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Currency Trading using the Fractal Market
Hypothesis

Jonathan Blackledge and Kieren Murphy
Dublin Institute of Technology

Ireland

1. Introduction

We report on a research and development programme in financial modelling and economic
security undertaken in the Information and Communications Security Research Group (IC-
SRG, 2011) which has led to the launch of a new company - Currency Traders Ireland Limited
- funded by Enterprise Ireland. Currency Traders Ireland Limited (CTI, 2011) has a fifty year
exclusive license to develop a new set of indicators for analysing currency exchange rates
(Forex trading). We consider the background to the approach taken and present examples
of the results obtained to date. In this ‘Introduction’, we provide a background to and brief
overview of conventional economic models and the problesms associated with them.

1.1 Background to Financial Time Series Modelling
The application of mathematical, statistical and computational techniques for analysing fi-
nancial time series is a well established practice. Computational finance is used every day to
help traders understand the dynamic performance of the markets and to have some degree
of confidence on the likely future behaviour of the markets. This includes the application of
stochastic modelling methods and the use of certain partial differential equations for describ-
ing financial systems (e.g. the Black-Scholes equation for financial derivatives). Attempts to
develop stochastic models for financial time series, which are essentially digital signals com-
posed of ‘tick data’1 can be traced back to the early Twentieth Century when Louis Bachelier
proposed that fluctuations in the prices of stocks and shares (which appeared to be yesterday’s
price plus some random change) could be viewed in terms of random walks in which price
changes were entirely independent of each other. Thus, one of the simplest models for price
variation is based on the sum of independent random numbers. This is the basis for Brownian
motion (i.e. the random walk motion first observed by the Scottish Botanist Robert Brown) in
which the random numbers are considered to conform to a normal of Gaussian distribution.
For some financial signal u(t) say (where u is the amplitude - the ‘price’ - of the signal and
t is time), the magnitude of a change in price du tends to depend on the price u itself. We
therefore modify the Brownian random walk model to include this observation. In this case,
the logarithm of the price change (which is also assumed to conform to a normal distribution)
is given by

du
u

= αdv + βdt or
d
dt

ln u = β + α
dv
dt

1 Data that provides traders with daily tick-by-tick data - time and sales - of trade price, trade time, and
volume traded, for example, at different sampling rates.



where α is the volatility, dv is a sample from a normal distribution and β is a drift term which
reflects the average rate of growth of an asset2. Here, the relative price change of an asset is
equal to a random value plus an underlying trend component. This is the basis for a ‘log-
normal random walk’ model (Copeland et al., 2003), (Martin et al., 1997), (Menton, 1992) and
(Watsham and Parramore, 1996).
Brownian motion models have the following basic properties:

• statistical stationarity of price increments in which samples of Brownian motion taken
over equal time increments can be superimposed onto each other in a statistical sense;

• scaling of price where samples of Brownian motion corresponding to different time
increments can be suitably re-scaled such that they too, can be superimposed onto each
other in a statistical sense.

Such models fail to predict extreme behaviour in financial time series because of the intrinsic
assumption that such time series conform to a normal distribution, i.e. Gaussian processes
that are stationary in which the statistics - the standard deviation, for example - do not change
with time.
Random walk models, which underpin the so called Efficient Market Hypothesis (EMH)
(Fama, 1965)-(Burton, 1987), have been the basis for financial time series analysis since the
work of Bachelier in the late Nineteenth Century. Although the Black-Scholes equation (Black&
Scholes, 1973), developed in the 1970s for valuing options, is deterministic (one of the first fi-
nancial models to achieve determinism), it is still based on the EMH, i.e. stationary Gaussian
statistics. The EMH is based on the principle that the current price of an asset fully reflects
all available information relevant to it and that new information is immediately incorporated
into the price. Thus, in an efficient market, the modelling of asset prices is concerned with
modelling the arrival of new information. New information must be independent and ran-
dom, otherwise it would have been anticipated and would not be new. The arrival of new
information can send ‘shocks’ through the market (depending on the significance of the in-
formation) as people react to it and then to each other’s reactions. The EMH assumes that
there is a rational and unique way to use the available information and that all agents possess
this knowledge. Further, the EMH assumes that this ‘chain reaction’ happens effectively in-
stantaneously. These assumptions are clearly questionable at any and all levels of a complex
financial system.
The EMH implies independence of price increments and is typically characterised by a normal
of Gaussian Probability Density Function (PDF) which is chosen because most price move-
ments are presumed to be an aggregation of smaller ones, the sums of independent random
contributions having a Gaussian PDF. However, it has long been known that financial time
series do not follow random walks. This is one of the most fundamental underlying problems
associated with financial models, in general.

1.2 The Problem with Economic Models
The principal aim of a financial trader is to attempt to obtain information that can provide
some confidence in the immediate future of a stock. This is often based on repeating patterns
from the past, patterns that are ultimately based on the interplay between greed and fear.
One of the principal components of this aim is based on the observation that there are ’waves
within waves’ known as Elliot Waves after Ralph Elliot who was among the first to observe
this phenomenon on a qualitative basis in 1938. Elliot Waves permeate financial signals when

2 Note that both α and β may very with time.



studied with sufficient detail and imagination. It is these repeating patterns that occupy both
the financial investor and the financial systems modeler alike and it is clear that although
economies have undergone many changes in the last one hundred years, ignoring scale, the
dynamics of market behaviour does not appear to have changed significantly.
In modern economies, the distribution of stock returns and anomalies like market crashes
emerge as a result of considerable complex interaction. In the analysis of financial time series
it is inevitable that assumptions need to be made with regard to developing a suitable model.
This is the most vulnerable stage of the process with regard to developing a financial risk
management model as over simplistic assumptions lead to unrealistic solutions. However, by
considering the global behaviour of the financial markets, they can be modeled statistically
provided the ‘macroeconomic system’ is complex enough in terms of its network of intercon-
nection and interacting components.
Market behaviour results from either a strong theoretical reasoning or from compelling exper-
imental evidence or both. In econometrics, the processes that create time series have many
component parts and the interaction of those components is so complex that a determinis-
tic description is simply not possible. When creating models of complex systems, there is
a trade-off between simplifying and deriving the statistics we want to compare with reality
and simulation. Stochastic simulation allows us to investigate the effect of various traders’
behaviour with regard to the global statistics of the market, an approach that provides for
a natural interpretation and an understanding of how the amalgamation of certain concepts
leads to these statistics and correlations in time over different scales. One cause of correlations
in market price changes (and volatility) is mimetic behaviour, known as herding. In general,
market crashes happen when large numbers of agents place sell orders simultaneously creat-
ing an imbalance to the extent that market makers are unable to absorb the other side without
lowering prices substantially. Most of these agents do not communicate with each other, nor
do they take orders from a leader. In fact, most of the time they are in disagreement, and sub-
mit roughly the same amount of buy and sell orders. This provides a diffusive economy which
underlies the Efficient Market Hypothesis (EMH) and financial portfolio rationalization. The
EMH is the basis for the Black-Scholes model developed for the Pricing of Options and Corpo-
rate Liabilities for which Scholes won the Nobel Prize for economics in 1997. However, there
is a fundamental flaw with this model which is that it is based on a hypothesis (the EMH) that
assumes price movements, in particular, the log-derivate of a price, is normally distributed
and this is simply not the case. Indeed, all economic time series are characterized by long
tail distributions which do not conform to Gaussian statistics thereby making financial risk
management models such as the Black-Scholes equation redundant.

1.3 What is the Fractal Market Hypothesis?
The economic basis for the Fractal Market Hypothesis (FMH) is as follows:

• The market is stable when it consists of investors covering a large number of investment
horizons which ensures that there is ample liquidity for traders;

• information is more related to market sentiment and technical factors in the short term
than in the long term - as investment horizons increase and longer term fundamental
information dominates;

• if an event occurs that puts the validity of fundamental information in question, long-
term investors either withdraw completely or invest on shorter terms (i.e. when the
overall investment horizon of the market shrinks to a uniform level, the market becomes
unstable);



• prices reflect a combination of short-term technical and long-term fundamental valua-
tion and thus, short-term price movements are likely to be more volatile than long-term
trades - they are more likely to be the result of crowd behaviour;

• if a security has no tie to the economic cycle, then there will be no long-term trend and
short-term technical information will dominate.

The model associated with the FMH considered in this is is compounded in a fractional dy-
namic model that is non-stationary and describes diffusive processes that have a directional
bias leading to long tail (non-Gaussian) distributions. We consider a Lévy distribution and
show the relation between this distribution and the fractional diffusion equation (Section 4.2).
Unlike the EMH, the FMH states that information is valued according to the investment hori-
zon of the investor. Because the different investment horizons value information differently,
the diffusion of information is uneven. Unlike most complex physical systems, the agents of
an economy, and perhaps to some extent the economy itself, have an extra ingredient, an ex-
tra degree of complexity. This ingredient is consciousness which is at the heart of all financial
risk management strategies and is, indirectly, a governing issue with regard to the fractional
dynamic model used to develop the algorithm now being used by Currency Traders Ireland
Limited. By computing an index called the Lévy index, the directional bias associated with
a future trend can be forecast. In principle, this can be achieved for any financial time series,
providing the algorithm has been finely tuned with regard to the interpretation of a particular
data stream and the parameter settings upon which the algorithm relies.

2. The Black-Scholes Model

For many years, investment advisers focused on returns with the occasional caveat ‘subject to
risk’. Modern Portfolio Theory (MPT) is concerned with a trade-off between risk and return.
Nearly all MPT assumes the existence of a risk-free investment, e.g. the return from depositing
money in a sound financial institute or investing in equities. In order to gain more profit, the
investor must accept greater risk. Why should this be so? Suppose the opportunity exists to
make a guaranteed return greater than that from a conventional bank deposit say; then, no
(rational) investor would invest any money with the bank. Furthermore, if he/she could also
borrow money at less than the return on the alternative investment, then the investor would
borrow as much money as possible to invest in the higher yielding opportunity. In response
to the pressure of supply and demand, the banks would raise their interest rates. This would
attract money for investment with the bank and reduce the profit made by investors who have
money borrowed from the bank. (Of course, if such opportunities did arise, the banks would
probably be the first to invest savings in them.) There is elasticity in the argument because of
various ‘friction factors’ such as transaction costs, differences in borrowing and lending rates,
liquidity laws etc., but on the whole, the principle is sound because the market is saturated
with arbitrageurs whose purpose is to seek out and exploit irregularities or miss-pricing.
The concept of successful arbitraging is of great importance in finance. Often loosely stated as,
‘there’s no such thing as a free lunch’, it means that one cannot ever make an instantaneously
risk-free profit. More precisely, such opportunities cannot exist for a significant length of time
before prices move to eliminate them.

2.1 Financial Derivatives
As markets have grown and evolved, new trading contracts have emerged which use various
tricks to manipulate risk. Derivatives are deals, the value of which is derived from (although



not the same as) some underlying asset or interest rate. There are many kinds of derivatives
traded on the markets today. These special deals increase the number of moves that players of
the economy have available to ensure that the better players have more chance of winning. To
illustrate some of the implications of the introduction of derivatives to the financial markets
we consider the most simple and common derivative, namely, the option.

2.1.1 Options
An option is the right (but not the obligation) to buy (call) or sell (put) a financial instrument
(such as a stock or currency, known as the ‘underlying’) at an agreed date in the future and at
an agreed price, called the strike price. For example, consider an investor who ‘speculates’ that
the value of an asset at price S will rise. The investor could buy shares at S, and if appropriate,
sell them later at a higher price. Alternatively, the investor might buy a call option, the right
to buy a share at a later date. If the asset is worth more than the strike price on expiry, the
holder will be content to exercise the option, immediately sell the stock at the higher price
and generate an automatic profit from the difference. The catch is that if the price is less, the
holder must accept the loss of the premium paid for the option (which must be paid for at the
opening of the contract). If C denotes the value of a call option and E is the strike price, the
option is worth C(S, t) = max(S− E, 0).
Conversely, suppose the investor speculates that an asset is going to fall, then the investor can
sell shares or buy puts. If the investor speculates by selling shares that he/she does not own
(which in certain circumstances is perfectly legal in many markets), then he/she is selling
‘short’ and will profit from a fall in the asset. (The opposite of a short position is a ‘long’
position.) The principal question is how much should one pay for an option? If the value
of the asset rises, then so does the value of a call option and vice versa for put options. But
how do we quantify exactly how much this gamble is worth? In previous times (prior to the
Black-Scholes model which is discussed later) options were bought and sold for the value that
individual traders thought they ought to have. The strike prices of these options were usually
the ‘forward price’, which is just the current price adjusted for interest-rate effects. The value
of options rises in active or volatile markets because options are more likely to pay out large
amounts of money when they expire if market moves have been large, i.e. potential gains are
higher, but loss is always limited to the cost of the premium. This gain through successful
‘speculation’ is not the only role that options play. Another role is Hedging.

2.1.2 Hedging
Suppose an investor already owns shares as a long-term investment, then he/she may wish to
insure against a temporary fall in the share price by buying puts as well. The investor would
not want to liquidate holdings only to buy them back again later, possibly at a higher price if
the estimate of the share price is wrong, and certainly having incurred some transaction costs
on the deals. If a temporary fall occurs, the investor has the right to sell his/her holdings for
a higher than market price. The investor can then immediately buy them back for less, in this
way generating a profit and long-term investment then resumes. If the investor is wrong and
a temporary fall does not occur, then the premium is lost for the option but at least the stock
is retained, which has continued to rise in value. Since the value of a put option rises when
the underlying asset value falls, what happens to a portfolio containing both assets and puts?
The answer depends on the ratio. There must exist a ratio at which a small unpredictable
movement in the asset does not result in any unpredictable movement in the portfolio. This
ratio is instantaneously risk free. The reduction of risk by taking advantage of correlations



between the option price and the underlying price is called ‘hedging’. If a market maker can
sell an option and hedge away all the risk for the rest of the options life, then a risk free profit
is guaranteed.
Why write options? Options are usually sold by banks to companies to protect themselves
against adverse movements in the underlying price, in the same way as holders do. In fact,
writers of options are no different to holders; they expect to make a profit by taking a view
of the market. The writers of calls are effectively taking a short position in the underlying
behaviour of the markets. Known as ‘bears’, these agents believe the price will fall and are
therefore also potential customers for puts. The agents taking the opposite view are called
‘bulls’. There is a near balance of bears and bulls because if everyone expected the value of
a particular asset to do the same thing, then its market price would stabilise (if a reasonable
price were agreed on) or diverge (if everyone thought it would rise). Thus, the psychology
and dynamics (which must go hand in hand) of the bear/bull cycle play an important role in
financial analysis.
The risk associated with individual securities can be hedged through diversification or ‘spread
betting’ and/or various other ways of taking advantage of correlations between different
derivatives of the same underlying asset. However, not all risk can be removed by diver-
sification. To some extent, the fortunes of all companies move with the economy. Changes
in the money supply, interest rates, exchange rates, taxation, commodity prices, government
spending and overseas economies tend to affect all companies in one way or another. This
remaining risk is generally referred to as market risk.

2.2 Black-Scholes Analysis
The value of an option can be thought of as a function of the underlying asset price S (a
Gaussian random variable) and time t denoted by V(S, t). Here, V can denote a call or a put;
indeed, V can be the value of a whole portfolio or different options although for simplicity we
can think of it as a simple call or put. Any derivative security whose value depends only on
the current value S at time t and which is paid for up front, is taken to satisfy the Black-Scholes
equation given by (Black& Scholes, 1973)

∂V
∂t

+
1
2

σ2S2 ∂2V
∂S2 + rS

∂V
∂S
− rV = 0

where σ is the volatility and r is the risk. As with other partial differential equations, an
equation of this form may have many solutions. The value of an option should be unique;
otherwise, again, arbitrage possibilities would arise. Therefore, to identify the appropriate
solution, certain initial, final and boundary conditions need to be imposed. Take for example,
a call; here the final condition comes from the arbitrage argument. At t = T

C(S, t) = max(S− E, 0)

The spatial or asset-price boundary conditions, applied at S = 0 and S → ∞ come from the
following reasoning: If S is ever zero then dS is zero and will therefore never change. Thus,
we have

C(0, t) = 0

As the asset price increases it becomes more and more likely that the option will be exercised,
thus we have

C(S, t) ∝ S, S→ ∞



Observe, that the Black-Sholes equation has a similarity to the diffusion equation but with ad-
ditional terms. An appropriate way to solve this equation is to transform it into the diffusion
equation for which the solution is well known and, with appropriate Transformations, gives
the Black-Scholes formula (Black& Scholes, 1973)

C(S, t) = SN(d1)− Eer(T−t)N(d2)

where

d1 =
log(S/E) + (r + 1

2 σ2)(T − t)
σ
√

T − t
,

d2 =
log(S/E) + (r− 1

2 σ2)(T − t)
σ
√

T − t
and N is the cumulative normal distribution defined by

N(d1) =
1√
2π

d1∫
−∞

e
1
2 s2

ds.

The conceptual leap of the Black-Scholes model is to say that traders are not estimating the
future price, but are guessing about how volatile the market may be in the future. The model
therefore allows banks to define a fair value of an option, because it assumes that the forward
price is the mean of the distribution of future market prices. However, this requires a good
estimate of the future volatility σ.
The relatively simple and robust way of valuing options using Black-Scholes analysis has
rapidly gained in popularity and has universal applications. Black-Scholes analysis for pricing
an option is now so closely linked into the markets that the price of an option is usually quoted
in option volatilities or ‘vols’. However, Black-Scholes analysis is ultimately based on random
walk models that assume independent and Gaussian distributed price changes and is thus,
based on the EMH.
The theory of modern portfolio management is only valuable if we can be sure that it truly
reflects reality for which tests are required. One of the principal issues with regard to this
relates to the assumption that the markets are Gaussian distributed. However, it has long
been known that financial time series do not adhere to Gaussian statistics. This is the most
important of the shortcomings relating to the EMH model (i.e. the failure of the independence
and Gaussian distribution of increments assumption) and is fundamental to the inability for
EMH-based analysis such as the Black-Scholes equation to explain characteristics of a financial
signal such as clustering, flights and failure to explain events such as ‘crashesŠ leading to
recession. The limitations associated with the EMH are illustrated in Figure 1 which shows a
(discrete) financial signal u(t), the derivative of this signal du(t)/dt and a synthesised (zero-
mean) Gaussian distributed random signal. There is a marked difference in the characteristics
of a real financial signal and a random Gaussian signal. This simple comparison indicates a
failure of the statistical independence assumption which underpins the EMH and the superior
nature of the Lévy based model that underpins the Fractal Market Hypothesis.
The problems associated with financial modelling using the EMH have prompted a new class
of methods for investigating time series obtained from a range of disciplines. For example,
Re-scaled Range Analysis (RSRA), e.g. (Hurst, 1951), (Mandelbrot, 1969), which is essen-
tially based on computing and analysing the Hurst exponent (Mandelbrot, 1972), is a useful
tool for revealing some well disguised properties of stochastic time series such as persistence



Fig. 1. Financial time series for the Dow-Jones value (close-of-day) from 02-04-1928 to 12-
12-2007 (top), the derivative of the same time series (centre) and a zero-mean Gaussian dis-
tributed random signal (bottom).

(and anti-persistence) characterized by non-periodic cycles. Non-periodic cycles correspond
to trends that persist for irregular periods but with a degree of statistical regularity often
associated with non-linear dynamical systems. RSRA is particularly valuable because of its
robustness in the presence of noise. The principal assumption associated with RSRA is con-
cerned with the self-affine or fractal nature of the statistical character of a time-series rather
than the statistical ‘signature’ itself. Ralph Elliott first reported on the fractal properties of
financial data in 1938. He was the first to observe that segments of financial time series data
of different sizes could be scaled in such a way that they were statistically the same producing
so called Elliot waves. Since then, many different self-affine models for price variation have
been developed, often based on (dynamical) Iterated Function Systems (IFS). These models
can capture many properties of a financial time series but are not based on any underlying
causal theory.

3. Fractal Time Series and Rescaled Range Analysis

A time series is fractal if the data exhibits statistical self-affinity and has no characteristic scale.
The data has no characteristic scale if it has a PDF with an infinite second moment. The data
may have an infinite first moment as well; in this case, the data would have no stable mean
either. One way to test the financial data for the existence of these moments is to plot them
sequentially over increasing time periods to see if they converge. Figure 2 shows that the first
moment, the mean, is stable, but that the second moment, the mean square, is not settled. It
converges and then suddenly jumps and it is observed that although the variance is not stable,
the jumps occur with some statistical regularity. Time series of this type are example of Hurst
processes; time series that scale according to the power law,

〈u(t)〉t ∝ tH



where H is the Hurst exponent and 〈u(t)〉t denotes the mean value of u(t) at a time t.

Fig. 2. The first and second moments (top and bottom) of the Dow Jones Industrial Average
plotted sequentially.

H. E. Hurst (1900-1978) was an English civil engineer who built dams and worked on the Nile
river dam project. He studied the Nile so extensively that some Egyptians reportedly nick-
named him ‘the father of the Nile.’ The Nile river posed an interesting problem for Hurst
as a hydrologist. When designing a dam, hydrologists need to estimate the necessary stor-
age capacity of the resulting reservoir. An influx of water occurs through various natural
sources (rainfall, river overflows etc.) and a regulated amount needed to be released for pri-
marily agricultural purposes. The storage capacity of a reservoir is based on the net water
flow. Hydrologists usually begin by assuming that the water influx is random, a perfectly rea-
sonable assumption when dealing with a complex ecosystem. Hurst, however, had studied
the 847-year record that the Egyptians had kept of the Nile river overflows, from 622 to 1469.
Hurst noticed that large overflows tended to be followed by large overflows until abruptly,
the system would then change to low overflows, which also tended to be followed by low
overflows. There seemed to be cycles, but with no predictable period. Standard statistical
analysis revealed no significant correlations between observations, so Hurst developed his
own methodology. Hurst was aware of Einstein’s (1905) work on Brownian motion (the er-
ratic path followed by a particle suspended in a fluid) who observed that the distance the
particle covers increased with the square root of time, i.e.

R ∝
√

t

where R is the range covered, and t is time. This relationship results from the fact that incre-
ments are identically and independently distributed random variables. Hurst’s idea was to
use this property to test the Nile River’s overflows for randomness. In short, his method was
as follows: Begin with a time series xi (with i = 1, 2, ..., n) which in Hurst’s case was annual
discharges of the Nile River. (For markets it might be the daily changes in the price of a stock



index.) Next, create the adjusted series, yi = xi − x̄ (where x̄ is the mean of xi). Cumulate this
time series to give

Yi =
i

∑
j=1

yj

such that the start and end of the series are both zero and there is some curve in between.
(The final value, Yn has to be zero because the mean is zero.) Then, define the range to be the
maximum minus the minimum value of this time series,

Rn = max(Y)−min(Y).

This adjusted range, Rn is the distance the systems travels for the time index n, i.e. the distance
covered by a random walker if the data set yi were the set of steps. If we set n = t we can
apply Einstein’s equation provided that the time series xi is independent for increasing values
of n. However, Einstein’s equation only applies to series that are in Brownian motion. Hurst’s
contribution was to generalize this equation to

(R/S)n = cnH

where S is the standard deviation for the same n observations and c is a constant. We define
a Hurst process to be a process with a (fairly) constant H value and the R/S is referred to
as the ‘rescaled range’ because it has zero mean and is expressed in terms of local standard
deviations. In general, the R/S value increases according to a power law value equal to H
known as the Hurst exponent. This scaling law behaviour is the first connection between
Hurst processes and fractal geometry.
Rescaling the adjusted range was a major innovation. Hurst originally performed this oper-
ation to enable him to compare diverse phenomenon. Rescaling, fortunately, also allows us
to compare time periods many years apart in financial time series. As discussed previously,
it is the relative price change and not the change itself that is of interest. Due to inflationary
growth, prices themselves are a significantly higher today than in the past, and although rela-
tive price changes may be similar, actual price changes and therefore volatility (standard devi-
ation of returns) are significantly higher. Measuring in standard deviations (units of volatility)
allows us to minimize this problem. Rescaled range analysis can also describe time series that
have no characteristic scale, another characteristic of fractals. By considering the logarithmic
version of Hurst’s equation, i.e.

log(R/S)n = log(c) + Hlog(n)

it is clear that the Hurst exponent can be estimated by plotting log(R/S) against the log(n) and
solving for the gradient with a least squares fit. If the system were independently distributed,
then H = 0.5. Hurst found that the exponent for the Nile River was H = 0.91, i.e. the rescaled
range increases at a faster rate than the square root of time. This meant that the system was
covering more distance than a random process would, and therefore the annual discharges of
the Nile had to be correlated.
It is important to appreciate that this method makes no prior assumptions about any underly-
ing distributions, it simply tells us how the system is scaling with respect to time. So how do
we interpret the Hurst exponent? We know that H = 0.5 is consistent with an independently
distributed system. The range 0.5 < H ≤ 1, implies a persistent time series, and a persistent
time series is characterized by positive correlations. Theoretically, what happens today will



ultimately have a lasting effect on the future. The range 0 < H ≤ 0.5 indicates anti-persistence
which means that the time series covers less ground than a random process. In other words,
there are negative correlations. For a system to cover less distance, it must reverse itself more
often than a random process.

4. Lévy Processes

Lévy processes are random walks whose distribution has infinite moments and ‘long tails’.
The statistics of (conventional) physical systems are usually concerned with stochastic fields
that have PDFs where (at least) the first two moments (the mean and variance) are well defined
and finite. Lévy statistics is concerned with statistical systems where all the moments (starting
with the mean) are infinite. Many distributions exist where the mean and variance are finite
but are not representative of the process, e.g. the tail of the distribution is significant, where
rare but extreme events occur. These distributions include Lévy distributions (Sclesinger et
al., 1994), (Nonnenmacher, 1990). Lévy’s original approach to deriving such distributions is
based on the following question: Under what circumstances does the distribution associated
with a random walk of a few steps look the same as the distribution after many steps (except
for scaling)? This question is effectively the same as asking under what circumstances do we
obtain a random walk that is statistically self-affine. The characteristic function P(k) of such a
distribution p(x) was first shown by Lévy to be given by (for symmetric distributions only)

P(k) = exp(−a | k |γ), 0 < γ ≤ 2 (1)

where a is a constant and γ is the Lévy index. For γ ≥ 2, the second moment of the Lévy dis-
tribution exists and the sums of large numbers of independent trials are Gaussian distributed.
For example, if the result were a random walk with a step length distribution governed by
p(x), γ ≥ 2, then the result would be normal (Gaussian) diffusion, i.e. a Brownian random
walk process. For γ < 2 the second moment of this PDF (the mean square), diverges and the
characteristic scale of the walk is lost. For values of γ between 0 and 2, Lévy’s characteristic
function corresponds to a PDF of the form

p(x) ∼ 1
x1+γ

, x → ∞

4.1 Long Tails
If we compare this PDF with a Gaussian distribution given by (ignoring scaling normalisation
constants)

p(x) = exp(−βx2)

which is the case when γ = 2 then it is clear that a Lévy distribution has a longer tail. This
is illustrated in Figure 3. The long tail Lévy distribution represents a stochastic process in
which extreme events are more likely when compared to a Gaussian process. This includes
fast moving trends that occur in economic time series analysis. Moreover, the length of the
tails of a Lévy distribution is determined by the value of the Lévy index such that the larger
the value of the index the shorter the tail becomes. Unlike the Gaussian distribution which
has finite statistical moments, the Lévy distribution has infinite moments and ‘long tails’.

4.2 Lévy Processes and the Fractional Diffusion Equation
Lévy processes are consistent with a fractional diffusion equation (Alea & Thurnerb, 2005) as
shall now be shown. Let p(x) denote the Probability Density Function (PDF) associated with



Fig. 3. Comparison between a Gaussian distribution (blue) for β = 0.0001 and a Lévy distri-
bution (red) for γ = 0.5 and p(0) = 1.

the position in a one-dimensional space x where a particle can exist as a result of a ‘random
walk’ generated by a sequence of ‘elastic scattering’ processes (with other like particles). Also,
assume that the random walk takes place over a time scale where the random walk ‘environ-
ment’ does not change (i.e. the statistical processes are ‘stationary’ and do not change with
time). Suppose we consider an infinite concentration of particles at a time t = 0 to be located
at the origin x = 0 and described by a perfect spatial impulse, i.e. a delta function δ(x). Then
the characteristic Impulse Response Function f of the ‘random walk system’ at a short time
later t = τ is given by

f (x, τ) = δ(x)⊗x p(x) = p(x)

where ⊗x denotes the convolution integral over x. Thus, if f (x, t) denotes a macroscopic
field at a time t which describes the concentration of a canonical assemble of particles all
undergoing the same random walk process, then the field at t + τ will be given by

f (x, t + τ) = f (x, t)⊗x p(x) (2)

In terms of the application considered in this paper f (0, t) represents the time varying price
difference of a financial index u(t) such as a currency pair, so that, in general,

f (x, t) =
∂

∂
u(x, t) (3)

From the convolution theorem, in Fourier space, equation (2) becomes

F(k, t + τ) = F(k, t)P(k)

where F and P are the Fourier transforms of f and p, respectively. From equation (1), we note
that

P(k) = 1− a | k |γ, a→ 0



so that we can write
F(k, t + τ)− F(k, t)

τ
' − a

τ
| k |γ F(k, t)

which for τ → 0 gives the fractional diffusion equation

σ
∂

∂t
f (x, t) =

∂γ

∂xγ
f (x, t), γ ∈ (0, 2]

where σ = τ/a and we have used the result

∂γ

∂xγ
f (x, t) = − 1

2π

∞∫
−∞

| k |γ F(k, t) exp(ikx)dk

However, from equation (3) we can consider the equation

σ
∂

∂t
u(x, t) =

∂γ

∂xγ
u(x, t), γ ∈ (0, 2] (4)

The solution to this equation with the singular initial condition v(x, 0) = δ(x) is given by

v(x, t) =
1

2π

∞∫
−∞

exp(ikx− t | k |γ /σ)dk

which is itself Lévy distributed. This derivation of the fractional diffusion equation reveals its
physical origin in terms of Lévy statistics.
For normalized units σ = 1 we consider equation (4) for a ‘white noise’ source function n(t)
and a spatial impulse function −δ(x) so that

∂γ

∂xγ
u(x, t)− ∂

∂t
u(x, t) = −δ(x)n(t), γ ∈ (0, 2]

which, ignoring (complex) scaling constants, has the Green’s function solution (?)

u(t) =
1

t1−1/γ
⊗t n(t) (5)

where ⊗t denotes the convolution integral over t and u(t) ≡ u(0, t). The function u(t) has a
Power Spectral Density Function (PSDF) given by (for scaling constant c)

| U(ω) |2= c
| ω |2/γ

(6)

where

U(ω) =
∞∫
−∞

u(t) exp(−iωt)dt

and a self-affine scaling relationship

Pr[u(at)] = a1/γPr[u(t)]

for scaling parameter a > 0 where Pr[u(t)] denotes the PDF of u(t). This scaling relationship
means that the statistical characteristics of u(t) are invariant of time except for scaling factor



a1/γ. Thus, if u(t) is taken to be a financial signal as a function of time, then the statistical
distribution of this function will be the same over different time scales whether, in practice, it
is sampled in hours, minutes or seconds, for example.
Equation (5), provides a solution is also consistent with the solution to the fractional diffusion
equation (

∂2

∂x2 −
∂q

∂tq

)
u(x, t) = −δ(x)n(t)

where γ−1 = q/2 (Blackledge, 2010) and where q - the ‘Fourier Dimension’ - is related to the
Hurst exponent by q = 2H + 1. Thus, the Lévy index γ, the Fourier Dimension q and the
Hurst exponent H are all simply related to each other. Moreover, these parameters quantify
stochastic processes that have long tails and thereby by transcend financial models based on
normal distributions such as the Black-Scholes model.

4.3 Computational Methods
In this paper, we study the temporal behaviour of q focusing on its predictive power for indi-
cating the likelihood of a future trend in a Forex time series. This is called the ‘q-algorithm’
and is equivalent to computing time variations in the the Lévy index or the Hurst exponent
since q = 2H + 1 = 2/γ. Given equations (5), for n(t) = δ(t)

u(t) =
1

t1−1/γ

and thus
log u(t) = a +

1
γ

log t

where a = − log t. Thus, one way of computing γ is to evaluate the gradient of a plot of
log u(t) against log t. If this is done on a moving window basis then a time series γ(t) can be
obtained and correlations observed between the behaviour of γ(t) and u(t). However, given
equation (6), we can also consider the equation

log | U(ω) |= b +
1
γ

log | ω |

where b = (log c)/2 and evaluate the gradient of a plot of log | U(ω) | against log | ω |.
In practice this requires the application of a discrete Fourier transform on a moving window
basis to compute an estimate of γ(t). In this paper, we consider the former (temporal) solution
to the problem of computing q = 2/γ.

5. Application to Forex Trading

The Forex or Foreign Exchange market is the largest and most fluid of the global markets
involving trades approaching 4 Trillion per day. The market is primarily concerned with trad-
ing currency pairs but includes currency futures and options markets. It is similar to other
financial markets but the volume of trade is much higher which comes from the nature of the
market in terms of its short term profitability. The market determines the relative values of
different currencies and most banks contribute to the market as do financial companies, insti-
tutions, individual speculators and investors and even import/export companies. The high
volume of the Forex market leads to high liquidity and thereby guarantees stable spreads dur-
ing a working week and contract execution with relatively small slippages even in aggressive



price movements. In a typical foreign exchange transaction, a party purchases a quantity of
one currency by paying a quantity of another currency.
The Forex is a de-centralised ‘over the counter market’ meaning that there are no agreed cen-
tres or exchanges which an investor needs to be connected to in order to trade. It is the largest
world wide network allowing customers trade 24 hours per day usually from Monday to Fri-
day. Traders can trade on Forex without any limitations no matter where they live or the time
chosen to enter a trade. The accessibility of the Forex market has made it particularly popular
with traders and consequently, a range of Forex trading software has been developed for in-
ternet based trading. In this paper, we report on a new indicator based on the interpretation
of q computed via the Hurst exponent H that has been designed to optimize Forex trading
through integration into the MetaTrader 4 system.

6. MetaTrader 4

MetaTrader 4 is a platform for e-trading that is used by online Forex traders (Metatrader 4,
2011) and provides the user with real time internet access to most of the major currency ex-
change rates over a range of sampling intervals including 1 min, 5 mins, 1 hour and 1 day.
The system includes a built-in editor and compiler with access to a user contributed free li-
brary of software, articles and help. The software utilizes a proprietary scripting language,
MQL4 (MQL4, 2011) (based on C), which enables traders to develop Expert Advisors, custom
indicators and scripts. MetaTrader’s popularity largely stems from its support of algorithmic
trading. This includes a range of indicators and the focus of the work reported in this paper,
i.e. the incorporation of a new indicator based on the approach considered in this paper.

6.1 Basic Algorithm - The ‘q-Algorithm’
Given a stream of Forex data un, n = 1, 2, ..., N where N defines the ‘look-back’ window or
‘period’, we consider the Hurst model

un = cnH

which is linearised by taking the logarithmic transform to give

log(un) = log(c) + H log(n)

where c is a constant of proportionality
The basic algorithm is as follows:

1. For a moving window of length N (moved one element at a time) operating on an array
of length L, compute qj = 1 + 2Hj, j = 1, 2, ..., L − N using the Orthogonal Linear
Regression Algorithm (Regression, 2011) and plot the result.

2. For a moving window of length M compute the moving average of qj denoted by 〈qj〉i
and plot the result in the same window as the plot of qj.

3. Compute the gradient of 〈qj〉i using a different user defined moving average window
of length K and a forward differencing scheme and plot the result.

4. Compute the second gradient of 〈qj〉i after applying a moving average filter using a
centre differencing scheme and plot the result in the same window.



Fig. 4. MetaTrader 4 GUI for new indicators. Top window: Euro-USD exchange rate signal for
1 hour sampled data (blue) and averaged data (red); Centre window: first (red) and second
(cyan) gradients of the moving average for (N, M, K, T) = (512, 10, 100, 0). Bottom window:
qj (cyan) and moving average of qj (Green).

6.2 Fundamental Observations
The gradient of 〈qj〉i denoted by 〈qj〉′i provides an assessment of the point in time at which
a trend is likely to occur, in particular, the points in time at which 〈qj〉′i crosses zero. The
principal characteristic is compounded in the following observation:

〈qj〉′i > 0 tends to correlates with an upward trend
〈qj〉′i < 0 tends correlates with a downward trend

where a change in the polarity of 〈qj〉′i < 0 indicates a change in the trend subject to a given
tolerance T. A tolerance zone is therefore established | 〈qj〉′i |∈ T such that if the signal
〈qj〉′i > 0 enters the tolerance zone, then a bar is plotted indicating the end of an upward
trend and if 〈qj〉′i < 0 enters the tolerance zone then a bar is plotted indicating the end of a
downward trend.
The term ‘tends’ used above depends on the data and the parameter settings used to process
it, in particular, the length of the look-back window used to compute qj and the size of the win-
dow used to compute the moving average. In other words the correlations that are observed
are not perfect in all cases and the algorithm therefore needs to be optimised by back-testing
and live trading.



Fig. 5. MetaTrader 4 GUI for new indicators. Top window: Euro-USD exchange rate signal for
1 minute sampled data (blue) and averaged data (red); Centre window: first (red) and second
(cyan) gradients of the moving average for (N, M, K, T) = (512, 10, 100, 0). Bottom window:
qj (cyan) and moving average of qj (Green).

The second gradient is computed to provide an estimate of the ‘acceleration’ associated with
the moving average characteristics of qj denoted by 〈qj〉′′i . This parameter tends to correlate
with the direction of the trends that occur and therefore provides another indication of the
direction in which the markets are moving (the position in time at which the second gradient
changes direction occurs at the same point in time at which the first gradient passes through
zero). Both the first and second gradients are filtered using a moving average filter to provide
a smooth signal.

6.3 Examples Results
Figure 4 shows an example of the MetaTrader GUI with the new indicators included operating
on the signal for the Euro-USD exchange rate with 1 hour sampled data. The vertical bars
clearly indicate the change in a trend for the window of data provided in this example. The
parameters settings (N, M, K, T) for this example are (512, 10, 100, 0). Figure 5 shows a sample
of results for the Euro-USD exchange rate for 1 minute sampled data with parameter settings
using the same parameter settings In each case, a change in the gradient tends to correlates
with a change in the trend of the time series in a way that is reproducible at all scales.
Figure 6 shows examples of Cumulative Profit Reports using the ‘q-algorithm’ based on trad-
ing with four different currencies. The profit margins range from 50%-140% which provides



Fig. 6. Example of back-testing the ‘q-algorithm’. The plots show Cumulative Profit Re-
ports for four different currency pairs working with 1 hour sampled data from 1/1/2009 -
12/31/2009. Top-left: Euro-USD; Top-right: GGP-JPY; Bottom-left: USD-CAD; Bottom-right:
UDSJPY.

evidence for the efficiency of the algorithm based on back-testing examples of this type un-
dertaken to date.

7. Discussion

For Forex data q(t) varies between 1 and 2 as does γ for q in this range since γ−1(t) = q(t)/2.
As the value of q increases, the Lévy index decreases and the tail of the data therefore gets
longer. Thus as q(t) increases, so does the likelihood of a trend occurring. In this sense, q(t)
provides a measure on the behaviour of an economic time series in terms of a trend (up or
down) or otherwise. By applying a moving average filter to q(t) to smooth the data, we ob-
tained a signal 〈q(t)〉(τ) that provides an indication of whether a trend is occurring in the
data over a user defined window (the period). This observation reflects a result that is a fun-
damental kernel of the Fractal Market Hypothesis, namely, that a change in the Lévy index
precedes a change in the financial signal from which the index has been computed (from past
data). In order to observe this effect more clearly, the gradient 〈q(t)〉′(τ) is taken. This pro-
vides the user with a clear indication of a future trend based on the following observation: if
〈q(t)〉′(τ) > 0, the trend is positive; if 〈q(t)〉′(τ) < 0, the trend is negative; if 〈q(t)〉′(τ) passes
through zero a change in the trend may occur. By establishing a tolerance zone associated
with a polarity change in 〈q(t)〉′(τ), the importance of any indication of a change of trend can



be regulated in order to optimise a buy or sell order. This is the principle basis and rationale
for the ‘q-algorithmŠ.

8. Conclusion

The Fractal Market Hypothesis has many conceptual and quantitative advantages over the
Efficient Market Hypothesis for modelling and analysing financial data. One of the most
important points is that the Fractal Market Hypothesis is consistent with an economic time
series that include long tails in which rare but extreme events may occur and, more commonly,
trends evolve. In this paper we have focused on the use of the Hypothesis for modelling Forex
data and have shown that by computing the Hurst exponent, an algorithm can be designed
that appears to accurately predict the upward and downward trends in Forex data over a
range of scales subject to appropriate parameter settings and tolerances. The optimisation of
these parameters can be undertaken using a range of back-testing trials to develop a strategy
for optimising the profitability of Forex trading. In the trials undertaken to date, the system
can generate a profitable portfolio over a range of currency exchange rates involving hundreds
of Pips3 and over a range of scales providing the data is consistent and not subject to market
shocks generated by entirely unpredictable effects that have a major impact on the markets.
This result must be considered in the context that the Forex markets are noisy, especially over
smaller time scales, and that the behaviour of these markets can, from time to time, yield
a minimal change of Pips when 〈q(t)〉′(τ) is within the tolerance zone establish for a given
currency pair exchange rate.
The use of the indicators discussed in this paper for Forex trading is an example of a num-
ber of intensive applications and services being developed for financial time series analysis
and forecasting. MetaTrader 4 is just one of a range of financial risk management systems
that are being used by the wider community for de-centralised market trading, a trend that
is set to increase throughout the financial services sector given the current economic environ-
ment. The current version of MetaTrader 4 described in this paper is undergoing continuous
improvements and assessment, details of which can be obtained from TradersNow.com.
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