°C)

L latent heat of fusion of phase change material
(kJ/kg)

£

b

m mass of phase change material (kg)
Tpv temperature at front surface of PV (°C)
Tevpem temperature at front surface of PV/PCM system

(°C)
T temperature (°C)
ty time at the start of the experiment (s)
t, time at the nth reading of the experiment (s)

Py power output from loaded PV (W)
maximum power output from loaded PV (W)
U, voltage of loaded PV (V)

r thermal regulation enhancement (°C min)

In non BIPV systems, passive heat removal from PV is
usually effected by buoyant circulation of air in a duct
behind the PV (Yang et al., 1994; Brinkworth, 2000a, b).
Heat removal from the PV depends on depth to hydraulic
diameter ratio (//D) of the duct (Brinkworth and Sandberg,
2006). The maximum heat removal has been shown to
occur at a duct //D of 20, resulting minimum temperature
(~34°C) in a PV subjected to 50 W/m? heat flux with
5 m duct length (Brinkworth, 2006).

In BIPV systems passive heat removal also relies on
buoyant circulation of air in an opening or air channel
instead of a duct behind the PV. CFD modelling of nat-
ural ventilation in an atrium-integrated PV suggested that
a properly located opening close to the roof can induce
air flow in the room and regulate PV operating tempera-
ture (Gan and Riffat, 2004). A theoretical analysis of a
natural ventilated facade integrated PV with an opening
behind the PV has been carried out in three locations,
Stockholm, London and Madrid. A maximum 5 °C tem-
perature reduction in monthly temperature due to natural
ventilation yielded an annual 2.5% increase in electrical
output of the PV (Yun et al., 2007). Improvements in
natural ventilation PV fagade have been achieved by sus-
pending a metal sheet in the air channel, inserting fins
and optimizing the distance between the air duct walls
(Tonui and Tripanagnostopoulos, 2007; Fossa et al.,
2008).

Hydraulic cooling of PV relies on water at front or
back surface of the PV. Flowing water on the front sur-
face of PV has been shown to decrease cell temperature
up to 22 °C along with decreasing reflection losses yielding
an overall 8-9% increase in PV electrical power output
(Krauter, 2004). Water flow on the back of a fagade inte-
grated PV/T has been modelled to arrive at an optimum
thermal and electrical performance. This was 0.05 kg/s
for a particular system in the weather conditions of Hefei
(China) at insolations of 405 W/m? and 432 W/m?> (Ji
et al., 20006).

1.2. Phase change materials for thermal management
applications

Solid-liquid phase change materials have been used as
temperature regulators in different applications (Lu, 2000;
Tan and Fok, 2007; Kandasamy et al., 2006; Wang et al.,
2007; Pasupathy et al., 2006, 2008 Sabbahet al., 2008; Pasu-
pathy and Velraj, 2008; Weinstein et al., 2008; Fleischer
et al., 2008; Khateeb et al., 2004a, b). A one dimensional
heat transfer model was developed to study the cooling
effect produced by integrated PCM in electronic packaging
and a design optimization was reported (Lu, 2000).

The cooling effect produced by a PCM heat storage unit
(HSU) integrated into a mobile phone was studied numer-
ically. It was concluded that use of such systems in mobile
phones was effective at higher heat fluxes (Tan and Fok,
2007). The use of PCM contained in portable electronics
packaging was studied numerically and validated experi-
mentally. The effect of heat dissipation rate, the thermal
resistance of packaging and orientation of the packaging
to gravity on the cooling performance of PCM was studied.
It was concluded that heat dissipation rate and thermal
resistance of packaging has important while orientation
of packaging to gravity has trivial effect on cooling perfor-
mance of PCM (Kandasamy et al., 2006; Wang et al.,
2007). PCMs have been used as temperature regulator to
maintain human comfort temperature in built environment
to store heat during day time or coolness during night time
to reduce the temperature swing (Pasupathy et al., 2006;
Sabbah et al., 2008; Pasupathy and Velraj, 2008).

An important problem related to the PCM restricting
efficient heat removal is their low thermal conductivity.
Different techniques have been employed to improve the
thermal conductivity of PCM (Pasupathy et al., 2008;
Weinstein et al., 2008; Fleischer et al., 2008; Khateeb
et al., 2004a, b). The PCM integrated in aluminium foam
were investigated for the cooling of Li-ion battery in a
scooter with arrangement of aluminium foam and fins to
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Table 1

Advantages and disadvantages of different thermal management techniques.

Natural air
circulation

Forced air circulation

Hydraulic cooling

Heat pipes

Thermoelectric
(Peltier) cooling

PCM thermal
management

Advantages

Disadvantages

low initial cost
no maintenance
easy to integrate
longer life
no noise

no
consumption
passive heat exchange

electricity

low heat transfer rates
accumulation of dust in
inlet grating further
reducing heat transfer
dependent on wind
direction and speed
low thermal conductiv-
ity and heat capacity
of air

low mass flow rates of
air
limited
reduction

temperature

— higher heat transfer rates com-
pared to natural circulation of
air

— independent of wind direction
and speed

— higher mass flow rates than
natural air circulation achiev-
ing high heat transfer rates

— higher temperature reduction
compared to natural air
circulation

— high initial cost for fans, ducts
to handle large mass flow rates

— high electrical consumption

— maintenance cost

— noisy system

— difficult to integrate compared
to natural air circulation
system

— higher heat transfer rate
compared to natural and
forced circulation of air

— higher mass flow rates
compared to natural and
forced circulation of air

— higher thermal conductiv-
ity and heat capacity of
water compared to air

— higher temperature
reduction

— higher initial cost due to
pumps

— higher maintenance cost
compared to forced air
circulation

— higher electricity con-
sumption compared to
forced air circulation,

— less life compared to
forced air circulation due
to corrosion

— passive heat
exchange

— low cost

— easy to
integrated

- low heat
transfer rates

— dust  accu-
mulation on
the inlet
grating

— dependent
on the wind
speed  and
direction

no moving parts

noise Free

small size

easy to integrate

low maintenance costs
solid state heat transfer

heat transfer depends on
ambient conditions
active systems

require electricity
reliability issues -costly
for PV cooling

no heat storage capacity
requires efficient heat
removal from warmer
side for effective cooling

— higher heat transfer rates com-

pared to both forced air circula-
tion and forced water circulation
higher heat absorption due to
latent heating

isothermal natural of heat removal
no electricity consumption
passive heat exchange

no noise

no maintenance cost

on demand heat delivery

higher PCM cost compared to
both

some PCMs are toxic

some PCMs have fire safety issues
some PCMs are strongly corrosive
PCMs may have disposal problem
after their life cycle is complete
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overcome low PCM thermal conductivity. It was observed
that PCM integrated in aluminium foam achieved higher
cooling compared to cooling by aluminium foam only
and the cooling by PCM only (Pasupathy et al., 2008;
Weinstein et al., 2008). PCM was used in a graphite-matrix
to improve heat removal by increasing thermal conductiv-
ity and its performance was compared with active air blow
cooling to cool Li-ion battery. It was concluded that at
high temperatures and battery discharge rates, the passive
PCM-graphite cooling was more effective than active air
cooling (Fleischer et al., 2008). Graphite nanofibers were
embedded into PCM at various weight ratios to enhance
their thermal conductivity. A decrease in melting time
and temperature in the PCM with increasing graphite
nanofibers loading was observed (Khateeb et al., 2004a,
2004b).

PCMs were first evaluated experimentally for BIPV tem-
perature regulation by Huang et al. (2004). The PCM was
contained in an aluminium box with its front surface
coated with a solar selective absorbing material to mimic
a PV cell attached to its front. Temperature distributions
on the front surface and inside a paraffin wax RT25
PCM were studied with and without metallic fins at
—750 W/m? insolation. 2D and 3D finite volume heat
transfer simulation models were developed to study PCM
performance for BIPV thermal regulation. Model predic-
tions were found in good agreement with experimental
results (Huang et al., 2006a,b). In recent work PV module
was attached to a rectangular aluminium box containing
eutectic mixture of capric-lauric acid (C-L) which were
irradiated at 415 W/m?. A 10 °C temperature reduction
was achieved for ~6 h compared to a PV attached to the
box without PCM (Hasan et al., 2007).

1.3. Thermal regulation enhancement using PCM

The PCM can remove thermal energy available at PV
and maintain lower temperature during melting. Heat
removed by PCM is sum of the sensible heat absorbed
when its temperature rises from ambient temperature to
its melting point, the latent heat absorbed during melting
and the sensible heat from end of melting until it reaches

a peak equilibrium temperature. This can be represented
by Eq. (1).
O=mCp(Tp —T;) +mL+mC,(Ty—T,) (1)

The difference between temperature evolution of a refer-
ence PV system without PCM and PV system with PCM as
shown in Appendix A is a measure of the total thermal reg-
ulation enhancement, I provided using PCM. Mathemati-
cally I for a particular PCM at constant insolation and
ambient temperature is obtained by subtracting the integral
of PV temperature evolution with PCM (Tpypcy) with
time from the integral of reference PV temperature evolu-
tion (7py) with time as shown in Appendix B, i.e.

t=t, t=t,
I = / Tpv dt — / Tp\/pCM dt (2)
15 t

=l =lo

when the test conditions are identical for both the PV and
the PV/PCM systems, the Eq. (2) becomes:

t=t,

I= / (Tpy — Tpvpem )dt (3)
1=ty

while for n discrete measurements of Tpy and Tpypcy Un-

der identical conditions, the thermal regulation enhance-

ment becomes

t=n

I'= Z(Tpv,t — Trvpemy) 4)

t=0

2. Experimental procedure

In this work, the five PCM presented in Table 2 were
selected with melting points 25 + 4 'C and heats of fusion
140-213 kJ/kg. The thermophysical properties of melting
onset, melting peak, heat of fusion and super cooling/sub-
cooling of PCM were measured with differential scanning
calorimetry (DSC) and a temperature history method
(Hasan et al., 2008).

2.1. Fabrication of experimental system

Polycrystalline silicon PV cells with dimensions of
10 cm x 10 cm x 0.05 cm were encapsulated between two

Table 2
Thermophysical properties of selected PCMs studied (Hasan et al., 2007).
PCM
Paraffin wax  Eutectic mixture of Eutectic mixture of Pure salt hydrate ~ Commercial
(RT20) capric-lauric acid (C-L)  capric—palmitic acid (C-P) (CaCl,-6H,0) blend (SP22)
Melting onset, °C 21.23 20.78 22.33 29.17 22.97
Melting peak, °C 25.73 24.66 26.4 29.66 24.6
Heat of fusion, kJ/kg 140.3 171.98 196.07 213.12 182
Thermal conductivity, W/m K 0.2 0.139 0.143 1.09 0.6
Density solid, kg/1 0.88 0.88 0.883 1.71 1.49
Density liquid, kg/l 0.77 0.863 0.84 - 1.43
Volumetric expansion, 1/kg% 14 23 4.8 Negligible 4
Sub-cooling, °C Negligible Negligible Negligible 5 8
Specific heat capacity (solid), kJ/kg K~ 1.8-2.4 N/A N/A 1.4 2.5

photovoltaics. Sol. Energy (2010), doi:10.1016/j.solener.2010.06.010
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Table 3
Fabricated PV/PCM systems.

PV/PCM systems

A B C D
Container material Aluminium Perspex Aluminium Perspex
Thermal conductivity of material (W/m K) 237 0.189 237 0.189
Container width (cm) internal 5 5 3 3
External wall thickness (mm) 5 10 5 10

sheets of 3 mm thick transparent perspex to simulate a cell
size section of a PV module. Four rectangular containers,
as listed in Table 3, were fabricated and a PV cell was
attached to the front of each container as illustrated in
Fig. 1. Different container materials and container widths
were chosen to observe the effect of (i) heat conductive
(A and C) compared with heat insolating (B and D) con-
tainer walls (ii) thermal mass of PCM on PV thermal reg-
ulation at different insolations.

Systems A and C were fabricated from high thermal
conductivity (237 W/m K) aluminium enabling rapid heat
removal from PV into PCM but had less heat retention
due to loss of heat to ambient through their conductive sur-
faces. Systems B and D fabricated from perspex (MARC-
RYL CLEAR from Vink Plastics) had very low thermal
conductivity (0.189 W/m K) thus enabling high heat reten-
tion due to thermally insulating side and back perspex
plates preventing heat loss to ambient but had slow heat
removal from PV into PCM.

2.2. Data acquisition

A reference experiment was conducted irradiating the
PV section with a GR262 solar simulator producing low
(500 W/m?), intermediate (750 W/m?) and high (1000 W/
m?) insolations at an ambient temperature of 20 + 1 °C.
A Kipp and Zonen CM6B pyranometer measured insola-
tion with a maximum measured spatial intensity variation
of £2% over the PV front surface. Temperature at the
PV front surface was measured with five calibrated T-type
copper-constantan thermocouples with maximum devia-
tion of +0.2 C placed at the locations illustrated in
Fig. 2. Experiments were conducted with each of the
selected PCMs contained in systems A, B, C and D under
the same test conditions as the reference (i.e., 500 W/m?,
—750 W/m? and —1000 W/m? at 20 + 1 °C) with the exper-
imental setup shown in the Fig. 3.

Fig. 1. Photographs of PV/PCM systems A, B, C and D.

Fig. 2. Position of thermocouples on front surface of the PV section.

3. Results and discussion
3.1. Reference temperatures

Fig. 4 shows the reference system temperature evolution
at the PV front surface for all insolations without PCM.
For each experiment the temperature increased rapidly
and reached a steady state when heat input to PV due to
irradiation equaled the heat lost by PV to ambient primar-
ily due to convection. Reference steady state temperatures,
their corresponding insolations and the time elapsed to
reach them were, 45°C at 500 W/m? reached in 80 min,
51°C at 750 W/m? reached in 40 min and 57°C at
1000 W/m? reached in 34 min.

3.2. Thermal regulation at low insolation

Fig. 5 presents the temperature on the PV front surface
for all PCMs in system A compared with the reference sys-
tem at 500 W/m? insolation and 20 + 1 °C ambient temper-
ature. The reference system temperature reached steady
state at 45 °C in 80 min, the temperature rise with PCM
was also rapid up to ~30 °C due to sensible heating of solid
PCM by conduction heat transfer showing little deviation
from the reference system. Corresponding to 30 °C at PV
front surface, the temperature of PCM layer in direct con-
tact with the PV back surface reached its melting point and
the PCM started melting and absorbing PV thermal energy
as latent heat. The gradient of temperature rise decreased
and the temperature at the PV deviated from the reference.
After intimate PCM layer had melted, the combination of
convection heat transfer in melted PCM and conduction
heat transfer in solid PCM continued. The convective heat
transfer in melted PCM continued increasing as the melt
fraction increased resulting in increased sensible heating

photovoltaics. Sol. Energy (2010), doi:10.1016/j.solener.2010.06.010
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Fig. 3. Schematic of the experimental setup.
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Fig. 5. Temperature evolution on PV front surface in system A at an
insolation of 500 W/m? and ambient temperature of 20 + 1 °C.

of the PCM. Heat absorption continued until all of the
PCM had melted resulting in convection dominant heat
transfer and gradient of the temperature rise started
increasing sharply until the PV temperature equaled the
reference system temperature at the end of the experiment.

The degree and duration of deviation of PV temperature
evolution using PCM from that of the reference system is
used to quantify the thermal regulation enhancement pro-
vided by each PCM. After 4 h the deviation for RT20,
SP22, CL, CaCl, and CP was 4.6 °C, 6.5°C, 7°C, 7.5°C
and 8 °C respectively. The duration of the deviation is
the time in which temperature on PV containing PCM
equaled the reference temperature which is 6.5h, 9h,
9.5h, 11 h and 13 h for RT20, CL, SP22, CP and CaCl,
respectively. RT 20 showed the smallest deviation and
shortest duration of deviation while C-P showed the larg-
est deviation and CaCl, showed the longest duration of
deviation. Similar trend was observed for systems B, C
and D however each PCM showed lower thermal regula-
tion than in system A.

The duration that each PCM maintained a PV tempera-
ture of 10 °C below the reference temperature is illustrated
in Fig. 6. All the PCM in system A maintained 10 °C tem-
perature reduction for a longer duration compared to the
same size system B. Similarly PCM in system C maintained
a temperature reduction for a longer duration than the
same size system D. It can be concluded that at low insola-
tion the PCM performed better in high thermal conductiv-
ity containers (A and C) than in low thermal conductivity
containers (B and D).

Comparing PCMs, the fatty acids C-L. and C-P main-
tained 10 °C temperature deviation from the reference tem-
perature for the longest duration (2.5 h), followed by salt
hydrates SP22 and CaCl, (~2.25h) and paraffin wax
RT20 (~1.5h). The disadvantage of fatty acids is their
low thermal conductivities (0.139-0.143 W/m K) compared
to salt hydrates CaCl, (1.09 W/m K). Since fatty acids per-

photovoltaics. Sol. Energy (2010), doi:10.1016/j.solener.2010.06.010
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formed better than salt hydrates at —500 W/m? in system
A, it can be concluded that at low insolation, combination
of low thermal conductivity PCMs with high thermal con-
ductivity containers are better than the combination of
high thermal conductivity PCM with high thermal conduc-
tivity containers.

3.3. Thermal regulation at intermediate insolation

Fig. 7 shows temperatures at the PV front surface for all
PCMs in system A compared with the reference at
—750 W/m? insolation and 20 & 1 °C ambient temperature.
After 4 h the temperature deviation for RT20, SP22, CL,
CP and CaCl, was 4°C 7.5°C, 8°C, 9°C, and 10°C
respectively. The duration of temperature deviation was
6h, 8h, 9h, 10h and 12 h for RT20, CL, SP22, CP and
CaCl, respectively. RT20 showed the smallest temperature

——Reference
—+—RT20, Ty, =21.23°C, Hf= 240 kl/kg, k = 0.2 W/m K

- C-L,T;,=20.78 °C, Hf= 171.96 kJ/kg, k = 0.139 W/m K

—— C-P, T=22.33°C, Hf= 197.07 kl/kg, k = 0.143 W/m K
—— CaClp, T=29.17°C, Hf=213.12 kJ/kg, k = 1.09 W/m K
—e—SP22, T;;;=22.97°C, Hf= 182 kl/kg, k = 0.6 W/m K

PV front surface temperature(°C)

20 T T T T T 1
0 2 4 6 8 10 12

Time (hour)

Fig. 7. Temperature evolution on front surface of PV in system A at an
insolation of 750 W/m2 and ambient temperature of 20 & 1 °C.

deviation and shortest duration of the deviation while
CaCl, showed the largest temperature deviation and the
longest duration of the deviation. Each PCM showed sim-
ilar behaviour in systems B, C and D however they showed
lower temperature deviation and the duration of the devia-
tion than in system A.

The duration for which each PCM maintained PV tem-
perature 10 °C below reference temperature are illustrated
in Fig. 8. Comparing systems A, B, C and D, the tempera-
ture reduction of 10°C for the longest duration was
achieved with system A for all PCMs. Similarly comparing
different PCMs, CaCl, maintained the temperature reduc-
tion of 10 °C for the longest duration (3.5 h) followed by
SP22 (2.7h) C-P and C-L (2.5 h) and RT20 (2 h). High
thermal conductivity PCMs, CaCl, and SP22 performed
better at 750 W/m” than low thermal conductivity PCMs,
C-P and C-L, opposite to what was observed at insolation
of 500 W/m?. It can be concluded that at intermediate inso-
lation the optimum performance was achieved with the
combination of high thermal conductivity PCMs with high
thermal conductivity container A.

3.4. Thermal regulation at high insolation

Fig. 9 shows temperatures at the PV front surface for all
PCMs in system A compared with the reference at 1000 W/
m? insolation and 20 + 1 °C ambient temperature. After
4 h the temperature deviation for RT20, CL, SP22, CaCl,
and CP was 3.5°C, 4°C, 7.5°C, 11 °C, and 12 °C respec-
tively. The duration of temperature deviation was 5.5 h,
6h,9h,9.5hand 11 h for RT20, CL, SP22, CP and CaCl,
respectively. RT20 showed the smallest temperature devia-
tion and shortest duration of the deviation while C-P
showed the largest temperature deviation and CaCl,
showed the longest duration of temperature deviation.
Similar PCM behaviour was observed in containers B, C
and D, however each PCM showed lower temperature reg-

U777 System A B System B = System C

Z

System D

N

[T

Time at 10 °C below reference temperature (hour)

Q

A

2 1L

&

W [T

T
RT20 C-L

8o
Z"U

Fig. 8. Duration for which PCM maintained PV front surface tempera-
ture 10 °C below the reference temperature in systems A, B, C and D at
insolation of 750 W/m? and ambient temperature of 20 + 1 °C.
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—+—RT20, Ty, =21.23°C, Hf= 240 kJ/kg, k = 0.2 W/m K

—— C-L,T;=20.78°C, Hf= 171.96 kJ/kg, k = 0.139 W/m K
—— C-P, T=22.33°C, Hf=197.07 kl/kg, k = 0.143 W/m K
—— CaClp, T=29.17°C, Hf=213.12 kJ/kg, k = 1.09 W/m K
—e—SP22, Ty=22.97°C, Hf= 182 kJ/kg, k =0.6 W/m K
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Fig. 9. Temperature evolution on PV front surface in system A at an
insolation of 1000 W/m? and ambient temperature of 20 + 1 °C.
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Fig. 10. Duration for which PCM maintained PV front surface temper-
ature 10 °C below the reference temperature in systems A, B, C and D at
an insolation of 1000 W/m? and ambient temperature of 20 + 1 °C.

ulation and shorter duration of temperature deviation than
in container A.

—— System A —— System B

The duration for which each PCM maintained PV front
surface temperature 10 °C below reference temperature are
illustrated in Fig. 10. Comparing containers A, B, C and D,
container A achieved the longest duration of the tempera-
ture reduction for all PCMs. Comparing different PCMs,
CaCl, achieved the longest duration of the temperature
reduction (5 h) followed by C-P (4.2 h), C-L and SP22
(3h) and RT20 (2.6 h) in system A. It can be concluded
that at high insolation, the combination of low thermal
conductivity PCM (C-P) with high thermal conductivity
system A achieved the largest amount of temperature
reduction for shorter duration while the combination of
high thermal conductivity PCM (CaCl,) with high thermal
conductivity system A achieved the longest duration of
temperature reduction with smaller amount of temperature
reduction.

3.5. Effect of thermal conductivity of container material of
PVIPCM system on PCM performance

To determine the best container type two PCMs with
different thermal conductivities, C-P and CaCl, were char-
acterized in same size systems, A and B with different ther-
mal conductivities at 1000 W/m? insolation and 20 + 1 °C
ambient temperature. Temperatures at PV front surface
using C-P and CaCl, in system A and B are illustrated in
Fig. 11a and b respectively. System A maintained lower
temperatures at the PV front surface than system B for
both C-P and CaCl, however with C-P the temperature
difference in A and B was higher (~5 °C) than with CaCl,
(~1°QC).

To compare C-P and CaCl, in same system A, temper-
atures at PV front surface are presented in Fig. 1lc at
1000 W/m? insolation and 20 + 1 °C ambient temperature.
C-P maintained lower PV temperature than CaCl, for ini-
tial ~5h in low PV temperature range while CaCl, main-
tained lower temperature than C-P for rest of the
duration of experiment at high PV temperature range. It
can be concluded that the lower thermal conductivity
PCM (C-P) with lower melting point performs better at
lower PV operating temperature while higher conductivity
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Fig. 11. Temperature at PV front surface using (a) C-P in system A and B (b) CaCl, in system A and B (c) CP and CaCl, in system A at an insolation of

1000 W/m? and ambient temperature of 20 + 1 °C.
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PCM (CaCl,) with higher melting point performs better at
higher PV operating temperature.

3.6. Determination of I for different PCMs

As described in Eq. (3) I' is a function of (1) deviation of
PV temperature with PCM (Tpypcm) from the reference
temperature (7py) and (ii) the duration of the temperature
deviation. Appendix C shows that initially there was no
deviation of Tpypcym from Tpy, however, as the PCM com-
menced melting, this deviation increased and reached its
maximum (14-18 °C in 50 min) where it stabilized for up
to 30 min. After the PCM in direct contact with the PV
back surface had completed melting and started sensible
heating (with a rise in temperature), the adjacent PCM
layer still continued to melt and absorb latent heat at con-
stant temperature. This combination of latent and sensible
heating of PCM raised the PCM temperature resulting in a
decrease in the temperature difference from the reference
(10-14 °C in 100 min). As the melt fraction of PCM contin-
ued to increase, the temperature difference continued to
decrease. After the PCM had all melted the temperature
of PCM and PV front surface started increasing with a lar-
ger gradient, so there was the decrease in temperature devi-
ation until Tpypcym equalled Tpy and the deviation became
zero in ~11 h.

CaCl, and C-L achieved the largest temperature devia-
tion of ~18 °C followed by SP22 and C-P (~16.5 °C), and
RT20 (~14 °C). PCM CaCl, maintained the temperature
deviation for the longest duration (~11h) followed by
C-L (~9.5h), SP22 (~9h) C-L (~6h) and RT20
(~4.5h). A similar trend was observed with PCM in
systems B, C and D. To quantify I" for all PCMs in each
system, integrals of the temperature deviation at 500
W/m?, 750 W/m? and —1000 W/m’ insolation and
20 £+ 1 °C ambient temperature were plotted illustrated in
Appendices D, E and F respectively.

Appendix D illustrates that at 500 W/m? system A
achieved the maximum I value of all PCMs followed by
system C, B and D while C and B achieved similar I" val-
ues. Since high thermal conductivity system C required 3/
5 PCM mass compared to low thermal conductivity system
B, it suggests that 2/5 mass of PCM can be saved by choos-
ing high thermal conductivity system at low insolation.
Comparing PCMs, CaCl, achieved the highest I followed
by C-P, SP22, C-L and RT20 respectively.

Appendix E illustrates that system A achieved the high-
est I' at 750 W/m? followed by B, C and D. Although all
PCMs showed a maximum I” for container A, they differed
in containers B and C. C-P and C-L gave a marginally
higher I' in container C than B while CaCl,, SP22 and
RT 20 gave higher I' in container B than C. Since container
C has higher thermal conductivity than container B, it sug-
gests that it is more appropriate for use with low thermal
conductivity PCMs (i.e., C-P and C-L which perform bet-

ter in C than B) than for higher thermal conductivity
PCMs (i.e., CaCl,, SP22 and RT20 which performed better
in B than C). Comparing PCMs, CaCl, achieved the high-
est I' followed by C-P, C-L, SP22 and RT20.

Appendix F illustrates that system A achieved the high-
est I' followed by, B, C and D respectively at 1000 W/m?.
All PCMs showed higher I' in container B than in con-
tainer C. This was opposite to what was observed at
—500 W/m? where all PCMs achieved higher I' in container
C than in container B. It can be concluded that although
the increased PV/PCM thermal conductivity yielded higher
I' for all PCMs at high insolation (as container A with
higher thermal conductivity achieved the highest I'), how-
ever the improvement at 1000 W/m? was less than that
observed at 500 W/m?.

4. Conclusion

Five PCMs evaluated at three insolations showed that
thermal regulation performance of a PCM depends on
the thermal mass of PCM and thermal conductivity of both
PCM and the over all PV/PCM systems. Comparing
PCMs, the salt hydrate CaCl, achieved highest temperature
reduction at most of the insolations. Comparing PV/PCM
systems, system A yielded highest temperature reduction
and I’ with all PCMs. Thermal conductivity of the PCM
container had stronger impact on performance of low ther-
mal conductivity eutectics of fatty acids, C-L and C-P.
Comparing PCMs the best results were obtained with C—
P and CacCl, that maintained a maximum of 18 °C temper-
ature reduction at PV front surface for 30 min, while CaCl,
maintained a 10 °C temperature reduction for the longest
duration of 5h at —1000 W/m? insolation in system A.
Although the results achieved are encouraging however
further temperature reduction is necessary to make the
PCM financially viable. In a recent unpublished work by
authors, increased temperature reduction for longer time
durations have been achieved using thermally conductive
metallic fins. The proposed PVPCM systems have been
reported financially viable with C-P and CaCl,-6H,O in
hot climates at ambient temperature around 34 °C and
solar radiation intensity of 1000 W/m?.
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Appendix A Appendix C

Temperature evolutions in reference PV and PV with Temperature difference from reference for RT20, C-L,
PCM. C-P, CaCl, and SP22 at an insolation of 1000 W/m? and

60— ambient temperature of 20 4+ 1 °C for system A.

20 -
—— RT20 —*— C-L —=— C-P—%— CaCl, —#— SP22
50 4
Reference PV temperature

g evolution R
[0} . . O
5 404 PV temperature evolution with [
© PCM Z
[}
s 2
£ >
e Thermal regulation enhancement due Hlm

304 to PCM >

a9
H
20 T T T T T T T T T T T T T 1
0 100 200 300 400 500 600 700
1

Time (min)

12
Time (hour)

Appendix B Appendix D.  Thermal regulation potential for all PCM

o o ) ) at 500 W/m” and ambient temperature of 20 & 1 °C in
Temperature deviation curve divided into n discrete systems A, B, C and D.

measurements to obtain thermal regulation enhancement,

I' for a PCM. P27 System A BZER System B — System C System D
5000 Zz
A 4000 = —
M S 7 B =
| =_,,___=_\>>> = H — 7
Pre g 3000 — —
> - — —
9 — — — _
= — — -— —
Temperature z 2000 7 — — ] |
(°C) = = — — — 1
= — — — — —
Tr 1000 — = — — =
=1 n=i l n=n-1 [ 1::11 ‘ 0 — — -~
n= = RT20 cL c-P CaCl2 SP22
Time (hours) PCM

Please cite this article in press as: Hasan, A. et al. Evaluation of phase change materials for thermal regulation enhancement of building integrated
photovoltaics. Sol. Energy (2010), doi:10.1016/j.solener.2010.06.010



http://dx.doi.org/10.1016/j.solener.2010.06.010

A. Hasan et al. | Solar Energy xxx (2010) xxx—xxx 11

Appendix E.  Thermal regulation potential for all PCM
at 750 W/m? in systems A, B, C and D.
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Appendix F.  Thermal regulation potential for all PCM
at 1000 W/m? in systems A, B, C and D.
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