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Currency Trading using the Fractal Market
Hypothesis

Jonathan Blackledge and Kieren Murphy
Dublin Institute of Technology

Ireland

1. Introduction

We report on a research and development programme in financial modelling and economic
security undertaken in the Information and Communications Security Research Group (IC-
SRG, 2011) which has led to the launch of a new company - Currency Traders Ireland Limited
- funded by Enterprise Ireland. Currency Traders Ireland Limited (CTI, 2011) has a fifty year
exclusive license to develop a new set of indicators for analysing currency exchange rates
(Forex trading). We consider the background to the approach taken and present examples
of the results obtained to date. In this ‘Introduction’, we provide a background to and brief
overview of conventional economic models and the problesms associated with them.

1.1 Background to Financial Time Series Modelling
The application of mathematical, statistical and computational techniques for analysing fi-
nancial time series is a well established practice. Computational finance is used every day to
help traders understand the dynamic performance of the markets and to have some degree
of confidence on the likely future behaviour of the markets. This includes the application of
stochastic modelling methods and the use of certain partial differential equations for describ-
ing financial systems (e.g. the Black-Scholes equation for financial derivatives). Attempts to
develop stochastic models for financial time series, which are essentially digital signals com-
posed of ‘tick data’1 can be traced back to the early Twentieth Century when Louis Bachelier
proposed that fluctuations in the prices of stocks and shares (which appeared to be yesterday’s
price plus some random change) could be viewed in terms of random walks in which price
changes were entirely independent of each other. Thus, one of the simplest models for price
variation is based on the sum of independent random numbers. This is the basis for Brownian
motion (i.e. the random walk motion first observed by the Scottish Botanist Robert Brown) in
which the random numbers are considered to conform to a normal of Gaussian distribution.
For some financial signal u(t) say (where u is the amplitude - the ‘price’ - of the signal and
t is time), the magnitude of a change in price du tends to depend on the price u itself. We
therefore modify the Brownian random walk model to include this observation. In this case,
the logarithm of the price change (which is also assumed to conform to a normal distribution)
is given by

du
u

= αdv + βdt or
d
dt

ln u = β + α
dv
dt

1 Data that provides traders with daily tick-by-tick data - time and sales - of trade price, trade time, and
volume traded, for example, at different sampling rates.



where α is the volatility, dv is a sample from a normal distribution and β is a drift term which
reflects the average rate of growth of an asset2. Here, the relative price change of an asset is
equal to a random value plus an underlying trend component. This is the basis for a ‘log-
normal random walk’ model (Copeland et al., 2003), (Martin et al., 1997), (Menton, 1992) and
(Watsham and Parramore, 1996).
Brownian motion models have the following basic properties:

• statistical stationarity of price increments in which samples of Brownian motion taken
over equal time increments can be superimposed onto each other in a statistical sense;

• scaling of price where samples of Brownian motion corresponding to different time
increments can be suitably re-scaled such that they too, can be superimposed onto each
other in a statistical sense.

Such models fail to predict extreme behaviour in financial time series because of the intrinsic
assumption that such time series conform to a normal distribution, i.e. Gaussian processes
that are stationary in which the statistics - the standard deviation, for example - do not change
with time.
Random walk models, which underpin the so called Efficient Market Hypothesis (EMH)
(Fama, 1965)-(Burton, 1987), have been the basis for financial time series analysis since the
work of Bachelier in the late Nineteenth Century. Although the Black-Scholes equation (Black&
Scholes, 1973), developed in the 1970s for valuing options, is deterministic (one of the first fi-
nancial models to achieve determinism), it is still based on the EMH, i.e. stationary Gaussian
statistics. The EMH is based on the principle that the current price of an asset fully reflects
all available information relevant to it and that new information is immediately incorporated
into the price. Thus, in an efficient market, the modelling of asset prices is concerned with
modelling the arrival of new information. New information must be independent and ran-
dom, otherwise it would have been anticipated and would not be new. The arrival of new
information can send ‘shocks’ through the market (depending on the significance of the in-
formation) as people react to it and then to each other’s reactions. The EMH assumes that
there is a rational and unique way to use the available information and that all agents possess
this knowledge. Further, the EMH assumes that this ‘chain reaction’ happens effectively in-
stantaneously. These assumptions are clearly questionable at any and all levels of a complex
financial system.
The EMH implies independence of price increments and is typically characterised by a normal
of Gaussian Probability Density Function (PDF) which is chosen because most price move-
ments are presumed to be an aggregation of smaller ones, the sums of independent random
contributions having a Gaussian PDF. However, it has long been known that financial time
series do not follow random walks. This is one of the most fundamental underlying problems
associated with financial models, in general.

1.2 The Problem with Economic Models
The principal aim of a financial trader is to attempt to obtain information that can provide
some confidence in the immediate future of a stock. This is often based on repeating patterns
from the past, patterns that are ultimately based on the interplay between greed and fear.
One of the principal components of this aim is based on the observation that there are ’waves
within waves’ known as Elliot Waves after Ralph Elliot who was among the first to observe
this phenomenon on a qualitative basis in 1938. Elliot Waves permeate financial signals when

2 Note that both α and β may very with time.



studied with sufficient detail and imagination. It is these repeating patterns that occupy both
the financial investor and the financial systems modeler alike and it is clear that although
economies have undergone many changes in the last one hundred years, ignoring scale, the
dynamics of market behaviour does not appear to have changed significantly.
In modern economies, the distribution of stock returns and anomalies like market crashes
emerge as a result of considerable complex interaction. In the analysis of financial time series
it is inevitable that assumptions need to be made with regard to developing a suitable model.
This is the most vulnerable stage of the process with regard to developing a financial risk
management model as over simplistic assumptions lead to unrealistic solutions. However, by
considering the global behaviour of the financial markets, they can be modeled statistically
provided the ‘macroeconomic system’ is complex enough in terms of its network of intercon-
nection and interacting components.
Market behaviour results from either a strong theoretical reasoning or from compelling exper-
imental evidence or both. In econometrics, the processes that create time series have many
component parts and the interaction of those components is so complex that a determinis-
tic description is simply not possible. When creating models of complex systems, there is
a trade-off between simplifying and deriving the statistics we want to compare with reality
and simulation. Stochastic simulation allows us to investigate the effect of various traders’
behaviour with regard to the global statistics of the market, an approach that provides for
a natural interpretation and an understanding of how the amalgamation of certain concepts
leads to these statistics and correlations in time over different scales. One cause of correlations
in market price changes (and volatility) is mimetic behaviour, known as herding. In general,
market crashes happen when large numbers of agents place sell orders simultaneously creat-
ing an imbalance to the extent that market makers are unable to absorb the other side without
lowering prices substantially. Most of these agents do not communicate with each other, nor
do they take orders from a leader. In fact, most of the time they are in disagreement, and sub-
mit roughly the same amount of buy and sell orders. This provides a diffusive economy which
underlies the Efficient Market Hypothesis (EMH) and financial portfolio rationalization. The
EMH is the basis for the Black-Scholes model developed for the Pricing of Options and Corpo-
rate Liabilities for which Scholes won the Nobel Prize for economics in 1997. However, there
is a fundamental flaw with this model which is that it is based on a hypothesis (the EMH) that
assumes price movements, in particular, the log-derivate of a price, is normally distributed
and this is simply not the case. Indeed, all economic time series are characterized by long
tail distributions which do not conform to Gaussian statistics thereby making financial risk
management models such as the Black-Scholes equation redundant.

1.3 What is the Fractal Market Hypothesis?
The economic basis for the Fractal Market Hypothesis (FMH) is as follows:

• The market is stable when it consists of investors covering a large number of investment
horizons which ensures that there is ample liquidity for traders;

• information is more related to market sentiment and technical factors in the short term
than in the long term - as investment horizons increase and longer term fundamental
information dominates;

• if an event occurs that puts the validity of fundamental information in question, long-
term investors either withdraw completely or invest on shorter terms (i.e. when the
overall investment horizon of the market shrinks to a uniform level, the market becomes
unstable);



• prices reflect a combination of short-term technical and long-term fundamental valua-
tion and thus, short-term price movements are likely to be more volatile than long-term
trades - they are more likely to be the result of crowd behaviour;

• if a security has no tie to the economic cycle, then there will be no long-term trend and
short-term technical information will dominate.

The model associated with the FMH considered in this is is compounded in a fractional dy-
namic model that is non-stationary and describes diffusive processes that have a directional
bias leading to long tail (non-Gaussian) distributions. We consider a Lévy distribution and
show the relation between this distribution and the fractional diffusion equation (Section 4.2).
Unlike the EMH, the FMH states that information is valued according to the investment hori-
zon of the investor. Because the different investment horizons value information differently,
the diffusion of information is uneven. Unlike most complex physical systems, the agents of
an economy, and perhaps to some extent the economy itself, have an extra ingredient, an ex-
tra degree of complexity. This ingredient is consciousness which is at the heart of all financial
risk management strategies and is, indirectly, a governing issue with regard to the fractional
dynamic model used to develop the algorithm now being used by Currency Traders Ireland
Limited. By computing an index called the Lévy index, the directional bias associated with
a future trend can be forecast. In principle, this can be achieved for any financial time series,
providing the algorithm has been finely tuned with regard to the interpretation of a particular
data stream and the parameter settings upon which the algorithm relies.

2. The Black-Scholes Model

For many years, investment advisers focused on returns with the occasional caveat ‘subject to
risk’. Modern Portfolio Theory (MPT) is concerned with a trade-off between risk and return.
Nearly all MPT assumes the existence of a risk-free investment, e.g. the return from depositing
money in a sound financial institute or investing in equities. In order to gain more profit, the
investor must accept greater risk. Why should this be so? Suppose the opportunity exists to
make a guaranteed return greater than that from a conventional bank deposit say; then, no
(rational) investor would invest any money with the bank. Furthermore, if he/she could also
borrow money at less than the return on the alternative investment, then the investor would
borrow as much money as possible to invest in the higher yielding opportunity. In response
to the pressure of supply and demand, the banks would raise their interest rates. This would
attract money for investment with the bank and reduce the profit made by investors who have
money borrowed from the bank. (Of course, if such opportunities did arise, the banks would
probably be the first to invest savings in them.) There is elasticity in the argument because of
various ‘friction factors’ such as transaction costs, differences in borrowing and lending rates,
liquidity laws etc., but on the whole, the principle is sound because the market is saturated
with arbitrageurs whose purpose is to seek out and exploit irregularities or miss-pricing.
The concept of successful arbitraging is of great importance in finance. Often loosely stated as,
‘there’s no such thing as a free lunch’, it means that one cannot ever make an instantaneously
risk-free profit. More precisely, such opportunities cannot exist for a significant length of time
before prices move to eliminate them.

2.1 Financial Derivatives
As markets have grown and evolved, new trading contracts have emerged which use various
tricks to manipulate risk. Derivatives are deals, the value of which is derived from (although



not the same as) some underlying asset or interest rate. There are many kinds of derivatives
traded on the markets today. These special deals increase the number of moves that players of
the economy have available to ensure that the better players have more chance of winning. To
illustrate some of the implications of the introduction of derivatives to the financial markets
we consider the most simple and common derivative, namely, the option.

2.1.1 Options
An option is the right (but not the obligation) to buy (call) or sell (put) a financial instrument
(such as a stock or currency, known as the ‘underlying’) at an agreed date in the future and at
an agreed price, called the strike price. For example, consider an investor who ‘speculates’ that
the value of an asset at price S will rise. The investor could buy shares at S, and if appropriate,
sell them later at a higher price. Alternatively, the investor might buy a call option, the right
to buy a share at a later date. If the asset is worth more than the strike price on expiry, the
holder will be content to exercise the option, immediately sell the stock at the higher price
and generate an automatic profit from the difference. The catch is that if the price is less, the
holder must accept the loss of the premium paid for the option (which must be paid for at the
opening of the contract). If C denotes the value of a call option and E is the strike price, the
option is worth C(S, t) = max(S− E, 0).
Conversely, suppose the investor speculates that an asset is going to fall, then the investor can
sell shares or buy puts. If the investor speculates by selling shares that he/she does not own
(which in certain circumstances is perfectly legal in many markets), then he/she is selling
‘short’ and will profit from a fall in the asset. (The opposite of a short position is a ‘long’
position.) The principal question is how much should one pay for an option? If the value
of the asset rises, then so does the value of a call option and vice versa for put options. But
how do we quantify exactly how much this gamble is worth? In previous times (prior to the
Black-Scholes model which is discussed later) options were bought and sold for the value that
individual traders thought they ought to have. The strike prices of these options were usually
the ‘forward price’, which is just the current price adjusted for interest-rate effects. The value
of options rises in active or volatile markets because options are more likely to pay out large
amounts of money when they expire if market moves have been large, i.e. potential gains are
higher, but loss is always limited to the cost of the premium. This gain through successful
‘speculation’ is not the only role that options play. Another role is Hedging.

2.1.2 Hedging
Suppose an investor already owns shares as a long-term investment, then he/she may wish to
insure against a temporary fall in the share price by buying puts as well. The investor would
not want to liquidate holdings only to buy them back again later, possibly at a higher price if
the estimate of the share price is wrong, and certainly having incurred some transaction costs
on the deals. If a temporary fall occurs, the investor has the right to sell his/her holdings for
a higher than market price. The investor can then immediately buy them back for less, in this
way generating a profit and long-term investment then resumes. If the investor is wrong and
a temporary fall does not occur, then the premium is lost for the option but at least the stock
is retained, which has continued to rise in value. Since the value of a put option rises when
the underlying asset value falls, what happens to a portfolio containing both assets and puts?
The answer depends on the ratio. There must exist a ratio at which a small unpredictable
movement in the asset does not result in any unpredictable movement in the portfolio. This
ratio is instantaneously risk free. The reduction of risk by taking advantage of correlations





Fig. 5. MetaTrader 4 GUI for new indicators. Top window: Euro-USD exchange rate signal for
1 minute sampled data (blue) and averaged data (red); Centre window: first (red) and second
(cyan) gradients of the moving average for (N, M, K, T) = (512, 10, 100, 0). Bottom window:
qj (cyan) and moving average of qj (Green).

The second gradient is computed to provide an estimate of the ‘acceleration’ associated with
the moving average characteristics of qj denoted by 〈qj〉′′i . This parameter tends to correlate
with the direction of the trends that occur and therefore provides another indication of the
direction in which the markets are moving (the position in time at which the second gradient
changes direction occurs at the same point in time at which the first gradient passes through
zero). Both the first and second gradients are filtered using a moving average filter to provide
a smooth signal.

6.3 Examples Results
Figure 4 shows an example of the MetaTrader GUI with the new indicators included operating
on the signal for the Euro-USD exchange rate with 1 hour sampled data. The vertical bars
clearly indicate the change in a trend for the window of data provided in this example. The
parameters settings (N, M, K, T) for this example are (512, 10, 100, 0). Figure 5 shows a sample
of results for the Euro-USD exchange rate for 1 minute sampled data with parameter settings
using the same parameter settings In each case, a change in the gradient tends to correlates
with a change in the trend of the time series in a way that is reproducible at all scales.
Figure 6 shows examples of Cumulative Profit Reports using the ‘q-algorithm’ based on trad-
ing with four different currencies. The profit margins range from 50%-140% which provides



Fig. 6. Example of back-testing the ‘q-algorithm’. The plots show Cumulative Profit Re-
ports for four different currency pairs working with 1 hour sampled data from 1/1/2009 -
12/31/2009. Top-left: Euro-USD; Top-right: GGP-JPY; Bottom-left: USD-CAD; Bottom-right:
UDSJPY.

evidence for the efficiency of the algorithm based on back-testing examples of this type un-
dertaken to date.

7. Discussion

For Forex data q(t) varies between 1 and 2 as does γ for q in this range since γ−1(t) = q(t)/2.
As the value of q increases, the Lévy index decreases and the tail of the data therefore gets
longer. Thus as q(t) increases, so does the likelihood of a trend occurring. In this sense, q(t)
provides a measure on the behaviour of an economic time series in terms of a trend (up or
down) or otherwise. By applying a moving average filter to q(t) to smooth the data, we ob-
tained a signal 〈q(t)〉(τ) that provides an indication of whether a trend is occurring in the
data over a user defined window (the period). This observation reflects a result that is a fun-
damental kernel of the Fractal Market Hypothesis, namely, that a change in the Lévy index
precedes a change in the financial signal from which the index has been computed (from past
data). In order to observe this effect more clearly, the gradient 〈q(t)〉′(τ) is taken. This pro-
vides the user with a clear indication of a future trend based on the following observation: if
〈q(t)〉′(τ) > 0, the trend is positive; if 〈q(t)〉′(τ) < 0, the trend is negative; if 〈q(t)〉′(τ) passes
through zero a change in the trend may occur. By establishing a tolerance zone associated
with a polarity change in 〈q(t)〉′(τ), the importance of any indication of a change of trend can



be regulated in order to optimise a buy or sell order. This is the principle basis and rationale
for the ‘q-algorithmŠ.

8. Conclusion

The Fractal Market Hypothesis has many conceptual and quantitative advantages over the
Efficient Market Hypothesis for modelling and analysing financial data. One of the most
important points is that the Fractal Market Hypothesis is consistent with an economic time
series that include long tails in which rare but extreme events may occur and, more commonly,
trends evolve. In this paper we have focused on the use of the Hypothesis for modelling Forex
data and have shown that by computing the Hurst exponent, an algorithm can be designed
that appears to accurately predict the upward and downward trends in Forex data over a
range of scales subject to appropriate parameter settings and tolerances. The optimisation of
these parameters can be undertaken using a range of back-testing trials to develop a strategy
for optimising the profitability of Forex trading. In the trials undertaken to date, the system
can generate a profitable portfolio over a range of currency exchange rates involving hundreds
of Pips3 and over a range of scales providing the data is consistent and not subject to market
shocks generated by entirely unpredictable effects that have a major impact on the markets.
This result must be considered in the context that the Forex markets are noisy, especially over
smaller time scales, and that the behaviour of these markets can, from time to time, yield
a minimal change of Pips when 〈q(t)〉′(τ) is within the tolerance zone establish for a given
currency pair exchange rate.
The use of the indicators discussed in this paper for Forex trading is an example of a num-
ber of intensive applications and services being developed for financial time series analysis
and forecasting. MetaTrader 4 is just one of a range of financial risk management systems
that are being used by the wider community for de-centralised market trading, a trend that
is set to increase throughout the financial services sector given the current economic environ-
ment. The current version of MetaTrader 4 described in this paper is undergoing continuous
improvements and assessment, details of which can be obtained from TradersNow.com.
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