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Abstract 

Options play an important role in the financial world and are actively traded with huge trading 

volume. Most of the options traded on exchanges are American options. Spanning over a few 

decades, the American option pricing problem continues to intrigue scholars and practitioners in 

finance. The employee stock options (ESOs), a variant of American options, has been increasingly 

popular for firms to compensate, motivate and retain employees. ESOs importantly do not trade in 

markets nevertheless fair value must be determined – often by accountants. Unique features of 

ESOs however complicate the valuation. Our research, consisting of three papers, focuses on the 

improved lattice techniques for valuing American options and ESOs. Research paper 1 (Chapter 

2) introduces an intelligent lattice search algorithm to efficiently locate the optimal exercise 

boundary for American options. The computational runtime can be reduced from over 18 minutes 

down to less than 3 seconds to estimate a 15,000-step CRR binomial tree. Research paper 2 

(Chapter 3) introduces a set of lattice techniques to the Leisen-Reimer and Tian binomial models 

for American options pricing. A level of accuracy and efficiency combined can be achieve that 

surpass analytical solution models prominent in the literature. Moreover, lattices importantly 

afford an explicit trade-off locus between accuracy and speed that can be navigated according to 

predetermined precision tolerance levels and option types. These should have practical relevance 

to trading platforms that require real-time estimates of implied volatility. Research paper 3 

(Chapter 4) proposes adjustments to the Hull-White ESO pricing model, based on insights 

developed by Boyle-Lau and Tian specifications. The proposed Hull-White-Boyle-Lau and Hull-

White-Tian revamps expand the practicable menu choice available to stakeholders tasked with the 

valuation of these ESOs. Accountants, across many jurisdictions, are subjected to higher demands 

for disclosure and fair valuation. The streamlined valuation approaches developed here may prove 



ii 

 

 

useful in expanding the tool kit of practicable/workable models. This improved efficiency can be 

harnessed even at the level of a basic spreadsheet and this this should assist in testing, validating 

and benchmarking valuation in lattices and in evaluating the newer generation of closed-form 

solutions emerging in the literature.   
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Chapter 1 – Introduction 

 

Introduction 

Options have become increasing important in the financial world. Options are actively traded both 

on exchanges and in the over-the-counter (OTC) market with huge trading volume in terms of 

underlying assets. Generally, options give the holder a right to buy or sell the underlying assets at 

a fixed price. In terms of the exercise policy, the options can be divided into European options and 

American options. European options can only be exercised at their maturity while American 

options allow the option holders to exercise the options at any time before the maturity. It is clear 

that American options afford greater flexibility than European analogues. This may confer greater 

value but also complicates valuation. The American option pricing problem, spanning over the 

past few decades, continues to intrigue scholars and practitioners in finance. A closed-form 

solution for European option pricing is available using Black and Scholes (1973), while no 

equivalently simple closed-form solution exists for valuing American options robustly. American 

options valuation presents challenges with trade-offs embedded along an accuracy-efficiency 

spectrum. The pricing methods can be largely classified into analytical approximations or 

numerical methods1. Approximation methods are heavily relied upon to expedite estimation but 

necessarily produce error. Numerical techniques are regularly used as benchmarks for analytical 

approximations on account of the high level of estimation accuracy and low speed.  

Options can be used for hedging, speculation and arbitrage (Hull and White, 2013). Financial 

institutions usually use options to eliminate/mitigate their exposure against the movement of 

underlying asset price. Delta hedging, a commonly-used hedging strategy, conceptually creates a 

                                                 
1 Here we only consider the option written on a single underlying asset.  
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zero-delta (delta neutral) position by offsetting the delta of the stock position with that of the option 

position. The option position, however, has to be frequently adjusted as the delta of the option is 

continuously changing. In order to achieve this dynamic hedging, accurate and timely estimation 

for options by necessity prerequisites. Nowadays, options as well as other derivatives are more 

heavily regulated given the well documented concerns relating to the role of leverage during the 

financial crisis, starting 2007. 

Employee stock options (ESOs) are now a relatively standard form of remuneration particularly 

amongst new technology companies. In the early part of the century, these American-European 

hybrid instruments grew in popularity. Hall and Murphy (2002) reported that 94% of S&P 500 

companies granted options to the top executives. Frydman and Saks (2007) stated that ESOs  

constitute over 40% of their total compensation for the same cohort of executives. In 2004, the 

International Financial Reporting Standard No. 2 (IFRS 2) and the Revised Financial Accounting 

Standard No. 123 (FAS 123R) both require companies to measure and report the fair value of 

ESOs. In 2009, FASB integrated FAS 123R into Accounting Standards Codification as Topic 718 

(ASC 718), and a corresponding updated version for non-employees was released in 2018. IFRS 

2, FAS 123R and ASC 718 all suggest applying either the Black-Scholes model with an expected 

holding term or a lattice framework with suboptimal exercise and the term being an output of the 

model. 

Rubinstein (1995) identified key hallmark features that distinguish ESOs from other plain vanilla 

options, including longer maturities, vesting periods, suboptimal early exercise, and non-hedge 



3 

 

 

and non-transferability2 . These characteristics indicate that the option structure of ESOs are 

typically a hybrid with a blend of European and American exercise rights. For pricing ESOs, the 

Black-Scholes model is evidently simpler to apply with less computational cost while lattice 

models have advantages in terms of higher accuracy and more flexibility. Given the well 

documented computational cost of standard Hull and White (2004) implementation, the Black-

Scholes model is normally applied by industry practitioners while academics favour the binomial 

framework. 

 

Research Objectives  

As discussed above, advances in American option theory and valuation play an important role in 

in the development of ancillary valuation models and this development still continues. Employee 

stock options, a variant of American options, have become increasingly important but their 

valuation is characterised by a trade-off between accuracy and speed of computation. This thesis 

focuses on the valuation of American options and ESOs and consists of three distinct papers with 

separate but interlinked themes. The first two paper (Chapter 2 and 3) propose optimal lattice-

based models for valuing American option and the third paper (Chapter 4) extends findings to ESO 

pricing. The chronology of research output/objectives of each paper are as follows. 

The first research paper: “American Option Pricing: An Accelerated Lattice Model with Intelligent 

Lattice Search” (Shang and Byrne, 2019) introduce an intelligent lattice search routine to 

accelerate the classic Cox, Ross and Rubinstein (1979, CRR) binomial model for American option 

                                                 
2 ESOs cannot be exercised during the vesting period and the early exercise is possible after the vesting period and 

before the maturity.  



4 

 

 

pricing. The literature relating to analytical and numerical methods for American option pricing as 

well as the development of optimal exercise boundary theory for lattice models is reviewed. It has 

been found that lattice models, even though they possess high estimation accuracy, are 

characterised by low computational speed. Also, the existing optimal exercise boundary theory of 

the CRR binomial framework has limitations linked to dividend yield. This paper mitigates these 

two challenges that are signalled in theory and practice: 

1. Remove the restriction of the existing optimal exercise boundary theory related to 

dividends, as pointed out by Curran (1995).  

2. Accelerate CRR binomial model for pricing American options without disturbing the 

accuracy. 

To accomplish the first objective, the optimal exercise boundary of a CRR binomial model is 

investigated. A number of Propositions and Theorems are proposed with mathematical proof. This 

serves to address limitations regarding the effect of dividend yield which originally posed a 

stumbling block for Curran (1995) and restricted the wide applicability of his model when 

dividends were pertinent to estimation. For the second objective, an intelligent lattice search 

algorithm is created in Excel VBA and later in C++, incorporating and extending Kim and Byun 

(1994) and Curran (1995) boundary theory. In addition, truncation technology and dynamic 

memory are also applied, to accelerate the lattice model for pricing American options.  

The second paper, entitled “American Option Pricing: Optimal Lattice Models and 

Multidimensional Efficiency Tests”, aims to apply Intelligent Lattice Search to Leisen and Reimer 

(1996, LR) and Tian (1993, Tian) binomial models for American option pricing and examine the 

efficiency of the existing models in pricing different types of the options. The literature on the 
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analytical methods, numerical techniques, boundary theory, and efficiency tests is reviewed. It has 

been found that the acceleration techniques proposed in Shang and Byrne (2019) may be able to 

apply to other lattice models that are similar in construction to the CRR model. Also, option 

classification can be used to design multidimensional efficiency tests for option pricing models 

(Pressacco, et al, 2008). Hence, this paper sets the following objectives: 

1. Improve LR and Tian binomial models for pricing American options. 

2. Run multidimensional efficiency tests for the existing option pricing models. 

To achieve the first objective, it is necessary to establish that the optimal exercise boundary applies 

to the LR and Tian models. This is examined and a set of lattice techniques are adapted to LR and 

Tian models. For the second objective, lattice models and analytical formulae are tested for pricing 

different groups of options according to the deepness of American quality and the moneyness of 

the options.  

The final research paper, titled “Accounting for Employee Stock Options: Accelerating 

Convergence”, aims to accelerate the Hull and White (2004, HW) ESOs pricing model. The reform 

of accounting standards for ESOs and the literature on the ESOs pricing models including adjusted 

Black-Scholes model and numerical models are reviewed. It has been found that accounting 

standards do widely specify valuation models including an adapted Black Scholes (1973) 

framework, Lattices and Monte Carlo. The Hull-White lattice, widely considered to provide a 

sounder theoretical treatment, is typically slow to converge (Chendra and Sidarto, 2020). This 

paper introduces a number of improvements and sets the following objectives: 

1. Analysing error source of Hull-White ESOs pricing model. 

2. Solve the sluggish convergence of the Hull-White model. 
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3. Further accelerate Hull-White model using numerical techniques. 

To accomplish the first objective, the unique characteristics of the Hull-White model and the error 

source of lattice models for barrier options are analysed. The second objective is progressed by 

imposing two specifications for barrier option pricing which to mitigate the error of Hull-White 

model. For the final objective, numerical techniques previously proposed for American options 

are applied to accelerate Hull-White model.   

 

Thesis Structure  

Chapter 1 includes an introduction to the valuation of American options and employee stock 

options, as well as mapping out research objectives. Three distinct research papers are formatted 

into Chapter 2, 3, and 4 respectively. Each of these three Chapters has the following structure: 

Abstract, Literature Review, Methodology, Numerical Results, and Conclusion. Chapter 5 

concludes the main research findings and discusses future research. Finally, References, 

Appendices, List of Publication and Conference, and List of Employability Skills and Discipline 

Specific Skills Training are provided.   
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Chapter 2: American Option Pricing: An Accelerated Lattice Model with 

Intelligent Lattice Search 

 

Abstract 

We introduce to the literature an intelligent lattice search algorithm to efficiently locate the optimal 

exercise boundary for American options. Lattice models can be accelerated by incorporating 

intelligent lattice search, truncation and dynamic memory. We reduce computational runtime from 

over 18 minutes down to less than 3 seconds to estimate a 15,000-step binomial tree where the 

results obtained are consistent with a widely acclaimed literature. Delta and Implied Volatility can 

also be accelerated relative to standard models. Lattice estimation, in general, is considered to be 

slow and not practical for valuing large books of options or for promptly rebalancing a risk neutral 

portfolio. Our technique transforms standard binomial trees and renders them to be at least on par 

with commonly used analytical formulae. More importantly, intelligent lattice search can be 

tweaked to reach varying levels of accuracy with different step size, while conventional analytical 

formulae are less flexible. 

 

Literature Review 

American option pricing can present challenges with trade-offs embedded along an accuracy-

efficiency spectrum. Approximation methods necessarily produce error. The margin of that error 

must be weighed against the uptick in estimation speed. Geske and Johnson (1984), Bunch and 

Johnson (1992), Huang et al. (1996), Carr (1998) and Ju (1998) developed analytic approximations 

that were convergent in the sense that when additional terms were included, their respective 

techniques became increasingly accurate while less efficient. Zhu (2006) developed an exact 
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solution in the form of a Taylor’s series expansion, which contains infinitely many terms. The 

model, however, is not practicable in terms of speed (Medvedev and Scaillet 2010). Barone-Adesi 

and Whaley (1987, BAW) developed typically faster approximation techniques. Ju and Zhong 

(1999, Ju-Zhong), based on BAW, served to improve the longer maturity options accuracy with 

little sacrifice in terms of efficiency. Li (2010) extended further Ju-Zhong by introducing an 

improved smoothing condition for American options. BAW, Ju-Zhong and Li (2010) approaches 

were all found to share the limitation that pricing is not convergent to the “true” price. Including 

additional terms does not invariably produce greater accuracy (Fabozzi et al. 2016). Instead of 

applying a quadratic approximation, Bjerksund and Stensland (1993, Bjerksund93) simplify the 

optimal exercise strategy by assuming a unique flat boundary. The improved approximation is 

presented in Bjerksund and Stensland (2002, Bjerksund02) where a second bound is also 

introduced. In practice, their lower bound approach represents an accurate and very computer 

efficient approximation to the true American option value. In this paper, we compare our 

accelerated binomial model with these commonly used analytical approximations. We show that 

our model can be comparable with these analytical approximations in speed for option pricing, 

delta estimation and implied volatility estimation. 

In practice, traders are likely to prioritize speed if approximation only entails a small compromise 

in accuracy. Nimble responses are viewed as important for preserving profit margins and for timely 

hedging. Not surprisingly then approximation techniques are relied upon heavily despite 

limitations. Estimating a book of options requires some insight on how the respective parameter 

values are likely to be incorporated into a given model. This might not be as simple as it seems. 

Uniform performance of analytical models cannot be guaranteed. This typically means that 

analytic models are regularly benchmarked against numerical techniques. Cox, Ross and 
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Rubinstein (1979, CRR) developed a binomial approach. It is widely accepted that greater 

accuracy can be introduced by making the CRR lattice mesh finer or by, more prosaically, 

incorporating a larger number of steps. Broadie and Detemple (1996) used a 15,000-step binomial 

model to obtain “True values”. The binomial model is therefore acknowledged as a reliable 

workhorse and serves to benchmark other techniques. This lattice method, however, is distinctly 

viewed as having substantial computational workloads, runtimes and gluttonous memory 

requirements. Not surprisingly, many variants and extensions of the original CRR binomial model 

were developed to accelerate estimation. Leisen and Reimer (1996, LR) and Tian (1993) extended 

the CRR binomial model by changing the function of the increment and decrement of stock price 

at each step. The Adaptive Mesh Method proposed by Figlewski and Gao (1999), builds a strip of 

finer lattice over a substrate tree and can be adapted to a wide variety of options. Staunton (2005) 

proposed several modifications to the LR model by adapting Curtailed Ranges and Richardson 

extrapolation. This modified LR model was found to be more efficient than other approximation 

methods considered. Joshi (2009) used standard deviation truncation, smoothing and Richardson 

extrapolation, which led to better performance than the modified LR model proposed in Staunton 

(2005). The Chen and Joshi (2012, Chen-Joshi) incorporated tolerance truncation, Black-Scholes 

smoothing and Richardson Extrapolation. This model constituted the premier model relative to 

220 lattice permutations evaluated previously in Joshi (2009). In this paper, we compare our 

accelerated binomial model with Chen-Joshi and show that our model performs better than this 

leading benchmark tree model.  

This paper outlines a lattice search algorithm to rapidly locate the early exercise node in each 

column of a binomial model. This ideally should dispense with the standard blanket test to 

repetitively compare the relative magnitudes of the exercise and holding values at each node. The 
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methodology in this paper follows the literature that has focused on discerning a continuous early 

exercise boundary so that the tree can be cleanly delineated between exercising and holding regions. 

Knowing in advance the vicinity of the optimal exercise boundary reduces greatly the quantum of 

computation. Kim and Byun (1994) specify the optimal exercise boundary for an American put 

option written on a non-dividend-paying stock. Curran (1995) subsequently extended the Kim and 

Byun (1994) approach to American put options with continuous dividend yields, y, and proposed 

the Diagonal Method which can efficiently locate the early exercise boundary. A stipulation of this 

model however is that the risk-free interest rate r necessarily exceeds (is inferior to) the dividend 

yield y for puts (calls). In reality, this implies the model cannot be guaranteed to work in every 

instance. Basso et al. (2002, 2004) developed the insights of Kim-Byun-Curran to discern a 

binomial approximation to the optimal exercise boundary. Areal and Rodrigues (2013) use the 

early exercise boundary theory of Curran (1995) to accelerate the binomial model for pricing 

American options with discrete dividends. In this paper, we open the Kim-Byun-Curran boundary 

theory to include the wider subset of parameter inputs where the American put (call) valuation is 

not constrained by r ≥  y (r ≤  y). Furthermore, we propose an accelerated CRR model, 

incorporating the intelligent lattice search algorithm based on revamped optimal boundary theory 

as well as two acceleration technologies, for efficiently pricing American options with unrestricted 

continuous dividends.   

The remaining paper is organized as follows. In Section 2, optimal exercise boundary theory is 

reviewed and extended to make practicable intelligent lattice search. The latter we introduce. In 

Section 3, we describe two acceleration technologies: truncation and dynamic memory which are 

standard in the literature. In Section 4, we integrate two acceleration technologies with the 
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intelligent lattice search algorithm to accelerate the CRR pricing process. In Section 5, we evaluate 

the relative performances of our accelerated CRR model, with varying benchmarks including a 

conventional CRR model implementation, other tree models from a recent literature, and several 

commonly used analytical formulae. We develop several metrics that capture the relative 

efficiencies in terms of option pricing, delta estimation, and implied volatility estimation. In 

Section 6, we tease out conclusions. The Appendix includes the proof of the Propositions and 

Theorems developed in Section 2 and an Excel VBA implementation of our accelerated CRR 

model. 

 

Methodology 

Extending Kim-Byun-Curran: The Optimal Exercise Boundary Adapted for Unrestricted 

Continuous Dividends  

Consider an American put option with an initial stock price S, strike price X, time to maturity T, 

risk-free interest rate r, continuous dividend yield y and volatility σ, priced by a n-step binomial 

tree. We define the number of time steps as i, the number of upward steps as j, and S(i, j) and V(i, j) 

as the stock price and option price respectively.3 Kim and Byun (1994) give the definition of the 

stopping region S, the continuation region C and the optimal exercise state B(i): all nodes in a 

binomial tree are divided into two groups which fall on two different regions. The stopping region 

S is a series of nodes whose option values are equal to their exercise values, which can be given 

by: 

                                                 
3 The lattice structure is presented in Figure A2 complete with (i, j) mapping. 
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𝑺 ≡ {(𝑖, 𝑗)| 𝑉(𝑖,𝑗) = 𝑋 − 𝑆(𝑖,𝑗)}                                                                                          (2.1)                                                                         

The nodes that belong to the stopping region are called stopping nodes. In addition, the 

continuation region C is a set of nodes where options are worth more if they are held instead of 

exercised, which can be defined as: 

𝑪 ≡ {(𝑖, 𝑗)| 𝑉(𝑖,𝑗) > 𝑋 − 𝑆(𝑖,𝑗)}                                            (2.2)  

In this case, the option values are equal to their holding values below: 

𝑉(𝑖,𝑗) = [𝑝𝑉(𝑖+1,𝑗+1) + (1 − 𝑝)𝑉(𝑖+1,𝑗)]𝑅−1              (2.3) 

p represents the risk-neutral probability of an upward movement and 𝑅 = 𝑒𝑥𝑝 (𝑟𝑇 𝑛⁄ ). The nodes 

that belong to the continuation region are called continuation nodes. I is defined as the set of time 

steps at which there is at least one stopping node, which can be given by: 

𝑰 ≡ { 𝑖 |(𝑖, 𝑗) ∈ 𝑺, 0 ≤  𝑗 ≤ 𝑖 ≤ 𝑛}                                                                               (2.4) 

Based on I, 𝑰𝟎 ≡ { 𝑖 |(𝑖, 𝑗) ∈ 𝑺, 0 ≤  𝑗 ≤ 𝑖 ≤ 𝑛 − 1}  (from the penultimate column back) is 

proposed, which will be used later. In addition, the optimal exercise state B(i) represents the 

biggest j at the ith column when (i, j) ϵ S for i ϵ I, which can be defined as: 

𝐵(𝑖) ≡ 𝑚𝑎𝑥{ 𝑗 |(𝑖, 𝑗) ∈ 𝑺, 𝑖 ∈ 𝑰}                                              (2.5)      

Therefore, (i, B(i)) is a series of optimal exercise nodes for i ϵ I, which constitutes the optimal 

exercise boundary. Kim and Byun (1994) propose three Propositions and two Theorems relating 

to the continuity of the optimal exercise boundary. Curran (1995) extends the optimal exercise 

boundary theory for American put options with continuous dividend yields y where r ≥ y. He then 

applied this to American calls by invoking McDonald and Schroder (1998) who proposed put-call 

symmetry conditions for American options where: 



13 

 

 

𝐶 (𝑆, 𝑋, 𝑟, 𝑦, 𝑇, 𝜎)  =  𝑃 (𝑋, 𝑆, 𝑦, 𝑟, 𝑇, 𝜎)                       (2.6) 

The optimal exercise boundary can also be applied for pricing American call options with y where 

r ≤ y. The Kim-Byun-Curran construction is augmented here by pricing American options without 

imposing any restrictions on y. The methodology developed in this paper departs from Kim-Byun-

Curran by locating/initializing in the penultimate column the seed node consistent with the optimal 

exercise boundary. The key intuition to the proposed approach relates to properties of the boundary. 

If r ≥ y the boundary is always continuous for put options, and this simplifies the demarcation of 

the stopping and continuation regions up to and including the final column. Otherwise, when r < 

y, a break of the early exercise boundary between the last column and the penultimate column for 

an American put option can occur. In Figure 2.1, S represents the optimal exercise node (i, B(i)) 

for i ϵ I and C represents (i, B(i) + 1) for i ϵ I, which is the first continuation node at each column 

from the bottom. The heavy solid lines represent the continuous optimal exercise boundary and 

the heavy dashed lines represent the discontinuation. The upper binomial tree (Figure 2.1 (a)) 

follows that of Curran (1995, p.13), where S = 100, X = 100, T = 1, r = 0.05, y = 0, σ = 0.3 and n 

= 10. It is clear that the boundary is continuous where r > y. The lower binomial tree (Figure 2.1(b)), 

however, has the same set of parameters as Curran’s except y = 0.07 so that r < y (r = 0.05). In this 

instance, the stipulation that r ≥ y set out by Curran (1995) is violated. The impact of this violation 

is illustrated in the lower binomial tree. When r < y, the optimal exercise boundary is only 

continuous from the penultimate column back, while a discontinuous boundary between the 

penultimate and last column manifests itself.  
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Figure 2.1: A discontinuous optimal exercise boundary when r < y 

 

The main insight here is that the region of discontinuation is limited to merely the final and 

penultimate columns. If we exclude the final column, three Propositions and two Theorems of the 

optimal exercise boundary developed by Kim and Byun (1994) can be extended to American put 

options with unrestricted continuous dividends. These revamped Propositions/Theorems are 

developed in the Appendix. The restrictions imposed on dividends by Curran (1995) are also 

relaxed by seeding the continuous boundary from the penultimate column. The Propositions and 

Theorems in the Appendix can be used to identify the optimal exercise boundary for an American 

put option with unrestricted continuous dividend yield. We assert that from the penultimate column 

back, the new optimal exercise state B(i - 1) is always equal to the old optimal exercise state B(i) 
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minus a value of 1 or 0 as time to expiry increases.4 Discerning the adjustment behavior of the 

optimal exercise boundary permits an elaboration of an intelligent lattice search algorithm. Figure 

2.2 shows the simple mechanism steering the intelligent lattice search, where this seed value at 

column n - 1 has been confirmed as an integer value of k. The optimal exercise state B(i - 1) is 

invariably equal to either B(i) or B(i) - 1. Therefore, we efficiently locate the boundary by verifying 

no more than one node at each column from antepenultimate column back. Unlike Kim-Byun-

Curran, the intelligent lattice search technique is anchored by reference to the penultimate column 

from where the recursion is initiated. This involves some further computation as the exercise 

condition of additional nodes must be verified, (no more than n) at the penultimate column. The 

extra computation workload is comparatively trivial - especially for a large number of steps. In so 

doing, the restriction imposed on dividend yields can be relaxed and the spectrum of feasible 

parameter value inputs can be extended significantly.  

 

 

                                                 
4 Moving back through time – consistent with backward induction. Also, McDonald and Schroder (1998) put-call 

symmetry permits us to generalize to the case of the American call options. 
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Figure 2.2: An intelligent lattice search algorithm 

 

Two Acceleration Technologies: Truncation and Dynamic Memory 

As noted by Curran (1995), there are subtrees within the binomial tree, where the nodes exercise 

no influence on the present value of the option. In the classic backward induction approach set out 

by CRR, all the nodes are given an equal weight in the estimation. This blanket method implies 

that large regions of the binomial tree are incorporated into the estimation but do not materially 

exert any impact in terms of the ultimate valuation. As noted by Curran (1995), this creates scope 

to apply the Diagonal Method where redundant nodes can be isolated and eliminated for the 

purposes of estimation.5 Acceleration is obtained by locating and truncating a portion of redundant 

stopping nodes (The Redundant-stopping region enclosed by heavy dashed lines) and all redundant 

zero-value nodes (The Zero-value zone enclosed by light dashed lines), which are shown in Figure 

                                                 
5 Consistent with Curran (1995) the first passage probabilities are not applied here. No increase in computational 

efficiency from that technique has been obtained. 
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2.3. Significantly, some redundant stopping nodes (hollow nodes) are not truncated because more 

complex programming would be required for recognizing those nodes and this likely would 

produce slower computational speed. On balance, when the extra programming cost against speed 

is taken into account, it was considered suffice to truncate the Redundant-stopping region and the 

value of the redundant hollow nodes to make pricing more efficient. 

Making use of Dynamic Memory can produce an important reduction in computational cost. In 

Figure 2.4, we try to reveal how computer memory can be used more efficiently. A conventional 

two-dimensional static n-step binomial model requires (n + 1)(n + 2) / 2 nodes to be memorized 

(Figure 2.4 (a)). Broadie and Detemple (1996) and Haug (2007) propose using a one-dimensional 

dynamic binomial tree (Figure 2.4 (b)). This approach takes the option values at the last column 

and stores them in a dynamic vector Opt(j) for j = 0, 1, … , n. After moving one step back, the 

values in the re-dimensioned Opt(j) for j = 0, 1, …, n - 1 will be replaced by the option values of 

the corresponding nodes at the penultimate column (Figure 2.4 (c)). Similarly, the values of Opt(j) 

for j = 0, 1, …, k - 1 at kth column will always be substituted by the option values at (k - 1)th column 

for 1 ≤ k ≤ n. Therefore, a dynamic binomial tree only requires n + 1 contemporaneous storage 

spaces.  
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Figure 2.3 Truncating zero-value zone and redundant-stopping region 
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Figure 2.4: A one-dimensional dynamic CRR tree 

 

The Efficient Pricing Process of an Accelerated CRR model: Applying Intelligent Lattice 

Search Algorithm, Truncation and Dynamic Memory  

In this section, we demonstrate how an accelerated CRR model, incorporating an intelligent lattice 

search algorithm, dynamic memory and truncation, can efficiently price an American put option. 

We explain how the intelligent lattice search algorithm can be used to efficiently locate the optimal 

exercise boundary. We employ a one-dimensional dynamic binomial tree with truncation for an 

American put option. The rationale for presenting the sequence of steps involved in Figure 2.5 

relates to teasing out a viable framework appropriate for coding. The CRR binomial tree in Figure 

2.5 has the same set of parameters as Figure 2.1 (b), which also follows Curran (1995), where S = 

100, X = 100, T = 1, r = 0.05, σ = 0.3 and n = 10. We differ by setting the dividend yield, y = 0.07. 

Since r < y, the stipulation that r ≥ y advanced by Curran (1995) is deliberately violated. The nodes 

falling along each row share the same underlying asset price and by extension exercise value. 

These are given in the final two columns. Array mappings in Figure 2.5 are set out consistent with 

the one-dimensional dynamic binomial tree depicted in Figure 2.4 (b). Each node outside the 

truncated regions can be identified by its series number. For illustrative purposes, Nodes with 

series numbers enclosed by no-fill circles (e.g. ⓪) represent the stopping value. Nodes with series 

numbers enclosed by a black-fill circle (e.g. ⓿) represent the optimal exercise nodes (first 

stopping nodes), B(i), at ith column. Continuation nodes are in contrast denoted by square brackets 

(e.g. [0]). The nodes with series numbers followed by question marks, are those that are minimally 

investigated by checking the exercise condition (e.g. ⓿? and [0]?). The optimal boundary check 

is efficiently reduced to determine the status of these nodes – no more than one single node at each 
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column from the ante penultimate column. The pathway of these checks is shown by the presence 

of question marks. In this regard, clear efficiency gains are discernible vis-à-vis more common 

systems of blanket checking. The nodes represented by X without option values and series numbers 

in Figure 2.5 are redundant and can be truncated to also increase efficiency.  

To elaborate the sequence of steps involved in the optimization process, we begin with the last 

column. The expression in Equation (2.7) below is used to ascertain the first non-zero/stopping 

node at the maturity: 

𝑗 =  [(𝑙𝑛(𝑋/𝑆)/𝑙𝑛(𝑢) + 𝑛)/2]                                                                                          (2.7) 

where [.] locally means the largest integer lower than its argument and 𝑢 = 𝑒𝑥𝑝(𝜎√𝑇/𝑛). 

Logically, for a put the nodes beneath the optimal exercise node at the maturity belong to the 

stopping region. Their exercise values are calculated and assigned to the appropriate nodes.6 In 

Figure 2.5, j is initially calculated to be 4 using the expression in Equation (2.7), which implies 

that the optimal exercise node at the maturity is node ❹. Then we assign respectively the exercise 

values: 61.2749, 53.1841, 43.4028, 31.5778 and 17.2823, from node ⓪ to node ❹ at column 10. 

Once these values are established, they then are used to enable backward induction leading to the 

penultimate column. The exercise condition is investigated somewhat more painstakingly from the 

first node beneath the zero-value zone by calculating and comparing the exercise values and 

holding values of the nodes until the optimal exercise node is confirmed. Then the respective 

exercise values are calculated again and assigned to the optimal exercise node and the node 

immediately below it while consecutive holding values are calculated again and assigned to the 

                                                 
6 All assignments of the option values to nodes should strictly follow the order, from the bottom to the top, consistent 

with the dynamic memory approach. 
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nodes lying between the stopping zone and the zero-value zone. A more exhaustive search routine 

is required for the penultimate array because the boundary is not guaranteed to be continuous 

going from the final column to the preceding column. In Figure 2.5, moving to column 9 we check 

the exercise condition from node [4] by comparing the exercise values relative to the holding 

values of the nodes until node ❷ which is ultimately confirmed as the optimal exercise node. The 

respective exercise values, 48.5252 and 37.7705, are assigned to node ① and to node ❷. The 

respective holding values, 24.7949 and 9.1864, are assigned to node [3] and node [4]. By locating 

and verifying the optimal exercise value, the seed value of the continuous portion pertaining to the 

optimal exercise boundary, B(n - 1) is also identified. Node ❷ at column 9 provides the root value 

that initiates the continuous optimal boundary.  

Then we move to column 8. Node ❷ should be initially inspected (the uncertain node) since it 

has the same series number as the optimal exercise node ❷ in column 9. We check its exercise 

condition and find that it is determined as a stopping node. This indicates that it is the optimal 

exercise node at this column. Thereafter, exercise values are assigned to it and the nodes 

immediately below it, and respective holding values are assigned to the nodes lying between the 

stopping zone and the zero-value zone at this column. Accordingly, we assign respective exercise 

values, 43.4028 and 31.5778, to node ① and node ❷ in column 8. The respective holding values, 

17.4373 and 4.8830, are by default assigned to node [3] and node [4]. When we move to column 

7, we check node [2] which has the same series number as the optimal exercise node ❷ in column 

8 and find that node [2] is a continuation node, which means the node immediately below it, node 

❶, is the optimal exercise node in column 7. Accordingly, we assign the exercise value 37.7705 

to node ❶ and assign respective holding values, 24.8667, 11.5319 and 2.5956, to node [2], [3], 
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[4] in column 7. This option valuing process is iterated until we move to column 4 by virtue that 

the value [0] associated with the last node in column 4, is also verified as a continuation node, 

which triggers the exit mechanism of the algorithm. The optimal exercise boundary searching stops. 

All nodes in the remaining columns (column 3, 2, 1, 0) are continuation nodes. From column 4 

back, we assign automatically holding values to each node in each column.  

We also present a closed-loop optimal exercise boundary search routine in Figure 2.6. When the 

previous exercise state B(i) = k, the new optimal exercise state either remains unchanged or minus 

1 (B(i – 1) = k or k – 1). k should not breach 0 or exceed the step size associated with any given 

column in the tree. Otherwise, the exit feature is primed to trigger. In Table 2.1, a direct comparison 

using the accelerated CRR tree vis-à-vis a standard CRR tree is made. The reported exhibit is based 

on the sample tree outlined in Figure 2.5. In a conventional CRR tree, we are normally obliged to 

estimate and assess the exercise value relative to holding value for 55 nodes. 11 terminal nodes 

are by default exercise values. The accelerated CRR tree only requires 8 direct comparisons to be 

made of the exercise value relative to the holding value. 9 nodes and 25 nodes are automatically 

assigned exercise values and holding values independently given that the early exercise boundary 

can be used to efficiently demarcate. Otherwise, 24 redundant nodes are truncated which 

incorporates hardly any processing costs.  
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Figure 2.5: An efficient American put option pricing process 
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Figure 2.6: The closed-loop optimal exercise boundary search routine 

 

Type of Nodes 
Number of Nodes 

Accelerated CRR Standard CRR 

Truncated Nodes 24 0 

Stopping Nodes 9 11 

Continuation Nodes 25 0 

Uncertain Nodes 8 55 

Total Nodes 66 66 

 

Table 2.1: Comparing the computational workload associated with the Accelerated CRR tree 

and a Standard CRR tree. 

 
 

Numerical Results 

Numerical results can be divided into three sections: In this first section, we show how option 

pricing efficiency can be improved by applying dynamic memory, truncation, and intelligent 

lattice search sequentially to a standard CRR tree. The most accelerated CRR model combines 

intelligent lattice search, dynamic memory and truncation together. In the second section, we 

compare the efficiency of our most accelerated CRR model to a standard CRR model, to a 

leading benchmark tree Chen and Joshi (2012), and to four popular analytical formulae. These 

comparisons are made relative to both option pricing and delta estimation. In the final section, 

we compare the accelerated CRR model to Chen-Joshi, and to four analytical formulae for 
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implied volatility estimation. All reported results are obtained using Excel VBA. A DELL 

Latitude E5470 with Intel’s Core i3 processors ran these algorithms and models.  

In the first section, we gauge successively how improvements in estimation efficiency can be 

introduced by using dynamic memory, intelligent lattice search, and truncation, where the 

initial baseline tree is a standard CRR tree7. Benchmark values for American call and put option 

samples are obtained from Broadie and Detemple (1996). In addition, in order to test the 

intelligent lattice search algorithm, two sets of parameters with r > y (r < y) for call (put) are 

expressly selected, which violate the restrictions imposed by Curran (1995) on continuous 

dividend yields. In Table 2.2, CRR baseline represents a standard two-dimensional static CRR 

tree. CRR_Dyn are accelerated purely by employing a one-dimensional dynamic tree. 

CRR_Dyn_Bound augments the dynamic binomial tree by using the intelligent lattice search 

algorithm. CRR_Dyn_Bound_Trun represents the most accelerated binomial model which 

comprehensively applies intelligent lattice search, dynamic memory and truncation. The 

computational times are presented using a mm:ss.00 format, located under the corresponding 

option values. We found that all four binomial models with the same set of parameters have 

resolutely identical results, which in turn are also consistent with the benchmark values. The 

acceleration effects can be gauged by noting how estimation time is reduced - moving from the 

baseline. Replacing the two-dimensional static tree by a one-dimensional dynamic tree saved 

almost half of the computational time. This pales in comparison to the acceleration effect of 

applying intelligent lattice search algorithm, which produces improvements in speed by at least 

one order of magnitude. Then the application of truncation technology further speeds up the 

computation several times. With the number of steps increasing, the effect of accelerations 

becomes more obvious. The baseline binomial model took more than 18 minutes at a 15,000-

                                                 
7 This approach to pricing is by far the slowest. It is also typically the most common method introduced in text 

books. 
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step size to complete. The most accelerated CRR tree (CRR_Dyn_Bound_Trun) took only 2.30 

seconds for the call and 5.66 seconds for the put. The improvement in estimation time is 

noteworthy and accuracy has not been compromised relative to the standard CRR tree.  

Option Param n CRR CRR_Dyn 
CRR_Dyn_ 

Bound 

CRR_Dyn_ 

Bound_Trun 

Broadie 

&Detemple  

1000 
12.1456 12.1456 12.1456 12.1456   

Amer  00:05.07 00:02.70 00:00.09 00:00.02   

Call 
3000 

12.1455 12.1455 12.1455 12.1455   

S = 80 00:43.09 00:22.13 00:00.67 00:00.33   

X = 100 
5000 

12.1452 12.1452 12.1452 12.1452   

T = 3 01:58.79 01:00.91 00:01.82 00:00.69   

r = 0.07 
10000 

12.1455 12.1455 12.1455 12.1455   

σ = 0.30 07:58.54 04:02.83 00:06.34 00:01.18   

y = 0.03 
15000 

12.1453 12.1453 12.1453 12.1453 12.145  
18:06.41 09:23.60 00:13.88 00:02.30  

  
1000 

9.2486 9.2486 9.2486 9.2486   

Amer  00:05.07 00:02.73 00:00.12 00:00.02   

Put 
3000 

9.2499 9.2499 9.2499 9.2499   

S = 100 00:42.70 00:22.08 00:00.84 00:00.39   

X = 100 
5000 

9.2502 9.2502 9.2502 9.2502   

T = 0.5 01:59.00 01:01.25 00:01.87 00:00.73   

r = 0.03 
10000 

9.2504 9.2504 9.2504 9.2504   

σ = 0.30 07:57.43 04:07.90 00:07.25 00:02.31   

y = 0.07 
15000 

9.2505 9.2505 9.2505 9.2505 9.251 

  18:51.19 09:34.87 00:16.67 00:05.66   

 

Table 2.2: Acceleration effect comparison among dynamic memory, truncation, and 

intelligent lattice search 

 

Before moving to the second section, there is some initial preparatory work relating to 

generating a large number of sample options parameters. We use these to determine the level 

of error relative to a benchmark (“true value”) and the time required for estimation is also 

recorded. We additionally sketch out a number of delta estimation methods. Following Broadie 

and Detemple (1996), we design a uniform distribution of parameters inputs for S, T, r, y, σ 

and PutCall to generate 2,500 American options. The spot price S was given to be uniformly 
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distributed between 70 and 130. The exercise price X was fixed as a constant at a value of 100. 

Time to maturity T, with probability of 0.75 was uniform between 0.1 and 1 years. A 

probability of 0.25 was attributed to maturity being randomly between 1 and 5 years. The 

riskless rate r was uniformly distributed between 0 and 0.1 with a probability of 0.8 and 0 

generated with the residual probability of 0.2. The dividend rate y was uniform between 0 and 

0.1. Volatility σ was distributed uniformly between 0.1 and 0.6. There was also a random 0.5 

probability of the option being a call or put. Consistent with Broadie and Detemple (1996), the 

main error measure, root mean squared relative error (RMSRE), is defined as: 

RMSRE = √
1

𝑚
∑ 𝑒𝑖

2𝑚
𝑖=1                                                                                                              (2.8)                                                    

where m is the number of options and 𝑒𝑖 =
𝐶𝑖̂−𝐶𝑖

𝐶𝑖
 where 𝐶𝑖 and 𝐶𝑖̂ is the true and estimated value 

of the option respectively. The true value Ci is generated using a 15,000-step CRR model. 170 

of the 2,500 American options with extremely-small true value (𝐶𝑖 < 0.50) are excluded. The 

residual number of American options involved in the valuation is 2,330 (m = 2,330). The time 

consumption measure (Time) represents the average execution time (seconds) for pricing per 

American option, which can be calculated as: 

Time =
𝑇𝑜𝑡𝑎𝑙 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒

𝑚
                                                                                                     (2.9) 

where m is the number of options. For delta estimation, the delta of the tree model, including 

a standard CRR, our accelerated CRR, and Chen-Joshi, are estimated using: 

∆𝐶𝑅𝑅=
𝑉(1,1)−𝑉(1,0)

𝑆(1,0)−𝑆(1,1)
                                                                                                                   (2.10) 

where the numerator is the difference between the option value of the upper node and lower 

node at the end of the first period, and the denominator is the difference between the stock price 

of these two nodes. For analytical formulae, however, the delta is calculated as: 
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∆𝑎𝑛𝑎𝑙=
𝐶(𝑆+𝜀)−𝐶(𝑆−𝜀)

2𝜀
                                                                                                                (2.11) 

where ε is a perturbation introduced for the spot price S, and numerator is the difference 

between the option value estimated with the spot price S + ε and S - ε using analytical formulae. 

In the second section, we first compare the 2,330 options sample for pricing and delta 

estimation with a view to teasing out the relative efficiency of a standard CRR model (CRR) 

vis-à-vis our accelerated CRR model (Accel CRR). The latter introduces intelligent lattice 

search, dynamic memory and truncation. For both pricing options and estimating delta, shown 

in Table 2.3, as the number of steps increase, the estimation error (RMSRE) generated by CRR 

and our Accel CRR decreases while the execution time (Time) increases. We found that Accel 

CRR always generates identical RMSRE as CRR at different step size but with much less Time, 

which implies that the pricing process is effectively accelerated without disturbing the accuracy. 

The “Multiple of speed” shows how many times Accel CRR is faster than CRR attaining the 

same estimation accuracy. From 50 to 1,000 steps, Accel CRR model can be from 7 to 220 

(182) times faster than CRR in option pricing (estimating delta).  

To provide a yardstick relative to a more recent literature, we replicate Chen-Joshi and run it 

with tolerance level of 1E-05 to estimate 2,330 generated sample options. The comparison 

between our Accel CRR and Chen-Joshi is demonstrated in Table 2.4. To make a direct 

comparison, the number of steps of the two models are selected to achieve a similar level of 

accuracy (RMSRE) so that the efficiency can be easily juxtaposed according to execution time 

(Time). For each column, Accel CRR and Chen-Joshi generate a similar RMSRE but expend 

different amounts of Time. The “Multiple of speed” indicates how many times Accel CRR is 

faster than Chen-Joshi. For option pricing, Accel CRR is roughly 1.5 to 2 times faster than 

Chen-Joshi consistent with a similar level of accuracy. This differential is amplified by an order 

of 2 to 3 times for delta estimation.  
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Next, we compare our accelerated CRR model with four analytical formulae briefly alluded to 

in the literature review: BAW, Bjerksund93, Bjerksund02, and Ju-Zhong. We reuse the 2,330 

option parameter sets generated previously. In Table 2.5 and Table 2.6, the results generated 

from analytical formulae are deliberately placed under the results of Accel CRR that have 

approximately the same RMSRE. The execution time (Time) with similar levels of accuracy 

(RMSRE) are investigated. The “Multiple of speed” tentatively maps out how many times our 

Accel CRR is faster or slower relative to the analytical formulae linked by approximate levels 

of accuracy. For option pricing (Table 2.5), Accel CRR is roughly 1.5 times faster than BAW. 

In contrast, Accel CRR is discernibly slower than Bjerksund93 and Bjerksund02, but almost 

as fast as Ju-Zhong for similar levels of error. For delta estimation (Table 2.6), we find that 

Accel CRR is about 2 and 2.5 times faster than respectively Ju-Zhong and BAW to obtain the 

same level of accuracy. It is comparable to Bjerksund02 but 0.3 (1 - 0.68) times slower than 

Bjerksund93. Accel CRR has an obvious advantage in that it provides varying levels of 

accuracy with different step size. Our accelerated CRR model provides a full spectrum of 

choice to practitioners varyingly tasked with pricing, repricing and hedging accuracy criteria. 

Each analytical formula can only provide one combination of speed and accuracy.  
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    Steps 50 100 200 300 400 500 600 700 800 900 1000 

Option 

Pricing 

Accel 

CRR 

RMSRE 7.65E-03 3.61E-03 1.79E-03 1.08E-03 8.05E-04 6.85E-04 5.71E-04 4.64E-04 4.10E-04 3.67E-04 3.85E-04 

Time (Ta) 1.77E-03 2.91E-03 3.42E-03 6.72E-03 8.06E-03 9.18E-03 1.01E-02 1.25E-02 1.45E-02 1.75E-02 2.20E-02 

CRR 
RMSRE 7.65E-03 3.61E-03 1.79E-03 1.08E-03 8.05E-04 6.85E-04 5.71E-04 4.64E-04 4.10E-04 3.67E-04 3.85E-04 

Time (To) 1.27E-02 4.84E-02 1.72E-01 3.79E-01 6.60E-01 1.0433 1.4884 2.0246 2.6490 3.8083 4.8481 

Multiple of Speed (T0/Ta) 7.19 16.61 50.34 56.37 81.97 113.59 147.32 162.16 182.77 217.75 220.37 

Delta 

Estimation 

Accel 

CRR 

RMSRE 7.34E-03 3.55E-03 1.76E-03 1.09E-03 8.32E-04 7.14E-04 5.92E-04 4.95E-04 4.40E-04 3.95E-04 4.01E-04 

Time (Ta) 1.62E-03 2.31E-03 3.71E-03 5.39E-03 8.04E-03 9.26E-03 1.13E-02 1.36E-02 1.62E-02 1.88E-02 2.18E-02 

CRR 
RMSRE 7.34E-03 3.55E-03 1.76E-03 1.09E-03 8.32E-04 7.14E-04 5.92E-04 4.95E-04 4.40E-04 3.95E-04 4.01E-04 

Time (To) 1.13E-02 4.70E-02 1.69E-01 3.81E-01 6.65E-01 1.0371 1.4815 1.9546 2.5505 3.2325 3.9707 

Multiple of Speed (T0/Ta) 7.01 20.37 45.57 70.67 82.66 111.98 130.56 143.26 157.42 172.12 182.08 

 

Table 2.3: Comparing Accel CRR and CRR in option pricing and delta estimation 
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Option 

Pricing 

  Steps 30 120 200 300 400 500 600 700 900 1100 

Accel 

CRR 

RMSRE 1.08E-02 2.88E-03 1.79E-03 1.08E-03 8.05E-04 6.85E-04 5.71E-04 4.64E-04 3.67E-04 3.13E-04 

Time (Ta) 1.46E-03 3.22E-03 3.42E-03 6.72E-03 8.06E-03 9.18E-03 1.01E-02 1.25E-02 1.75E-02 2.42E-02 

 Steps 10 20 30 40 50 60 70 80 90 100 

Chen-Joshi 
RMSRE 1.14E-02 2.87E-03 1.39E-03 8.60E-04 6.26E-04 5.72E-04 4.58E-04 3.38E-04 3.06E-04 3.04E-04 

Time (T0) 2.81E-03 4.76E-03 7.63E-03 1.12E-02 1.53E-02 2.06E-02 2.60E-02 3.27E-02 3.94E-02 4.79E-02 

Multiple of Speed (T0/Ta) 1.92 1.48 1.50 1.39 1.66 2.04 2.08 1.87 1.80 

Delta 

Estimation  

  Steps 20 80 150 200 250 300 400 500   

Accel 

CRR 

RMSRE 1.76E-02 4.53E-03 2.23E-03 1.76E-03 1.47E-03 1.09E-03 8.32E-04 7.14E-04  

Time (Ta) 1.17E-03 1.97E-03 3.09E-03 3.71E-03 4.60E-03 5.39E-03 8.04E-03 9.26E-03   

  Steps 10 20 30 40 50 60 70 80 90 100 

Chen-Joshi 
RMSRE 1.53E-02 4.28E-03 2.15E-03 1.56E-03 1.25E-03 1.08E-03 8.93E-04 7.92E-04 7.85E-04 7.64E-04 

Time (To) 2.13E-03 4.10E-03 7.19E-03 1.13E-02 1.54E-02 2.07E-02 2.67E-02 3.50E-02 4.58E-02 5.51E-02 

Multiple of Speed (T0/Ta) 1.82 2.08 2.33 3.04 3.35 3.84 3.32 4.89   

 

Table 2.4: Comparing Accel CRR and Chen-Joshi in option pricing and delta estimation 
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Accel CRR 

Steps 10 20 30 40 50 60 70 80 90 100 110 120 

RMSRE 3.56E-02 1.85E-02 1.08E-02 9.98E-03 7.65E-03 6.16E-03 5.58E-03 4.71E-03 4.11E-03 3.61E-03 3.16E-03 2.88E-03 

Time (Ta) 1.10E-03 1.31E-03 1.46E-03 1.62E-03 1.77E-03 1.99E-03 2.08E-03 2.54E-03 2.78E-03 2.91E-03 2.98E-03 3.22E-03 

BAW 
RMSRE     1.22E-02                   

Time (T1)     2.24E-03                   

Bjerksund93 
RMSRE         7.66E-03               

Time (T2)         9.91E-04               

Bjerksund02 
RMSRE           5.91E-03           

 Time (T3)           1.38E-03           

Ju Zhong 
RMSRE                       2.86E-03 

Time (T4)                       3.10E-03 

Multiple of Speed (Ti/Ta, i = 1, 2, 3, 4)     1.53   0.56 0.68         0.96 

 

Table 2.5: Comparing Accel CRR and analytical formulae in option pricing 
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Accel CRR 

Steps 10 20 30 40 50 60 70 80 90 100 120 140 

RMSRE 3.36E-02 1.76E-02 1.04E-02 9.58E-03 7.34E-03 5.99E-03 5.41E-03 4.53E-03 3.99E-03 3.55E-03 2.83E-03 2.40E-03 

Time (Ta) 1.03E-03 1.17E-03 1.36E-03 1.52E-03 1.62E-03 1.74E-03 1.82E-03 1.97E-03 2.04E-03 2.31E-03 2.44E-03 2.67E-03 

BAW 
RMSRE         7.38E-03               

Time (T1)        4.25E-03               

Bjerksund93 
RMSRE       7.80E-03               

Time (T2)       1.03E-03               

Bjerksund02 
RMSRE         7.25E-03             

Time (T3)         1.69E-03             

Ju Zhong 
RMSRE                     2.61E-03   

Time (T4)                     4.91E-03   

Multiple of Speed (Ti/Ta, i = 1, 2, 3, 4)       0.68 2.63 1.03         1.92   

 

Table 2.6: Comparing Accel CRR and analytical formulae in delta estimation
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In Figure 2.7 and Figure 2.8, we visualize the performance of our accelerated CRR model, 

Chen-Joshi, and four analytical formulae for option pricing and delta estimation. Better model 

performance can be achieved by reaching a closer proximity to the origin. Lower RMSRE and 

Time indicate higher efficiency. For option pricing (Figure 2.7), Bjerksund93 and Bjerksund02 

perform well and efficiency is signalled in terms of their relative proximity to the origin. Accel 

CRR and Ju-Zhong foster similar levels of error with comparable levels of speed. BAW would 

appear furthest from the origin and we interpret this be consistent with a relatively poorer 

performance. Accel CRR provides varying combinations of accuracy and speed represented as 

a line in the graph while each analytical formula has only one combination shown as a single 

dot. The locus representing Chen-Joshi also contains different levels of accuracy but further 

from the origin than Accel CRR, which indicates a worse performance. For delta estimation 

(Figure 2.8), the triangular shape representing Bjerksund93 performs well in terms of proximity 

to the origin. The other three analytical formulae and Chen-Joshi are farther away from the 

origin, which means they are less efficient. Again, the locus mapped out by Accel CRR 

represents different combinations of accuracy and speed relative to the singular dots of 

analytical formulae. Also, these varying combinations are closer to the origin than Chen-Joshi 

which means Accel CRR has relatively better performance.  

This final section focuses on the relative efficiency of Accel CRR, Chen-Joshi, four analytical 

formulae in estimating implied volatility (IV). We collected chain market price of all 1,152 live 

American call and put options on Apple, Inc. from Datastream reported on 8th April 2019 with 

a contemporaneous stock price of 200.1. The expiry dates span 18th April 2019, 17th May 2019, 

21st June 2019, 19th July 2019, 16th August 2019, 20th September 2019, 18th October 2019, 17th 

January 2020, 19th June 2020, 18th September 2020, 15th January 2021, 18th June 2021 

respectively. The strike price ranges from about 100 to 300 with a uniform interval of 5. The 
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dividend yield of 1.46% with the risk-free rate of 2.37%8. The implied volatility is estimated 

using the Bisection method with a lower and upper bound respectively of a = 0.1 and b = 19. 

The true value of IV is generated using a 15,000-step CRR model combined with Bisection. 

306 of the 1,152 Apple’s options present with true IV < 0.1% or > 1, or strike price K < 100 

or > 300, are excluded. The residual number of options involved in IV estimation is 846 (m = 

846). In Table 2.7, we report the RMSRE and Time of IV estimation using Accel CRR, Chen-

Joshi, and four analytical formulae, which is sketched out in Figure 2.9. Again, the sweet spot 

leans towards lower RMSRE coupled with lower Time leading to higher efficiency estimates 

of IV. In the graph, better model performance can be realized by reaching a closer proximity 

to the origin. Ju-Zhong represented by the circle is closest to the origin with best performance 

in IV estimation, followed by BAW that can achieve the same level of accuracy (RMSRE) with 

a shorter time than Accel CRR. Bjerksund93 and Bjerksund02 approximately fall on the locus 

representing Accel CRR, which indicate that they share similar levels of performance. 

Different from single data point characteristic of the analytical formulae, Accel CRR provides 

varying combinations of accuracy (RMSRE) and speed (Time) in IV estimation. Chen-Joshi 

also possesses this advantage although performs worse than Accel CRR as its locus is further 

from the origin than Accel CRR. 

                                                 
8 The risk-free rate is defined as the annualized 3-month US Treasury bill rate at 30th April 2019 obtained from 

Datastream.    
9 Regarding to the Bisection method, please refer to Rouah and Vainberg (2007, p.9). Since the smallest and 

largest IV of the residual 846 options is found to reside between 0.18 and 0.98 respectively using a 15,000-step 

CRR model, we set up the upper and lower bound of 0.1 and 1 correspondingly.   
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Figure 2.7: Comparing Accel CRR, Chen-Joshi, and analytical formulae in option pricing 
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Figure 2.8: Comparing Accel CRR, Chen-Joshi, and analytical formulae in delta estimation 
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AccelCRR_10Steps 

AccelCRR_ 

20Steps 

AccelCRR_ 

30Steps 

AccelCRR_ 

35Steps 
AccelCRR_ 100Steps 

AccelCRR_ 

200Steps 

AccelCRR_ 

300Steps 

AccelCRR_ 

350Steps   

RMSRE 2.99E-02 1.29E-02 9.59E-03 7.71E-03 2.69E-03 1.27E-03 8.51E-04 6.91E-04 

 Time 3.37E-03 5.41E-03 7.47E-03 8.81E-03 2.38E-02 5.14E-02 8.29E-02 1.01E-01 

  Bjerksund 

93 

Bjerksund 

02 
ChenJoshi_10Steps BAW JuZhong ChenJoshi_20Steps ChenJoshi_30Steps ChenJoshi_40Steps ChenJoshi_50Steps 

  

RMSRE 4.59E-02 5.78E-02 9.77E-03 8.42E-03 2.14E-03 2.33E-03 1.27E-03 9.24E-04 7.01E-04 

 Time 1.64E-03 6.02E-03 1.67E-02 4.18E-03 4.83E-03 4.40E-02 8.61E-02 1.41E-01 2.14E-01 

 

Table 2.7: Comparing Accel CRR, Chen-Joshi, and analytical formulae in estimating implied volatility 
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Figure 2.9: Comparing Accel CRR, Chen-Joshi, and analytical formulae in estimating implied volatility 
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Conclusion 

In this paper, Cox, Ross and Rubinstein (1979) is revisited with the ambition to drive down the 

computational time for estimating American Options. The continuous optimal exercise 

boundary theory proposed by Kim and Byun (1994) and subsequently by Curran (1995) opened 

a significant vista for reaching greater efficiency for lattice type models despite restrictions 

being imposed on dividends. We augment their approach to include unrestricted dividends here. 

Our revamped continuous boundary theory addresses a non-trivial gap for practitioners, as 

early exercise can occur for an American put (call) option even when r < y (r > y). Furthermore, 

an intelligent lattice search algorithm is introduced to promptly locate the optimal exercise 

boundary for American options on assets with unrestricted dividends (yield). 

Our accelerated CRR model combines intelligent lattice search, truncation and dynamic 

memory technologies. In each instance, we produce equivalent results to the original CRR 

model. A full Excel VBA implementation is made available in the Appendix to researchers. 

Computational runtime can be reduced from over 18 minutes down to less than 3 seconds to 

estimate a 15,000-step CRR tree. Significantly, American option pricing and delta estimation 

are accelerated, in terms of efficacy, dozens of times to hundreds of times as lattice steps 

increase. In addition, we compare Accel CRR with the leading benchmark tree Chen-Joshi, and 

four popular analytical formulae including BAW, Bjerksund93, Bjerksund02, and Ju-Zhong. 

These comparisons are made in terms of option pricing, delta estimation and implied volatility 

estimation. Our accelerated CRR model proves to be more efficient than Chen-Joshi and is 

capable of producing levels of speed consistent with analytical formulae. More importantly, 

our accelerated CRR model is advantageous to market professionals, in so much, that it flexibly 

provides varying levels of accuracy with different lattice step size. In contrast, each analytical 

formula can only afford a single combination of speed and accuracy. 
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Chapter 3: American Option Pricing: Optimal Lattice Models and 

Multidimensional Efficiency Tests   

 

Abstract 

This paper introduces a set of lattice techniques with a view to accelerating computation time 

and improving the accuracy of American Option valuation. Estimation speed can be enhanced 

through developing a parsimonious early exercise boundary search routine combined with 

reliance on dynamic memory and lattice truncation. Furthermore, Black-Scholes and 

Richardson extrapolation modifications can also be applied individually and/or together to 

improve the accuracy of lattices. In this paper, we investigate the improvement introduced by 

obtaining the best combination of varying features. By introducing these techniques to the 

Leisen-Reimer and Tian binomial model, we can achieve a level of accuracy and efficiency 

combined that surpass analytical analogues prominent in the literature. Significantly, the 

Leisen-Reimer and Tian structure can accommodate arbitrary improvements in accuracy by 

simply increasing the density of their own mesh. Analytical methods generally do not afford 

much scope for optimising speed and efficiency in a granular fashion. We also compare 

efficient lattice models with analytical formulae for pricing different groups of options 

according to the deepness of American quality and the moneyness of the options. The 

appropriate model is recommended for pricing particular type of the options. Lattices 

importantly afford an explicit trade-off locus between accuracy and speed that can be navigated 

according to predetermined precision tolerance levels and option types. This should have 

practical relevance to trading platforms that require real-time estimates of implied volatility. 
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Literature Review 

A put (call) option provides the holder with the right to sell (buy) the underlying asset at a fixed 

price. If the holder can only exercise the option at the maturity, the option is referred to as being 

European. In contrast, an American option can be exercised early, at any time before the 

maturity. With the possibility of early exercise, American option pricing gives rise to an 

optimal exercise problem. A closed-form solution for European option pricing is available 

using Black and Scholes (1973). No equivalently simple closed-form solution exists for valuing 

American options robustly. McKean (1965) and Merton (1973) lay the foundation for the 

American option pricing. They show that the American option valuation problem can be 

viewed as a free boundary (also known as the optimal exercise boundary) problem of a partial 

differential equation. Since then, varying methods have been proposed for pricing American 

options written on a single underlying asset, which can be largely classified into two categories: 

analytical approximations or numerical methods.  

Approximate analytic solutions are heavily relied upon to expedite estimation. Geske and 

Johnson (1984) valued American options using an infinite sequence of multivariate cumulative 

normal terms, which was improved in Bunch and Johnson (1992) by locating two exercise 

points. A key limitation however relates to the inefficiency associated with adding more and 

more terms to capture an exact representation of the free boundary problem typical in American 

options. Barone-Adesi and Whaley (1987, BAW) proposed a quadratic approximation. It is 

known to be fast and accurate for most input values but it becomes less accurate when pricing 

an American option with longer maturity horizons. American options values tend to diverge 

more markedly from their European equivalents as maturity increases. Ju and Zhong (1999, 

Ju-Zhong) extended the quadratic approach and improved pricing for longer maturities 

instruments relative to BAW. Ju-Zhong pointed out that their approach is more accurate than 
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the less efficient methods proposed, such as, the four-point extrapolation schemes of Geske 

and Johnson (1984) and Huang, et al. (1996). Li (2010) further extended the Ju-Zhong approach 

by suggesting an improved smoothing condition for American options. This had the effect of 

producing a more exact estimate of the optimal exercise price although did not guarantee a 

markedly better option pricing performance. The approximations of BAW, Ju-Zhong and Li 

models however do not in essence converge to the true value. In addition to quadratic 

approximation techniques, Bjerksund and Stensland (1993, Bjerksund93) obtained an 

approximation by simplifying the optimal exercise strategy with a unique flat early exercise 

boundary. Bjerksund and Stensland (2002, Bjerksund02) made further improvement by 

incorporating the second bound. These approaches represent accurate and efficient 

approximations to the American option value. Zhu (2006) proposed an exact solution by 

making use of a Taylor series expansion potentially leading to an infinite many terms. Zhu’s 

approach points to the existence of a closed-form solution for American option pricing but is 

hard to implement in terms of computational costs (Kim et al. 2013; Chen and Joshi 2012; 

Medvedev and Scaillet 2010). In this paper, we compare our efficient lattice models with 

analytical approximations prominent in the literature and we show that our most refined models 

surpass the accuracy and speed of these commonly used analytical frameworks.   

Numerical techniques are regularly used as benchmarks for analytical approximations on 

account of the high level of estimation accuracy. Brennan and Schwartz (1977) and Dempster 

and Hutton (1999) transformed the partial differential equation into linear equations and linear 

programming problems respectively using finite difference methods. Wu and Kwok (1997) and 

Nielsen et al. (2002) convert free-boundary problems into nonlinear problems using front-

fixing methods. Lattice models are generally more relied upon relative to other numerical 

techniques used for the valuation of American options. In their seminal paper, Cox, Ross, 
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Rubinstein (1979, CRR) proposed a binomial model and noted that higher accuracy could be 

achieved by incorporating a larger number of time steps. Broadie and Detemple (1996) 

obtained the “true” value of American options by elaborating a 15,000-step benchmark 

binomial model for CRR. Using probabilistic methods, Amin and Khanna (1994) prove that 

the discrete-time models converge to the corresponding continuous-time models. This is 

important, as it provides a roadmap for establishing benchmarks. A number of variants of the 

original CRR trees have been proposed. Boyle (1986) proposed the trinomial tree in which 

each node generates three branches. Leisen and Reimer (1996, LR) and Tian (1993, Tian) 

reconstructed the CRR binomial model by modifying the effect of parameters on jumps 

between nodes and probabilities. The adaptive mesh method proposed in Figlewski and Gao 

(1999) embeds a secondary finer lattice mesh in key parts of the grid, which dramatically 

reduces the nonlinear error and has a wide range of applications. Staunton (2005) improved the 

LR model using Curtailed Ranges and Richardson extrapolation. The revamped LR model is 

the most efficient compared with the two best base approximations. Joshi (2009) and Chen and 

Joshi (2012) accelerate the Tian model using truncation, smoothing and Richardson 

extrapolation, which produce better performance than the improved LR model. Shang and 

Byrne (2019) propose an accelerated CRR model incorporating an intelligent lattice search 

algorithm, truncation and dynamic memory technologies. This model proved to be more 

efficient than the best performing model proposed by Chen and Joshi (2012), one of the leading 

benchmarks for lattice estimation, while did not in every instance surpass the closed form 

solution performance for American Option valuation.10 In this paper, we improve the LR and 

Tian model both in speed and accuracy with intelligent lattice search, acceleration technologies 

                                                 
10 In that paper, we used VBA to test and develop our models so that algorithms could be easily ported to any 

other desktop and peers could reproduce our research/results. In this paper, we rely upon C++ which tends on the 

whole to be more efficient that VBA. It also tends to influence the relative performance/efficiency of proposed 

models.  
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and accuracy modifications. We also show that the improved LR and Tian model can be more 

efficient than the Shang and Byrne (2019) tree and more efficient than leading closed formed 

solutions.  

Identification of the optimal exercise boundary plays a central role in American option pricing. 

The optimal exercise boundary problem also exists for lattice models. Kim and Byun (1994) 

demonstrated the properties associated with the optimal exercise boundary of a CRR binomial 

model for an American put option without dividends payment. A definable locus of nodes that 

map out the stopping and continuation regions of the binomial tree can be revealed. Curran 

(1995) further extended the Kim-Byun boundary theory for American options with continuous 

dividend yields. Curran’s boundary theory however is constrained in that the risk-free interest 

rate, r is necessarily superior (inferior) to the dividend yield, y for the put (call) option. Shang 

and Byrne (2019) overcome that limitation by initiating backward recursion from the 

penultimate column. This relatively small tweak implies that Curran’s boundary theory can be 

relaxed to include a wider subset of parameter inputs for CRR. The effect of altering the seed 

column for backward recursion is fundamental to removing the constraint that American put 

valuation is subject to r ≥ y. We similarly relaxed the restriction r ≤ y imposed on call options 

which means that the limitations imposed by Curran (1995) can be circumvented. Basso et al. 

(2002, 2004) developed a binomial approximation to the optimal exercise boundary with the 

insight of Kim-Byun boundary theory. Areal and Rodrigues (2013) extended Curran’s 

boundary theory to accelerate the binomial lattice for valuing American options with discrete 

dividends. Guo and Liu (2019) further proposed a binomial model for pricing options with 

known dollar dividends. In this paper, we extend the insights developed in Shang and Byrne 

(2019) and apply intelligent lattice search insights to both the LR and Tian trees with 

unrestricted continuous dividend yield.  
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In order to test and compare the efficiency of option pricing models, we need to amply generate 

random samples of option parameters. Broadie and Detemple (1996) set out criterion for 

producing random parameters, which has been adapted in turn by Chen and Joshi (2012) and 

Fabozzi, et al (2016). Gaudenzi and Pressacco (2003) and Pressacco, et al (2008) however 

found that the accuracy of American option pricing is linked to strong/weak underlying 

condition of parameters. Strong options, while few relative to all options, contribute 

proportionately the largest part of the estimation error. In this paper, we generate parameter 

samples following Broadie and Detemple (1996) and then filter results in terms of moneyness 

and the ratio of American to European (AER) analogues to signal strong/weak.11 

The remaining paper is organized as follows. In Section 2, we introduce the LR tree and Tian 

tree and their optimal exercise boundary theory. In Section 3, we discuss two acceleration 

technologies and two accuracy modifications which can be used to improve LR and Tian 

models in speed and accuracy respectively. In Section 4, we demonstrate the pricing process 

of the improved LR and Tian models. In Section 5, we compare a series of improved LR and 

Tian models with the leading benchmark tree and more importantly to well-known analytical 

formulae. In each instance, we follow Strong-Weak-In-Out filtering consistent Pressacco, et al 

(2008). In Section 6, we conclude. 

 

 

 

 

                                                 
11 Pressacco et al. (2008) chose an AER ratio of 1.4 to filter options in terms of being strong. They noted that large 

and erratic errors were common in a number of techniques that purported to value American options when AER 

exceeded 1.4. 
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Methodology 

LR and Tian Trees and their Optimal Exercise Boundary Condition 

Consider an American put option with spot price S, strike price X, time to maturity T, risk-free 

interest rate r, continuous dividend yield y, volatility σ, and a step size n. The time step is Δt = 

T / n. Leisen and Reimer (1996) propose an optimized binomial tree that centres around the 

exercise price using Preizer-Pratt inversion methods. They define the probability of moving 

upward and downward, p and q respectatively, and the magnitude of upward and downward 

factors u and d, as: 

𝑝 = ℎ(𝑑2) (3.1) 

𝑞 = 1 − 𝑝 (3.2) 

𝑢 = 𝑒(𝑟−𝑦)𝛥𝑡 ℎ(𝑑1)

ℎ(𝑑2)
  (3.3) 

𝑑 =
𝑒(𝑟−𝑦)𝛥𝑡−𝑝𝑢

1−𝑝
  (3.4) 

where 

𝑑1 =
𝑙𝑛(

𝑆

𝑋
)+(𝑟−𝑦+

𝜎2

2
)𝑇

𝜎√𝑇
  (3.5) 

𝑑2 = 𝑑1 − 𝜎√𝑇  (3.6) 

ℎ(𝑥) =
1

2
+

𝑆𝑔𝑛(𝑑1)

2
√1 − 𝑒𝑥𝑝 [− (

𝑥

𝑛+
1

3

)

2

(𝑛 +
1

6
)]  (3.7) 
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Sgn() is the sign function and the number of time steps n should be odd.12 Tian (1993) proposed 

that the binomial parameters are selected such that discrete-time distribution converges to the 

continuous-time distribution. Tian (1993) stipulated that p, q, u, and d are defined as: 

p =
𝑀−𝑑

𝑢−𝑑
    (3.8) 

q = 1 − p =
𝑢−𝑀

𝑢−𝑑
    (3.9) 

u =
𝑀𝑉

2
[(𝑉 + 1) + √𝑉2 + 2𝑉 − 3]  (3.10) 

d =
𝑀𝑉

2
[(𝑉 + 1) − √𝑉2 + 2𝑉 − 3]   (3.11) 

where M = exp(rΔt) and V = exp(σ2Δt). Other than the varying definition of u, d and p, the 

stock price tree adheres to the same construction. Likewise, the backward induction method 

relevant for LR and Tian model is performed in the usual fashion, not unlike, the conventional 

CRR binomial tree. Each node in the binomial tree can be identified as having a (i, j) mapping, 

where i represents the ith column in which the node is located and j represents the number of 

upward movements of stock price consistent with each node. The maximum j is determined by 

the ith column count. The option value of node (i, j) is represented as V(i, j).  Since the LR and 

Tian binomial tree uses a backward inductive pricing process, the pricing starts from the nodes 

at the maturity. At the final column (expiry), the respective put option values of the nodes are 

determined by: 

𝑉(𝑛,𝑗) = max(𝑆𝑢𝑗𝑑𝑛−𝑗 − 𝑋, 0) (3.12) 

From the penultimate column back, the option values of the nodes are equal to the maximum 

of the exercise value and the holding value which is defined as: 

                                                 
12 Here we calculate h(x) using the Preizer-Pratt inversion method 2. Alternatively, Preizer-Pratt inversion method 

1 can also be used.   
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𝑉(𝑖,𝑗) = max{𝑆𝑢𝑗𝑑𝑖−𝑗 − 𝑋, [𝑝𝑉(𝑖+1,𝑗+1) + (1 − 𝑝)𝑉(𝑖+1,𝑗)]/𝑅}  (3.13) 

where R = exp(rΔt). The exercise value equates to the difference between the stock price of 

the node (i, j) and the fixed strike price X. The holding value is defined as the discounted 

weighted-average sum-product of two nodes from the preceding column, node (i+1, j+1) and 

node (i+1, j).  

Kim and Byun (1994) developed some definitions/nomenclature for pricing non-dividend 

paying American put options using a CRR lattice. We extend these naming and mapping 

conventions to the LR and Tian binomial trees. A binomial tree can be divided into two regions: 

the stopping region S where the option is exercised and a continuation region C where the 

option is held. Formally, two regions are defined as: 

𝑺 ≡ {(𝑖, 𝑗)| 𝑉(𝑖,𝑗) = 𝑋 − 𝑆(𝑖,𝑗)}  (3.14) 

𝑪 ≡ {(𝑖, 𝑗)| 𝑉(𝑖,𝑗) > 𝑋 − 𝑆(𝑖,𝑗)} (3.15) 

The nodes in the stopping region are called stopping nodes and their values are equal to their 

corresponding exercise values. Similarly, the nodes pertaining to the continuation region are 

referred to as continuation nodes and equate to holding values. The optimal exercise node is 

the last stopping node which delineate the stopping nodes from the continuation nodes for each 

column. The nodes on and above the optimal exercise node are stopping nodes while the nodes 

below are continuation nodes. Optimal exercise nodes at each column constitute the optimal 

exercise boundary which separates the stopping and continuation regions. Following Kim and 

Byun (1994) and Curran (1995), Shang and Byrne (2019) propose an extended optimal exercise 

boundary theory that draws from efficiently delineating the stopping and holding regions. We 

found that the intelligent lattice search algorithm can be applied to LR and Tian trees. As before: 

the optimal exercise boundary of a LR and Tian binomial tree is continuous from the 
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penultimate column back when pricing American options. Consistent with Shang and Byrne 

(2019) no restrictions must be imposed on dividend yield relative to the risk-free rate.  

 

 

Figure 3.1: Optimal exercise boundary of a LR and Tian tree 

 

The simplified numerical examples Figure 3.1 can be used to demonstrate some properties of 

the optimal exercise boundary for a LR and Tian tree, where it is noted that the boundary is 

continuous when implementing backward recursion from the penultimate column. Consider an 

American put option with the following parameter values: S = 100, X = 100, T = 1, r = 0.05, y 
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= 0.07 13 and σ = 0.3. The 9-step LR and Tian binomial trees for pricing this option are shown 

in Figure 3.1.14 Each node is represented by its corresponding option value. Importantly, the 

nodes in each column are organised in descending values for options which implies the stock 

price tree is flipped.  The values marked in bold represent stopping nodes and the rest of values 

that are not marked in bold constitute continuation nodes. (i, ) and ( , j) signify the column and 

row number of the node respectively, where i and j = 0, 1, …9. The nodes falling on the same 

horizontal (tilted) light dashed line have the same column (row) number. The optimal exercise 

nodes are underlined and connected by the heavy lines; marking the optimal exercise boundary. 

As with Shang and Byrne (2019), it is clear that the boundary is continuous from the 

penultimate column stretching backward. In contrast, between the final and penultimate 

column, continuity cannot be guaranteed. Here, the solid continuous locus is interrupted by a 

jump between non-adjacent nodes marked by a heavy dashed line. The continuous boundary 

indicates that the j value (row number) associated with the optimal exercise node at each 

column and the previous column, are either equal or differ by a value of 1. In other words, if 

the optimal exercise node at ith column is known as (i, j), the optimal exercise node at (i-1)th 

column is either (i-1, j) or (i-1, j-1). Therefore, the optimal exercise boundary can be confirmed 

by verifying the exercise condition of merely a single node in each column.15  Once the 

boundary is determined, stopping and continuation regions/nodes can be further determined 

without any additional checks. Using the optimal exercise boundary theory, disposes of the 

requirement for blanket inspection - verifying the exercise condition of each node to bifurcate 

the tree. This dramatically reduces computational costs and effectively accelerates the pricing 

process. 

                                                 
13 y > r which violates the assumption set out by Curran (1995). y = 0.07 is deliberately engineered to exceed r. 
14 A step-size of 9 adheres to the LR stipulation that n should be odd. In the algorithm we developed, if n happens 

to be even then the step sizes defaults to n+1.  
15 Conventional trees require a blanket search. 
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Acceleration Technologies and Accuracy Modifications 

In this section, we introduce two acceleration technologies relating to truncation and dynamic 

memory and two accuracy modifications relating to Black-Scholes and Richardson 

Extrapolation. The latter two were proposed by Broadie and Detemple (1996). Truncation 

eliminates nodes that exert no effects on backward recursion but otherwise are nearly as 

computationally expensive as relevant nodes. Truncation purges nodes with a value of zero and 

stopping notes beyond the optimal exercise boundary. The dynamic approach releases memory 

because it is not necessary to store the entire tree at once. These two acceleration technologies, 

as well as the optimal exercise boundary theory, accelerate the computation but do not impact 

on accuracy. The accelerated trees can be made to replicate the original estimations but with a 

much higher speed. In contrast, accuracy modifications focus on improving the pricing 

accuracy while the speed is reduced marginally. Broadie and Detemple (1996) explained how 

the Black-Scholes formula can be introduced into the lattice at the (n-1)th time step (penultimate 

column). This was coupled with Richardson Extrapolation which improves efficiency, in 

principle, “by extrapolating to the limit”. In principle, one might expect that numerical models 

adapted using Black-Scholes modification and/or Richardson Extrapolation have higher 

accuracy than their original configurations. Interestingly, we find that Intelligent Lattice Search 

can be combined with truncation and dynamic memory. This combination is developed to 

configure the accelerated model. Models that apply Black-Scholes modification or Richardson 

Extrapolation bear the suffix “BS” or “RE” or “BS&RE”.16 

When we price a European option using an original unmodified LR or Tian binomial tree, the 

option value of the node in one column is always generated from two nodes in the preceding 

column.17 Therefore, through the backward induction pricing process, all nodes in the tree 

                                                 
16 Broadie and Detemple (1996) refer to the combined approach as “BBRS”. 
17 The exception being at maturity. 
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partially contribute to the generation of the apex node or present value of option. As noted 

previously for American lattices in Equation (3.13), each node from the penultimate column 

back is equal to the maximum of the exercise value or the holding value.18 If the holding value 

is greater than the exercise value, the former will be assigned to the node. Otherwise, the 

option’s value is equal to the exercise value which is the difference between the fixed strike 

price and the corresponding stock price of the node. In this event, the two adjacent nodes in the 

preceding column do not influence any value in the backward induction pricing process. This 

leads to a powerful conclusion. The value of an American option is only dependent on nodes 

within specific regions of the LR binomial tree. Curran (1995) proposes dividing the CRR 

lattice into subtrees, where some nodes exert no influence on the present value of the option 

but other nodes do. In this section, we apply the same truncation technology to LR and Tian 

binomial models and by extension prune the redundant nodes. In Figure 3.2, we take an 

example of the same 9-step LR binomial tree as Figure 3.1. Each number represents the option 

value of each node for this binomial tree. The values marked in bold are exercise values and 

the rest (not marked in bold) are holding values. The arrows connecting two option values 

represent the value-delivering process. It is not hard to observe that the apex node at the first 

column is a repository that contains information filtered from the entire LR binomial tree. There 

are some redundant nodes, enclosed in the two triangular regions, which are not involved in 

the value-delivering process. The nodes associated with the upper triangle do not influence the 

“next generation”, which means their option values cannot be transferred to the next column 

and thereafter. For the lower triangle, the option values of nodes are zero. Truncation is 

typically implemented by recognising the redundant regions and excluding them 

algorithmically to reduce the computational load.   

                                                 
18 The holding value is derived from two nodes in the previous column. 
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Figure 3.2: Truncation Technology  

 

In a static memory environment, spaces are allocated in preparation for memorizing each 

option value computed in the valuation process. For a n-step conventional binomial tree, the 

option values of (n+1)(n+2)/2 nodes have to be memorized so that an appropriate quantity of 

static memory spaces are assigned19. Broadie and Detemple (1996) and Haug (2007) propose 

a dynamic memory method. For either a n-step dynamic LR or Tian binomial tree, only a 

maximum of (n+1) memory spaces need to be allocated and option values of (n+1) nodes need 

to be memorized sequentially. Using dynamic memory, the backward inductive pricing is also 

a substitution process where option values previously stored in the memory spaces are replaced 

by newly generated option values. In Figure 3.3, we construct a 5-step dynamic LR binomial 

tree for pricing the same American put option as Figure 3.1. Here we use (j) instead of (i, j) to 

locate the node at each column, where j = 0, 1,…, 5. The nodes falling on the same slant dashed 

line (upper figure) share the same serial number j. In the dynamic substitution process (the 

lower figure), we first allocate six memory spaces, V(0) - V(5), represented by rectangles, in 

which the computed option values of nodes at the last column are stored. When we move 

backward to the penultimate column, the option values at this column are computed and replace 

                                                 
19 For example, a 2-step binomial tree has 6 nodes with option values V(0,0), V(1,0), V(1,1), V(2,0), V(2,1), V(2,2) 

respectively so that 6 static memory spaces are allocated. 
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option values previously stored in V(0) – V(4). Similarly, option values at antepenultimate 

column are computed and replace values previously memorized in V(0) – V(3). This 

computation and substitution process lasts until the option value at the first column is computed 

and memorized in V(0). Dynamic memory conserves precious processing power by virtue that 

this style of implementation simply employs 𝑂(𝑛)  storage. Conventional static lattice 

implementations, with n steps, possess 𝑂(𝑛2)  nodes and consequently computation time 

increases in tandem with 𝑂(𝑛2). 

 

 

Figure 3.3: Dynamic Memory 

 

Broadie and Detemple (1996) introduce two modifications to the binomial method: Black-

Scholes continuity values at the penultimate nodes and Richardson extrapolation. In principle, 

the Black-Scholes modification improves the binomial tree by replacing the conventional 

holding values of each node at the penultimate column with the corresponding set of Black-

Scholes values. The option value of the nodes at the penultimate column is given by: 
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𝑉(𝑛−1,𝑗) = max{𝑋 − 𝑆𝑢𝑗𝑑(𝑛−1)−𝑗, 𝐵𝑆(𝑆𝑢𝑗𝑑(𝑛−1)−𝑗, 𝑋, 𝛥𝑡, 𝑟, 𝑦, σ)}  (16) 

Where BS(.) represents the Black-Scholes value. Since the Black-Scholes model is originally 

designed for pricing European options at the limit, more accurate holding values can be 

obtained. It should be noted, of course, that when applying Black-Scholes valuation, the zero-

value nodes will be replaced by non-zero Black-Scholes values. This impedes the truncation of 

the zero-value zone and imposes an additional computational workload.  

Broadie and Detemple (1996) shows that the accuracy of a binomial model can be significantly 

improved by using two-point Richardson Extrapolation. Allow f(n) to denote the estimation of 

an option price using a n-steps binomial model20. The extrapolated option price, fRE(n), is easily 

obtained by: 

𝑓𝑅𝐸(𝑛) = 2𝑓(𝑛) − 𝑓(
𝑛

2
)  (127) 

Unlike other technologies, Richardson Extrapolation will be applied only after the option prices 

have been obtained from two binomial trees with n and a half-n number of steps. Richardson 

Extrapolation can be easily adapted to a lattice model but does impose added computational 

costs. Joshi (2009) and Chen and Joshi (2012) noted that the Black-Sholes modification 

interacts well with Richardson Extrapolation. The combination of these two modifications 

significantly improves the accuracy but only marginally decreases the speed within 

conventional lattice structures. 

 

                                                 
20 Here we assume n is even.  
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Applying Truncation, Dynamic Memory and Intelligent Lattice Search to LR and Tian 

 

Figure 3.4: Pricing an American option using an accelerated LR binomial model 

 

In this section, we tease out the pricing process of both the accelerated LR binomial model and 

accelerated Tian model. The original LR and Tian model can be accelerated by using intelligent 

lattice search, dynamic memory, and truncation technologies. The accelerated pricing process 

will be presented first and then the work-flow logic outlined in Figure 3.4 will be described. 

Consider the same American put option as identified in Figure 3.1 where S = 100, X = 100, T 

= 1, r = 0.05, y = 0.07 and σ = 0.3. An 11-step21 LR binomial tree for pricing this option is 

shown in Figure 3.4. The X axis represents the binomial period. The Y axis represents the 

option price so that the zero-value region of the tree naturally disappears. The serial number 

from (1) to (5) correspond to each upward curve of the tree. The nodes falling on the same 

upward curve have the same serial number. The vertical dashed lines represent each column. 

Solid and hollow nodes represent the continuation and stopping nodes respectively. Only the 

                                                 
21 An odd number of steps is required for option pricing in a LR binomial model.   
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nodes with a question mark above, also called uncertain nodes, need to be inspected to verify 

the exercise condition.  

The backward inductive option pricing starts from the maturity (the final column). An 

interesting feature of a LR binomial tree relates to the first non-zero value node or node (h) at 

each step, where h = (n - 1) / 2. In other words, the nodes in the LR tree with a serial number 

greater than h are all zero-value redundant nodes, which can be easily recognised and truncated. 

The Tian tree, however, does not possess this feature so that the exercise condition of the nodes 

at the maturity has to be checked one by one until the first non-zero-value node is determined. 

In Figure 3.4, the first non-zero value node at the last column of the tree is node (5) as h = 5, 

which is also the optimal exercise node (first stopping node) at that column. The corresponding 

exercise values, from 62.22 to 8.54, should be computed and assigned to nodes (0) - (5) in the 

final column. The nodes below node (5) are recognized and truncated as zero-value nodes. 

Next, we move backward to the penultimate column. The optimal exercise boundary of the 

American put is not continuous between the last and penultimate column given that r < y. We 

therefore have to verify the exercise condition of each node in the penultimate column. We 

start from the first non-zero-value node (h) in this column, comparing the holding value and 

exercise value of each node, until the optimal exercise node is found. Once the optimal exercise 

node is determined, we can cease iteratively verifying the exercise condition and start value 

assignment. The exercise values of the optimal exercise node, and the holding values of the 

nodes between the optimal exercise node and node (h), are then computed.22 The remaining 

nodes in this column can then be truncated as redundant nodes. In Figure 3.4, at the penultimate 

column, we examine the exercise condition of each node, starting from node (5) until node (3) 

which is confirmed as the optimal exercise node. Then the exercise value of 29.85 is computed 

                                                 
22 The nodes between the optimal exercise nodes and node (h) include node (h) but exclude optimal exercise node. 
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and assigned to node (3), and the holding value, 16.35 and 4.52, are calculated and assigned to 

nodes (4) and (5). 

From the penultimate column back, we are able to apply intelligent search and avoid a blanket 

inspection of the exercise-condition. For the remaining columns, the exercise condition of only 

one uncertain node needs to be examined – the node with the same serial number as the optimal 

exercise node of the previous column.23 There are two possible outcomes for the uncertain node 

at each column:  

(1) If its exercise value is greater than the holding value, this node is the optimal exercise 

node at this column. The corresponding exercise values are calculated and assigned to 

the optimal exercise node and the node immediately above it.  

(2) If its exercise value is smaller than holding value, this implies that the node is a 

continuation node and the node immediately above it should be the optimal exercise 

node at the same column. The corresponding exercise values are calculated and 

assigned to the optimal exercise node. 

The holding values are computed and assigned to the nodes between the optimal exercise node 

and node (h). The remaining nodes at that column: the zero-value nodes and the redundant 

stopping nodes are truncated. This efficient pricing process can be applied to the 

antepenultimate column and each column thereafter. In Figure 3.4, when we move to the 

antepenultimate column, only the exercise condition of node (3) needs to be verified since the 

optimal exercise node at the penultimate column has the serial number of 3. Once node (3) is 

determined as a continuation node (holding value > exercise value), the optimal exercise node 

at the antepenultimate column should be node (2). Then the exercise value 35.78 is assigned to 

                                                 
23 The optimal exercise boundary theory implies that if the optimal exercise node at ith column is node (j), the 

optimal exercise node at (i-1)th column has only two possibilities: either node (j) or node (j-1). 
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node (2) and the holding values 23.42, 10.77 and 2.40 are assigned to node (3) – (5) respectively. 

The rest of nodes at this column can be truncated.  

This efficient pricing process continues to be applied to each of the remaining column until the 

column at which all nodes are stopping nodes (or continuation nodes), which indicates that all 

nodes in the rest of the columns are stopping nodes (or continuation nodes). If the remaining 

nodes are all stopping nodes, the present value of the option can be directly equal to the 

difference between strike price and spot price. Otherwise, if they are all continuation nodes, 

the holding value of each node in the rest of columns are computed to obtain the present value 

of the option. In Figure 3.4, the efficient backward inductive pricing process ends at the column 

fully consisting of solid nodes (continuation nodes). Hence, the corresponding holding value 

are computed and assigned to the nodes at each of the other columns. Finally, the present value 

of the option is obtained as 12.22.   

Combining intelligent lattice search, dynamic memory and truncation conspires to dramatically 

accelerate the computation speed for the LR binomial model. Instead of examining the exercise 

condition of each node of the tree, we only need to inspect at most one uncertain node in each 

column from the antepenultimate column back. Furthermore, redundant zero-value nodes and 

redundant stopping nodes can also be easily recognised and truncated. Moreover, this algorithm 

saves significant memory space by virtue that only (h+1) instead of (n+1)(n+2)/2 memory 

space is required. 

Both the accelerated LRBS and TianBS models apply Black Scholes smoothing in the 

accelerated LR and Tian models. This entails making a number of changes. All nodes at the 

last column are discarded because they will not infer their values backward. The pricing process 

starts from the penultimate column, where we verify the exercise condition of each node by 

comparing the Black-Scholes value with the corresponding exercise value. This evaluation 
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ends once the optimal exercise node is determined where the exercise value is greater than the 

Black-Scholes value. Then the corresponding exercise values are assigned to the optimal 

exercise node and the corresponding Black-Scholes values are assigned to the nodes below the 

optimal exercise node. From the antepenultimate column back, the pricing process of the 

accelerated LRBS and TianBS trees are the same as the accelerated LR and Tian trees.24  

 

Numerical Results 

In this section, we assert that the standard LR and Tian model can be effectively accelerated 

by adapting intelligent lattice search, truncation and dynamic memory without disturbing the 

accuracy of the parent model. We shall compare variants of the accelerated LR and Tian models 

with commonly used analytical formulae for pricing American options. We make a similar 

comparison to leading benchmark lattice, based on randomly sampled parameters. Finally, we 

divide sample options into four groups according to the AER ratio and the moneyness of the 

options. We test the relative performance of the efficient LR and Tian models based on 

intelligent lattice search for varying option specification.  

As with previous authors, we need an error measure and time consumption measure that go 

beyond purely convergence and step size limited to one set of parameters with an incremental 

step size. In addition, we need a sufficient level of randomization, so our results are not the 

product of any specific pattern in the choice of parameters or reflecting other biases. To meet 

this challenge, we follow Broadie and Detemple (1996) and generate 2,500 American option 

parameter combinations. The stock price S is distributed uniformly between 70 and 130. Time 

to maturity T is also uniformly randomised with boundaries between 0.1 and 1 years with a 

                                                 
24 Notice that for an accelerated LRBS and TianBS tree, the zero-value zone disappears and is replaced by non-

zero Black-Scholes values.  
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probability weight of 0.75 and additionally 1 to 5 years with a probability weighting of 0.25. 

The risk-free interest rate r is bounded between 0 and 0.1 with probability of 0.8 and equal to 

0 with a probability of 0.2. The dividend yield, y, is uniformly generated spanning 0 to 0.10. 

Volatility σ ranges between 0.1 and 0.6 and adheres to a uniform distribution. The strike price 

X is fixed at 100. The options are configured with a 0.5 probability of being a call or a put. The 

error measure, root mean squared relative error (RMSRE), is defined consistently with Broadie 

and Detemple (1996) as: 

RMSRE = √
1

𝑚
∑ 𝑒𝑖

2𝑚
𝑖=1    (3.18) 

where m = the number of American options and 𝑒𝑖 =
𝐶𝑖̂−𝐶𝑖

𝐶𝑖
 with 𝐶𝑖̂ representing the estimation of 

the option value and Ci representing the true value of the option generated by a 15,000-step 

CRR binomial model. We discard 170 options with true values smaller than 0.5. Finally, 2,330 

American options are finally contained in the valuation. The time consumption measure, 

average CPU time (Time), is defined as: 

CPU  time =
𝑆𝑢𝑚 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑠𝑜𝑟 𝑡𝑖𝑚𝑒

2330
  (3.19) 

All the numerical results are generated in C++ Visual Studio 2015 on a DELL Latitude E5470 

laptop with Intel Core i3-6100U CPU (2.30 GHz) and 8GB of RAM.  

Initially we demonstrate that intelligent lattice search, truncation and dynamic memory 

modifications unambiguously accelerate the LR and Tian models without altering original 

estimates. We price 2,330 American options generated above using both an accelerated LR and 

a standard LR model and using both an accelerated Tian and a standard Tian model. The 

number of steps for all pairings range from 100 to 1500 in intervals of 100.25 The corresponding 

                                                 
25 Notice that the actual number of steps that a series of LR models used is the step number shown on the table 

plus one since LR models require odd steps.  
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RMSRE and CPU Time are reported in Table 3.1, where Accel LR and LR / Accel Tian and 

Tian always have identical RMSRE but the former takes much less computational time than 

the latter. In Figure 3.5, we graph the results associated with LR models in Table 3.1 to make 

it more intuitive. Two solid curves represent the Accel LR and LR respectively. Each point 

represents a combination of RMSRE and Time generated by the corresponding tree. It is 

noteworthy that the Accel LR and LR options sharing the same number of steps share also the 

same reported RMSRE. This provides some evidence that the Accel LR and LR produce 

exactly the same estimations.26 The length of the vertical dashed lines separating the CPU Time 

for the Accel LR arc and the LR arc in Figure 3.5, points to inherent efficiencies in respect to 

the Accelerated model. This increases exponentially as the number of steps are increased. This 

improvement in efficiency can be explored further by introducing modifications for Black 

Scholes smoothing and Richardson Extrapolation. These findings would appear also apply to 

the Accel Tian and Tian model. 

 Accel LR  LR  Accel Tian  Tian 

Steps RMSRE Time  RMSRE Time  RMSRE Time  RMSRE Time 

100 0.0562% 3.72E-03  0.0562% 1.24E-02  0.389% 3.71E-03  0.389% 1.79E-02 

200 0.0285% 7.49E-03  0.0285% 5.76E-02  0.187% 1.09E-02  0.187% 5.71E-02 

300 0.0193% 1.59E-02  0.0193% 1.19E-01  0.128% 2.09E-02  0.128% 1.14E-01 

400 0.0144% 2.67E-02  0.0144% 1.83E-01  0.095% 3.49E-02  0.095% 1.94E-01 

500 0.0115% 4.22E-02  0.0115% 2.65E-01  0.074% 5.11E-02  0.074% 2.97E-01 

600 0.0096% 5.69E-02  0.0096% 3.67E-01  0.064% 7.44E-02  0.064% 4.05E-01 

700 0.0082% 7.88E-02  0.0082% 5.13E-01  0.056% 9.67E-02  0.056% 5.36E-01 

800 0.0072% 9.86E-02  0.0072% 6.47E-01  0.045% 1.25E-01  0.045% 7.26E-01 

900 0.0065% 1.25E-01  0.0065% 8.90E-01  0.045% 1.57E-01  0.045% 9.30E-01 

1000 0.0059% 1.71E-01  0.0059% 1.01E+00  0.041% 1.91E-01  0.041% 1.11E+00 

1100 0.0055% 1.87E-01  0.0055% 1.23E+00  0.038% 2.33E-01  0.038% 1.34E+00 

1200 0.0051% 2.11E-01  0.0051% 1.45E+00  0.030% 2.76E-01  0.030% 1.71E+00 

1300 0.0047% 2.47E-01  0.0047% 1.78E+00  0.028% 3.55E-01  0.028% 1.89E+00 

1400 0.0045% 2.85E-01  0.0045% 2.00E+00  0.027% 3.96E-01  0.027% 2.21E+00 

1500 0.0043% 3.43E-01  0.0043% 2.35E+00  0.025% 4.42E-01  0.025% 2.53E+00 

                                                 
26 No differences between either sets of options were found for the Accel LR and Standard LR models. 
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Table 3.1: Comparing Accel LR (Accel Tian) and Standard LR (Tian) 

 
 

 Figure 3.5: Comparing the Accelerated LR and Standard LR models 

 

In what follows, we compare accelerated LR and Tian models adapted different accuracy 

modifications with commonly-used analytical formulae and the leading benchmark tree. These 

eight LR and Tian models include: 

i. Accel LR: The accelerated LR model, which is the original LR model accelerated by 

using intelligent lattice search, dynamic memory, and truncation technologies 

ii. Accel LRBS: The accelerated LR model with Black-Scholes smoothing 

iii. Accel LRRE: The accelerated LR model with Richardson Extrapolation 

iv. Accel LRBS&RE: The accelerated LR model with Black Scholes smoothing and 

Richardson Extrapolation 

v. Accel Tian: The accelerated Tian model, which is the original Tian model accelerated 

by using intelligent lattice search, dynamic memory, and truncation technologies 

vi. Accel TianBS: The accelerated Tian model with Black-Scholes smoothing 

vii. Accel TianRE: The accelerated Tian model with Richardson Extrapolation 
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viii. Accel TianBS&RE: The accelerated Tian model with Black Scholes smoothing and 

Richardson Extrapolation 

Importantly, as mentioned in the Introduction section, BAW, Bjerksund 93, Bjerksund 02, Ju-

Zhong are four commonly used analytical formulae and the accelerated CRR model (Accel 

CRR) serves as a benchmark lattice model. We, initially, use relatively small step numbers 

ranging from 10 to 100 with increments of 10. In Table 3.2, we show the RMSRE and CPU 

Time when pricing 2,330 American options using eight LR and Tian models described above, 

the leading benchmark tree and four analytical formulae. It is obvious that each analytical 

formula can only provide one combination of accuracy and speed while lattice models offers 

more flexibly generate arbitrary levels of precision in tandem with a given tolerance for 

execution time. Figure 3.6 allows us to visualize the results reported in Table 3.2, where X (Y) 

axis represents RMSRE (CPU Time) respectively. In Figure 3.6, lattice models are represented 

as curves and visualized in three sub-figures according to their performance relative to the 

benchmark analytical formulae. Four analytical formulae are represented by a single point 

separately in each of three sub-figures with the method name ascribed for clarity. We can 

evaluate each model in terms of Pareto Improvement i.e. the arc (or point) closer to the origin 

that boasts the highest level of performance. It is discernible in the top-left sub-figure of Figure 

3.6 that the large segments of the two arcs embedded in the Accel LR and Accel LRRE loci 

are unmistakably closer to the origin relative to the four analytical formulae points, which 

indicates that Accel LR and Accel LRRE surpass analytical formulae in both speed and 

accuracy. In the top-right sub-figure, the Accel LRBS&RE and Accel TianBS&RE models 

perform better than three of the analytical formulae including Ju-Zhong, Bjerksund 02 and 

BAW although fare worse than Bjerksund 93. As evident in the bottom sub-figure, the rest of 

the lattice models, including Accel CRR, Accel LRBS, Accel Tian and Accel TianBS, have 
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comparable performance relative to the analytical formulae. The four analytical formulae 

points largely coincide and are in the vicinity of these lattice models curves. Accel TianRE is 

not reported in Figure 3.6 as performance proved to be inferior to the analytical formulae 

outlined in Table 3.2.  

Higher accuracy can be achieved arbitrarily by increasing step size. From this vantage point, 

we proceed to compare eight accelerated LR and Tian models and the leading benchmark lattice 

model. We apply pricing to 2,330 American options using a relatively larger number of steps 

ranging from 100 to 1,000. Table 3.3 reports the corresponding RMSRE and CPU Time of 

these nine lattice models, which are graphed in Figure 3.7. As before, the X (Y) axis represents 

RMSRE (CPU Time). It is evident that Accel TianBS&RE, Accel LRRE and Accel LRBS&RE 

boast the highest efficiency as their respective loci are closer to the origin. More specifically, 

the convergences of Accel TianBS&RE is smoother and less noticeably oscillating relative to 

Accel LRRE and Accel LRBS&RE. Accel LR also has the advantage of the smooth 

convergence but the efficiency is slightly lower than the best three. The secondary tier includes 

Accel LRBS, Accel CRR, Accel TianBS and Accel Tian, whose efficiency is one level lower 

than the previous four models. 
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Method  Accel LR  Accel LRBS  Accel LRRE  Accel LRBS&RE  BAW 

Steps  RMSRE Time  RMSRE Time  RMSRE Time  RMSRE Time  RMSRE Time 

11  0.5966% 2.84E-03  2.1327% 2.93E-03  0.6642% 2.89E-03  0.6817% 3.02E-03  1.24% 3.17E-03 

21  0.2783% 2.92E-03  1.1373% 3.03E-03  0.2282% 2.94E-03  0.2918% 3.09E-03  Bjerksund93 

31  0.1952% 2.99E-03  0.7764% 3.07E-03  0.2481% 3.03E-03  0.2564% 3.12E-03  RMSRE Time 

41  0.1434% 3.00E-03  0.5860% 3.17E-03  0.0774% 3.05E-03  0.0911% 3.23E-03  0.77% 2.96E-03 

51  0.1207% 3.12E-03  0.4726% 3.26E-03  0.0698% 3.14E-03  0.0768% 3.32E-03  Bjerksund02 

61  0.0946% 3.13E-03  0.3929% 3.43E-03  0.0440% 3.19E-03  0.0500% 3.38E-03  RMSRE Time 

71  0.0771% 3.25E-03  0.3359% 3.45E-03  0.0343% 3.27E-03  0.0406% 3.65E-03  0.59% 3.06E-03 

81  0.0741% 3.38E-03  0.2958% 3.51E-03  0.0339% 3.42E-03  0.0364% 4.18E-03  Ju-Zhong 

91  0.0665% 3.55E-03  0.2631% 4.05E-03  0.0337% 3.70E-03  0.0363% 4.65E-03  RMSRE Time 

101  0.0562% 3.72E-03  0.2358% 4.48E-03  0.0312% 3.99E-03  0.0327% 5.47E-03  0.29% 3.96E-03 

Method  Accel Tian  Accel TianRE  Accel TianBS  Accel TianBS&RE  Accel CRR 

Steps  RMSRE Time  RMSRE Time  RMSRE Time  RMSRE Time  RMSRE Time 

10  3.6776% 2.80E-03  5.3312% 2.78E-03  3.0778% 3.00E-03  1.1417% 3.02E-03  3.5614% 2.90E-03 

20  1.9925% 3.29E-03  3.1237% 2.66E-03  1.6298% 2.87E-03  0.2837% 3.06E-03  1.8507% 2.95E-03 

30  1.2083% 2.86E-03  1.8952% 3.26E-03  1.1000% 3.29E-03  0.1350% 3.24E-03  1.0773% 2.96E-03 

40  0.9452% 3.43E-03  1.3783% 3.43E-03  0.8327% 2.91E-03  0.0823% 3.29E-03  0.9981% 3.03E-03 

50  0.8105% 2.93E-03  1.1529% 3.52E-03  0.6704% 3.26E-03  0.0572% 3.30E-03  0.7646% 3.08E-03 

60  0.6914% 3.10E-03  0.9408% 3.63E-03  0.5602% 3.29E-03  0.0503% 3.46E-03  0.6161% 3.09E-03 

70  0.5470% 3.57E-03  0.8421% 3.75E-03  0.4807% 3.53E-03  0.0376% 3.57E-03  0.5579% 3.24E-03 

80  0.4817% 3.40E-03  0.6799% 4.01E-03  0.4208% 3.46E-03  0.0264% 3.68E-03  0.4714% 3.38E-03 

90  0.4189% 3.46E-03  0.6222% 4.34E-03  0.3752% 3.95E-03  0.0234% 4.03E-03  0.4108% 3.43E-03 

100  0.3891% 3.71E-03  0.5891% 4.88E-03  0.3376% 4.24E-03  0.0210% 4.73E-03  0.3604% 3.79E-03 

Table 3.2: Comparing the Accelerated LR and Tian models with analytical formulae and the leading benchmark tree using the smaller step-size 
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Figure 3.6: Comparing Accelerated the LR and Tian models with analytical formulae and the leading benchmark tree using the smaller steps-size 
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Method  Accel LR  Accel LRRE  Accel LRBS  Accel LRBS&RE  Accel CRR 

Steps  RMSRE Time  RMSRE Time  RMSRE Time  RMSRE Time  RMSRE Time 

100  0.0562% 3.72E-03  0.0312% 3.99E-03  0.2358% 4.48E-03  0.0327% 5.47E-03  0.3604% 3.79E-03 

200  0.0285% 7.49E-03  0.0106% 1.02E-02  0.1173% 1.32E-02  0.0113% 1.52E-02  0.1791% 7.80E-03 

300  0.0193% 1.59E-02  0.0069% 2.12E-02  0.0780% 2.76E-02  0.0071% 3.19E-02  0.1079% 1.57E-02 

400  0.0144% 2.67E-02  0.0043% 3.37E-02  0.0582% 4.37E-02  0.0045% 5.47E-02  0.0805% 2.61E-02 

500  0.0115% 4.22E-02  0.0061% 5.16E-02  0.0463% 6.78E-02  0.0061% 8.41E-02  0.0684% 3.98E-02 

600  0.0096% 5.69E-02  0.0039% 7.38E-02  0.0385% 9.92E-02  0.0040% 1.22E-01  0.0570% 5.84E-02 

700  0.0082% 7.88E-02  0.0030% 9.85E-02  0.0328% 1.35E-01  0.0031% 1.63E-01  0.0463% 7.86E-02 

800  0.0072% 9.86E-02  0.0033% 1.26E-01  0.0287% 1.69E-01  0.0034% 2.08E-01  0.0410% 9.94E-02 

900  0.0065% 1.25E-01  0.0035% 1.56E-01  0.0255% 2.14E-01  0.0035% 2.68E-01  0.0367% 1.22E-01 

1000  0.0059% 1.71E-01  0.0036% 1.90E-01  0.0229% 2.66E-01  0.0036% 3.25E-01  0.0385% 1.53E-01 

Method  Accel Tian  Accel TianRE  Accel TianBS  Accel TianBS&RE 

Steps  RMSRE Time  RMSRE Time  RMSRE Time  RMSRE  Time 

100  0.3891% 3.71E-03  0.5891% 4.56E-03  0.3376% 4.24E-03  0.0210%  4.73E-03 

200  0.1872% 1.09E-02  0.2852% 1.36E-02  0.1688% 1.22E-02  0.0082%  1.50E-02 

300  0.1276% 2.09E-02  0.1894% 2.59E-02  0.1121% 2.62E-02  0.0064%  3.33E-02 

400  0.0954% 3.49E-02  0.1402% 4.45E-02  0.0838% 4.66E-02  0.0041%  5.65E-02 

500  0.0741% 5.11E-02  0.1155% 6.57E-02  0.0668% 6.72E-02  0.0037%  8.72E-02 

600  0.0636% 7.44E-02  0.0920% 9.18E-02  0.0553% 9.52E-02  0.0035%  1.22E-01 

700  0.0557% 9.67E-02  0.0825% 1.31E-01  0.0474% 1.29E-01  0.0035%  1.60E-01 

800  0.0455% 1.25E-01  0.0693% 1.68E-01  0.0413% 1.65E-01  0.0029%  2.10E-01 

900  0.0451% 1.57E-01  0.0640% 2.20E-01  0.0363% 2.07E-01  0.0028%  2.70E-01 

1000  0.0412% 1.91E-01  0.0579% 2.57E-01  0.0327% 2.61E-01  0.0026%  3.22E-01 

Table 3.3: Comparing Accelerated LR and Tian models and the leading benchmark tree using the larger steps-size  
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Figure 3.7: Comparing Accelerated LR and Tian models and the leading benchmark tree 

using the larger steps-size  

Consistent with Pressacoo, et al. (2008), we further divide American options samples into four 

different groups according to their AER ratio and the moneyness classifications. We initially 

test the performance for each model for varying classification. First, according to the 

moneyness of the options, 2,330 previously used American options are divided into 1,190 in-

the-money and 1,140 out-of-the-money options. Next, we separate the options according to the 

AER: quantitatively measured by the Pressacoo, et al. (2008) ratio of 1.4 where American 

value27 exceeds the European twin. The 2,330 option sample filters into 2,281 Weak options 

where AER < 1.40 and 49 Strong options where the AER ≥ 1.40. In aggregate that leaves 2,330 

options being separated into 1,157 Weak-In options, 1,124 Weak-Out options, 33 Strong-In 

options and 16 Strong-Out options. The Weak-In and Weak-Out options are large enough to 

make reliable tests on while the Strong-In and Strong-Out options are not plausibly sufficient. 

                                                 
27 The American value of options used here is the quick reliable estimation.  
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We therefore continue to randomly generate American options, following the same criterion of 

parameter selection as we generated 2,330 before. We retain only Strong options up to 1,000 

from the new generated options and add them to the 49 Strong options already obtained.  

Finally, we obtain 569 Strong-In options and 302 Strong-Out options. 

Based on the results of the previous tests, Accel LR, Accel LRRE, Accel LRBS&RE and Accel 

TianBS&RE have outstanding performance in pricing American options with both lower and 

higher level of accuracy (small and large step-size). Here we apply these four lattice models as 

well as four analytical formulae to value 589 Strong-In, 302 Strong-Out, 1,157 Weak-In, and 

1,124 Weak-Out options previously generated. For lattice models, in addition, the number of 

steps is ranged from 10 to 1,000.28 The corresponding RMSRE and CPU Time are reported in 

Table 3.4 and visualized in Figure 3.8 and Figure 3.9. First of all, we compare the difficulty of 

pricing different types of options. As it is shown in Table 3.4, the RMSRE generated by lattice 

models for pricing Weak options is much less than when typically pricing Strong options, at 

different numbers of steps. This indicates that, in general, pricing Strong options is more 

difficult than Weak options for lattice models. For analytical formulae, however, Strong-Out 

options are much harder to value than Weak-Out options while Strong-In options are easier to 

price than Weak-In options. Secondly, we compare analytical formulae and lattice models with 

a smaller number of steps (≤100) in pricing different types of options. To make the observation 

clearer, only Accel LR and Accel LRRE, the two top performing lattice models, are presented 

in Figure 3.8. When pricing Weak (In/Out) options, lattice models easily surpass analytical 

formulae since the curves are clearly closer to the origin relative to the four analytical formulae 

points. More specifically, Accel LRRE offers the best performance in pricing Weak options 

                                                 
28 For pricing Strong-In options, the steps are ranged from 20 to 1,000. In addition, the accuracy and speed level 

of Accel LR for pricing Strong-In options improves more slowly than the other three lattice models as the number 

of steps increasing. To make the results comparable, we broaden the step range of Accel LR from 20 to 3,000.   
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when considering both efficiency and stability. On the contrary, for pricing Strong (In/Out) 

options, lattice models have no significant advantage over analytical formulae in achieving the 

same level of accuracy.29 The four analytical formulae points are in the vicinity of the lattice 

models curves. However, we should not overlook the natural advantage of lattice models in 

offering granular combinations of speed and accuracy. In particular, the Accel LR provides the 

best performance in valuing Strong options. Thirdly, we consider four lattice models in terms 

of valuing varying types of options with a larger number of steps (>100) in Figure 3.9. The 

Accel TianBS&RE clearly performs best in pricing Strong-In and Strong-Out and offers 

relatively better performance in valuing Weak-In options. For Weak-Out options, Accel 

LRBS&RE is associated with the best performance by virtue that Accel TianBS&RE produces 

a lower level of efficiency and Accel LRRE lacks smooth convergence. In practice, we can 

determine the moneyness and the American quality of options (Strong/Weak/In/Out) and then 

select the appropriate lattice model to for estimation.  

 

 

 

 

 

 

 

                                                 
29 This only applies in a narrow minority of cases by virtue that strong options are quite rare. 
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a) Strong out of the Money Sample               
Method   Accel LR   Accel LRRE   Accel LRBS&RE   Accel TianBS&RE  

BAW Steps   RMSRE  Time   RMSRE  Time   RMSRE  Time   RMSRE  Time  

10  3.0471% 2.43E-03  4.7669% 3.37E-03  4.7800% 3.69E-03  2.8573% 3.31E-03  RMSRE Time 

20  1.5064% 3.26E-03  1.7461% 3.32E-03  1.7593% 3.36E-03  0.9883% 3.30E-03  3.1896% 3.67E-03 

30  0.9760% 3.33E-03  0.8530% 3.07E-03  0.9019% 3.57E-03  0.5264% 3.59E-03  

Bjerksund93 50  0.5733% 3.81E-03  0.3894% 3.74E-03  0.4090% 3.47E-03  0.4090% 3.84E-03  

100  0.2733% 3.75E-03  0.1655% 3.97E-03  0.1674% 4.83E-03  0.0788% 5.38E-03  RMSRE Time 

200  0.1339% 7.63E-03  0.0915% 9.35E-03  0.0924% 1.36E-02  0.0380% 1.79E-02  1.6936% 3.33E-03 

300  0.0864% 1.55E-02  0.0492% 1.75E-02  0.0502% 2.68E-02  0.0186% 3.63E-02  

Bjerksund02 400  0.0638% 2.35E-02  0.0326% 2.88E-02  0.0334% 5.47E-02  0.0153% 5.64E-02  

500  0.0508% 3.57E-02  0.0193% 4.41E-02  0.0199% 7.43E-02  0.0105% 8.17E-02  RMSRE Time 

600  0.0414% 4.50E-02  0.0185% 6.00E-02  0.0188% 1.05E-01  0.0081% 1.12E-01  1.6980% 3.47E-03 

700  0.0343% 6.22E-02  0.0172% 7.97E-02  0.0188% 1.12E-01  0.0086% 1.55E-01  

JuZhong 800  0.0294% 8.77E-02  0.0128% 1.02E-01  0.0131% 1.91E-01  0.0062% 2.09E-01  

900  0.0265% 9.89E-02  0.0091% 1.23E-01  0.0094% 2.28E-01  0.0065% 2.71E-01  RMSRE Time 

1000   0.0230% 1.18E-01   0.0109% 1.50E-01   0.0112% 2.77E-01   0.0055% 2.99E-01   2.0285% 3.29E-03 
 

b) Strong in the Money Sample 
                 

Method   Accel LRRE   Accel LRBS&RE   Accel TianBS&RE     Accel LR   

BAW Steps   RMSRE  Time   RMSRE  Time   RMSRE  Time   Steps   RMSRE  Time   

20  0.9092% 3.53E-03  0.9145% 3.50E-03  0.6363% 3.48E-03  20  0.8893% 2.99E-03  RMSRE Time 

30  0.6415% 3.42E-03  0.6421% 3.46E-03  0.3932% 3.64E-03  30  0.5916% 3.22E-03  0.5517% 3.35E-03 

50  0.2822% 3.55E-03  0.2841% 3.82E-03  0.1869% 3.51E-03  50  0.3657% 3.28E-03  

Bjerksund93 100  0.1722% 3.58E-03  0.1724% 5.06E-03  0.1043% 4.94E-03  100  0.1851% 3.32E-03  

150  0.0994% 5.84E-03  0.0995% 9.98E-03  0.0677% 1.03E-02  150  0.1220% 4.31E-03  RMSRE Time 

200  0.0825% 9.51E-03  0.0826% 1.56E-02  0.0438% 1.44E-02  200  0.0921% 7.46E-03  0.2556% 3.27E-03 

300  0.0516% 1.69E-02  0.0515% 3.17E-02  0.0339% 3.13E-02  300  0.0647% 1.34E-02  

Bjerksund02 400  0.0364% 2.79E-02  0.0364% 5.45E-02  0.0225% 5.02E-02  500  0.0366% 3.39E-02  

500  0.0297% 5.76E-02  0.0296% 8.18E-02  0.0167% 7.33E-02  800  0.0213% 7.59E-02  RMSRE Time 

600  0.0240% 6.85E-02  0.0240% 1.07E-01  0.0140% 1.05E-01  1000  0.0174% 1.32E-01  0.2378% 3.45E-03 

700  0.0173% 8.87E-02  0.0173% 1.35E-01  0.0117% 1.41E-01  1500  0.0116% 2.61E-01  

JuZhong 800  0.0147% 9.55E-02  0.0148% 1.74E-01  0.0089% 1.86E-01  2000  0.0085% 4.73E-01  

900  0.0125% 1.14E-01  0.0125% 2.31E-01  0.0081% 2.34E-01  2500  0.0067% 6.92E-01  RMSRE Time 

1000   0.0113% 1.50E-01   0.0113% 2.59E-01   0.0073% 2.68E-01   3000   0.0054% 9.92E-01   0.1550% 3.41E-03 
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c) Weak out of the Money Sample               
Method   Accel LR   Accel LRRE   Accel LRBS&RE   Accel TianBS&RE  

BAW Steps   RMSRE  Time   RMSRE  Time   RMSRE  Time   RMSRE  Time  

10  0.4970% 2.82E-03  0.4675% 2.90E-03  0.5101% 3.01E-03  1.5608% 3.15E-03  RMSRE Time 

20  0.2418% 2.86E-03  0.0998% 2.98E-03  0.2667% 3.06E-03  0.3267% 3.51E-03  1.5850% 3.21E-03 

30  0.1612% 3.24E-03  0.0724% 3.15E-03  0.1063% 3.34E-03  0.1509% 3.29E-03  

Bjerksund93 50  0.0971% 3.48E-03  0.0305% 3.50E-03  0.0521% 3.55E-03  0.0609% 3.63E-03  

100  0.0493% 4.43E-03  0.0077% 5.03E-03  0.0157% 5.76E-03  0.0188% 6.57E-03  RMSRE Time 

200  0.0252% 1.05E-02  0.0033% 1.26E-02  0.0061% 1.78E-02  0.0075% 1.85E-02  0.7797% 3.49E-03 

300  0.0168% 1.95E-02  0.0034% 2.35E-02  0.0041% 3.48E-02  0.0049% 3.64E-02  

Bjerksund02 400  0.0128% 3.08E-02  0.0034% 3.80E-02  0.0039% 6.13E-02  0.0046% 6.41E-02  

500  0.0104% 4.80E-02  0.0034% 5.58E-02  0.0036% 8.53E-02  0.0042% 9.07E-02  RMSRE Time 

600  0.0088% 6.61E-02  0.0034% 8.35E-02  0.0035% 1.24E-01  0.0038% 1.33E-01  0.4372% 3.39E-03 

700  0.0077% 8.29E-02  0.0034% 1.05E-01  0.0035% 1.60E-01  0.0036% 1.82E-01  

JuZhong 800  0.0069% 1.13E-01  0.0034% 1.41E-01  0.0034% 2.09E-01  0.0037% 2.29E-01  

900  0.0063% 1.38E-01  0.0034% 1.75E-01  0.0034% 2.61E-01  0.0035% 2.91E-01  RMSRE Time 

1000   0.0059% 1.69E-01   0.0034% 1.98E-01   0.0034% 3.22E-01   0.0035% 3.38E-01   0.2939% 3.89E-03 

 

d) Weak in the Money Sample               
Method   Accel LR   Accel LRRE   Accel LRBS&RE   Accel TianBS&RE  

BAW Steps   RMSRE  Time   RMSRE  Time   RMSRE  Time   RMSRE  Time  

10  0.4463% 2.67E-03  0.3229% 2.78E-03  0.3143% 3.22E-03  0.2451% 3.22E-03  RMSRE Time 

20  0.2249% 2.73E-03  0.0747% 2.86E-03  0.0943% 3.44E-03  0.1007% 3.33E-03  0.6010% 3.43E-03 

30  0.1543% 3.41E-03  0.0549% 3.46E-03  0.0598% 3.47E-03  0.1007% 3.56E-03  

Bjerksund93 50  0.0931% 3.51E-03  0.0409% 3.35E-03  0.0421% 3.69E-03  0.0248% 3.71E-03  

100  0.0458% 3.85E-03  0.0150% 4.77E-03  0.0151% 5.41E-03  0.0109% 5.39E-03  RMSRE Time 

200  0.0225% 9.49E-03  0.0069% 1.23E-02  0.0069% 1.75E-02  0.0050% 1.89E-02  0.4111% 3.38E-03 

300  0.0149% 1.95E-02  0.0035% 2.39E-02  0.0035% 3.64E-02  0.0026% 3.84E-02  

Bjerksund02 400  0.0113% 3.06E-02  0.0030% 3.76E-02  0.0030% 5.65E-02  0.0019% 6.54E-02  

500  0.0088% 4.33E-02  0.0019% 5.41E-02  0.0019% 8.89E-02  0.0015% 9.80E-02  RMSRE Time 

600  0.0076% 6.06E-02  0.0019% 7.49E-02  0.0019% 1.18E-01  0.0015% 1.37E-01  0.3213% 3.23E-03 

700  0.0065% 7.79E-02  0.0014% 9.89E-02  0.0014% 1.60E-01  0.0011% 1.94E-01  

JuZhong 800  0.0056% 1.04E-01  0.0012% 1.33E-01  0.0012% 2.06E-01  0.0009% 2.56E-01  

900  0.0050% 1.33E-01  0.0013% 1.58E-01  0.0012% 2.65E-01  0.0009% 2.70E-01  RMSRE Time 

1000   0.0046% 1.53E-01   0.0011% 1.96E-01   0.0010% 3.32E-01   0.0007% 3.17E-01   0.1299% 3.97E-03 
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Table 3.4: Comparing Accelerated LR and Tian models and analytical formulae for pricing strong/weak in/out-of the money options 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Comparing optimal lattice models with analytical formulae for pricing strong/weak in/out-of the money options with smaller step 

size (≤100) 
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Figure 3.9: Comparing among optimal lattice models for pricing strong/weak in/out of the money options 

Figure 3.9: Comparing optimal lattice models for pricing strong/weak in/out-of the money options with larger step size (>100)
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Conclusion 

In this paper, we extend the insights developed in Shang and Byrne (2019) which were 

originally applied uniquely to the CRR tree. We set out the conditions under which the 

Intelligent Lattice Search Algorithm framework can be used to promptly detect the optimal 

exercise boundary for a LR and Tian tree. We apply dynamic memory and truncate the LR and 

Tian lattice where appropriate but are careful not to disturb the original estimation. Furthermore, 

Black-Scholes and Richardson extrapolation modifications to the tree structures can also be 

applied individually and/or together to improve the accuracy of the LR and Tian models. The 

speed and accuracy we obtain can be made to outperform the analytical models here. This holds 

for all four analytical models that are known to have wide dispersion of varying efficiency and 

error attributes. This finding reverses the received wisdom that closed form solutions do better 

in producing faster option values. Unlike the analytic models, the accelerated lattices however 

can also be made arbitrarily accurate. That is, lattices provide users with a highly granular pull-

down menu choice to optimise speed relative to accuracy. One can move seamlessly between 

varying levels of precision. 

Consistent with the literature, we also applied multi-dimensional efficiency tests. We 

benchmarked varying configurations of the LR and Tian models using several thousand 

random sets of parameters with each permutation linked to a given step size. This culminates 

with a very cleanly defined locus of accuracy relative to speed trade-offs for varying mesh 

densities. Our lower density mesh Accel LR and Accel LRRE lattices prove to be more efficient 

than better-known analytical models, achieving a higher level of accuracy. We can reach 

arbitrary levels of precision by using higher density mesh lattices. The Accel TianBS&RE 

model possesses the best performance compared with other LR and Tian models and the 

leading benchmark tree Accel CRR model. We further randomly generate extensive options 
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and divide them into four groups according to the deepness of American quality and the 

moneyness of the option. We found that four efficient lattice models, including Accel LR, 

Acccel LRRE, Accel LRBS&RE and Accel TianBS&RE, greatly surpass analytical formulae 

for pricing Weak options and have comparable performance with analytical formulae in 

valuing Strong options. Lattices importantly afford an explicit trade-off locus between 

accuracy and speed that can be navigated according to predetermined precision tolerance levels 

and option types. In practice, with higher tolerance to error (lower accuracy level), Accel LRRE 

is recommended for pricing Weak options and Accel LR should be applied to value Strong 

options. To obtain a higher level of accuracy (lower error tolerance), the Accel TianBS&RE is 

recommended in pricing Strong-In, Strong-Out and Weak-In options while Accel LRBS&RE 

should be used for valuing Weak-Out options. This should have practical relevance both in 

academia and trading platforms where real-time metrics like Implied Volatility are reported to 

traders at high very frequency. 
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Chapter 4: Accounting for Employee Stock Options: Accelerating 

Convergence 

 

Abstract 

The Hull-White binomial approach to pricing Employee Stock Options (ESOs) pricing makes 

explicit reference to parameters that are not available in Black-Scholes model yet are generally 

understood to be important for the valuation. Previous literature point out that a key weakness 

of the lattice approach, when applied to valuing ESOs, is the sluggish convergence behaviour 

not generally experienced in trees configured to estimate plain vanilla options. In this paper, 

we propose adjustments to the Hull-White model, based on insights developed by Boyle-Lau 

and Tian specifications. These ensure faster convergence in lattice estimation when barriers 

occur. The Hull-White-Boyle-Lau and Hull-White-Tian revamps expand the practicable menu 

choice available to accountants and other stakeholders in an ever evolving regulatory 

framework. The proposed models also provide efficient testing frameworks for validating a 

newer generation of closed-form solutions. We also adapt truncation and dynamic memory 

technologies considered in earlier chapters to the modify Hull-White model and further 

improve the efficiency in the appendix. 

 

Literature Review 

Employee Stock Options (ESOs) enhance the way business can craft payrolls to reward 

performance, encourage innovation and retain personnel with strategic skills and know-how. 

They permit staff to enjoy windfall gains when corporations are best placed to leverage stock 

market gains. Hall and Murphy (2002) reported that 94% of S&P 500 companies granted 

options to the top executives. Frydman and Saks (2007) stated that ESOs constitute over 40% 
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of their total compensation for the same cohort of executives. Murphy (2013) noted that the 

FASB 123R substantially levelled the playing field between stock and options by virtue of 

imposing a fair value accounting regime. S&P 500 corporations from 2004 typically lowered 

the amount of options granted to top executives and to rank and file employees. Chang, Fu, 

Low and Zhang (2015) however provide empirical evidence regarding the positive impact of 

non-executive employee stock options on corporate innovation. Lam and Chng (2006) also 

show that ESO grants have value implications for company performance by decreasing the cost 

of agency. Many factors contribute to cause and effect but ESOs appear likely to still have 

staying power and potentially will exert powerful financial effects where innovation is 

considered to be an important catalyst of economic growth.  

Rubinstein (1995) identify key hallmark features that distinguish ESOs from other plain vanilla 

options. ESOs usually have longer maturities ranging from 5 to 10 years. They have vesting 

periods when the option cannot be exercised. Departure of staff from the company prior to 

vesting leads to forfeiture.30 After the vesting period, the exercise of the option is possible even 

though in some instances suboptimal. These characteristics indicate that the option structure of 

ESOs is typically a hybrid with a blend of European and American exercise rights.31 ESOs are 

necessarily by construction call options and in important ways align the interests of all 

stakeholders.32 Recipients of ESOs are not permitted to hedge their option position using 

dynamic replication or put options. The non-transferability of the option to third parties also 

pertains. Recipients can however exercise the option and subsequently sell the company’s 

shares to crystallise a cash pay-out. Hence, ESOs cannot be viewed as trading in “complete 

markets” as generally understood to exist in the classic Black and Scholes (1973) framework.  

                                                 
30 The vesting period can run up to 4 years. 
31 We will argue that ESOs have significant features in common with barrier options.  
32 This is truer in the absence of debt. 
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In 1995, the Financial Accounting Standards Board (FASB) published the Financial 

Accounting Standard No. 123 (FASB 123) which recommends companies to recognise the cost 

of ESOs using fair value measurement instead of intrinsic value measurement. Furthermore, in 

2004, the International Financial Reporting Standard No. 2 (IFRS 2) and the Revised Financial 

Accounting Standard No. 123 (FAS 123R), published by the International Accounting 

Standard Board (IASB) and Financial Accounting Standard Board (FASB) respectively, both 

require companies to report the fair value of ESOs. . In addition, Securities and Exchange 

Commission (SEC) issued Staff Accounting Bulletin No. 107 and 110 (SAB 107, SAB 110) in 

2005 and 2007 respectively, which provided further interpretation of FAS 123R. In 2009, 

FASB integrated FAS 123R into the system of Accounting Standards Codification as Topic 

718 (ASC 718) and issued an updated version in 2018 to expand the share based compensation 

for both employees and non-employees. IFRS 2, FAS 123R, SAB 107/110 and ASC 718 all 

suggest applying either an modified Black-Scholes model tuned for the expected early exercise 

or explicitly a binomial model to estimate the fair value of ESOs. In terms of estimating the 

expected term of ESOs, lattice models permit suboptimal exercise and calculate the expected 

term as a model output while the Black-Scholes model uses the expected term as an input. The 

Chinese Accounting Standards No. 11 (CAS 11)33 issued by Ministry of Finance of the People's 

Republic of China in 2006 similarly require fair value measurement and permitted the use of 

the Black-Scholes formula to estimate the value of ESOs. The Black-Scholes model is 

overwhelmingly favoured by industry participants while academics favour binomial model. 

The Black-Scholes model is simpler to apply with less computational cost while lattice models 

have the potential to be more accurate and less restrictive in terms of limiting early exercise. 

                                                 
33 http://english.mofcom.gov.cn/article/policyrelease/domesticpolicy/200606/20060602419802.shtml 

http://english.mofcom.gov.cn/article/policyrelease/domesticpolicy/200606/20060602419802.shtml
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The Black and Scholes (1973) model is typically applied to value ESOs with the estimated life 

of ESOs. The “expected life” strategy characteristic of the Black-Scholes model ESO 

implementation lacks any solid theoretical foundation and the estimation of the ESOs may not 

be accurate (Leung, 2009). The adjusted Black-Scholes model also overstates the cost of ESOs, 

which becomes more severe when the underlying stocks have high volatility (Hemmer et al., 

1994; Marquardt, 2002; Finnerty, 2005). The modified Black-Scholes model proposed in 

Finnerty (2014), however, avoids the overpricing bias of Black-Sholes model and can be as 

accurate as but simpler to apply than trinomial lattice models. Binomial models are also 

developed to capture the special features and estimate the fair value of ESOs. Huddart (1994), 

Carpenter (1998) and Bettis et al. (2005) develop binomial models for pricing ESOs and 

measure the early exercise behaviour with the utility-based framework. The unobservable risk 

avoidance variable of utility-maximizing models, however, requires an adjustment contingent 

on availability of empirical data (Chendra and Sidarto, 2020).  

The Hull and White (2004) ESO pricing model, based on Cox, Ross, and Rubinstein (1979) 

binomial model makes explicit an early-exercise barrier. Hull and White (2004) assumes that 

early exercise triggers when the stock price reaches a certain multiple of the strike price. This 

model has been widely accepted in the literature as an appropriate valuation method for ESOs. 

Not surprisingly many variants of it have been proposed. Ammann and Seiz (2004) similarly 

use the adjusted strike price to determine the exercise policy. Brisley and Anderson (2008) 

assume that employees exercise voluntarily when the intrinsic value of the option is greater 

than a certain proportion of its remaining Black-Scholes value. Chendra and Sidarto (2020) 

reconstruct Hull–White ESO model based on a bino-trinomial tree and replace the single 

exercise barrier with a moving barrier. In addition, Cvitanic, Wiener and Zapatero (2008) 
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propose a closed form solution for ESO pricing with the exercise policy also is modelled with 

a barrier trigger. 

Lattice models are generally considered to provide a sounder theoretical treatment. 

Accountants nevertheless commonly rely on Black-Scholes model because considerable costs 

are incurred in switching to a binomial framework.34 Binomial trees that embed Hull-White 

parameters inputs are typically slow to converge. This imposes nontrivial costs on analysts who 

wish to expedite valuation. Cvitanic, Wiener and Zapatero (2008) estimated a Hull-White tree 

and found that even after 40,000 steps the tree had not converged to “True”.35 The absence of 

a stable lattice may stymie the elaboration of new approaches to estimate ESOs. Standard 

setters and regulatory actors require a stable and efficient framework to test the robustness of 

a new generation of closed form solutions. In this paper, we focus on solving the sluggish 

convergence problem of Hull-White model. Since Hull-White ESOs pricing model 

incorporates an exercise barrier, several numerical methods for accelerating barrier options 

pricing could be applied to the Hull-White model. Boyle and Lau (1994) pointed out that the 

sluggish saw-tooth shaped convergence owes to the fact that the barrier rarely coincide with 

nodes generated within Cox Ross and Rubinstein tree. They proposed a simple solution that 

determines the appropriate step-size that co-ordinates best with where the barrier likely falls 

consistent with nodes. Other prominent solutions include Derman, Kani, Ergener and Bardhan 

(1995) who propose an interpolation method to generate the option value obtained in 

conjunction with an effective and modified barrier.36  Figlewski and Gao (1999) decrease 

                                                 
34 Companies are permitted to choose between Black and Scholes (1973) and lattice techniques. 
35 The execution speed of 3,000 steps with 2011 Mac Book pro Core i7 was clocking less than one minute. 40,000 

steps was clocking close to one hour using C++ and Apple’s proprietary Xcode IDE. In comparison, Black Scholes 

(1973) is not computationally intensive and executes generally without any observable lag. In the Appendix, we 

outline some techniques to truncate the ESO lattice and we dynamically define the binomial array. 
36 The effective and modified barrier is immediately higher and immediately lower than the true exercise barrier 

respectively. 
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approximation error by building a fine-mesh tree around the exercise price at maturity and 

embed highly granular mesh into the substrate lattice. Tian (1999) innovatively builds a two-

stage flexible binomial tree that contains a tilted tree in the first stage and a conventional 

binomial tree in the second stage. In this paper, we elect to make improvements in the Hull-

White lattice by incorporating Boyle and Lau (1994) and then Tian (1999) and demonstrate in 

each instance that convergence can be effectively accelerated. Moreover, consistent with Shang 

and Byrne (2019), we apply acceleration technologies including truncation and dynamic 

memory to the further improve Hull-White model in the appendix. 

The remaining paper is organized as follows. In Section 2, we introduce the original Hull-

White ESO pricing model and show how it can capture the special features of ESOs. In Section 

3, we illustrate with examples the sluggish convergence behaviour of the Hull-White model 

and we also discuss the likely sources of error generated by lattice models. In Section 4 and 5, 

we propose Hull-White-Boyle-Lau and Hull-White-Tian models respectively. The Hull-White 

model is combined with Boyle-Lau and Tian specifications separately to accelerate the 

convergence. In Section 6, we compare the performance of original Hull-White model with 

Hull-White-Boyle-Lau and Hull-White-Tian models in pricing ESOs. In Section 7, we 

conclude. In the Appendix, we outline how the Hull-White-Boyle-Lau lattice can be 

strengthened by making practical use of truncation and dynamic memory techniques. 

 

Methodology   

Hull and White (2004) ESOs Pricing Model 

The original pricing model proposed by Hull and White (2004) was conceived as an 

“Enhanced FASB 123” model. Adhering to the notation developed by Hull and White (2004), 

e was explicitly applied as an estimate of the employee turnover (exit) rate which was used in 
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both the vesting and the post-vesting period. The “Enhanced FASB 123” model incorporated 

early exercise by assuming that this would occur automatically when the stock price was a 

certain multiple M of the exercise price K. The Hull and White (2004) model reconfigured the 

Cox, Ross and Rubinstein (1979) binomial tree to incorporate added conditions for calculating 

the value of the option at each node.37 𝑣 denotes the vesting period expressed in years and r 

represents the risk-free rate. There are N steps of 𝛿𝑡 length.38 Hull and White (2004) specified 

that: 

(i) the option can be exercised in the post vesting period (𝑖𝛿𝑡 > 𝑣) 

(ii) the vested option is exercised when the stock price S ≥ M*K (𝑖𝛿𝑡 > 𝑣) 

(iii) the product of the time step 𝛿𝑡 and e can be used to estimate the probability of forfeiture in 

the vesting period moving from node to node (𝑖𝛿𝑡 < 𝑣) 

(iv) in the post vesting period the probability 𝑒𝛿𝑡 captures the probability that the option is 

forfeited if S < K or exercised early to realise S – K if  S ≥ K 

These conditions are imposed on the conventional Cox, Ross and Rubinstein (1979) tree. See 

Figure 4.1. Here again, we follow the notation set out by Hull and White (2004). At each node 

of the tree, there is a specific array reference (i, j) for the respective stock price 𝑆𝑖,𝑗 in the 

recombining tree. The value of the option at time period 𝑖𝛿𝑡 generated by backward induction 

is given by 𝑓𝑖,𝑗.  

𝑓𝑁,𝑗 = max (𝑆𝑁,𝑗 − 𝐾, 0)                    (4.1) 

The “Enhanced FASB 123” model specifies: 

                                                 
37 We recommend Hull (2011) to get an overview of the ESO and lattices techniques. Haug (2007) provides VBA 

code to estimate a variety of binomial and trinomial trees. Benninga (2008) also provides an overview of ESO 

estimation and VBA code for estimation.  
38 𝑆𝑖,𝑗 denotes the stock price at node (i, j).  𝑆𝑖,𝑗 = 𝑆𝑢𝑗𝑑𝑖−𝑗 can be used to estimate iteratively the node values on 

the tree grid. 𝛿𝑡 = 𝑇/𝑁 where T is the full ESO maturity. 
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If (𝑖𝛿𝑡 > 𝑣) and 𝑆𝑁,𝑗 ≥ 𝐾𝑀 then 

𝑓𝑖,𝑗 = 𝑆𝑖,𝑗 − 𝐾                      (4.2) 

If (𝑖𝛿𝑡 > 𝑣) and 𝑆𝑁,𝑗 < 𝐾𝑀 then 

𝑓𝑖,𝑗 = (1 − 𝑒𝛿𝑡)𝑒−𝑟𝛿𝑡 [𝑝𝑓𝑖+1,𝑗+1 + (1 − 𝑝)𝑓𝑖+1,𝑗] + 𝑒𝛿𝑡𝑚𝑎𝑥(𝑆𝑖,𝑗 − 𝐾, 0)              (4.3) 

If (𝑖𝛿𝑡 ≤ 𝑣) then 

𝑓𝑖,𝑗 = (1 − 𝑒𝛿𝑡)𝑒−𝑟𝛿𝑡 [𝑝𝑓𝑖+1,𝑗+1 + (1 − 𝑝)𝑓𝑖+1,𝑗]                 (4.4) 

The Hull and White (2004) model nests Equation (4.1) – (4.4) in a Cox, Ross and Rubinstein 

(1979) framework. Figure 4.1 deconstructs the Hull and White (2004) model, into varying 

domains mapped to a standard binomial tree. Equation (4.1) – (4.4) can be mapped to vesting 

and post vesting periods with an early exercise boundary K*M posited here as a barrier. We 

proceed by estimating plain vanilla trees to largely gauge the typical speeds of convergence 

that can be expected. In the absence of Equation (4.1) – (4.4), backward induction can be 

handled comfortably even within a basic spreadsheet. In what follows, plain vanilla European 

options are juxtaposed against a standard implementation of Hull and White (2004). A routine 

execution of Hull and White (2004) can however be slow to converge (see Figure 4.2), so much 

so, the binomial tree dimensions must be rescaled to provide a dramatically finer mesh with 

substantial computational costs incurred that are likely to deter extensive use of lattice 

techniques.39  

                                                 
39 We make use of Boyle Lau (1994) and Tian (1999) specifications separately to improve the feasibility of ESO 

lattice estimation. A straight application of Hull and White (2004) in spreadsheets can be largely impractical when 

a high level of accuracy is required. In the Appendix, we also add some additional improvement in terms of 

estimation using truncation and by redefining the two-dimensional tree to being one-dimensional. We elaborate 

somewhat on how some computer science concepts find useful application in estimating the ESO lattice.  
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Figure 4.1: Hull and White (2004) model 

 

Sluggish Convergence of Hull-White Model 

Cvitanic, Wiener and Zapatero (2008) pointed out that Hull and White (2004) relied on CRR 

numerical methods to compute the value of the Employee Stock Option. They found that the 

Hull and White (2004) model converges very gradually and non-monotonically (which also 

creates problems for hedging computations). Cvitanic, Wiener and Zapatero (2008) reveal that 

convergence to “True” of a standard binomial implementation of Hull and White (2004) to be 

remarkably slow. In fact, at 40,000 steps the binomial ESO estimate Cvitanic et al (2008) 

obtained was 27.9291, when the “True” value was 27.8551. This finding may help explain why 

in practice accountants and other actors subjected to current American and European regulatory 

regimes may be slow to switch from using a Black Scholes type framework despite the latter 

being acknowledged as flawed for the purposes of estimating the value of ESOs. To give some 

scale of the estimation: when the number of time steps is equal to N (counting from 0), the 
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number of nodes in the CRR tree is equal to (𝑁 + 1)(𝑁 + 2)/2.40 Estimation beyond 20,000 

steps becomes computationally intensive for regular desktop computing resources and likely 

unrealistic for those who have multiple option issues to frequently synthesize into Financial 

Reports within short time frames.41 This may, in part, explain the reluctance of the FASB and 

SEC to exclusively impose a standard lattice framework on professional practitioners when 

valuing ESOs. The SEC point to some theoretical evidence when providing this latitude.42  

Steps HW True Value 

10 31.8244 27.8551 

20 28.1415 27.8551 

50 28.9496 27.8551 

70 29.2895 27.8551 

100 29.8886 27.8551 

200 29.0914 27.8551 

500 28.4026 27.8551 

1,000 28.28239 27.8551 

1,500 27.9354 27.8551 

2,000 27.9920 27.8551 

2,500 28.2092 27.8551 

3,000 28.1615 27.8551 

4,000 27.9895 27.8551 

5,000 28.0345 27.8551 

7,500 27.9605 27.8551 

10,000 28.0228 27.8551 

20,000 27.8997 27.8551 

100,000 27.8711 27.8551 

Table 4.1: Sluggish convergence of Hull-White Model 

In what follows, we graft on to the Cox, Ross and Rubinstein (1979) tree the Hull and White 

(2004) conditions (i) – (iv) outlined previously. In Table 4.1, we report the value of the Hull 

and White (2004) tree using the Cvitanic, Wiener and Zapatero (2008) parameters S = 100, K 

                                                 
40 See Haug (2007) p.286. N = 40,000 steps would imply in excess of 800 million (i, j) nodes!! 
41 In our version of Microsoft Visual Studio Community 2017, C++ code did not execute at 30,000 steps without 

requests to reconfigure software specifications. Excel VBA crashed at 20,000 steps however some additional 

tweaking of code would have allowed higher specifications. 
42 SAB Topic 14 provides some guidance “The staff notes the existence of academic literature that supports the 

assertion that the Black-Scholes-Merton closed-form model, with expected term as an input, can produce 

reasonable estimates of fair value.” See: https://www.sec.gov/interps/account/sabcodet14.htm  

https://www.sec.gov/interps/account/sabcodet14.htm
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= 100, T = 10 years, Sigma = 0.2, r = 0.06, Vesting = 2 years, M = 1.5 and e = 0.04. The “True” 

value of 27.8551 is only reached with a criterion of two decimal places accuracy when the 

number of steps in the tree is raised to 100,000 steps. The large number of steps required to get 

close to convergence is problematic.43 We also believe that this type of erratic behaviour may 

influence practitioners to rely more on a Black Scholes type framework despite the latter being 

only reliable for valuing options with European expiry/exercise privileges. Cvitanic, Wiener 

and Zapatero (2008) pointed out that convergence is not uniform, thus many estimations of the 

same tree are typically required to confirm that convergence has actually taken place.44 The 

familiar saw tooth pattern commonly associated with Barrier Options is evidenced in Figure 

4.2. The Hull and White (2004) ESO model is estimated from 10 to 10,000 steps in intervals 

of 10. It is clear that convergence is difficult to attain, and a very large step magnitude tree 

would be required to remove persistent error which manifests itself again and again. To 

compound matters, a steadily growing number of steps does not manifestly yield a consistent 

reduction in error. 

                                                 
43 An accountant or financial analyst would not easily devote the necessary computing resources and time to 

extract fair value if the requisite tree step size was of the order of 100,000. 
44 We don’t quite know when we have got there and analysts could be conceivably forced to repeat a number of 

implausibly elevated step magnitude trees to confirm actual convergence. Accountants and other practitioners 

understandably may feel obliged to accept Black Scholes (1973) based methodologies to estimate the fair value 

of option compensation even though the model is not entirely appropriate for ESOs. Perhaps, “better the devil you 

know”. 
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Figure 4.2: Sluggish convergence of Hull-White Model 

 

Derman et al (1995) pointed out that there at least two sources of inaccuracy when modelling 

options using a lattice.45 The first derives from the fact that the lattice is a discrete time 

representation of a continuous time process. As the mesh becomes finer, the level of inaccuracy 

can be reduced. The second source of bias may be explained by a failure of the lattice to 

precisely capture the terms of the option.46  The Hull and White (2004) model embeds a 

specification for early exercise. As mentioned previously, in Section 2: when the stock price S 

≥ M*K, the vested option is exercised (𝑖𝛿𝑡 > 𝑣). 

We argue here that M*K represents a form of barrier in the Hull and White (2004) model which 

can be triggered at any time in the post vesting period.47 Derman et al (1995) pointed out that 

if a barrier does not coincide with a series of horizontal nodes on the recombining tree then 

systematic biases emerge in estimation. This type of ‘specification error’ is identified in Figure 

                                                 
45 Derman et al (1995) referred to “quantization error” and “specification error”. We address the latter using the 

Boyle and Lau (1994) procedure. 
46 Derman et al (1995) referred to this as specification error. 
47 We interpret the ESO as configured by Hull and White (2004) to embed American barrier exercise privileges. 
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4.3. One solution proposed by Boyle and Lau (1994) would involve aligning the tree or a series 

of horizontal nodes to M*K. This necessitates some manipulation of the array mapping to 

produce recombined equivalent values that plot close to or at the barrier. To correct for tree 

misalignment Boyle and Lau (1994) recommend that the lattice is designed so that the barrier 

falls on a series of successive recombining nodes, see Figure 4.4.  This has the effect of placing 

the barrier on the nodes and ‘specification error’ as described by Derman et al (1995) can be 

mitigated for estimation purposes.  

                 

Figure 4.3: Discordance between the barrier and horizontal nodes of the tree  
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Figure 4.4: The barrier falling on a series of horizontal nodes of the tree  

 

Hull-White-Boyle-Lau Model 

Boyle and Lau (1994) found that the effect of the barrier was to render convergence to be saw 

tooth shaped. Typically for barrier options: a consistently increasing step size does not produce 

a consistent diminution in error. Boyle and Lau (1994) advocated that the step size be restricted 

to values that produce nodes that match the barrier. In other words, the number of steps, should 

be selected so that an array of recombining nodes, in the tree, line up or nearly line up with the 

barrier. The Hull and White (2004) model is nested in a Cox, Ross and Rubinstein (1979) tree 

and has an early exercise boundary of K*M. Applying Boyle and Lau (1994) to Hull and White 

(2004) model, we make the barrier K*M falls on any one node of the tree, defined as:  

𝑆0,0 ∗  𝑢𝑖 = 𝐾 ∗ 𝑀                                                                                                                                     (4.5) 

where S0,0 is the initial stock price and u is the magnitude of upward factors defined as: 

𝑢 =  𝑒𝜎√𝛥𝑡 =  𝑒
𝜎√

𝑇

𝑁                                                                                                                               (4.6) 

where σ is volatility, T is time to maturity, N is the step number and ∆t is the time step. 

Rearranging Equation (4.5), we obtain the function for selecting the appropriate N: 

 𝑁 = {
(𝑖2𝜎2𝑇)

[ln (
𝐾𝑀

𝑆0,0
)]

2}, for i = 1, 2, 3. . .                                                                                                             (4.7) 

where { . } means the closest integer to its argument and the step number N of Hull-White 

model can be calibrated by iterating i. The effect of Boyle-Lau method is visualized in Figure 

4.5. The solid line represents the estimated value of an ESO produced by Hull-White model as 

the number of steps increases while the dashed horizontal line represents the true value of this 

ESO. The dots represent the value produced by Hull-White-Boyle-Lau model in which the 
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number of steps is selected to fuse the barrier K*M as close as possible to a horizontal locus of 

tree nodes. Compared with the original Hull-White model whose estimations are fluctuating, 

the values produced by Hull-White-Boyle-Lau (dots) are visually consistent with the true 

values. Boyle and Lau (1994) iteratively re-estimated successive values of i to yield the desired 

N or integer closest to the desired N using Equation (4.7) so that the ‘specification error’ as 

explained by Derman et al (1995) can be reduced. If the barrier does not coincide with a 

specified locus of nodes, monitoring will in the American option’s framework be repetitively 

out of sync. Equation (4.7) applies most effectively where there is a single barrier and volatility 

is constant. If M varies or if the tree is not consistent with Cox, Ross and Rubinstein (1979) 

then Boyle and Lau (1994) may not be appropriate.48 

 

Figure 4.5: Hull-White-Boyle-Lau methods 

 

                                                 
48The Leisen Reimer (1996) tree does not recombine iteratively to a fixed range of values. Their model tilts the 

lattice so that the terminal stock prices centre towards the exercise. Placing the barrier in the Leisen Reimer (1996) 

tree to rest on the recombined nodes is not straightforward. 
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Hull-White-Tian Model 

Tian (1999) proposed a two-stage flexible binomial methods for continuous barrier options, 

which ensures a layer of nodes coincides with the barrier. In our paper, we adapt two-stage 

flexible binomial method to the original Hull and White (2004) model, which eliminates the 

second source of bias and leads to the accurate estimations. As is shown in Figure 4.6, the Hull-

White-Tian binomial tree consists of two different stages, separating by the vertical solid line. 

The first stage is defined as the first N0 steps tree (n ≤ N0) where N0 is a particular number of 

steps. In this stage, the binomial tree is tilted (solid tilted tree) with a non-zero tilt parameter λ, 

twisted from a normal binomial tree (dashed non-tilted tree). This is design to make the highest 

node (N0, N0) of the tilted tree fall exactly on the “early exercise barrier” K*M (horizontal solid 

line). The second stage is the rest of the tree with the step number n > N0. In this stage, the tree 

returns back to the normal non-tilted binomial tree with zero tilt parameter so that a horizontal 

layer of nodes where node (N0, N0) coincides with the early exercise barrier. 

 

Figure 4.6: Two-stage Hull-White-Tian model 
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The stock price and option price of each node in these two stages are governed by two different 

sets of parameters. In the first stage, the degree of stock price moving up and down, u and d, 

are influenced by the tilt parameter λ: 

𝑢 =  𝑒𝜎√∆𝑡 + 𝜆𝜎2𝛥𝑡 , (4.8) 

𝑑 =  𝑒−𝜎√∆𝑡 + 𝜆𝜎2𝛥𝑡 , (4.9) 

where λ is the tilt parameter. Taking the dividends q into account, the possibility of upward and 

downward movement p and 1-p is defined as: 

𝑝 =  
𝑒(𝑟−𝑞)𝛥𝑡 − 𝑑

𝑢 − 𝑑
 , (4.10) 

1 − 𝑝 =  
𝑢 − 𝑒(𝑟−𝑞)∆𝑡

𝑢 − 𝑑
 . (4.11) 

In addition, non-negative possibilities of upward and downward movement require: 

𝑑 ≤ 𝑒(𝑟−𝑞)∆𝑡 ≤ 𝑢 , (4.12) 

which can be rewritten as: 

𝜆 −
𝑟 − 𝑞

𝜎2
≤

1

𝜎√∆𝑡
 . (4.13) 

It is not hard to observe that Equation (4.13) always establishes when Δt is sufficiently small. 

In the second stage, the tilted tree returns back to the normal non-tilted binomial tree. The 

upward and downward movement of stock price, u0 and d0, and the corresponding possibility, 

p0 and 1-p0, are given by: 

𝑢0 =  𝑒𝜎√∆𝑡 ,  (4.14) 

𝑑0 =  𝑒−𝜎√∆𝑡 , (4.15) 
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𝑝0 =  
𝑒(𝑟−𝑞)𝛥𝑡 − 𝑑0

𝑢0 − 𝑑0
 , (4.16) 

1 − 𝑝0 =  
𝑢0 − 𝑒(𝑟−𝑞)𝛥𝑡

𝑢0 − 𝑑0
 . (4.17) 

The λ plays an important role here since it determines the shape of the tilted tree in the first 

stage and further determines whether the barrier can fall on a layer of nodes in the second stage. 

The value of λ is determined as follows: We start from the second stage, normal non-tilted 

binomial tree (n > N0 and λ = 0), and determine the particular step number N0. A horizontal 

layer of nodes in the second stage coincides with the “early exercise barrier” which can be 

represented as: 

𝑆0,0𝑢0
𝑗 = 𝑀𝐾 , (4.18) 

Therefore, the solution for j is given by: 

𝑗 =  
𝑙𝑛 (

𝑀𝐾
𝑆0,0

)

𝑙𝑛 (𝑢0)
 . 

(4.19) 

Since j is barely an integer, N0 is determined by: 

𝑁0 = [ j ] = [
ln (

𝑀𝐾
𝑆0,0

)

ln(𝑢0)
] , (4.20) 

where [ . ] means the closest integer to its argument. Moving backward to the first stage, the 

stock price of the highest node (N0, N0) in this stage is given by: 

𝑆𝑁0,𝑁0
=  𝑆0𝑢𝑁0  , (4.21) 

To ensure node (N0, N0) falls exactly on the barrier, the following Equation should establish: 
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𝑆0,0𝑢𝑁0 = 𝑀𝐾 . (4.22) 

Therefore, by Equation (4.8), λ is solved as: 

𝜆 =  
𝑙𝑛 (

𝑀𝐾
𝑆0,0

) −  𝑁0𝜎√𝛥𝑡

𝑁0𝜎2𝛥𝑡
 . 

(4.23) 

With the appropriate determination of λ, we produce a layer of nodes in the second stage 

consistent with the highest node in the first stage (N0, N0) coincides with the barrier. Moreover, 

Tian (1999) confirmed that the flexible binomial tree permits the second stage to recombine 

even though the set of parameters change between the two stages. By eliminating the 

‘specification error’ stated in Derman et al (1995), Hull-White-Tian model can obtain the 

accurate value of ESOs with much less steps relative to the original Hull-White model. 

 

Numerical Results 

 

We first re-estimate the Hull and White (2004) model by incorporating Boyle and Lau (1994) 

and Tian (1999) respectively. The results are shown in Table 4.2. The same Cvitanic, Wiener 

and Zapatero (2008) parameters are used as Table 4.1: S = 100, K = 100, T = 10 years, Sigma 

= 0.2, r = 0.06, Vesting = 2 years, M = 1.5 and e = 0.04. Convergence is substantively 

improved relative to the original Hull-White model shown in Table 4.1. At a step size of 1,500, 

there would appear to be a relatively stable pattern of convergence already established. The 

saw tooth pattern of convergence identified in Figure 4.2 seems to have been largely resolved. 

In Figure 4.7, the relatively parsimonious refinement introduced by Boyle and Lau (1994) and 

Tian (1999) seems to mostly mitigate the sluggish convergence issues identified by Cvitanic, 

Wiener and Zapatero (2008) when implementing Hull and White (2004) in a traditional Cox, 

Ross and Rubinstein (1979) setting. More specifically, Hull-White-Boyle-Lau possesses the 
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smoothest convergence while Hull-White-Tian provides the best accuracy level. Hull-White-

Boyle-Lau and Hull-White-Tian models offers some scope particularly for actors in the 

professional and regulatory bodies who default to the Black and Scholes (1973) framework by 

virtue of lower computational cost.  

Steps HW HWBL HWTian True Value 

50 28.9496 27.8632 27.7599 27.8551 

100 29.8886 27.8675 27.9468 27.8551 

200 29.0914 27.8715 27.8365 27.8551 

300 28.8294 27.8782 27.8436 27.8551 

400 28.0118 27.8480 27.8464 27.8551 

500 28.4026 27.8675 27.8713 27.8551 

1,000 28.2824 27.8530 27.8627 27.8551 

1,500 27.9354 27.8549 27.8566 27.8551 

2,000 27.9920 27.8576 27.8581 27.8551 

2,500 28.2092 27.8565 27.8527 27.8551 

3,000 28.1615 27.8562 27.8553 27.8551 

3,500 27.8799 27.8563 27.8569 27.8551 

4,000 27.9895 27.8566 27.8549 27.8551 

4,500 28.1356 27.8569 27.8542 27.8551 

5,000 28.0345 27.8535 27.8540 27.8551 

Table 4.2: Fast convergence of Hull-White-Boyle-Lau and Hull-White-Tian models 

 

 

 

Figure 4.7: Comparing Hull-White with Hull-White-Boyle-Lau and Hull-White-Tian models 
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In Table 4.3, we alter the standard values we used so far: S = 100, K = 100, T = 10 years, Sigma 

= 0.2, r = 0.06, Vesting = 2 years, M = 1.5 and e = 0.04. The third column contains the 

estimations for original values. We compare Hull-White-Boyle-Lau (HWBL) and Hull-White-

Tian (HWTian) relative to the Hull White estimation (HW). In each column, we can observe 

convergence as we increase the step size. For each successive column we re-compute these 

values amending a single variable e.g. S’ denotes that we amend just a single variable in this 

case S moves from 100 to 120. The true values we estimated using Cvitanic, Wiener and 

Zapatero (2008).49 Again it is clear that HWBL and HWTian values are clearly closer to True 

relative to the unadjusted Hull and White (2004).  

In Table 4.4, we measure the bias based on the estimations in Table 4.3. Referring to Broadie 

and Detemple (1996), root mean squared relative error (RMSRE) is defined as the estimation 

error measurement. First, relative deviation ei is defined by: 

𝑒𝑖 =
𝐸𝑆𝑂𝑖̂ − 𝐸𝑆𝑂𝑖

𝐸𝑆𝑂𝑖
 , (4.24) 

where 𝐸𝑆𝑂𝑖̂ is the estimated ESO value while 𝐸𝑆𝑂𝑖  is the true value of ESO. Therefore, by 

Equation (4.24), RMSRE is determined by: 

RMSRE = √
1

𝑛
∑ 𝑒𝑖

2𝑛
𝑖=1  , (4.25) 

where n is the number of samples which is equal to 100 here. As it is shown in Table 4.4, the 

relative error of HWBL and the HWTian model is around 50 times less than that of original 

HW model. More specifically, HWTian achieved a slightly higher accuracy level than HWBL 

since the RMSRE of HWTian is a little lower than that of HWBL.   

                                                 
49 We thank Professor Zvi Wiener for confirming the true values. 



100 

 

 

Methods Steps 
Initial  Multiple'=2 ExitRate'=0.08 DivRate'=0.03 Sigma'=0.4 Interest'=0.03 Vest'=4 T'=8 K'=120 S'=120 

ESO price 

HW 

500 

28.4026 35.2359 25.1287 21.7337 36.6282 24.5140 30.3561 27.4778 23.7446 39.6460 

HWBL 27.8675 34.9800 24.7002 21.4729 35.4646 24.1361 30.0290 26.8391 23.5734 39.5246 

HWTian 27.8713 39.5549 23.5637 26.8407 30.0587 24.1350 35.4351 21.4704 24.6991 34.9812 

HW 

1000 

28.2824 35.1153 25.0408 21.6802 36.2675 24.4317 30.2862 26.9971 23.9294 40.0232 

HWBL 27.8530 35.0000 24.6945 21.4661 35.4434 24.1243 30.0340 26.8557 23.5789 39.5137 

HWTian 27.8627 39.5116 23.5712 26.8462 30.0398 24.1251 35.4342 21.4677 24.6965 34.9886 

HW 

1500 

27.9354 35.1598 24.7621 21.5080 35.8913 24.1836 30.0867 26.9350 23.5752 39.6849 

HWBL 27.8549 34.9970 24.6967 21.4670 35.4100 24.1254 30.0406 26.8425 23.5729 39.5163 

HWTian 27.8566 39.5167 23.5710 26.8468 30.0407 24.1267 35.4266 21.4685 24.6987 34.9913 

HW 

2000 

27.9920 35.2537 24.8097 21.5377 35.8827 24.2250 30.1190 27.1516 23.7541 39.6131 

HWBL 27.8576 34.9959 24.7013 21.4698 35.4265 24.1280 30.0377 26.8496 23.5728 39.5125 

HWTian 27.8581 39.5115 23.5741 26.8455 30.0431 24.1280 35.4255 21.4697 24.7009 34.9960 

HW 

2500 

28.2092 35.0412 24.9871 21.6473 36.0236 24.3813 30.2437 26.8929 23.7677 39.6518 

HWBL 27.8565 34.9956 24.7024 21.4712 35.4174 24.1290 30.0423 26.8486 23.5731 39.5176 

HWTian 27.8527 39.5156 23.5729 26.8464 30.0391 24.1253 35.4212 21.4686 24.6989 34.9953 

HW 

3000 

28.1615 35.2041 24.9492 21.6239 35.6817 24.3473 30.2173 27.0451 23.6028 39.7450 

HWBL 27.8562 34.9978 24.7021 21.4709 35.4251 24.1285 30.0400 26.8479 23.5715 39.5147 

HWTian 27.8553 39.5097 23.5733 26.8474 30.0401 24.1267 35.4165 21.4693 24.7003 34.9962 

HW 

3500 

27.8799 35.0269 24.7207 21.4818 35.4391 24.1445 30.0555 26.9948 23.5764 39.5519 

HWBL 27.8563 34.9970 24.7023 21.4709 35.4160 24.1285 30.0401 26.8488 23.5710 39.5109 

HWTian 27.8549 39.5106 23.5730 26.8466 30.0390 24.1267 35.4224 21.4695 24.7007 34.9956 

HW 

4000 

27.9895 35.1241 24.8100 21.5378 35.7770 24.2240 30.1174 27.0018 23.6359 39.7116 

HWBL 27.8566 34.9969 24.7031 21.4713 35.4199 24.1289 30.0419 26.8463 23.5710 39.5129 

HWTian 27.8549 39.5107 23.5714 26.8464 30.0392 24.1268 35.4169 21.4697 24.7010 34.9963 

HW 

4500 

28.1356 35.0808 24.9292 21.6115 35.6567 24.3291 30.2020 27.0469 23.7530 39.6070 

HWBL 27.8569 34.9963 24.7026 21.4705 35.4263 24.1281 30.0421 26.8471 23.5724 39.5106 

HWTian 27.8553 39.5110 23.5723 26.8482 30.0402 24.1270 35.4199 21.4698 24.7013 34.9959 

HW 

5000 

28.0345 35.0806 24.8472 21.5608 35.5666 24.2565 30.1438 26.9118 23.6468 39.5255 

HWBL 27.8535 34.9960 24.7006 21.4694 35.4221 24.1262 30.0397 26.8480 23.5720 39.5126 

HWTian 27.8540 39.5136 23.5717 26.8471 30.0397 24.1265 35.4212 21.4697 24.7011 34.9965 

True Value   27.8551 34.9973 24.7031 21.4707 35.4181 24.1276 30.0402 26.8472 23.5720 39.5111 

Table 4.3: Comparing Hull-White, Hull-White-Boyle-Lau and Hull-White-Tian model 
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Table 4.4: Comparing Hull-White, Hull-White-Boyle-Lau and Hull-White-Tian model 

 
 

Conclusion 

Standard setters by and large have not been implacably rigid in asserting a specific valuation 

framework for those tasked with preparing company accounts and expensing Employee Stock 

Options. Choice of model and parameter inputs however have nontrivial effects and varying 

estimates of valuation can be asserted. This may be a source of disquiet for the accounting 

profession and to regulatory actors such as the SEC. 50  The ability of shareholders and 

bondholders to appraise the incentives propelling senior executives can also be easily 

circumscribed by arbitrary choices within the valuation process. In this paper, we consider the 

impact of valuation and convergence of lattice models, in particular Hull and White (2004) 

model. We address the problem of Hull-White binomial model (HW) that the inability to reach 

convergence within a feasible number of steps may render lattice techniques impracticable for 

most practitioners. Regarding the Employee Stock Option as an American Barrier Options, we 

borrow established techniques in the literature including Boyle and Lau (1994) and Tian (1999) 

to improve implementation. We develop an efficient framework Hull-White-Boyle-Lau 

(HWBL) and Hull-White-Tian (HWTian) models to make the valuation process achieve greater 

accuracy with smaller computational costs. With the same number of steps, the accuracy level 

of HWBL and HWTian model is around 50 times higher than the original HW model, which 

indicates the convergence can be effectively accelerated. In the Appendix, we further improve 

                                                 
50 The margin of error produced may be acceptable for producing Financial Statement in the same way that 

depreciation of asset estimations also necessarily must reside with a margin of error. 

 HW HWBL HWTian 

Average deviation(*10-3) 6.8355 0.1093 0.1041 

largest  deviation (*10-3) 34.1672 1.3129 1.1082 

Number of deviation > 1% 23 0 0 

RMSRE (*10-3) 8.9274 0.2034 0.1892 
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the HWBL algorithm by making better use of computer memory and truncating redundant 

region, which can also be extended to Hull-White-Tian model.51 The software implementation 

can be made more efficient by defining the array mapping differently for the lattice.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
51 Some readers may prefer to read the Appendix separately from the rest of the paper or not at all. The biggest 

improvement in estimation comes from adapting the Boyle Lau (1996) specification to Hull White (2004). We 

attempt in the Appendix, to squeeze out some additional efficiencies in terms of run-time by making better use of 

memory. Some practitioners may appreciate these additional gains in efficiency particularly where the humble 

spreadsheet is the main pricing engine. 
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Chapter 5 - Conclusion 

Summary 

This thesis focuses on the valuation of American options and employee stock options, 

especially lattice-based valuation models. We begin in Chapter 1 with the introduction to the 

role options play and some background on American options, pricing and hedging. We then 

extend the analysis to include valuation methods and approaches likely countenanced to 

evaluate employee stock options.  

In Chapter 2, an intelligent lattice search algorithm is introduced to efficiently locate the 

optimal exercise boundary for American options. An accelerated CRR binomial model is 

proposed by incorporating intelligent lattice search, truncation and dynamic memory. The 

computational runtime can be reduced from over 18 minutes down to less than 3 seconds to 

estimate a 15,000-step binomial tree without disturbing the accuracy. Delta and Implied 

Volatility can also be accelerated relative to standard models. The standard binomial trees, 

usually considered to be slow and less practical, are modified to be comparable with analytical 

formulae in terms of speed. More importantly, intelligent lattice search can be tweaked to reach 

varying levels of accuracy corresponding to different step size. Conventional analytical 

formulae are less flexible and offer less scope for improving accuracy.  

Chapter 3 extends and improves the accuracy-speed trade-off, introduced by intelligent lattice 

search, for American Option valuation. Lattice techniques are further developed to accelerate 

computational time and accuracy for LR and Tian models. The improved LR and Tian models 

coupled with intelligent lattice search can achieve a level of accuracy and efficiency combined 

that surpass analytical analogues prominent in the literature. The performance of efficient 

lattice models is benchmarked against analytical formulae for a large number of different 

parameters, randomly generated. Results reveal that different pricing techniques are more 
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appropriate for out of-the-money, in-the-money, strong and weak options.  The choice of model 

can be optimally selected to harness the greatest level of efficiency. It was found that lattices 

fused with intelligent lattice search affords an explicit trade-off locus between accuracy and 

speed that can be navigated according to predetermined precision tolerance levels. These 

models, on the whole, surpassed leading analytical techniques for both speed and accuracy. 

This improvement should have practical relevance to computationally expensive trading 

platforms that require real-time estimates of implied volatility.  

In Chapter 4, we extend this analysis to the valuation of non-traded employee stock options. 

The well documented sluggish convergence of the celebrated Hull-White ESO pricing model 

can be substantially mitigated by combining Boyle-Lau and Tian specifications with the 

techniques introduced in Chapters 2 and 3. It has been found that the relative error of Hull-

White-Boyle-Lau and Hull-White-Tian models are around 50 times less than the original Hull-

White model using the same number of steps. The Hull-White model can also be further 

accelerated using the lattice techniques previously designed for American options. Hull-White-

Boyle-Lau and Hull-White-Tian models extend the practicable menu choice available to 

stakeholders in developed and emerging market regimes who are varyingly subjected to 

accounting standards that increasingly reflect fair value imperatives. These techniques also 

provide an efficient testing framework for validating a newer generation of closed-form 

solutions also now appearing in the literature. 

 

Future Research 

Machine learning paradigms potentially offer a promising pathway to traverse the performance 

of the option pricing models and to elaborating more effectively hedging strategies. Predictive 

modelling, in principle, could be useful for classifying options as being some combination of 
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in/at/out-of-the-money and strong/weak. Knowing in advance the appropriate classification 

should improve model selection and performance. Strong options while relatively rare, account 

for a substantial proportion of error when pricing. Developing an efficient algorithm that 

bifurcates strong and weak options should help when pricing large books of options. In addition, 

the lattice-based ESOs pricing models presented by Brisley and Anderson (2008) and Abudy 

and Benninga (2013) are likely candidates that feasibly can be enhanced by intelligent lattice 

search.  
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Appendix A 

In this appendix, three Propositions and two Theorems of the optimal exercise boundary 

mentioned in Chapter 2 for an American put option are advanced. The Kim and Byun (1994) 

framework is augmented to incorporate unrestricted dividends y. Conditions for a continuous 

early exercise boundary are accordingly set out where the seed node is revealed in the 

penultimate column. Consider an American put option with an initial stock price S, strike price 

X, time to maturity T, risk-free interest rate r, continuous dividend yield y and volatility σ, 

priced by an n-step binomial model (we adhere to a standard notation). The magnitude of the 

stock price moving up and the stock price moving down are denoted by u and d. The probability 

of an upward and a downward movement respectively p and 1 - p are defined as: 

𝑢 = 𝑒𝑥𝑝(𝜎√∆𝑡)                                                                                                                         (A.1) 

𝑑 = exp(−𝜎√∆𝑡)                                                                                                             (A.2) 

𝑝 =  (𝑅/𝑌 −  𝑑) /(𝑢 −  𝑑)                                                                                                   (A.3) 

1 −  𝑝 =  (𝑢 −  𝑅/𝑌)/(𝑢 −  𝑑)                                                                                           (A.4) 

where Δt = T/n, R = exp(rΔt) ,Y = exp(yΔt). The stock price is given by: 

𝑆(𝑖,𝑗) = 𝑆𝑢𝑗𝑑(𝑖−𝑗)                                                                                                                     (A.5) 

Table 2.2 - 2.7 reported results from accelerated binomial option pricing process. This was 

largely accomplished by introducing an intelligent lattice search algorithm to efficiently locate 

the optimal exercise boundary. The optimal exercise node (n-1, B(n-1)) must be intuited by 

checking the exercise condition at each node along the penultimate column until the optimal 

boundary exercise is established. After detecting and confirming the optimal exercise node ❷ 

at column 9, in Figure 2.5, the seed value of the optimal exercise boundary is asserted. We then 
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proceeded inductively from the penultimate to the antepenultimate column and so on. To find 

a pathway through the lattice that delineates the stopping and continuation regions, a number 

of Propositions are framed from which two Theorems can be advanced and derived. In the 

derivation of the optimal exercise boundary robust to dividends, (n-1, B(n-1)) is regarded as a 

known condition. The node at which the first exercise value exceeds the holding value in the 

penultimate column can be numerically ascertained. This can be accomplished by simply 

iterating a lattice search algorithm specific to the penultimate column to locate the node at 

which the early exercise boundary emerges. To make the derivation more intuitive, the familiar 

nomenclature of a family is adapted here. Each node can be represented as a minute sub-tree 

of the entire binomial tree. In Figure A1, each node from the penultimate column back can be 

constituted as a “child” (i, j) with stock price S(i, j). The “mother” is defined here as (i + 1, j + 

1) with stock price uS(i, j) and the “father” is (i + 1, j) with stock price dS(i, j). Nodes (i + 1, j + 

1) and (i + 1, j) are “parents” in this tripartite “family” and these associations shift and are 

merely advanced to communicate lattice relativities and place-holding.52 Consistent with this 

“family” nomenclature the “child” is the progeny of the “parents”. We also try to add some 

intuition to the CRR tree by using a tilted j axis in Figure A2. This has the virtue of allowing 

the nodes to fall on the same diagonal when they share the same j (see the downward dashed 

line in Figure A2). Furthermore, the nodes on the same horizontal level have the same stock 

price (see the horizontal dashed line in Figure A2).     

 

 

 

                                                 
52 uS(i, j) implies multiplying S(i, j) by u and dS(i, j) implies multiplying S(i, j) by d.  
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Figure A1: A “family” binomial tree 

 

 

Figure A2: A binomial tree 

 

Auxiliary Proposition. If S(i, j) > S(n - 1, B(n - 1) + 1), then (i, j) ϵ C for 1 ≤ j ≤ i ≤ n - 1 (the nodes 

above the horizontal solid line from the penultimate column back in Figure A3 belong to the 

continuation region). 

As observed before, (n - 1, B(n - 1)), the optimal exercise node at the penultimate column, is a 

known condition.53 By extension (n - 1, B(n - 1) + 1) is the first continuation node from the 

bottom at the penultimate column that is known to be more valuable when the option is held 

rather than exercised. The (n - 1, B(n - 1) + 1) node reference can be regarded as the “child” or 

apex node of (n, B(n - 1) + 2) and (n, B(n - 1) + 1). The proof of the Auxiliary Proposition can 

be divided into two parts relating to different properties of its “mother”, S((n, B(n - 1) + 2)). The 

value of put options at the maturity are unambiguously determined by: 

                                                 
53 This can be easily established by testing each node until the optimal exercise node is found in the penultimate 

column. Is it more valuable to hold or to exercise? 
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𝑉(𝑛,𝑗) = max (𝑋 − 𝑆(𝑛,𝑗), 0)                   (A.6) 

which means if X ≥ S(n, j), then V(n, j) = (X - S(n, j)) and (n, j) ϵ S. Otherwise if X < S(n, j), V(n, j) = 

0 and (n, j) ϵ C.54 

 

Figure A3: Auxiliary proposition 

 

Auxiliary Proposition (Part A): If X < S(n, B(n - 1) + 2) (“mother” ϵ C) and S(i, j) > S(n - 1, B(n - 1) + 1), 

then (i, j) ϵ C for 1 ≤  j ≤ i ≤ n - 1. 

Proof of Auxiliary Proposition (Part A): Since S(n, B(n - 1) + 2)  represents the smallest stock price 

S(i, j) which satisfies S(i, j) > S(n - 1, B(n - 1) + 1) in the tree, S(i, j) > S(n - 1, B(n - 1) + 1) is equivalent to S(i, 

j) ≥ S(n, B(n - 1) + 2). Combining with X < S(n, B(n - 1) + 2), X < S(i, j) can be obtained. Therefore, (i, j) 

belongs to the continuation region. The Auxiliary Proposition (Part A) can be proven. 

Auxiliary Proposition (Part B): If X ≥ S(n, B(n - 1) + 2) (“mother” ϵ S) and S(i, j) > S(n - 1, B(n - 1) + 1), 

then (i, j) ϵ C for 1 ≤  j ≤ i ≤ n - 1. 

                                                 
54 S and C denote the stopping and continuation regions respectively. 
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Proof of Auxiliary Proposition (Part B): Since X ≥ S(n, B(n - 1) + 2) > S(n, B(n - 1) + 1), both “parents” 

ϵ S, which means the exercise values are assigned to “parents”. Their “child” (n - 1, B(n - 1) + 

1), as a continuation node which has been already established (known), has the following 

property by Equation (2.1) - (2.3): 

𝑋 − 𝑆(𝑛−1,𝐵(𝑛−1)+1) < [𝑝(𝑋 − 𝑆(𝑛,𝐵(𝑛−1)+2)) + (1 − 𝑝)(𝑋 − 𝑆(𝑛,𝐵(𝑛−1)+1))]𝑅−1                  (A.7) 

which can be rewritten as: 

𝑋 − 𝑆(𝑛−1,𝐵(𝑛−1)+1) < [𝑝(𝑋 − 𝑢𝑆(𝑛−1,𝐵(𝑛−1)+1)) + (1 − 𝑝)(𝑋 − 𝑑𝑆(𝑛−1,𝐵(𝑛−1)+1))]𝑅−1   (A.8) 

According to Equation (A.1) - (A.4), [pu + (1 - p)d]R -1 = Y -1 holds55. Therefore, Inequality 

(A.8) can be rewritten as: 

𝑆(𝑛−1,𝐵(𝑛−1)+1) > 𝑋(1 − 𝑅−1)/(1 − 𝑌−1)                                       (A.9) 

Inequality (A.9), the known condition, implies that as long as S(i, j) > S(n - 1, B(n - 1) + 1) for 1 ≤ j ≤ 

i ≤ n - 1 (the nodes above the horizontal solid line from the penultimate column back, see Figure 

A3), then Inequality (A.10) below holds:56 

𝑆(𝑖,𝑗) > 𝑋(1 − 𝑅−1)/(1 − 𝑌−1)                                                                                             (A.10) 

By reference to the reverse process of rearranging Inequality (A.9) - (A.7), Inequality (A.10) 

can be rewritten as: 

X − 𝑆(𝑖,𝑗) < [𝑝(𝑋 − 𝑆(𝑖+1,𝑗+1)) + (1 − 𝑝)(𝑋 − 𝑆(𝑖+1,𝑗))]𝑅−1                                            (A.11) 

                                                 
55 Since Y = exp(y* Δt), Y > 1 and Y-1 < 1.  
56 The known condition has been established by testing the nodes in the penultimate column. Using a search 

algorithm, the location of the first continuation node at the penultimate column can be verified. 
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It follows from the definition of S and C that V(i, j) ≥ X – S(i, j) always holds. Therefore, from 

Inequality (A.11), so long as S(i, j) > S(n - 1, B(n - 1) + 1) for 1 ≤ j ≤ i ≤ n - 1, Inequality (A.12) below 

can be advanced: 

X − 𝑆(𝑖,𝑗) < [𝑝𝑉(𝑖+1,𝑗+1) + (1 − 𝑝)𝑉(𝑖+1,𝑗)]𝑅−1              (A.12) 

which implies (i, j) ϵ C. The proof of the Auxiliary Proposition (Part B) is therefore complete. 

Overall, the Auxiliary Proposition holds. 

Proposition 1. If (i + 2, j + 1) ϵ C, then (i, j) ϵ C for 0 ≤ j ≤ i ≤ n - 2. 

 

Figure A4: Proposition 1 

 

Consistent with Kim and Byun (1994) Proposition 2, Proposition 1 can be asserted. 

Proposition 2. If (i + 1, j + 1) ϵ S and (i + 1, j) ϵ S, then (i, j) ϵ S for 0 ≤ j ≤ i ≤ n - 2 (If the 

“parents” ϵ S then the “child” ϵ S from the penultimate column back).                                                                                                                     
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Figure A5: Proposition 2 

 

Proof of Proposition 2: The optimal exercise node at the penultimate column is located (n - 1, 

B(n - 1)), which is a known condition. As a stopping node, (n - 1, B(n - 1)) adheres to the 

following property given Equation (2.1) - (2.3): 

𝑋 − 𝑆(𝑛−1,𝐵(𝑛−1)) ≥ [𝑝𝑉(𝑛,𝐵(𝑛−1)+1) + (1 − 𝑝)𝑉(𝑛,𝐵(𝑛−1))]𝑅−1                                             (A.13)  

We posit here (n - 1, B(n - 1)) as a “child” and focus on the properties of its “parents”. First, 

we prove that the “father” (n, B(n - 1)) ϵ S. By (1), V(n - 1, B(n - 1))  = X - S(n - 1, B(n - 1)) ≥ 0. It is 

clear S(n, B(n - 1)) < S(n - 1, B(n - 1)) and X - S(n, B(n - 1)) > X - S(n - 1, B(n - 1)) ≥ 0. According to Equation 

(A.6), V(n, B(n - 1)) = X – S(n, B(n - 1)) and (n, B(n - 1)) ϵ S. Two possibilities are feasible for the 

“mother” (n, B(n - 1) + 1): either (n, B(n - 1) + 1) ϵ S or (n, B(n - 1) + 1) ϵ C. If (n, B(n - 1) + 

1) ϵ S, by Equation (A.6), V(n, B(n - 1) + 1) = X - S(n, B(n - 1) + 1) ≥ 0. This implies that Inequality 

(A.13) can be rewritten as: 

X − 𝑆(𝑛−1,𝐵(𝑛−1)) ≥ [𝑝(𝑋 − 𝑆(𝑛,𝐵(𝑛−1)+1)) + (1 − 𝑝)(𝑋 − 𝑆(𝑛,𝐵(𝑛−1)))]𝑅−1                        (A.14) 
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Otherwise, if (n, B(n - 1) + 1) ϵ C, by Equation (A.6), X - S(n, B(n - 1) + 1) < 0 so that V(n, B(n - 1) + 1) 

= 0. Combining this with the properties linked to status of “father”, Inequality (A.13) should 

be rewritten as: 

X − 𝑆(𝑛−1,𝐵(𝑛−1)) ≥ [0 + (1 − 𝑝)(𝑋 − 𝑆(𝑛,𝐵(𝑛−1)))]𝑅−1                                                       (A.15) 

This implies that even if (n, B(n - 1) + 1) ϵ C, Inequality (A.14) still holds. The optimal exercise 

node at the penultimate column (n - 1, B(n - 1) always satisfies Inequality (A.14), which is a 

known condition. By extension, rearranging inequalities pertaining to Inequality (A.7) - (A.9), 

permits Inequality (A.14) can be rewritten as: 

𝑆(𝑛−1,𝐵(𝑛−1)) ≤ 𝑋(1 − 𝑅−1)/(1 − 𝑌−1)                                                                                 (A.16) 

Inequality (A.16), can be equally postulated as a known condition. As long as S(i, j) ≤ S(n - 1, B(n - 

1)) for 0 ≤ j ≤ i ≤ n - 2 (the nodes on or below the horizontal dashed line from the penultimate 

column back, see Figure A5). Inequality (A.17) below holds: 

𝑆(𝑖,𝑗) ≤ 𝑋(1 − 𝑅−1)/(1 − 𝑌−1)                                                                                             (A.17)  

By reference to the reverse process of rearranging inequalities Inequality (A.9) – (A.7), 

Inequality (A.17) can be rewritten as: 

𝑋 − 𝑆(𝑖,𝑗) ≥ [𝑝(𝑋 − 𝑆(𝑖+1,𝑗+1)) + (1 − 𝑝)(𝑋 − 𝑆(𝑖+1,𝑗))]𝑅−1                                                (A.18) 

Hitherto, if (i + 1, j + 1) ϵ S, (i + 1, j) ϵ S and S(i, j) ≤ S(n - 1, B(n - 1)), then (i, j) ϵ S for 0 ≤ j ≤ i ≤ n 

- 2. The next step is to drop the assumption S(i, j) ≤ S(n - 1, B(n - 1)), which is as follows:  

According to Auxiliary Proposition and Proposition 1, since (n - 1, B(n - 1) + 1) is the first 

continuation node at the penultimate column, the nodes with stock price equal to or higher than 

S(n - 1, B(n - 1) + 1) should belong to the continuation region (the nodes on or above the horizontal 

heavy solid line in Figure A6). Then the highest possible stopping node should be on or below 
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the horizontal heavy dashed line. Since the “mother” ϵ S is assumed in Proposition 2, the 

highest stopping node “mother” in Proposition 2 can only possibly fall on or below the 

horizontal heavy dashed line. Its “child”, apparently the highest “child” in proposition 2, can 

only possibly be on or below the horizontal light dashed line. Therefore, the assumption S(i, j) 

≤ S(n - 1, B(n - 1)) (the “child” (i, j) with stock price equal to or lower than S(n - 1, B(n - 1))) has already 

been satisfied when (i + 1, j + 1) ϵ S (“mother” ϵ S) is asserted in Proposition 2. After dropping 

the redundant assumption, the proof of Proposition 2 is complete. 

 

Figure A6: Drop the redundant assumption 

 

Proposition 3. If (i, j) ϵ S, then (i, j - 1) ϵ S and (i - 1, j - 1) ϵ S, and if (i, j) ϵ C, then (i, j + 1) ϵ 

C and (i - 1, j) ϵ C for 1 ≤ i ≤ n - 1, 1 ≤ j ≤ i - 1. (If “mother” ϵ S then her “family” ϵ S and if 

the “father” ϵ C then his “family” ϵ C from the penultimate column back). 

 

Figure A7: Proposition 3 
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Proof of Proposition 3: Proposition 3 can be proved using induction for 1 ≤ i ≤ n - 1. Firstly, 

from the Auxiliary Proposition and Proposition 2, the result obviously holds for i = n - 1. 

Secondly, suppose Proposition 3 holds for i = k when 1 ≤ k ≤ n - 1. We need to prove that 

Proposition 3 holds when i = k - 1. Propositions 1, 2 and 3 are consistent with Proposition 2, 1 

and 3 from Kim and Byun (1994). One important difference however relates to the fact that 

our Propositions only apply from the penultimate column back. Since the proof for i = k - 1 in 

their Proposition 3 is wholly based on their Proposition 1 and 2, their proof can be equally used 

for our Proposition 3 based also on our Proposition 2 and 1. 

Theorem 1. The optimal exercise boundary of an American put option with unrestricted 

continuous dividend yields is continuous from the penultimate column back. This implies that 

B(i - 1) = B(i) or B(i - 1) = B(i) - 1 for i, i - 1 ϵ I0. 

Theorem 2. The optimal exercise boundary of an American put option with unrestricted 

continuous dividend yields is non-increasing from the penultimate column back. This implies 

that if B(i - 1) = B(i) then B(i - 2) = B(i - 1) - 1 for i, i - 1, i - 2 ϵ I0.  

Proof of Theorem 1 and 2 follows the logic presented by Kim and Byun [1994). Our Theorems 

1, 2 and Propositions 1, 3 are consistent with their Theorem 1, 2 and Propositions 2, 3. The 

boundary from the penultimate column back is simply developed. Since the proof of Kim and 

Byun (1994) Theorem 1 and 2 is based on their Proposition 3 and Proposition 2 respectively, 

their proof can be used equally for Theorem 1 and 2 here based on our Proposition 3 and 

Proposition 1. 
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Appendix B 

Convergence in the Hull White (2004) model is slow and follows an obstinate saw tooth erratic 

pattern. We found already that a Boyle Lau (1994) specification for the barrier option can 

produce faster convergence with lower RMSRE. In this Appendix, we add a few additional 

tweaks to make the lattice estimation more efficient. We follow in part the techniques outlined 

by Curran (1995) to define, demarcate and ultimately truncate regions within the binomial 

lattice. In particular, we identify a zero region and the barrier region of the Hull-White ESO 

lattice that can be used to leverage some efficiency. We also implement a technique suggested 

by Broadie and Detemple (1996) to optimise the mapping array. Most implementations of 

binomial trees including Benninga (2008) defined a two-dimensional lattice. Broadie and 

Detemple (1996) in their Appendices B.1 and B.2 stated however that it is not necessary to 

store the entire tree in memory. They stressed that only information related to the 

contemporaneous time-period/time-step is required marked out by the oval shapes in Figure 

B.1. It is possible to enhance the Hull-White-Boyle-Lau (HWBL) procedure by configuring 

the backward recursion such that at any one-time computer memory is only being used to 

estimate a single column of option time values. Consider the static binomial option tree below. 

 

Figure B.1: A two-dimensional static binomial option pricing tree 
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Figure B.2: A one-dimensional dynamic binomial option pricing tree and substitution process 

 

The original HWBL model of Figure B.1 is a two-dimensional Static Binomial Option Pricing 

Tree, which allocates an independent storage space for the option time values of every node. 

The dynamic HWBL model in Figure B.2 is a one-dimensional Dynamic Binomial Option 

Pricing Tree, which exhibits a Dynamic Substitution Process.  In the option pricing process of 

backward induction, the option values we calculate at any time step would substitute the option 

values at its previous time steps to be stored in the same space.57 Consider a n-step binomial 

tree. The static binomial tree requires (𝑛 + 1)(𝑛 + 2)/2 storage spaces. The dynamic binomial 

                                                 
57 Each step time period can be identified above by the passing from one ovoid to the previous. 
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tree only needs 𝑛 + 1 storage spaces which reduces by decrements of one with each successive 

backward recursion. This optimization effectively reduces the unnecessary data storage. 

A second type of optimization follows in line with insights provided by Curran (1995) where 

the lattice is effectively truncated. Regions that are unnecessary can be removed from the 

backward recursion estimation. In Figure B.3 below, we identify four regions for the Hull 

White (2004) lattice. 

 

Figure B.3: Truncation technology for Hull-White model 

 

We truncate the “Redundant early exercise” region (upper triangle) in which option values of 

nodes are equal to their intrinsic values and the “zero” region (lower triangle) in which the 

option value of each node is zero. The valuation in these two regions are unnecessary since 

they will not influence materially the backward induction or values passing back through to 

produce the present value of the option. In Figure B.3, we identify four different valuation 

regions. This similarly follows the logic proposed by Curran (1995). Curran (1995) proposed 

the Diagonal Method which draws on the Kim and Byun (1994) deduction that the early 

boundary of an American option can be identified in the binomial structure. Pinpointing exactly 
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the early exercise boundary speeds up estimation time because it removes the necessity to 

constantly test each node. The stopping region and continuation region can be defined around 

the boundary.58 Curran notes that once the option is exercised, it cannot be exercised again. 

Importantly, here with Hull White (2004), we know the early exercise because this is made 

explicit in the model. Hull and White (2004) posited that early exercise occurs once the stock 

price passes through the M*K boundary where M is defined as the multiple parameter. This 

simplifies the analysis and allows the lattice to be segmented. The option value of the nodes in 

the upper triangle is captured by the intrinsic value defined by M*K. The option values of the 

nodes in the lower triangle are all zero. This leaves the rest of nodes to be valued by backward 

induction. The nodes after the vesting period still possess the passive early exercise condition 

applying by virtue of employees terminating employment. The vesting period does not permit 

early exercise: only forfeiture.  

In the Table below, we provide some insight into how these optimisations speed up 

computation times in Excel™ for both the Dynamic and Truncation implementation relative to 

the original HWBL model. 

 

 

 

 

 

 

 

                                                 
58 We borrow these terms form Kim and Byun (1994). 



128 

 

 

Steps HWBL Accelerated HWBL 

500 
27.8675 27.8675 

01:56.00 00:00.32 

1000 
27.8530 27.8530 

00:03.36 00:00.18 

1500 
27.8549 27.8549 

00:06.61 00:01.59 

2000 
27.8576 27.8576 

00:11.63 00:02.75 

2500 
27.8565 27.8565 

00:19.80 00:04.45 

3000 
27.8562 27.8562 

00:27.83 00:06.13 

4000 
27.8566 27.8566 

00:47.08 00:10.16 

5000 
27.8535 27.8535 

01:15.22 00:15.67 

Table B.1: Comparing original HWBL and accelerated HWBL59 

 

We take again parameters values for the ESO we used before. We set S = 100, K = 100, T = 

10 years, Sigma = 0.2, r = 0.06, Vesting = 2 years, M = 1.5 and e = 0.04. The computation time 

generated in Excel™ at different number of steps is shown using the format mm:ss.00. The 

laptop we used for computation was a DELL Latitude E5470 with Intel’s Core i3 processors. 

As can be seen from Table B.1, the accelerated HWBL (HWBL with Dynamic and Truncation 

implementation) is approximately four to five times faster than the original HWBL. The main 

gain in terms convergence is obtained by imposing Boyle Lau. Nevertheless, a significant 

reduction in runtime can be engineered by optimizing the code.  

 

 

 

 

                                                 
59 Speed Comparison: Excel™ VBA Estimation 
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