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methodology in this paper follows the literature that has focused on discerning a continuous early 

exercise boundary so that the tree can be cleanly delineated between exercising and holding regions. 

Knowing in advance the vicinity of the optimal exercise boundary reduces greatly the quantum of 

computation. Kim and Byun (1994) specify the optimal exercise boundary for an American put 

option written on a non-dividend-paying stock. Curran (1995) subsequently extended the Kim and 

Byun (1994) approach to American put options with continuous dividend yields, y, and proposed 

the Diagonal Method which can efficiently locate the early exercise boundary. A stipulation of this 

model however is that the risk-free interest rate r necessarily exceeds (is inferior to) the dividend 

yield y for puts (calls). In reality, this implies the model cannot be guaranteed to work in every 

instance. Basso et al. (2002, 2004) developed the insights of Kim-Byun-Curran to discern a 

binomial approximation to the optimal exercise boundary. Areal and Rodrigues (2013) use the 

early exercise boundary theory of Curran (1995) to accelerate the binomial model for pricing 

American options with discrete dividends. In this paper, we open the Kim-Byun-Curran boundary 

theory to include the wider subset of parameter inputs where the American put (call) valuation is 

not constrained by r ≥  y (r ≤  y). Furthermore, we propose an accelerated CRR model, 

incorporating the intelligent lattice search algorithm based on revamped optimal boundary theory 

as well as two acceleration technologies, for efficiently pricing American options with unrestricted 

continuous dividends.   

The remaining paper is organized as follows. In Section 2, optimal exercise boundary theory is 

reviewed and extended to make practicable intelligent lattice search. The latter we introduce. In 

Section 3, we describe two acceleration technologies: truncation and dynamic memory which are 

standard in the literature. In Section 4, we integrate two acceleration technologies with the 
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intelligent lattice search algorithm to accelerate the CRR pricing process. In Section 5, we evaluate 

the relative performances of our accelerated CRR model, with varying benchmarks including a 

conventional CRR model implementation, other tree models from a recent literature, and several 

commonly used analytical formulae. We develop several metrics that capture the relative 

efficiencies in terms of option pricing, delta estimation, and implied volatility estimation. In 

Section 6, we tease out conclusions. The Appendix includes the proof of the Propositions and 

Theorems developed in Section 2 and an Excel VBA implementation of our accelerated CRR 

model. 

 

Methodology 

Extending Kim-Byun-Curran: The Optimal Exercise Boundary Adapted for Unrestricted 

Continuous Dividends  

Consider an American put option with an initial stock price S, strike price X, time to maturity T, 

risk-free interest rate r, continuous dividend yield y and volatility σ, priced by a n-step binomial 

tree. We define the number of time steps as i, the number of upward steps as j, and S(i, j) and V(i, j) 

as the stock price and option price respectively.3 Kim and Byun (1994) give the definition of the 

stopping region S, the continuation region C and the optimal exercise state B(i): all nodes in a 

binomial tree are divided into two groups which fall on two different regions. The stopping region 

S is a series of nodes whose option values are equal to their exercise values, which can be given 

by: 

                                                 
3 The lattice structure is presented in Figure A2 complete with (i, j) mapping. 
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𝑺 ≡ {(𝑖, 𝑗)| 𝑉(𝑖,𝑗) = 𝑋 − 𝑆(𝑖,𝑗)}                                                                                          (2.1)                                                                         

The nodes that belong to the stopping region are called stopping nodes. In addition, the 

continuation region C is a set of nodes where options are worth more if they are held instead of 

exercised, which can be defined as: 

𝑪 ≡ {(𝑖, 𝑗)| 𝑉(𝑖,𝑗) > 𝑋 − 𝑆(𝑖,𝑗)}                                            (2.2)  

In this case, the option values are equal to their holding values below: 

𝑉(𝑖,𝑗) = [𝑝𝑉(𝑖+1,𝑗+1) + (1 − 𝑝)𝑉(𝑖+1,𝑗)]𝑅−1              (2.3) 

p represents the risk-neutral probability of an upward movement and 𝑅 = 𝑒𝑥𝑝 (𝑟𝑇 𝑛⁄ ). The nodes 

that belong to the continuation region are called continuation nodes. I is defined as the set of time 

steps at which there is at least one stopping node, which can be given by: 

𝑰 ≡ { 𝑖 |(𝑖, 𝑗) ∈ 𝑺, 0 ≤  𝑗 ≤ 𝑖 ≤ 𝑛}                                                                               (2.4) 

Based on I, 𝑰𝟎 ≡ { 𝑖 |(𝑖, 𝑗) ∈ 𝑺, 0 ≤  𝑗 ≤ 𝑖 ≤ 𝑛 − 1}  (from the penultimate column back) is 

proposed, which will be used later. In addition, the optimal exercise state B(i) represents the 

biggest j at the ith column when (i, j) ϵ S for i ϵ I, which can be defined as: 

𝐵(𝑖) ≡ 𝑚𝑎𝑥{ 𝑗 |(𝑖, 𝑗) ∈ 𝑺, 𝑖 ∈ 𝑰}                                              (2.5)      

Therefore, (i, B(i)) is a series of optimal exercise nodes for i ϵ I, which constitutes the optimal 

exercise boundary. Kim and Byun (1994) propose three Propositions and two Theorems relating 

to the continuity of the optimal exercise boundary. Curran (1995) extends the optimal exercise 

boundary theory for American put options with continuous dividend yields y where r ≥ y. He then 

applied this to American calls by invoking McDonald and Schroder (1998) who proposed put-call 

symmetry conditions for American options where: 
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𝐶 (𝑆, 𝑋, 𝑟, 𝑦, 𝑇, 𝜎)  =  𝑃 (𝑋, 𝑆, 𝑦, 𝑟, 𝑇, 𝜎)                       (2.6) 

The optimal exercise boundary can also be applied for pricing American call options with y where 

r ≤ y. The Kim-Byun-Curran construction is augmented here by pricing American options without 

imposing any restrictions on y. The methodology developed in this paper departs from Kim-Byun-

Curran by locating/initializing in the penultimate column the seed node consistent with the optimal 

exercise boundary. The key intuition to the proposed approach relates to properties of the boundary. 

If r ≥ y the boundary is always continuous for put options, and this simplifies the demarcation of 

the stopping and continuation regions up to and including the final column. Otherwise, when r < 

y, a break of the early exercise boundary between the last column and the penultimate column for 

an American put option can occur. In Figure 2.1, S represents the optimal exercise node (i, B(i)) 

for i ϵ I and C represents (i, B(i) + 1) for i ϵ I, which is the first continuation node at each column 

from the bottom. The heavy solid lines represent the continuous optimal exercise boundary and 

the heavy dashed lines represent the discontinuation. The upper binomial tree (Figure 2.1 (a)) 

follows that of Curran (1995, p.13), where S = 100, X = 100, T = 1, r = 0.05, y = 0, σ = 0.3 and n 

= 10. It is clear that the boundary is continuous where r > y. The lower binomial tree (Figure 2.1(b)), 

however, has the same set of parameters as Curran’s except y = 0.07 so that r < y (r = 0.05). In this 

instance, the stipulation that r ≥ y set out by Curran (1995) is violated. The impact of this violation 

is illustrated in the lower binomial tree. When r < y, the optimal exercise boundary is only 

continuous from the penultimate column back, while a discontinuous boundary between the 

penultimate and last column manifests itself.  
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Figure 2.1: A discontinuous optimal exercise boundary when r < y 

 

The main insight here is that the region of discontinuation is limited to merely the final and 

penultimate columns. If we exclude the final column, three Propositions and two Theorems of the 

optimal exercise boundary developed by Kim and Byun (1994) can be extended to American put 

options with unrestricted continuous dividends. These revamped Propositions/Theorems are 

developed in the Appendix. The restrictions imposed on dividends by Curran (1995) are also 

relaxed by seeding the continuous boundary from the penultimate column. The Propositions and 

Theorems in the Appendix can be used to identify the optimal exercise boundary for an American 

put option with unrestricted continuous dividend yield. We assert that from the penultimate column 

back, the new optimal exercise state B(i - 1) is always equal to the old optimal exercise state B(i) 
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minus a value of 1 or 0 as time to expiry increases.4 Discerning the adjustment behavior of the 

optimal exercise boundary permits an elaboration of an intelligent lattice search algorithm. Figure 

2.2 shows the simple mechanism steering the intelligent lattice search, where this seed value at 

column n - 1 has been confirmed as an integer value of k. The optimal exercise state B(i - 1) is 

invariably equal to either B(i) or B(i) - 1. Therefore, we efficiently locate the boundary by verifying 

no more than one node at each column from antepenultimate column back. Unlike Kim-Byun-

Curran, the intelligent lattice search technique is anchored by reference to the penultimate column 

from where the recursion is initiated. This involves some further computation as the exercise 

condition of additional nodes must be verified, (no more than n) at the penultimate column. The 

extra computation workload is comparatively trivial - especially for a large number of steps. In so 

doing, the restriction imposed on dividend yields can be relaxed and the spectrum of feasible 

parameter value inputs can be extended significantly.  

 

 

                                                 
4 Moving back through time – consistent with backward induction. Also, McDonald and Schroder (1998) put-call 

symmetry permits us to generalize to the case of the American call options. 
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Figure 2.2: An intelligent lattice search algorithm 

 

Two Acceleration Technologies: Truncation and Dynamic Memory 

As noted by Curran (1995), there are subtrees within the binomial tree, where the nodes exercise 

no influence on the present value of the option. In the classic backward induction approach set out 

by CRR, all the nodes are given an equal weight in the estimation. This blanket method implies 

that large regions of the binomial tree are incorporated into the estimation but do not materially 

exert any impact in terms of the ultimate valuation. As noted by Curran (1995), this creates scope 

to apply the Diagonal Method where redundant nodes can be isolated and eliminated for the 

purposes of estimation.5 Acceleration is obtained by locating and truncating a portion of redundant 

stopping nodes (The Redundant-stopping region enclosed by heavy dashed lines) and all redundant 

zero-value nodes (The Zero-value zone enclosed by light dashed lines), which are shown in Figure 

                                                 
5 Consistent with Curran (1995) the first passage probabilities are not applied here. No increase in computational 

efficiency from that technique has been obtained. 
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2.3. Significantly, some redundant stopping nodes (hollow nodes) are not truncated because more 

complex programming would be required for recognizing those nodes and this likely would 

produce slower computational speed. On balance, when the extra programming cost against speed 

is taken into account, it was considered suffice to truncate the Redundant-stopping region and the 

value of the redundant hollow nodes to make pricing more efficient. 

Making use of Dynamic Memory can produce an important reduction in computational cost. In 

Figure 2.4, we try to reveal how computer memory can be used more efficiently. A conventional 

two-dimensional static n-step binomial model requires (n + 1)(n + 2) / 2 nodes to be memorized 

(Figure 2.4 (a)). Broadie and Detemple (1996) and Haug (2007) propose using a one-dimensional 

dynamic binomial tree (Figure 2.4 (b)). This approach takes the option values at the last column 

and stores them in a dynamic vector Opt(j) for j = 0, 1, … , n. After moving one step back, the 

values in the re-dimensioned Opt(j) for j = 0, 1, …, n - 1 will be replaced by the option values of 

the corresponding nodes at the penultimate column (Figure 2.4 (c)). Similarly, the values of Opt(j) 

for j = 0, 1, …, k - 1 at kth column will always be substituted by the option values at (k - 1)th column 

for 1 ≤ k ≤ n. Therefore, a dynamic binomial tree only requires n + 1 contemporaneous storage 

spaces.  
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Figure 2.3 Truncating zero-value zone and redundant-stopping region 
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Figure 2.4: A one-dimensional dynamic CRR tree 

 

The Efficient Pricing Process of an Accelerated CRR model: Applying Intelligent Lattice 

Search Algorithm, Truncation and Dynamic Memory  

In this section, we demonstrate how an accelerated CRR model, incorporating an intelligent lattice 

search algorithm, dynamic memory and truncation, can efficiently price an American put option. 

We explain how the intelligent lattice search algorithm can be used to efficiently locate the optimal 

exercise boundary. We employ a one-dimensional dynamic binomial tree with truncation for an 

American put option. The rationale for presenting the sequence of steps involved in Figure 2.5 

relates to teasing out a viable framework appropriate for coding. The CRR binomial tree in Figure 

2.5 has the same set of parameters as Figure 2.1 (b), which also follows Curran (1995), where S = 

100, X = 100, T = 1, r = 0.05, σ = 0.3 and n = 10. We differ by setting the dividend yield, y = 0.07. 

Since r < y, the stipulation that r ≥ y advanced by Curran (1995) is deliberately violated. The nodes 

falling along each row share the same underlying asset price and by extension exercise value. 

These are given in the final two columns. Array mappings in Figure 2.5 are set out consistent with 

the one-dimensional dynamic binomial tree depicted in Figure 2.4 (b). Each node outside the 

truncated regions can be identified by its series number. For illustrative purposes, Nodes with 

series numbers enclosed by no-fill circles (e.g. ⓪) represent the stopping value. Nodes with series 

numbers enclosed by a black-fill circle (e.g. ⓿) represent the optimal exercise nodes (first 

stopping nodes), B(i), at ith column. Continuation nodes are in contrast denoted by square brackets 

(e.g. [0]). The nodes with series numbers followed by question marks, are those that are minimally 

investigated by checking the exercise condition (e.g. ⓿? and [0]?). The optimal boundary check 

is efficiently reduced to determine the status of these nodes – no more than one single node at each 
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column from the ante penultimate column. The pathway of these checks is shown by the presence 

of question marks. In this regard, clear efficiency gains are discernible vis-à-vis more common 

systems of blanket checking. The nodes represented by X without option values and series numbers 

in Figure 2.5 are redundant and can be truncated to also increase efficiency.  

To elaborate the sequence of steps involved in the optimization process, we begin with the last 

column. The expression in Equation (2.7) below is used to ascertain the first non-zero/stopping 

node at the maturity: 

𝑗 =  [(𝑙𝑛(𝑋/𝑆)/𝑙𝑛(𝑢) + 𝑛)/2]                                                                                          (2.7) 

where [.] locally means the largest integer lower than its argument and 𝑢 = 𝑒𝑥𝑝(𝜎√𝑇/𝑛). 

Logically, for a put the nodes beneath the optimal exercise node at the maturity belong to the 

stopping region. Their exercise values are calculated and assigned to the appropriate nodes.6 In 

Figure 2.5, j is initially calculated to be 4 using the expression in Equation (2.7), which implies 

that the optimal exercise node at the maturity is node ❹. Then we assign respectively the exercise 

values: 61.2749, 53.1841, 43.4028, 31.5778 and 17.2823, from node ⓪ to node ❹ at column 10. 

Once these values are established, they then are used to enable backward induction leading to the 

penultimate column. The exercise condition is investigated somewhat more painstakingly from the 

first node beneath the zero-value zone by calculating and comparing the exercise values and 

holding values of the nodes until the optimal exercise node is confirmed. Then the respective 

exercise values are calculated again and assigned to the optimal exercise node and the node 

immediately below it while consecutive holding values are calculated again and assigned to the 

                                                 
6 All assignments of the option values to nodes should strictly follow the order, from the bottom to the top, consistent 

with the dynamic memory approach. 
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nodes lying between the stopping zone and the zero-value zone. A more exhaustive search routine 

is required for the penultimate array because the boundary is not guaranteed to be continuous 

going from the final column to the preceding column. In Figure 2.5, moving to column 9 we check 

the exercise condition from node [4] by comparing the exercise values relative to the holding 

values of the nodes until node ❷ which is ultimately confirmed as the optimal exercise node. The 

respective exercise values, 48.5252 and 37.7705, are assigned to node ① and to node ❷. The 

respective holding values, 24.7949 and 9.1864, are assigned to node [3] and node [4]. By locating 

and verifying the optimal exercise value, the seed value of the continuous portion pertaining to the 

optimal exercise boundary, B(n - 1) is also identified. Node ❷ at column 9 provides the root value 

that initiates the continuous optimal boundary.  

Then we move to column 8. Node ❷ should be initially inspected (the uncertain node) since it 

has the same series number as the optimal exercise node ❷ in column 9. We check its exercise 

condition and find that it is determined as a stopping node. This indicates that it is the optimal 

exercise node at this column. Thereafter, exercise values are assigned to it and the nodes 

immediately below it, and respective holding values are assigned to the nodes lying between the 

stopping zone and the zero-value zone at this column. Accordingly, we assign respective exercise 

values, 43.4028 and 31.5778, to node ① and node ❷ in column 8. The respective holding values, 

17.4373 and 4.8830, are by default assigned to node [3] and node [4]. When we move to column 

7, we check node [2] which has the same series number as the optimal exercise node ❷ in column 

8 and find that node [2] is a continuation node, which means the node immediately below it, node 

❶, is the optimal exercise node in column 7. Accordingly, we assign the exercise value 37.7705 

to node ❶ and assign respective holding values, 24.8667, 11.5319 and 2.5956, to node [2], [3], 
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[4] in column 7. This option valuing process is iterated until we move to column 4 by virtue that 

the value [0] associated with the last node in column 4, is also verified as a continuation node, 

which triggers the exit mechanism of the algorithm. The optimal exercise boundary searching stops. 

All nodes in the remaining columns (column 3, 2, 1, 0) are continuation nodes. From column 4 

back, we assign automatically holding values to each node in each column.  

We also present a closed-loop optimal exercise boundary search routine in Figure 2.6. When the 

previous exercise state B(i) = k, the new optimal exercise state either remains unchanged or minus 

1 (B(i – 1) = k or k – 1). k should not breach 0 or exceed the step size associated with any given 

column in the tree. Otherwise, the exit feature is primed to trigger. In Table 2.1, a direct comparison 

using the accelerated CRR tree vis-à-vis a standard CRR tree is made. The reported exhibit is based 

on the sample tree outlined in Figure 2.5. In a conventional CRR tree, we are normally obliged to 

estimate and assess the exercise value relative to holding value for 55 nodes. 11 terminal nodes 

are by default exercise values. The accelerated CRR tree only requires 8 direct comparisons to be 

made of the exercise value relative to the holding value. 9 nodes and 25 nodes are automatically 

assigned exercise values and holding values independently given that the early exercise boundary 

can be used to efficiently demarcate. Otherwise, 24 redundant nodes are truncated which 

incorporates hardly any processing costs.  
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Figure 2.5: An efficient American put option pricing process 
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Figure 2.6: The closed-loop optimal exercise boundary search routine 

 

Type of Nodes 
Number of Nodes 

Accelerated CRR Standard CRR 

Truncated Nodes 24 0 

Stopping Nodes 9 11 

Continuation Nodes 25 0 

Uncertain Nodes 8 55 

Total Nodes 66 66 

 

Table 2.1: Comparing the computational workload associated with the Accelerated CRR tree 

and a Standard CRR tree. 

 
 

Numerical Results 

Numerical results can be divided into three sections: In this first section, we show how option 

pricing efficiency can be improved by applying dynamic memory, truncation, and intelligent 

lattice search sequentially to a standard CRR tree. The most accelerated CRR model combines 

intelligent lattice search, dynamic memory and truncation together. In the second section, we 

compare the efficiency of our most accelerated CRR model to a standard CRR model, to a 

leading benchmark tree Chen and Joshi (2012), and to four popular analytical formulae. These 

comparisons are made relative to both option pricing and delta estimation. In the final section, 

we compare the accelerated CRR model to Chen-Joshi, and to four analytical formulae for 
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implied volatility estimation. All reported results are obtained using Excel VBA. A DELL 

Latitude E5470 with Intel’s Core i3 processors ran these algorithms and models.  

In the first section, we gauge successively how improvements in estimation efficiency can be 

introduced by using dynamic memory, intelligent lattice search, and truncation, where the 

initial baseline tree is a standard CRR tree7. Benchmark values for American call and put option 

samples are obtained from Broadie and Detemple (1996). In addition, in order to test the 

intelligent lattice search algorithm, two sets of parameters with r > y (r < y) for call (put) are 

expressly selected, which violate the restrictions imposed by Curran (1995) on continuous 

dividend yields. In Table 2.2, CRR baseline represents a standard two-dimensional static CRR 

tree. CRR_Dyn are accelerated purely by employing a one-dimensional dynamic tree. 

CRR_Dyn_Bound augments the dynamic binomial tree by using the intelligent lattice search 

algorithm. CRR_Dyn_Bound_Trun represents the most accelerated binomial model which 

comprehensively applies intelligent lattice search, dynamic memory and truncation. The 

computational times are presented using a mm:ss.00 format, located under the corresponding 

option values. We found that all four binomial models with the same set of parameters have 

resolutely identical results, which in turn are also consistent with the benchmark values. The 

acceleration effects can be gauged by noting how estimation time is reduced - moving from the 

baseline. Replacing the two-dimensional static tree by a one-dimensional dynamic tree saved 

almost half of the computational time. This pales in comparison to the acceleration effect of 

applying intelligent lattice search algorithm, which produces improvements in speed by at least 

one order of magnitude. Then the application of truncation technology further speeds up the 

computation several times. With the number of steps increasing, the effect of accelerations 

becomes more obvious. The baseline binomial model took more than 18 minutes at a 15,000-

                                                 
7 This approach to pricing is by far the slowest. It is also typically the most common method introduced in text 

books. 
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step size to complete. The most accelerated CRR tree (CRR_Dyn_Bound_Trun) took only 2.30 

seconds for the call and 5.66 seconds for the put. The improvement in estimation time is 

noteworthy and accuracy has not been compromised relative to the standard CRR tree.  

Option Param n CRR CRR_Dyn 
CRR_Dyn_ 

Bound 

CRR_Dyn_ 

Bound_Trun 

Broadie 

&Detemple  

1000 
12.1456 12.1456 12.1456 12.1456   

Amer  00:05.07 00:02.70 00:00.09 00:00.02   

Call 
3000 

12.1455 12.1455 12.1455 12.1455   

S = 80 00:43.09 00:22.13 00:00.67 00:00.33   

X = 100 
5000 

12.1452 12.1452 12.1452 12.1452   

T = 3 01:58.79 01:00.91 00:01.82 00:00.69   

r = 0.07 
10000 

12.1455 12.1455 12.1455 12.1455   

σ = 0.30 07:58.54 04:02.83 00:06.34 00:01.18   

y = 0.03 
15000 

12.1453 12.1453 12.1453 12.1453 12.145  
18:06.41 09:23.60 00:13.88 00:02.30  

  
1000 

9.2486 9.2486 9.2486 9.2486   

Amer  00:05.07 00:02.73 00:00.12 00:00.02   

Put 
3000 

9.2499 9.2499 9.2499 9.2499   

S = 100 00:42.70 00:22.08 00:00.84 00:00.39   

X = 100 
5000 

9.2502 9.2502 9.2502 9.2502   

T = 0.5 01:59.00 01:01.25 00:01.87 00:00.73   

r = 0.03 
10000 

9.2504 9.2504 9.2504 9.2504   

σ = 0.30 07:57.43 04:07.90 00:07.25 00:02.31   

y = 0.07 
15000 

9.2505 9.2505 9.2505 9.2505 9.251 

  18:51.19 09:34.87 00:16.67 00:05.66   

 

Table 2.2: Acceleration effect comparison among dynamic memory, truncation, and 

intelligent lattice search 

 

Before moving to the second section, there is some initial preparatory work relating to 

generating a large number of sample options parameters. We use these to determine the level 

of error relative to a benchmark (“true value”) and the time required for estimation is also 

recorded. We additionally sketch out a number of delta estimation methods. Following Broadie 

and Detemple (1996), we design a uniform distribution of parameters inputs for S, T, r, y, σ 

and PutCall to generate 2,500 American options. The spot price S was given to be uniformly 
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distributed between 70 and 130. The exercise price X was fixed as a constant at a value of 100. 

Time to maturity T, with probability of 0.75 was uniform between 0.1 and 1 years. A 

probability of 0.25 was attributed to maturity being randomly between 1 and 5 years. The 

riskless rate r was uniformly distributed between 0 and 0.1 with a probability of 0.8 and 0 

generated with the residual probability of 0.2. The dividend rate y was uniform between 0 and 

0.1. Volatility σ was distributed uniformly between 0.1 and 0.6. There was also a random 0.5 

probability of the option being a call or put. Consistent with Broadie and Detemple (1996), the 

main error measure, root mean squared relative error (RMSRE), is defined as: 

RMSRE = √
1

𝑚
∑ 𝑒𝑖

2𝑚
𝑖=1                                                                                                              (2.8)                                                    

where m is the number of options and 𝑒𝑖 =
𝐶𝑖̂−𝐶𝑖

𝐶𝑖
 where 𝐶𝑖 and 𝐶𝑖̂ is the true and estimated value 

of the option respectively. The true value Ci is generated using a 15,000-step CRR model. 170 

of the 2,500 American options with extremely-small true value (𝐶𝑖 < 0.50) are excluded. The 

residual number of American options involved in the valuation is 2,330 (m = 2,330). The time 

consumption measure (Time) represents the average execution time (seconds) for pricing per 

American option, which can be calculated as: 

Time =
𝑇𝑜𝑡𝑎𝑙 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒

𝑚
                                                                                                     (2.9) 

where m is the number of options. For delta estimation, the delta of the tree model, including 

a standard CRR, our accelerated CRR, and Chen-Joshi, are estimated using: 

∆𝐶𝑅𝑅=
𝑉(1,1)−𝑉(1,0)

𝑆(1,0)−𝑆(1,1)
                                                                                                                   (2.10) 

where the numerator is the difference between the option value of the upper node and lower 

node at the end of the first period, and the denominator is the difference between the stock price 

of these two nodes. For analytical formulae, however, the delta is calculated as: 
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∆𝑎𝑛𝑎𝑙=
𝐶(𝑆+𝜀)−𝐶(𝑆−𝜀)

2𝜀
                                                                                                                (2.11) 

where ε is a perturbation introduced for the spot price S, and numerator is the difference 

between the option value estimated with the spot price S + ε and S - ε using analytical formulae. 

In the second section, we first compare the 2,330 options sample for pricing and delta 

estimation with a view to teasing out the relative efficiency of a standard CRR model (CRR) 

vis-à-vis our accelerated CRR model (Accel CRR). The latter introduces intelligent lattice 

search, dynamic memory and truncation. For both pricing options and estimating delta, shown 

in Table 2.3, as the number of steps increase, the estimation error (RMSRE) generated by CRR 

and our Accel CRR decreases while the execution time (Time) increases. We found that Accel 

CRR always generates identical RMSRE as CRR at different step size but with much less Time, 

which implies that the pricing process is effectively accelerated without disturbing the accuracy. 

The “Multiple of speed” shows how many times Accel CRR is faster than CRR attaining the 

same estimation accuracy. From 50 to 1,000 steps, Accel CRR model can be from 7 to 220 

(182) times faster than CRR in option pricing (estimating delta).  

To provide a yardstick relative to a more recent literature, we replicate Chen-Joshi and run it 

with tolerance level of 1E-05 to estimate 2,330 generated sample options. The comparison 

between our Accel CRR and Chen-Joshi is demonstrated in Table 2.4. To make a direct 

comparison, the number of steps of the two models are selected to achieve a similar level of 

accuracy (RMSRE) so that the efficiency can be easily juxtaposed according to execution time 

(Time). For each column, Accel CRR and Chen-Joshi generate a similar RMSRE but expend 

different amounts of Time. The “Multiple of speed” indicates how many times Accel CRR is 

faster than Chen-Joshi. For option pricing, Accel CRR is roughly 1.5 to 2 times faster than 

Chen-Joshi consistent with a similar level of accuracy. This differential is amplified by an order 

of 2 to 3 times for delta estimation.  



29 

 

 

Next, we compare our accelerated CRR model with four analytical formulae briefly alluded to 

in the literature review: BAW, Bjerksund93, Bjerksund02, and Ju-Zhong. We reuse the 2,330 

option parameter sets generated previously. In Table 2.5 and Table 2.6, the results generated 

from analytical formulae are deliberately placed under the results of Accel CRR that have 

approximately the same RMSRE. The execution time (Time) with similar levels of accuracy 

(RMSRE) are investigated. The “Multiple of speed” tentatively maps out how many times our 

Accel CRR is faster or slower relative to the analytical formulae linked by approximate levels 

of accuracy. For option pricing (Table 2.5), Accel CRR is roughly 1.5 times faster than BAW. 

In contrast, Accel CRR is discernibly slower than Bjerksund93 and Bjerksund02, but almost 

as fast as Ju-Zhong for similar levels of error. For delta estimation (Table 2.6), we find that 

Accel CRR is about 2 and 2.5 times faster than respectively Ju-Zhong and BAW to obtain the 

same level of accuracy. It is comparable to Bjerksund02 but 0.3 (1 - 0.68) times slower than 

Bjerksund93. Accel CRR has an obvious advantage in that it provides varying levels of 

accuracy with different step size. Our accelerated CRR model provides a full spectrum of 

choice to practitioners varyingly tasked with pricing, repricing and hedging accuracy criteria. 

Each analytical formula can only provide one combination of speed and accuracy.  
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    Steps 50 100 200 300 400 500 600 700 800 900 1000 

Option 

Pricing 

Accel 

CRR 

RMSRE 7.65E-03 3.61E-03 1.79E-03 1.08E-03 8.05E-04 6.85E-04 5.71E-04 4.64E-04 4.10E-04 3.67E-04 3.85E-04 

Time (Ta) 1.77E-03 2.91E-03 3.42E-03 6.72E-03 8.06E-03 9.18E-03 1.01E-02 1.25E-02 1.45E-02 1.75E-02 2.20E-02 

CRR 
RMSRE 7.65E-03 3.61E-03 1.79E-03 1.08E-03 8.05E-04 6.85E-04 5.71E-04 4.64E-04 4.10E-04 3.67E-04 3.85E-04 

Time (To) 1.27E-02 4.84E-02 1.72E-01 3.79E-01 6.60E-01 1.0433 1.4884 2.0246 2.6490 3.8083 4.8481 

Multiple of Speed (T0/Ta) 7.19 16.61 50.34 56.37 81.97 113.59 147.32 162.16 182.77 217.75 220.37 

Delta 

Estimation 

Accel 

CRR 

RMSRE 7.34E-03 3.55E-03 1.76E-03 1.09E-03 8.32E-04 7.14E-04 5.92E-04 4.95E-04 4.40E-04 3.95E-04 4.01E-04 

Time (Ta) 1.62E-03 2.31E-03 3.71E-03 5.39E-03 8.04E-03 9.26E-03 1.13E-02 1.36E-02 1.62E-02 1.88E-02 2.18E-02 

CRR 
RMSRE 7.34E-03 3.55E-03 1.76E-03 1.09E-03 8.32E-04 7.14E-04 5.92E-04 4.95E-04 4.40E-04 3.95E-04 4.01E-04 

Time (To) 1.13E-02 4.70E-02 1.69E-01 3.81E-01 6.65E-01 1.0371 1.4815 1.9546 2.5505 3.2325 3.9707 

Multiple of Speed (T0/Ta) 7.01 20.37 45.57 70.67 82.66 111.98 130.56 143.26 157.42 172.12 182.08 

 

Table 2.3: Comparing Accel CRR and CRR in option pricing and delta estimation 

 

 

 

 

 

 


