Evaluation of Phase Change Materials for Thermal Regulation Enhancement of Building Integrated Photovoltaics

A. Hasan
Sarah McCormack
Technological University Dublin

M. Huang
Brian Norton
Technological University Dublin, brian.norton@tudublin.ie

Follow this and additional works at: https://arrow.tudublin.ie/dubenart

Recommended Citation

This Article is brought to you for free and open access by the Dublin Energy Lab at ARROW@TU Dublin. It has been accepted for inclusion in Articles by an authorized administrator of ARROW@TU Dublin. For more information, please contact yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie, brian.widdis@tudublin.ie.

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License
Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics

A. Hasan a,*, S.J. McCormack b, M.J. Huang c, B. Norton a

a Dublin Energy Lab., Focas Institute, School of Physics, Dublin Institute of Technology, Kevin St., Dublin 8, Ireland
b Department of Civil, Structure and Environmental Engineering, Trinity College Dublin, Dublin 1, Ireland
c Centre for Sustainable Technologies, University of Ulster, Newtownabbey, N. Ireland, BT370QB, UK

Received 22 September 2009; received in revised form 20 May 2010; accepted 21 June 2010

Communicated by: Associate Editor Harvey Bryan

Abstract

Regulating the temperature of building integrated photovoltaics (BIPV) using phase change materials (PCMs) reduces the loss of temperature dependent photovoltaic (PV) efficiency. Five PCMs were selected for evaluation all with melting temperatures ~25 ± 4 °C and heat of fusion between 140 and 213 kJ/kg. Experiments were conducted at three insolation intensities to evaluate the performance of each PCM in four different PV/PCM systems. The effect on thermal regulation of PV was determined by changing the (i) mass of PCM and (ii) thermal conductivities of the PCM and PV/PCM system. A maximum temperature reduction of 18 °C was achieved for 30 min while 10 °C temperature reduction was maintained for 5 h at ~1000 W/m² insolation.

© 2010 Elsevier Ltd. All rights reserved.

Keywords: Phase change materials (PCM); Building integrated photovoltaics (BIPV); Thermal regulation enhancement

1. Introduction

1.1. Thermal management of photovoltaics

The operating temperature of PV can be as high as 80 °C at higher solar radiation intensities that raises the intrinsic carrier concentration in crystalline silicon photovoltaic (PV) cells causing a higher saturation current and lower voltage of the cells (Mazer, 1997). The temperature induced increase in current is less than the concomitant decrease in voltage yielding a net decrease in the power output of the PV (Radziemska and Klugman, 2002). Measuring the power-voltage characteristics of PV at different temperatures enables a temperature-dependent power loss coefficient to be determined (Raziemska, 2003). Crystalline silicon PV operating above 25 °C typically, shows a temperature-dependent power decrease with a coefficient of between 0.4%/K (Weakliem and Redfield, 1979; Krauter, 1994) and 0.65%/K (Raziemska, 2003). Overall integration of PV into buildings has been shown to further rise PV operating temperature to such an extent that there has been reported a 9.3% further decreased power output compared to nonintegrated PV (Krauter et al., 1999). This emphasizes a need for effective temperature regulation of building integrated photovoltaics (BIPV). Different heat removal techniques employed to maintain PV at lower temperatures are summarised in Table 1.
In non BIPV systems, passive heat removal from PV is usually effected by buoyant circulation of air in a duct behind the PV (Yang et al., 1994; Brinkworth, 2000a, b). Heat removal from the PV depends on depth to hydraulic diameter ratio (l/D) of the duct (Brinkworth and Sandberg, 2006). The maximum heat removal has been shown to occur at a duct l/D of 20, resulting minimum temperature (∼34 °C) in a PV subjected to 50 W/m² heat flux with 5 m duct length (Brinkworth, 2006).

In BIPV systems passive heat removal also relies on buoyant circulation of air in an opening or air channel instead of a duct behind the PV. CFD modelling of natural ventilation in an atrium-integrated PV suggested that a properly located opening close to the roof can induce air flow in the room and regulate PV operating temperature (Gan and Riffat, 2004). A theoretical analysis of a natural ventilated façade integrated PV with an opening behind the PV has been carried out in three locations, Stockholm, London and Madrid. A maximum 5 °C temperature reduction in monthly temperature due to natural ventilation yielded an annual 2.5% increase in electrical output of the PV (Yun et al., 2007). Improvements in natural ventilation PV façade have been achieved by suspending a metal sheet in the air channel, inserting fins and optimizing the distance between the air duct walls (Tonui and Tripanagnostopoulos, 2007; Fossa et al., 2008).

Hydraulic cooling of PV relies on water at front or back surface of the PV. Flowing water on the front surface of PV has been shown to decrease cell temperature up to 22 °C along with decreasing reflection losses yielding an overall 8–9% increase in PV electrical power output (Kräuter, 2004). Water flow on the back of a façade integrated PV/T has been modelled to arrive at an optimum thermal and electrical performance. This was 0.05 kg/s for a particular system in the weather conditions of Hefei (China) at insulations of 405 W/m² and 432 W/m² (Ji et al., 2006).

1.2. Phase change materials for thermal management applications

Solid–liquid phase change materials have been used as temperature regulators in different applications (Lu, 2000; Tan and Fok, 2007; Kandasamy et al., 2006; Wang et al., 2007; Pasupathy et al., 2006, 2008; Sabbah et al., 2008; Pasupathy and Velraj, 2008; Weinstein et al., 2008; Fleischer et al., 2008; Khateeb et al., 2004a, b). A one dimensional heat transfer model was developed to study the cooling effect produced by integrated PCM in electronic packaging and a design optimization was reported (Lu, 2000).

The cooling effect produced by a PCM heat storage unit (HSU) integrated into a mobile phone was studied numerically. It was concluded that use of such systems in mobile phones was effective at higher heat fluxes (Tan and Fok, 2007). The use of PCM contained in portable electronics packaging was studied numerically and validated experimentally. The effect of heat dissipation rate, the thermal resistance of packaging and orientation of the packaging to gravity on the cooling performance of PCM was studied. It was concluded that heat dissipation rate and thermal resistance of packaging has important while orientation of packaging to gravity has trivial effect on cooling performance of PCM (Kandasamy et al., 2006; Wang et al., 2007). PCMs have been used as temperature regulator to maintain human comfort temperature in built environment to store heat during day time or coolness during night time to reduce the temperature swing (Pasupathy et al., 2006; Sabbah et al., 2008; Pasupathy and Velraj, 2008).

An important problem related to the PCM restricting efficient heat removal is their low thermal conductivity. Different techniques have been employed to improve the thermal conductivity of PCM (Pasupathy et al., 2008; Weinstein et al., 2008; Fleischer et al., 2008; Khateeb et al., 2004a, b). The PCM integrated in aluminium foam were investigated for the cooling of Li-ion battery in a scooter with arrangement of aluminium foam and fins to
<table>
<thead>
<tr>
<th></th>
<th>Natural air circulation</th>
<th>Forced air circulation</th>
<th>Hydraulic cooling</th>
<th>Heat pipes</th>
<th>Thermoelectric (Peltier) cooling</th>
<th>PCM thermal management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantages</td>
<td>low initial cost</td>
<td>higher heat transfer rates compared to natural circulation of air</td>
<td>independent of wind direction and speed</td>
<td>passive heat exchange</td>
<td>passive heat exchange</td>
<td>higher heat transfer rates compared to both forced air circulation and forced water circulation</td>
</tr>
<tr>
<td></td>
<td>no maintenance</td>
<td>higher mass flow rates than natural air circulation achieving high heat transfer rates</td>
<td>higher thermal conductivity and heat capacity of water compared to air</td>
<td>low cost</td>
<td>noise Free</td>
<td>higher heat absorption due to latent heating</td>
</tr>
<tr>
<td></td>
<td>easy to integrate</td>
<td>higher temperature reduction compared to natural air circulation</td>
<td>higher temperature reduction</td>
<td>easy to integrated</td>
<td>small size</td>
<td>isothermal natural of heat removal</td>
</tr>
<tr>
<td></td>
<td>longer life</td>
<td>high initial cost for fans, ducts to handle large mass flow rates</td>
<td>higher initial cost due to pumps</td>
<td>low maintenance costs</td>
<td>no noise</td>
<td>no electricity consumption</td>
</tr>
<tr>
<td></td>
<td>no noise</td>
<td>high electrical consumption</td>
<td>higher maintenance cost compared to forced air circulation</td>
<td>solid state heat transfer</td>
<td>passive heat exchange</td>
<td>passive heat exchange</td>
</tr>
<tr>
<td></td>
<td>no electricity consumption</td>
<td>maintenance cost</td>
<td>nois system</td>
<td>no maintenance cost</td>
<td>on demand heat delivery</td>
<td></td>
</tr>
<tr>
<td></td>
<td>passive heat exchange</td>
<td>difficult to integrate compared to natural air circulation system</td>
<td>higher electricity consumption compared to forced air circulation, less life compared to forced air circulation due to corrosion</td>
<td>no maintenance cost</td>
<td>higher PCM cost compared to both</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>heat transfer depends on ambient conditions</td>
<td>reliability issues costly for PV cooling</td>
<td>some PCMs are toxic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>active systems</td>
<td>no heat storage capacity</td>
<td>some PCMs have fire safety issues</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>require electricity</td>
<td>requires efficient heat removal from warmer side for effective cooling</td>
<td>some PCMs are strongly corrosive</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PCMs may have disposal problem after their life cycle is complete</td>
<td></td>
</tr>
<tr>
<td>Disadvantages</td>
<td>low heat transfer rates</td>
<td>accumulation of dust in inlet grating further reducing heat transfer</td>
<td>dependent on wind direction and speed</td>
<td>heat transfer depends on ambient conditions</td>
<td>some PCMs are toxic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>low thermal conductivity and heat capacity of air</td>
<td>low thermal conductivity and heat capacity of air</td>
<td>active systems</td>
<td>some PCMs have fire safety issues</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>low mass flow rates of air</td>
<td>low mass flow rates of air</td>
<td>require electricity</td>
<td>some PCMs are strongly corrosive</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>limited temperature reduction</td>
<td>limited temperature reduction</td>
<td>for PV cooling</td>
<td>PCMs may have disposal problem after their life cycle is complete</td>
<td></td>
</tr>
</tbody>
</table>
overcome low PCM thermal conductivity. It was observed that PCM integrated in aluminium foam achieved higher cooling compared to cooling by aluminium foam only and the cooling by PCM only (Pasupathy et al., 2008; Weinstein et al., 2008). PCM was used in a graphite-matrix to improve heat removal by increasing thermal conductivity and its performance was compared with active air blow cooling to cool Li-ion battery. It was concluded that at high temperatures and battery discharge rates, the passive PCM-graphite cooling was more effective than active air cooling (Fleischer et al., 2008). Graphite nanofibers were embedded into PCM at various weight ratios to enhance their thermal conductivity. A decrease in melting time and temperature in the PCM with increasing graphite nanofibers loading was observed (Khateeb et al., 2004a, 2004b).

PCMs were first evaluated experimentally for BIPV temperature regulation by Huang et al. (2004). The PCM was contained in an aluminium box with its front surface coated with a solar selective absorbing material to mimic a PV cell attached to its front. Temperature distributions on the front surface and inside a paraffin wax RT25 PCM were studied with and without metallic fins at $\sim 750 \text{ W/m}^2$ insolation. 2D and 3D finite volume heat transfer simulation models were developed to study PCM performance for BIPV thermal regulation. Model predictions were found in good agreement with experimental results (Huang et al., 2006a,b). In recent work PV module was attached to a rectangular aluminium box containing eutectic mixture of capric–lauric acid (C–L) which were irradiated at 415 W/m^2. A 10°C temperature reduction was achieved for ~ 6 h compared to a PV attached to the box without PCM (Hasan et al., 2007).

1.3. Thermal regulation enhancement using PCM

The PCM can remove thermal energy available at PV and maintain lower temperature during melting. Heat removed by PCM is sum of the sensible heat absorbed when its temperature rises from ambient temperature to its melting point, the latent heat absorbed during melting and the sensible heat from end of melting until it reaches a peak equilibrium temperature. This can be represented by Eq. (1).

$$Q = mC_{ps}(T_m - T_i) + mL + mC_{pl}(T_f - T_m)$$ \hspace{1cm} (1)

The difference between temperature evolution of a reference PV system without PCM and PV system with PCM as shown in Appendix A is a measure of the total thermal regulation enhancement, Γ provided using PCM. Mathematically Γ for a particular PCM at constant insolation and ambient temperature is obtained by subtracting the integral of PV temperature evolution with PCM (T_{PVPCM}) with time from the integral of reference PV temperature evolution (T_{PV}) with time as shown in Appendix B, i.e.

$$\Gamma = \int_{t=0}^{t_{end}} T_{PV} \, dt - \int_{t=0}^{t_{end}} T_{PVPCM} \, dt$$ \hspace{1cm} (2)

when the test conditions are identical for both the PV and the PV/PCM systems, the Eq. (2) becomes:

$$\Gamma = \int_{t=0}^{t_{end}} (T_{PV} - T_{PVPCM}) \, dt$$ \hspace{1cm} (3)

while for n discrete measurements of T_{PV} and T_{PVPCM} under identical conditions, the thermal regulation enhancement becomes

$$\Gamma = \sum_{i=0}^{n} (T_{PV,i} - T_{PV,PCM,i})$$ \hspace{1cm} (4)

2. Experimental procedure

In this work, the five PCM presented in Table 2 were selected with melting points $25 \pm 4 \text{ °C}$ and heats of fusion 140–213 kJ/kg. The thermophysical properties of melting onset, melting peak, heat of fusion and super cooling were measured with differential scanning calorimetry (DSC) and a temperature history method (Hasan et al., 2008).

2.1. Fabrication of experimental system

Polycrystalline silicon PV cells with dimensions of $10 \text{ cm} \times 10 \text{ cm} \times 0.05 \text{ cm}$ were encapsulated between two

Table 2

Thermophysical properties of selected PCMs studied (Hasan et al., 2007).

<table>
<thead>
<tr>
<th>PCM</th>
<th>Paraffin wax (RT20)</th>
<th>Eutectic mixture of capric–lauric acid (C–L)</th>
<th>Eutectic mixture of capric–palmitic acid (C–P)</th>
<th>Pure salt hydrate (CaCl$_2$·6H$_2$O)</th>
<th>Commercial blend (SP22)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting onset, °C</td>
<td>21.23</td>
<td>20.78</td>
<td>22.33</td>
<td>29.17</td>
<td>22.97</td>
</tr>
<tr>
<td>Melting peak, °C</td>
<td>25.73</td>
<td>24.66</td>
<td>26.4</td>
<td>29.66</td>
<td>24.6</td>
</tr>
<tr>
<td>Heat of fusion, kJ/kg</td>
<td>140.3</td>
<td>171.98</td>
<td>196.07</td>
<td>213.12</td>
<td>182</td>
</tr>
<tr>
<td>Thermal conductivity, W/m K</td>
<td>0.2</td>
<td>0.139</td>
<td>0.143</td>
<td>1.09</td>
<td>0.6</td>
</tr>
<tr>
<td>Density solid, kg/l</td>
<td>0.88</td>
<td>0.88</td>
<td>0.883</td>
<td>1.71</td>
<td>1.49</td>
</tr>
<tr>
<td>Density liquid, kg/l</td>
<td>0.77</td>
<td>0.863</td>
<td>0.84</td>
<td>--</td>
<td>1.43</td>
</tr>
<tr>
<td>Volumetric expansion, l/kg%</td>
<td>14</td>
<td>2.3</td>
<td>4.8</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Sub-cooling, °C</td>
<td>Negligible</td>
<td>Negligible</td>
<td>Negligible</td>
<td>5</td>
<td>Negligible</td>
</tr>
<tr>
<td>Specific heat capacity (solid), kJ/kg K</td>
<td>1.8–2.4</td>
<td>N/A</td>
<td>N/A</td>
<td>1.4</td>
<td>2.5</td>
</tr>
</tbody>
</table>

sheets of 3 mm thick transparent perspex to simulate a cell size section of a PV module. Four rectangular containers, as listed in Table 3, were fabricated and a PV cell was attached to the front of each container as illustrated in Fig. 1. Different container materials and container widths were chosen to observe the effect of (i) heat conductive (A and C) compared with heat isolating (B and D) container walls (ii) thermal mass of PCM on PV thermal regulation at different insulations.

Systems A and C were fabricated from high thermal conductivity (237 W/m K) aluminium enabling rapid heat removal from PV into PCM but had less heat retention due to loss of heat to ambient through their conductive surfaces. Systems B and D fabricated from perspex (MARC-RYL CLEAR from Vink Plastics) had very low thermal conductivity (0.189 W/m K) thus enabling high heat retention due to thermally insulating side and back perspex plates preventing heat loss to ambient but had slow heat removal from PV into PCM.

2.2. Data acquisition

A reference experiment was conducted irradiating the PV section with a GR262 solar simulator producing low (500 W/m²), intermediate (750 W/m²) and high (1000 W/m²) insulations at an ambient temperature of 20 ± 1 °C.

A Kipp and Zonen CM6B pyranometer measured insolation with a maximum measured spatial intensity variation of ±2% over the PV front surface. Temperature at the PV front surface was measured with five calibrated T-type copper-constantan thermocouples with maximum deviation of ±0.2 °C placed at the locations illustrated in Fig. 2. Experiments were conducted with each of the selected PCMs contained in systems A, B, C and D under the same test conditions as the reference (i.e., 500 W/m², −750 W/m² and −1000 W/m² at 20 ± 1 °C) with the experimental setup shown in the Fig. 3.

3. Results and discussion

3.1. Reference temperatures

Fig. 4 shows the reference system temperature evolution at the PV front surface for all insulations without PCM. For each experiment the temperature increased rapidly and reached a steady state when heat input to PV due to irradiation equaled the heat lost by PV to ambient primarily due to convection. Reference steady state temperatures, their corresponding insulations and the time elapsed to reach them were, 45 °C at 500 W/m² reached in 80 min, 51 °C at 750 W/m² reached in 40 min and 57 °C at 1000 W/m² reached in 34 min.

3.2. Thermal regulation at low insolation

Fig. 5 presents the temperature on the PV front surface for all PCMs in system A compared with the reference system at 500 W/m² insolation and 20 ± 1 °C ambient temperature. The reference system temperature reached steady state at 45 °C in 80 min, the temperature rise with PCM was also rapid up to ~30 °C due to sensible heating of solid PCM by conduction heat transfer showing little deviation from the reference system. Corresponding to 30 °C at PV front surface, the temperature of PCM layer in direct contact with the PV back surface reached its melting point and the PCM started melting and absorbing PV thermal energy as latent heat. The gradient of temperature rise decreased and the temperature at the PV deviated from the reference. After intimate PCM layer had melted, the combination of convection heat transfer in melted PCM and conduction heat transfer in solid PCM continued. The convective heat transfer in melted PCM continued increasing as the melt fraction increased resulting in increased sensible heating.

Table 3

<table>
<thead>
<tr>
<th>PV/PCM systems</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Container material</td>
<td>Aluminium</td>
<td>Perspex</td>
<td>Aluminium</td>
<td>Perspex</td>
</tr>
<tr>
<td>Thermal conductivity of material (W/m K)</td>
<td>237</td>
<td>0.189</td>
<td>237</td>
<td>0.189</td>
</tr>
<tr>
<td>Container width (cm) internal</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>External wall thickness (mm)</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>
of the PCM. Heat absorption continued until all of the PCM had melted resulting in convection dominant heat transfer and gradient of the temperature rise started increasing sharply until the PV temperature equaled the reference system temperature at the end of the experiment.

The degree and duration of deviation of PV temperature evolution using PCM from that of the reference system is used to quantify the thermal regulation enhancement provided by each PCM. After 4 h the deviation for RT20, SP22, CL, CaCl2 and CP was 4.6 °C, 6.5 °C, 7 °C, 7.5 °C and 8 °C respectively. The duration of the deviation is the time in which temperature on PV containing PCM equaled the reference temperature which is 6.5 h, 9 h, 9.5 h, 11 h and 13 h for RT20, CL, SP22, CP and CaCl2 respectively. RT 20 showed the smallest deviation and shortest duration of deviation while C–P showed the largest deviation and CaCl2 showed the longest duration of deviation. Similar trend was observed for systems B, C and D however each PCM showed lower thermal regulation than in system A.

The duration that each PCM maintained a PV temperature of 10 °C below the reference temperature is illustrated in Fig. 6. All the PCM in system A maintained 10 °C temperature reduction for a longer duration compared to the same size system B. Similarly PCM in system C maintained a temperature reduction for a longer duration than the same size system D. It can be concluded that at low insolation the PCM performed better in high thermal conductivity containers (A and C) than in low thermal conductivity containers (B and D).

Comparing PCMs, the fatty acids C–L and C–P maintained 10 °C temperature deviation from the reference temperature for the longest duration (2.5 h), followed by salt hydrates SP22 and CaCl2 (~2.25 h) and paraffin wax RT20 (~1.5 h). The disadvantage of fatty acids is their low thermal conductivities (0.139–0.143 W/m K) compared to salt hydrates CaCl2 (1.09 W/m K). Since fatty acids per-
formed better than salt hydrates at \(-500\) W/m\(^2\) in system A, it can be concluded that at low insolation, combination of low thermal conductivity PCMs with high thermal conductivity containers are better than the combination of high thermal conductivity PCM with high thermal conductivity containers.

3.3. Thermal regulation at intermediate insolation

Fig. 7 shows temperatures at the PV front surface for all PCMs in system A compared with the reference at \(-750\) W/m\(^2\) insolation and \(20 \pm 1^\circ\)C ambient temperature. After 4 h the temperature deviation for RT20, SP22, CL, CP and CaCl\(_2\) was \(4^\circ\)C, \(7.5^\circ\)C, \(8^\circ\)C, \(9^\circ\)C, and \(10^\circ\)C respectively. The duration of temperature deviation was 6 h, 8 h, 9 h, 10 h and 12 h for RT20, CL, SP22, CP and CaCl\(_2\) respectively. RT20 showed the smallest temperature deviation and shortest duration of the deviation while CaCl\(_2\) showed the largest temperature deviation and the longest duration of the deviation. Each PCM showed similar behaviour in systems B, C and D however they showed lower temperature deviation and the duration of the deviation than in system A.

The duration for which each PCM maintained PV temperature \(10^\circ\)C below reference temperature are illustrated in Fig. 8. Comparing systems A, B, C and D, the temperature reduction of \(10^\circ\)C for the longest duration was achieved with system A for all PCMs. Similarly comparing different PCMs, CaCl\(_2\) maintained the temperature reduction of \(10^\circ\)C for the longest duration (3.5 h) followed by SP22 (2.7 h) C–P and C–L (2.5 h) and RT20 (2 h). High thermal conductivity PCMs, CaCl\(_2\) and SP22 performed better at \(750\ W/m^2\) than low thermal conductivity PCMs, C–P and C–L, opposite to what was observed at insolation of \(500\ W/m^2\). It can be concluded that at intermediate insolation the optimum performance was achieved with the combination of high thermal conductivity PCMs with high thermal conductivity container A.

3.4. Thermal regulation at high insolation

Fig. 9 shows temperatures at the PV front surface for all PCMs in system A compared with the reference at \(1000\ W/m^2\) insolation and \(20 \pm 1^\circ\)C ambient temperature. After 4 h the temperature deviation for RT20, CL, SP22, CaCl\(_2\) and CP was \(3.5^\circ\)C, \(4^\circ\)C, \(7.5^\circ\)C, \(11^\circ\)C, and \(12^\circ\)C respectively. The duration of temperature deviation was 5.5 h, 6 h, 9 h, 9.5 h and 11 h for RT20, CL, SP22, CP and CaCl\(_2\) respectively. RT20 showed the smallest temperature deviation and shortest duration of the deviation while C–P showed the largest temperature deviation and CaCl\(_2\) showed the longest duration of temperature deviation. Similar PCM behaviour was observed in containers B, C and D, however each PCM showed lower temperature reg.

The duration for which each PCM maintained PV front surface temperature 10 °C below reference temperature are illustrated in Fig. 10. Comparing containers A, B, C and D, container A achieved the longest duration of the temperature reduction for all PCMs. Comparing different PCMs, CaCl$_2$ achieved the longest duration of the temperature reduction (5 h) followed by C–P (4.2 h), C–L and SP22 (3 h) and RT20 (2.6 h) in system A. It can be concluded that at high insolation, the combination of low thermal conductivity PCM (C–P) with high thermal conductivity system A achieved the largest amount of temperature reduction for shorter duration while the combination of high thermal conductivity PCM (CaCl$_2$) with high thermal conductivity system A achieved the longest duration of temperature reduction with smaller amount of temperature reduction.

3.5. Effect of thermal conductivity of container material of PV/PCM system on PCM performance

To determine the best container type two PCMs with different thermal conductivities, C–P and CaCl$_2$ were characterized in same size systems, A and B with different thermal conductivities at 1000 W/m2 insolation and 20 ± 1 °C ambient temperature. Temperatures at PV front surface using C–P and CaCl$_2$ in system A and B are illustrated in Fig. 11a and b respectively. System A maintained lower temperatures at the PV front surface than system B for both C–P and CaCl$_2$ however with C–P the temperature difference in A and B was higher (~5 °C) than with CaCl$_2$ (~1 °C).

To compare C–P and CaCl$_2$ in same system A, temperatures at PV front surface are presented in Fig. 11c at 1000 W/m2 insolation and 20 ± 1 °C ambient temperature. C–P maintained lower PV temperature than CaCl$_2$ for initial ~5 h in low PV temperature range while CaCl$_2$ maintained lower temperature than C–P for rest of the duration of experiment at high PV temperature range. It can be concluded that the lower thermal conductivity PCM (C–P) with lower melting point performs better at lower PV operating temperature while higher conductivity

![Fig. 11](image-url)
PCM (CaCl$_2$) with higher melting point performs better at higher PV operating temperature.

3.6. Determination of Γ for different PCMs

As described in Eq. (3) Γ is a function of (i) deviation of PV temperature with PCM (T_{PVPCM}) from the reference temperature (T_{PV}) and (ii) the duration of the temperature deviation. Appendix C shows that initially there was no deviation of T_{PVPCM} from T_{PV}, however, as the PCM commenced melting, this deviation increased and reached its maximum (14–18 °C in 50 min) where it stabilized for up to 30 min. After the PCM in direct contact with the PV back surface had completed melting and started sensible heating (with a rise in temperature), the adjacent PCM layer still continued to melt and absorb latent heat at constant temperature. This combination of latent and sensible heating of PCM raised the PCM temperature resulting in a decrease in the temperature difference from the reference (10–14 °C in 100 min). As the melt fraction of PCM continued to increase, the temperature difference continued to decrease. After the PCM had all melted the temperature of PCM and PV front surface started increasing with a larger gradient, so there was the decrease in temperature deviation until T_{PVPCM} equalled T_{PV} and the deviation became zero in ~11 h.

CaCl$_2$ and C–L achieved the largest temperature deviation of ~18 °C followed by SP22 and C–P (~16.5 °C), and RT20 (~14 °C). PCM CaCl$_2$ maintained the temperature deviation for the longest duration (~11 h) followed by C–L (~9.5 h), SP22 (~9 h) C–L (~6 h) and RT20 (~4.5 h). A similar trend was observed with PCM in systems B, C, and D. To quantify Γ for all PCMs in each system, integrals of the temperature deviation at 500 W/m2, 750 W/m2 and ~1000 W/m2 insolation and 20 ± 1 °C ambient temperature were plotted illustrated in Appendices D, E and F respectively.

Appendix D illustrates that at 500 W/m2, system A achieved the maximum Γ value of all PCMs followed by system C, B and D while C and B achieved similar Γ values. Since high thermal conductivity system C required 3/5 PCM mass compared to low thermal conductivity system B, it suggests that 2/5 mass of PCM can be saved by choosing high thermal conductivity system at low insolation. Comparing PCMs, CaCl$_2$ achieved the highest Γ followed by C–P, SP22, C–L and RT20 respectively.

Appendix E illustrates that system A achieved the highest Γ at 750 W/m2 followed by B, C and D. Although all PCMs showed a maximum Γ for container A, they differed in containers B and C. C–P and C–L gave a marginally higher Γ in container C than B while CaCl$_2$, SP22 and RT 20 gave higher Γ in container B than C. Since container C has higher thermal conductivity than container B, it suggests that it is more appropriate for use with low thermal conductivity PCMs (i.e., C–P and C–L which perform better in C than B) than for higher thermal conductivity PCMs (i.e., CaCl$_2$, SP22 and RT20 which performed better in B than C). Comparing PCMs, CaCl$_2$ achieved the highest Γ followed by C–P, C–L, SP22 and RT20.

Appendix F illustrates that system A achieved the highest Γ followed by B, C and D respectively at 1000 W/m2. All PCMs showed higher Γ in container B than in container C. This was opposite to what was observed at ~500 W/m2 where all PCMs achieved higher Γ in container C than in container B. It can be concluded that although the increased PV/PCM thermal conductivity yielded higher Γ for all PCMs at high insolation (as container A with higher thermal conductivity achieved the highest Γ), however the improvement at 1000 W/m2 was less than that observed at 500 W/m2.

4. Conclusion

Five PCMs evaluated at three insolutions showed that thermal regulation performance of a PCM depends on the thermal mass of PCM and thermal conductivity of both PCM and the over all PV/PCM systems. Comparing PCMs, the salt hydrate CaCl$_2$ achieved highest temperature reduction at most of the insolations. Comparing PV/PCM systems, system A yielded highest temperature reduction and Γ with all PCMs. Thermal conductivity of the PCM container had stronger impact on performance of low thermal conductivity eutectics of fatty acids, C–L and C–P. Comparing PCMs the best results were obtained with C–P and CaCl$_2$ that maintained a maximum of 18 °C temperature reduction at PV front surface for 30 min, while CaCl$_2$ maintained a 10 °C temperature reduction for the longest duration of 5 h at −1000 W/m2 insolation in system A. Although the results achieved are encouraging however further temperature reduction is necessary to make the PCM financially viable. In a recent unpublished work by authors, increased temperature reduction for longer time durations have been achieved using thermally conductive metallic fins. The proposed PVPCM systems have been reported financially viable with C–P and CaCl$_2$-6H$_2$O in hot climates at ambient temperature around 34 °C and solar radiation intensity of 1000 W/m2.

Acknowledgements

This work has been supported by the Higher Education Authority through Strand 1 and Strand 3 funding, Science Foundation Ireland through their Research Frontiers Program and the Research Support Unit at Dublin Institute of Technology. The Focas Institute is funded by the Irish Higher Education Authority with assistance from the European Regional Development Fund. Thanks also to Cecil Potterman and Peter O’Farrell for their help in fabrication.

Please cite this article in press as: Hasan, A. et al. Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics. Solar Energy (2010), doi:10.1016/j.solener.2010.06.010
Appendix A

Temperature evolutions in reference PV and PV with PCM.

Reference PV temperature evolution

PV temperature evolution with PCM

Thermal regulation enhancement due to PCM

Appendix B

Temperature deviation curve divided into \(n \) discrete measurements to obtain thermal regulation enhancement, \(\Gamma \) for a PCM.

Appendix C

Temperature difference from reference for RT20, C-L, C-P, CaCl\(_2\) and SP22 at an insolation of 1000 W/m\(^2\) and ambient temperature of 20 ± 1 °C for system A.

Appendix D

Thermal regulation potential for all PCM at 500 W/m\(^2\) and ambient temperature of 20 ± 1 °C in systems A, B, C and D.
Appendix E. Thermal regulation potential for all PCM at 750 W/m² in systems A, B, C and D.

Appendix F. Thermal regulation potential for all PCM at 1000 W/m² in systems A, B, C and D.

References

