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Abstract 
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Abstract 

With ever-reducing maintenance budgets and ever-deteriorating bridge infrastructure, the 

assessment of existing bridges is vital. Reliability analysis techniques are becoming 

increasingly popular in the structural safety assessment of existing bridge structures.  

Commonly, a component based approach is used in reliability analysis techniques. 

Traditional reliability procedures often employ a conservative definition of failure, in that the 

component is deemed to have failed when the strength capacity has been exceeded at a single 

cross section. As a result, the component's degree of redundancy and ductility is ignored, 

giving an often conservative estimate of the load carrying capacity of the bridge component. 

Therefore, this dissertation is focused on the development of a reliability analysis procedure 

which accounts for material behaviour for indeterminate beams.  

The structural safety of a representative group of steel composite bridge beams is examined. 

The material response of each beam subjected to a combination of both dead load and live 

load is assessed using a one-dimensional nonlinear finite element analysis (NFEA) model. 

The Response Surface Method (RSM) is then used to replace the NFEA model with an 

approximated explicitly-known polynomial function. This allows a First Order Reliability 

Method (FORM) analysis to be performed. The developed procedure is compared to the 

traditional approach with regard to three limit states. These limit states are defined as elastic 

member failure, first formation of a plastic hinge and ultimate failure. Ultimate failure occurs 

when a collapse mechanism has formed. The live load on each structure consists of annual 

maximum traffic loading events determined from Monte Carlo Simulation (MCS) of Weigh- 

in Motion (WIM) data. The modelling of realistic live loads highlights the practicality of the 

procedure developed. This procedure may act as a foundation for the development of an 

evaluation method accounting for material nonlinearity for existing bridge structures.  
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Acronyms 

AASHTO-LRFD American Association of State Highway and Transportation Officials-Load and 

Resistance Factor Design 

AS Axle Scenario 

BB Box-Behnken 

CCC Central Composite Inscribed 

CCD Central Composite Design 

CCF Central Composite Face 

CDF Cumulative Density Function 

ED Experimental Design 

FEA Finite Element Analysis 

FORM First Order Reliability Method 

FOSM First Order Second Moment 

GEV Generalized Extreme Value 

GVW Gross Vehicle Weight 

LM1 Load Model 1 

MCS Monte Carlo Simulation 

MPP Most Probable Point 

NFEA Nonlinear Finite Element Analysis 

PDF Probability Density Function 

RSM Response Surface Method 

SEV Standard Extremal Variate 

VaP Variables Processor 

WIM Weigh in Motion 
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Nomenclature 

Unless the additional specification appears in the text, the physical or mathematical 

definitions of the symbols in this thesis are as follows: 

Variable Definition 

β  Reliability index 

nβ  Cumulative reliability index 

LTβ  Life-time reliability index 

1D  Dead load due to factory made elements 

2D  Dead load due to cast in place elements 

3D  Dead load due to surfacing 

E  Young's modulus 

xf  Probability density function 

xF  Cumulative density function 

F  External force vector 

g  Limit state function 

ğ  Taylor series expansion of the limit state function 

h  Response surface method experiment design dispersion 

vh  Importance sampling function 

[ ]I  Indicator function 
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I  Second moment of area 

K  Global stiffness matrix 

ek  Local stiffness matrix  

L  Length 

SL  Span length 

TL  Total bridge length 

YM  Initial yield moment capacity 

PM  Plastic moment capacity 

N  Number of samples 

fP  Probability of failure 

fnP  Cumulative probability of failure 

P  Point load 

q  Strain hardening 

R  Resistance 

S  Load 

*
U  Most probable point of failure 

u  Displacement vector 

w  Universally distributed load 

mx  Response surface method centre point 

dx  Response surface method design point 
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Dα  Dead load safety factor 

Lα  Live load safety factor 

ε  Convergence tolerance 

Γ  Yield function 

µ  Location parameter 

e

xµ  Equivalent-normal location parameter 

σ  Scale parameter 

e

xσ  Equivalent-normal scale parameter 

ξ  Shape parameter 

LTλ  Life-time load factor 

φ  Resistance factor 
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Chapter 1 

Introduction 

1.1 Background 

Highway bridge structures are a fundamental component of today's infrastructure. These 

bridge structures allow people and goods to move freely between locations allowing both 

economic and social development. As bridge stock is ever-deteriorating, appropriate 

assessment techniques and procedures are vital. Better assessment of existing highway bridge 

structures can prolong the life of such structures with consequent and significant savings to 

rehabilitation and replacement budgets. Currently there are over one million bridge structures 

in Europe with a total estimated replacement cost of €400 billion (Cost 345, 2004). 

Many European bridges are nearing the end of their design lives and hence require regular 

maintenance or even replacement. Bridge maintenance and assessment is a growing concern 

due to reducing financial budgets. Accurate bridge assessment is therefore a necessity, as it is 

no longer acceptable to assess a bridge structure using excessive conservatism.  

Parsons Brickenhoff carried out a survey entitled "A Review of Bridge Assessment Failures 

on the Motorway and Trunk Road Network" in 2003. This survey was the appraisal of 

assessment results from 294 bridge structures in the United Kingdom. The modes of failure 

examined in the bridge assessments included longitudinal flexure, transverse flexure and 

shear. This survey found that the most common reason for assessment failure was 

"conservative or inappropriate methods of assessment" (Parsons Brickenhoff, 2003). This 

finding highlights the requirement for a less conservative assessment procedure. Traditionally 

in bridge assessment failure is deemed to occur when the load effects calculated using a 

linear elastic structural model exceed the resistance of a particular cross section. Whilst this is 
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a safe approach by virtue of the well-known Lower Bound Theorem, it may lead to 

unacceptably conservative results. Many bridges are redundant structures and so if the 

resistance of one element in the structure has been reached, the bridge may yet be able to 

redistribute the load elsewhere. This is dependent on the nonlinear behaviour of materials 

such as steel (Imhof, 2004). 

1.2 Research Objectives 

This research embodies three main subject areas: structural reliability, nonlinear finite 

element modelling, and response surface methodology. These subject areas are combined to 

achieve three objectives; 

1.2.1 Objective 1: Live Load Application in a Nonlinear Assessment 

A nonlinear assessment procedure of a moving load is developed. Typically live loads are 

modelled as static loads positioned according to an elastic analysis. Since the principle of 

superposition is not valid for a nonlinear assessment, load must be applied incrementally, so 

as the spread of plasticity can be accounted for. The proposed moving procedure also applies 

the load incrementally but also incrementally moves the load across the structure. This allows 

for the spread of plasticity as the load traverses the structure. The common approach is 

compared to the proposed moving approach in terms of a load factor. The load factor is the 

multiple of axle loads required to cause failure. Failure is defined as the formation of a 

mechanism. This comparison indicates the effects of accounting for load redistribution as the 

load is moving across the structure.  
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1.2.2 Objective 2: Deterministic Safety Assessment 

A deterministic safety assessment of existing bridge beams is performed. Safety is described 

in terms of a load factor required to cause failure. Only flexural limit states describing failure 

are examined. Three limit states which are used in this study are: 

1. The exceedance of the initial yield capacity at any section. 

2. The formation of a plastic hinge at any section. 

3. The formation of a collapse mechanism. 

A number of representative bridge structures are designed to the required minimum flexural 

capacity. These bridges are subjected to a lifetime of annual maximum loading events.  These 

traffic events are determined using MCS of WIM data. A load factor for each definition of 

failure for each loading event is found. These results are then combined in a semi-

probabilistic manner to determine the lifetime load factor. This is done using a limit state 

extrapolation technique. The Eurocode for bridge loading suggests that a return period of 

1000 years is suitable. The annual load factors are converted to limit state values and 

extrapolated to find the 1000 year value. From this the 1000 year load factor is found. A 

value less than unity indicates failure of the corresponding limit state. In particular, a lifetime 

load factor for the initial yield capacity limit state below unity signifies that material 

nonlinearity is present thus an elastic structural model is inappropriate for a reliability 

analysis for such cases. 

1.2.3 Objective 3: Probabilistic Safety Assessment 

This research aims to develop a structural safety assessment procedure which incorporates a 

nonlinear structural model into a probabilistic assessment of an existing highway bridge 

structure. By doing so, the structure may be assessed in terms of true collapse rather than 

failure at a single cross section. This allows for the longitudinal redistribution of loads due to 
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the redundant capabilities of the structure, thus providing a more accurate assessment of the 

true structural safety. RSM is used to link a NFEA model with a conventional reliability 

analysis. RSM is used because a closed form limit state function cannot be expressed and 

failure can only be identified using a NFEA model. This method replaces the NFEA model 

by approximating a polynomial function, allowing a FORM calculation to be completed. The 

reliability indices found using the proposed approach are compared to those found using the 

conventional approach thus describing the importance of accounting for material behaviour.  

1.3 Research Methodology 

To address the objectives of this research the following approach is used. A one-dimensional 

NFEA model is developed. A representative group of steel composite bridge structures is 

designed according to the minimum prescribed Eurocode flexural capacity. Two-span and 

three span configurations of bridge lengths 30, 40, 50 and 60 m are examined. The proposed 

nonlinear moving load procedure is compared to the commonly used approach of applying 

the live load statically at positions identified using the elastic analysis in terms of a load 

factor needed for a collapse mechanism to form (Objective 1). Using a grillage model of each 

structure, lane distribution factors for each longitudinal beam are calculated. Critical beams 

are identified as those carrying the majority of the bending moment. Using MCS based on 

WIM data a lifetime of annual maximum loading events are determined. A load factor for 

each limit state is found for each annual maximum loading event (Objective 2). The lifetime 

load factor is then found using extrapolation techniques (Objective 2). A FORM model which 

is commonly used to assess structural safety is developed (Objective 3). The NFEA is 

connected to a FORM model using RSM. A reliability analysis accounting for material 

behaviour is performed for each critical beam identified in the representative group of steel 

composite bridge structures. 
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1.4 Thesis Structure 

The second chapter of this thesis consists of a literature review of typical reliability 

assessments, system reliability assessments and probabilistic assessments considering 

nonlinear material behaviour. An introduction into structural reliability theory is outlined in 

Chapter 3. This chapter also contains the FORM model developed and demonstrated on three 

bench mark examples. Chapter 4 presents the development of a one dimensional NFEA 

model. The model is validated and its accuracy checked against the established results. The 

RSM is introduced in Chapter 5. The model developed in this study is outlined. Three 

benchmark examples from the structural reliability literature are used to validate the model. 

Chapter 6 describes the bridge models used complete with simple flexural capacity design 

and the identification of a critical beam using a grillage model. Chapter 7 outlines the 

experiments, methodology and results obtained in achieving Objective 1 which assesses the 

application of live load in a nonlinear assessment used in reliability analysis. The 

deterministic structural safety assessment procedure and the results found for the 

representative group of steel composite bride structures are explained in Chapter 8. Chapter 9 

describes the methodology used to incorporate a nonlinear structural model into a reliability 

assessment and compares this technique to the commonly used approach. Conclusions found 

for each of the objectives are outlined in Chapter 10. Suggestions for possible further work 

are also discussed in this chapter. Figure 1.1 shows how each Chapter is connected in 

achieving the desired objectives. 
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Chapter 2 

 Literature Review 

2.1 Introduction  

In this chapter a literature review of probabilistic assessments of existing bridge structures is 

given.  Reliability assessments, system reliability assessments and probabilistic assessments 

considering nonlinear material behaviour are reviewed. All studies examine the probability of 

flexural failure. The application of live load in probabilistic assessments of existing bridge 

structures is also discussed. 

2.2 Reliability Analysis of Existing Bridge Structures 

Parsons & Brickenhoff (2003) investigated assessment failures of 294 bridge structures 

located throughout the United Kingdom and confirmed that longitudinal flexure is a 

predominant mode of bridge failure. This form of failure has been studied extensively in 

probabilistic assessments of existing highway bridge structures. Nowak et al (2001) 

compared the reliability of the flexural capacity of prestressed concrete bridge beams 

designed using three design codes (Spanish Norma IAP-98 1998, AASHTO LRFD 1998, EN 

1991-3 Eurocode). Similarly Du et al (2005) repeated this study examining Chinese, Hong 

Kong and AASHTO-LRFD design codes. Ferreira et al (2008) examines moment capacity of 

various structures in Brazil and uses reliability theory to develop truck weights restrictions. 

Park et al (1998) examined how different rates of corrosion can affect the moment limit state 

over time. 

Importantly, in the probabilistic assessments mentioned, elastic structural models are 

typically used to determine the moment applied to the structure. These studies used a 

component-based approach because each structure is deemed to have failed when the applied 
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moment exceeds the resistance at a single cross section of a component (i.e. longitudinal 

beam). Since ultimate flexural failure occurs when a collapse mechanism forms, this 

approach is correct for these studies (Park et al, 1998; Nowak et al, 2001; Du et al, 2005; 

Ferreira et al, 2008) which consider only single span structures. However, if these studies 

were extended to indeterminate structures, the use of an elastic structural model would ignore 

load redistribution due to nonlinear material behaviour and ultimate failure would not occur 

(i.e. the formation of a collapse mechanism) due to the Lower Bound Theorem (Ghali et al, 

2009). Load redistribution can be accounted for by incorporating a nonlinear structural model 

into a probabilistic assessment. The valuable extra capacity offered by redistribution of 

moments could then be realised, and this may make the difference between retention or 

replacement of a bridge. 

2.3 System Reliability Analysis 

A nonlinear structural model can be used to determine the resistance of a structure accounting 

for longitudinal and transverse load redistribution. This resistance can then be used in a 

probabilistic assessment. This methodology, known as system reliability, is based on the fact 

that structural components of a bridge do not act independently; rather they interact to form a 

structural system. This system may have a high level of redundancy and so it is still capable 

of carrying a load even after one member or section has failed.  

Design codes tend to ignore the concept of system reliability, instead adopting an 

understandably conservative approach to design. However, such conservatism is not 

warranted when assessing existing bridges as it may result in bridge replacement when bridge 

rehabilitation would suffice. Consequently, substantial savings can be made to bridge 

maintenance if system reliability is employed in bridge assessment. The resistance of the 
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bridge as a whole combines the resistances of the individual bridge girders, the slab and a 

contribution from the secondary components such as footpaths, kerbs and barriers.  

Nonlinear material behaviour is accounted for in system reliability when determining the 

resistance of the structure. The resistance of a structural system is defined as the maximum 

load that the bridge can carry before a defined failure has occurred. Ghosn et al (1998) uses 

the formation of a collapse mechanism as the definition of failure. Czarnecki et al (2007) 

defines failure to occur when deflection exceeds an arbitrary limit (0.0075 of the span 

length). Other studies describe failure to occur when the ultimate capacity has been reached 

in a number of bridge girders (Tabsh et al, 1991; Estes et al 1999; Liu et al, 2001). Once a 

structure’s resistance is found, it can be combined with an assessment load model to 

determine the probability of failure. It is beneficial to account for the load redistribution in 

structural reliability calculations as a truer representation of the structures safety can be 

established (Czarnecki et al, 2007). 

The drawback with system reliability is that a linear elastic structural model has been used in 

the referenced studies to calculate the desired load effect. This presumes that a structure 

behaves elastically for all loading events which may not be true when examining extreme 

traffic loading events. This study aims to incorporate a nonlinear structural model to assess 

loading rather than to determine the resistance as used in system reliability. 

2.4 Probabilistic Studies Considering Nonlinear Material Behaviour 

Methods of incorporating a nonlinear structural model into a probabilistic assessment can be 

categorized following Haldar et al (2000) to be:  

1. Monte Carlo Simulations (MCS) 

2. Sensitivity Analysis 

3. Response Surface Method (RSM) 
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2.4.1 Monte Carlo Simulation 

MCS including efficient sampling methods such as Importance Sampling, can produce high 

levels of accuracy (Choi et al, 2007). Biondini et al (2004) applied this technique to assess the 

probability of failure of an existing arch bridge accounting for material and geometrical 

nonlinearities. However, only notional live loads are applied to the structure. A disadvantage 

to MCS is that it requires extensive computational expense when dealing with low 

probabilities of failure (Melchers, 1999). Low probabilities of failure are expected with 

structural collapse and for this reason other methods of incorporating a nonlinear structural 

model in a probabilistic assessment are examined. 

2.4.2 Sensitivity Analysis 

Sensitivity analysis can be used in a probabilistic assessment accounting for nonlinearities, 

but is not easily adaptable to practical problems (Wisniewski et al, 2009). Despite this, it has 

been successfully implemented by Val et al (1997b) when examining the structural safety of 

reinforced concrete slab bridges considering material nonlinearity. However, the work of Val 

et al (1997b) is limited to notional live load models. 

2.4.3 Response Surface Method 

The RSM uses a polynomial function to approximate an unknown limit state function 

representing a nonlinear structural model, thereby allowing a closed-form probabilistic 

analysis such as FORM to be carried out. The method results in significantly-reduced 

computational expense but may prove ineffective when dealing with highly nonlinear limit 

states, or for problems with multiple modes of failure (Wisniewski et al, 2009). Despite this, 

the RSM is the chosen method for incorporating a nonlinear structural model into a 

probabilistic assessment for this work. The drawbacks are mitigated by only considering one 

mode of failure at a time, and by using stringent convergence checks on the limit state. 
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Since the introduction of RSM in the 1950s, it has been used in a wide variety of fields; for 

example, chemical engineering, agriculture, chemistry, and mechanical engineering (Box, 

1978; Bucher et al, 2008). Rackwitz (1982) was one of the first to suggest applying the RSM 

to structural reliability. Since then its use in structural problems has increased and has been 

used in many recent studies (Neves et al, 2006; Soares et al, 2002).  

An example where the RSM has proven efficient in assessing a bridge structure is Wong et al 

(2005) in which the probability of failure of a five-beam reinforced concrete single span 

bridge considering transverse load redistribution is calculated. This study by Wong et al 

(2005) is limited to notional live load models but provides an introduction into the 

methodology required to conduct a probabilistic assessment of existing structures subjected 

to realistic traffic events for collapse. 

2.5 Live Load Application 

2.5.1 Linear Structural Models 

When linear elastic structural models have been used in reliability assessments, the live load 

on a structure has been applied as a notional load (Jeong et al, 2003; Estes et al, 2005; 

Marková, 2010); for example, as the AASHTO HS20 design truck (Tonias, 2007) or as the 

Eurocodes Load Model 1(LM1) (EC1.2, 2003). These notional load models are necessarily 

conservative since they must give sufficient safety for a wide geographical area, which can 

include vastly different traffic regimes. A more accurate approach to representing the live 

load is to apply site-specific traffic data to a published load model, such as was done by 

Ghosn et al, 1986; Cooper, 1997; and Nowak, 1999. Using Weigh-In-Motion (WIM) the 

necessary statistical parameters can be found to develop site-specific loading models (Cost 

345, 2004). From WIM systems truck configurations (number of axles and axle spacing) and 

weights (axle weights and gross vehicle weight) are recorded. By fitting statistical 
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distributions to this WIM data and using MCS, traffic loading events can be generated. For 

each loading event, generated load effects are calculated using a linear elastic structural 

model. Maximum load effects in the bridge lifetime are determined using extrapolation 

techniques. Studies employing this approach include Park et al, 1998; Nowak et al, 2001; Du 

et al, 2005; and Ferreira et al, 2008. Similarly to these studies, this work will also examine 

realistic traffic loading events generated from WIM data. However, each event will be 

assessed using a nonlinear structural model. 

2.5.2 Nonlinear Structural Models 

Traditionally in a nonlinear structural analysis, live loads are applied as static loads.  An 

example of this is the work of Choudhury et al (1986). The author presents a numerical 

procedure for the analysis of curved nonprismatic reinforced and prestressed concrete box 

girder bridges considering material nonlinearity. Choudhury demonstrates the procedure on a 

three-span prestressed structure subjected to an overloaded vehicle typical of California's 

highway traffic at that time. While the author does investigate the effect of transverse load 

positioning, the load is applied longitudinally as a static load located in the centre of the 

middle span of the structure. 

Generally live loads are applied as static loads positioned using an elastic analyses, i.e. the 

loads are positioned to cause maximum desired load effect determined using an elastic 

analysis. Studies using this approach include Val et al, 1997a; Ghosn et al, 1998; and 

Czarnecki et al, 2007. The choice of load effect is under the discretion of the author. Val et al 

(1997b) investigates four longitudinal positions of a HS20 design truck, located to cause 

maximum bending moment at defined cross sections of the bridge. They incorporate a 

nonlinear structural model into a reliability assessment of a three-span reinforced concrete 

slab bridge with corroded reinforcement. Similarly, Zona et al, (2010) deems the positions of 
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the two bogey axles in Eurocode LM1 causing maximum elastic bending moment in a three-

span beam at the first interior support as critical. They perform a probabilistic analysis of a 

three span continuous steel-concrete composite girder considering nonlinear material 

behaviour to efficiently design a continuous steel composite bridge girder. Ghosn et al (1998) 

developed a framework for considering structure redundancy in a load capacity evaluation. 

The framework employs system reliability to account for nonlinear behaviour of the 

structure. An essential step to this framework is the identification of critical load positions of 

the HS20 design truck causing maximum desired load effects, which is done using an elastic 

analysis. Similarly Czarnecki et al (2007) applies a similar approach when examining the 

system reliability of a single-span steel composite structure.  

Casas et al (2007) highlights that a linear elastic structural model may not always identify 

important loading positions as resistance properties of the structure are ignored. Nonetheless 

the study locates the static loads according to an elastic analysis in the reliability assessment 

of railway bridge structures. Likewise, Wisniewski et al (2009) apply the load due to train 

traffic at positions causing overall maximum bending moment in a three-span structure.  

All of these studies apply live loads as statically-located loads. This approach therefore 

assumes that load redistribution, as a load traverses across the structure, is negligible. The 

first objective of this work is to assess this assumption. A proposed moving load approach is 

developed and compared to the commonly-used approach of applying the live loads as static 

loads, located according to an elastic analysis, to cause a ‘critical’ (by some definition) value 

of load effect. 
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Chapter 3 

Structural Reliability 

3.1 Introduction 

This chapter provides an introduction to reliability theory. A basic description of popular 

simulation techniques and reliability index methods is provided. Also given is the 

development and validation of a FORM model. 

Structural reliability is a measure of the safety level of a structure and is concerned with the 

calculation of the probability of a defined failure. This involves the selection of a limit state 

function, the identification of the variables involved in that function, a description of the 

statistical parameters of each variable (usually mean and variance) and the calculation of the 

probability of violation of that limit state function. 

3.1.1 Limit States 

A limit state is a function which describes the performance of a structure or a component. 

Failure is often deemed to occur when an applied load effect ( )S  is greater than the structural 

resistance ( )R  giving a limit state function ( )g  of: 

 0g R S= − ≤  (3.1) 

Generally limit states are divided into two categories (Melchers, 1999): The first category is 

ultimate limit states which relate to collapse of part or all of the structure. Examples include 

corrosion, deterioration, and collapse mechanism formation. These limits states should have a 

low probability of failure as there are significant consequences, if failure occurs, such as loss 

of life. The second category is serviceability limit states which include limit states which may 

cause a disruption to the regular use of the structure such as excessive deflection or vibration.  
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3.1.2 Probability of Failure 

For the basic structural problem outlined in Equation (3.1), the probability of failure can be 

defined as follows (Melchers, 1999): 

 
( ) 0

( )
f x

g x

P f x dx
≤

= ∫∫�  (3.2) 

This can be rewritten as: 

 [ ]( , ) 0 ( ) ( ) f R SP I g r s f r f s drds= ≤∫∫  (3.3) 

where [ ]I   is an indicator function which takes on a value of unity if the term in the brackets 

is true, or zero if the term in the brackets is false, Rf  and Sf  are the probability density 

functions of resistance and load respectively. In essence therefore, Equation  (3.3) sums the 

joint probability of violating the limit state function over the design space, i.e. over the full 

range of the variables R and S. 

Equation (3.3) can be solved quite easily when only one load and one resistance parameter 

are present. However, practical problems typically consist of more than two variables; 

therefore either a simulation technique or a reliability index technique is needed to solve the 

integral. Simulation techniques use direct experimentation to obtain probabilistic information 

of the defined problem. Generally simulation techniques such as MCS are associated with 

high computational expense but improved sampling methods such Importance Sampling have 

been developed to increase efficiency. Reliability index techniques such as FORM simplify 

the integral in Equation (3.2) and the limit state function (Equation (3.1)) by converting both 

into standard normal space. This simplification allows for an accurate estimation of the 

probability of failure to be made with a reduction in computational expense. 
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3.2  Simulation Techniques 

3.2.1 Monte Carlo Simulation 

The MCS method is the most direct method of calculating the probability of failure. Samples 

of the random variables are generated and the limit state function evaluated for each set. The 

probability of failure is calculated as a ratio of the number of fails to the number of trials, and 

can thus be given by: 

 [ ]
1

1
( ) 0

N

f

j

P I g x
N =

= ≤∑  (3.4) 

where N  is the total number of samples, [ ]I is the indicator function and ( )g x is the limit 

state function value. The accuracy of the MCS method increases with the number of trials 

(Melchers, 1999). However, this becomes unpractical when the indicator function in Equation 

(3.4) requires a computationally expensive numerical analysis such as a finite element 

calculation. Thus, this approach is inefficient when dealing with low probabilities of failure 

because a very large sample set is required. However, it has been implemented in numerous 

structural problems (Biondini et al, 2004). 

3.2.2 Importance Sampling 

Importance Sampling is an extension of MCS and can produce an accurate estimate of the 

probability of failure with a significantly reduced number of samples. If sampling occurs 

around random variables that are more likely to contribute to the probability of failure fewer 

samples are required. This is achieved by using a biased sampling distribution. This bias is 

then corrected for by weighting the outputs of the simulation. The probability integral is 

therefore: 

 [ ] ( )
( )

... ( ) 0
( )

X
f v

v

f x
P I g x h x dx

h x
= ≤∫ ∫  (3.5) 
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where ( )vh x is the importance sampling function. It is common to use a normal distribution for 

the importance sampling function with the mean shifted to the Most Probable Point (MPP) of 

failure. The MPP is the point with the highest probability of occurrence on the limit state 

function ( 0)g =  (Melchers, 1999). The location of the MPP is generally not known, difficult 

to locate, and requires a prior analysis to locate it such as a numerical maximization 

technique. However, once it is known the integral in Equation (3.5) can then be estimated 

using: 

 [ ]
( )1

1 ( )
( ) 0

N

x
f

i v

f x
P I g x

N h x=

 
= ≤  

 
∑  (3.6) 

3.3 Reliability Index Methods 

3.3.1 Cornell's Reliability Index 

Cornell (1967) defined the reliability index ( )Cβ
 
as the ratio of the expected value of the limit 

state ( )gµ
 
over its standard deviation ( )gσ . For a two variable limit state   (Equation(3.1)), 

the Cornell's reliability index assuming both variables are normally distributed can be written 

as: 

 
2 2

g R S
C

g R S

µ µ µ
β

σ σ σ

−
= =

−
 (3.7) 

The mean and standard deviation of the variables are µ  and σ  respectively. The probability 

of failure ( )fP  and the reliability index are related: 

 ( )f CP β= Φ −  (3.8) 
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where Φ  is the standard normal cumulative distribution function. The reliability index is a 

measure of the distance from the expected value of the limit state ( )gµ to failure ( ( ) 0)g x = . 

This is illustrated in Figure 3.1. 

 
Figure 3.1: Cornell reliability index (adapted from Choi et al, 2007). 

The shaded area on the diagram represents the probability of failure. The distance acts as a 

good representation and is written in terms of the scale parameter of the limit state function 

values (σ )g
(Choi et al, 2007). 

This was the first analytical approximation method which could determine the probability of 

failure. This method was acknowledged to be inaccurate (Box, 1978). However, Lind (1973), 

cited by Box (1978), highlights how Cornell's model could be applied to establish safety 

factors for design. The work of Cornell provided a foundation for the development of further 

reliability index techniques. 

3.3.2 First Order Second Moment Method 

The work of Cornell (1969) led to the development of the First Order Second Moment 

(FOSM) method. This method uses a Taylor series expansion ( )ğ  of the limit state function 

around the mean values ( )xµ  of the random variables ( )x  so as the problem can be extended 

to more than two variables: 

Fail 

g ≤ 0 

Safe 

g > 0 

Pf 

g 

fg (g) 

βσg 

µg 
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1

  ( )  ( )
n

x i i

i i

g
ğ g µ x µ

x=

∂
= + −

∂
∑  (3.9) 

The series is truncated at the linear terms in the FOSM and hence the name first order. The 

second moment (variance) is the highest-order statistical result used. The approximate mean 

value and the variance of ( )ğ  can then be written as follows:  

 ( )ğ g µµ ≈  (3.10) 

 

2

2

1

( )
i

n
x

ğ x

i i

g

x

µ
σ σ

=

 ∂
=  

∂ 
∑  (3.11) 

If a second order Taylor series expansion is used, the method is referred to as the Second 

Order Second Moment (SOSM) Method. This study does not extend to this method. As the 

expansion occurs at the mean point of the variables the FOSM is also referred to as the Mean 

Value FOSM. The FOSM reduces the complexity of the problem and forms direct links 

between the reliability index and the basic parameters (mean and standard deviation). Two 

major drawbacks with this approach are: 1) errors occur when linearising highly nonlinear 

limit state functions and; 2) invariance of different, yet mathematically-equivalent, 

formulations of the same problem is not established (Choi, 2007). 

3.3.3 First Order Reliability Method 

Hasofer and Lind Reliability Index 

The invariance problem associated with the FOSM method was solved by the development of 

the Hasofer-Lind Reliability Index. The Hasofer-Lind Reliability Index ( )HLβ represents the 

shortest distance from the origin to the limit state function in standard normal space as shown 

in Figure 3.2. The random variables are transformed from their original space (X-space) to the 

standard normal space (U-space). This type of transformation is termed the Rosenblatt 
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transformation (Choi et al, 2007) and is based on equating the cumulative distribution 

functions of the random variables throughout the transformation. For example if the variables 

are normally distributed they are transformed as follows: 

 [ ]1 1( )x

X X
U Ф F X Ф Ф

µ µ

σ σ
− −  −  − 

= = =  
  

 (3.12) 

where Ф is the standard normal cumulative distribution function (CDF), 1Ф − is the inverse of 

the standard normal CDF, (  )xF X is the CDF of variable X , 
xµ  is the mean value of X  and 

xσ  is the standard deviation of X . 

 
Figure 3.2: Hasofer Lind reliability index. 

As 
HLβ

 
represents the shortest distance from the origin to the failure surface, an optimization 

problem must formulated and solved to find this point on the limit state. This point is known 

as the MPP of failure (denoted *
U ). An iterative process is implemented to establish this point 

and the reliability index can be evaluated as follows: 
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 (3.13) 
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where j  is the iteration, n  is the number of variables, i  is the variable number and 
jβ  is the 

reliability index for that iteration. 

Sensitivity factors or directional cosines are found in X-space which shows the relative 

importance of each random variable to the probability of failure. The sensitivity factor for 

each variable can be found using: 

 

( )
1/ 2

2
*

1

( *)
i

i

x

i
jxi

n

x

i i

g X

x

g X

x

σ

α

σ
=

∂

∂
= −

  ∂
  

  ∂  

∑

 (3.14) 

The relative importance of each variable to the probability of failure is given in Equation 

(3.14)The larger the sensitivity factor, the higher the contribution the variable has to the 

probability of failure, this is because: 

 2 2 2

1 2 ... 1nα α α+ + + =  (3.15) 

Also the sign of the sensitivity factor shows the relationship between the limit state value ( )g  

and the random variables in U-space. A negative sensitivity factor means the limit state value 

increases as the random variable increases. Conversely, a positive sensitivity factor means the 

limit state value decreases when the random variable increases (Choi et al, 2007).Using this 

sensitivity factor a new design point can be found: 

 
x j x jxX µ β σ α= +  (3.16) 

The reliability index for another iteration 1( )jβ +  is found and the convergence is checked.   
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1j j

j

β β
ε

β

+ −
=  (3.17) 

This process is repeated until an appropriate level of convergence ( )ε  is achieved. Choi et al 

(2007) suggest a convergence tolerance of ε 0.0001≤ which was used in this study. 

Rackwitz-Fiessler Procedure 

The Hasofer-Lind Iteration method was extended by Rackwitz and Fiessler (Rackwitz et al, 

1978) to account for non Gaussian distributed variables. Each random variable with a non 

normal distribution is converted to an "equivalent normal" distribution. The CDF and the 

PDF of the actual function must be equal to the normal CDF (Ф( ))x and normal PDF ( ( ))xφ  

at the design point ( *)x . This is achieved by equating the functions as follows: 

 
*

*( )
e

X
x e

X

x
F x

µ

σ

 −
= Φ  

 
 (3.18) 

 
*

* 1
( )

e

X
x e e

x X

x
f x

µ
φ

σ σ

 −
=  

 
 (3.19) 

Equation (3.18) and (3.19) can be manipulated and the equivalent mean ( )e

x
µ and the standard 

deviation ( )e

x
σ at the current design point *

x can be written as: 

 ( )* 1 *
( )

e e

X X Xx F xµ σ − = − Φ   (3.20) 

 ( )
*

1 *

* *

1 1
( )

( ) ( )

e

e X
X Xe

X X X

x
F x

f x f x

µ
σ φ φ

σ
− −  = = Φ   

 
 (3.21) 

The Rackwitz-Fiessler method is shown graphical in Figure 3.3. 



Chapter 3 

23 

 

 
Figure 3.3: Rackwitz-Fiessler method (adapted from Choi et al, 2007). 

Reliability index methods such as FORM are very popular in structural safety research 

(Akgul et al, 2004; Estes et al, 2005; Frangopol et al, 2004; Marková, 2010) as it is a very 

computational efficient algorithm and has an acceptable level of accuracy. 

3.4 FORM Model Validation 

The FORM algorithm previously described is implemented in the development of a reliability 

analysis model. Three examples are used to validate the accuracy of the model. For all three 

examples failure is defined as the formation of a collapse mechanism. Limit state functions 

for each example are formed using principles of virtual work (Caprani, 2011). The external 

work done by the applied loads are equated to the internal work done in the formation of a 

mechanism. In each example the structure consists of a 457 152 74× × UB continuous beam. 

The model is validated against, an industry standard program, Variables Processor 1.6 (VaP). 

This program can conduct reliability calculations for problems with a known limit state 

function using both FORM and MCS.  

Example 1: Single point load on a continuous beam 

The first example consists of a two span continuous steel beam subjected to a single point 

load. This point load is positioned in the middle of the first span as shown in Figure 3.4a. An 

illustration of the methodology used to derive the limit state function from virtual work is 

given in Figure 3.4b. Two random variables were examined and include the plastic moment 

fx(x*) = fx*(x*) 

fx (x) 

µx
e
 

Fx(x*) = Fx*(x*) 

µx x* 

Non-normal 

distribution 

Equivalent-normal 

distribution 
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capacity of the steel beam representing the resistance of the structure and the magnitude of 

the point load. The statistical properties are arbitrary chosen and are given in Table 3.1 

 
(a) Example two problem schematic; 

 
(b) Example two limit state function derivation; 

Figure 3.4: Single point load on a continuous beam. 

 θ α δ= =   
 Internal Work = External Work  

 ( ) ( ) ( )P PM M Pθ α α δ+ + =  
 

 3 PM Pθ θ=  
 

 3 6Pg M P= −  (3.22) 

Table 3.1: Example 1 variable properties 

Variable µ  
Coefficient of 

Variation (CoV) Distribution 

PM  432 kNm 0.1 Log-Normal 

P  100 kN 0.1 Gumbel 

 

  

 
12 m 12 m 

6 m 6 m 

    P  

 

    P  

θ α 

(θ+α) 

δ 
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Example 2:  UDL on a continuous beam 

The load examined in this problem consists of a UDL on the first span of the same structure 

as shown in Figure 3.5a. Again the limit state function is derived from principles of Virtual 

Work and shown in Figure 3.5b. Similar to Example 1, two random variables are examined, 

the plastic moment capacity and the magnitude of the UDL. Table 3.2 highlights the 

arbitrarily chosen statistical properties of each variable. 

 

(a) Example two problem schematic; 

 

(b) Example two limit state function derivation; 

Figure 3.5: UDL on a continuous beam. 

 7.03 4.97 0.707δ α θ β θ= = ⇒ =   

 Internal Work = External Work  

 ( ) ( ) ( )(0.5)( )P PM M wLθ α α δ+ + =  
 

 2.414 (12 )(2.485)PM wθ =  
 

 2.414 29.82Pg M w= −  (3.23) 

Table 3.2: Example 1 variable properties 

Variable µ  CoV Distribution 

PM  432 kNm 0.1 Log-Normal 

w  20 kN 0.2 Gumbel 

 

  

 

    w  

12 m 12 m 

 

    w  

θ α 

(θ + α) 

δ 

0.414L 
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Example 3:  Two point loads on a continuous beam 

The final validation example looks at two point loads symmetrically positioned on the first 

span as shown in Figure 3.6a. The two point loads are treated as independent uncorrelated 

random variables. The plastic moment capacity of the structure is also considered random. 

Table 3.3 outlines the properties of each random variable arbitrarily chosen. 

 
(a) Example three problem schematic; 

 
(b) Example three limit state derivation; 

Figure 3.6: Continuous beam subjected to two point loads. 

 
1 8 4 0.5δ α θ α θ= = ⇒ =   

 
2 4 2δ α θ= =   

 Internal Work = External Work  

 
1 1 2 2( ) ( ) ( ) ( )P PM M P Pθ α α δ δ+ + = +  

 

 
1 22 (4) (2)PM P Pθ = +  

 

 
1 22 (4) (2)Pg M P P= − +  (3.24) 

Table 3.3: Example 3 variable properties 

Variable µ  CoV Distribution 

PM  432 kNm 0.1 Log-Normal 

1P  100 kN 0.1 Gumbel 

2P  75 kN 0.1 Gumbel 

 

 

4 m 4 m 

    P1      P2  

4 m 

12 m 12 m 

 

θ 

    P1      P2  

 

α 

(θ + α) 

δ1 

δ2 
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Reliability analysis calculations were conducting using both the developed FORM model and 

VaP for each of the examples. As can be seen from Table 3.4 the developed FORM code 

produces reliability indices very close to those found using the VaP model. 

Table 3.4: Validation results 

 FORM Model VaP (Schneider, 1997) 

Example  β  
f

P  β  
f

P  

1 4.459 4.117×10
-6

 4.460 4.098×10
-6

 

2 3.436 2.952×10
-4

 3.430 3.017×10
-4

 

3 3.308 4.698×10
-4

 3.310 4.665×10
-4

 
 

3.5 Summary 

In this chapter an introduction into reliability theory and the commonly used reliability 

techniques is given. A FORM model is developed. This model will be used to perform a 

conventional reliability assessment of existing steel composite structures subjected to realistic 

traffic events. Also this model will be a key component in a reliability analysis procedure 

which accounts for nonlinear material behaviour which is developed in this study. 
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Chapter 4 

Nonlinear Structural Model 

4.1 Introduction 

A brief introduction to nonlinear finite element theory is given in this chapter. The 

development of a Nonlinear Finite Element Analysis (NFEA) model and accuracy validation 

is also described. 

4.2 Finite Element Method 

The Finite Element Method (FEM) is formed on the basis that it is possible to accurately 

describe the behaviour of a structure by dividing the structure into elements (segments). The 

displacement of each element subjected to the designated load is found. Continuity and 

equilibrium requirements between neighbouring elements and boundary conditions are 

enforced allowing for the overall behaviour of the structure to be determined (Becker, 2004). 

The FEM procedure is based on the matrix displacement method and can be found 

throughout literature (Chen, 1996; Becker, 2004; Ghali et al, 2009). Steps in the procedure 

include: 

1. The structure is divided into elements connected at each end by nodes. Generally 

more elements increase the accuracy of the model but have a higher computational 

cost.  

2. The process involves formulating and solving the equilibrium equation for the global 

displacements: 

 { } { }gF K u =    (4.1) 
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where F is an external force vector, 
gK is the global stiffness matrix of the structure 

and u is the displacement vector. 

3. The local stiffness matrix ( )ek for each element is compiled.  

 [ ]
2 2

3

2 2

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

e

L L

L L L LEI
k

L LL

L L L L

− 
 − =
 − − −
 

− 

 (4.2) 

where E  is the Young's Modulus, I is the second moment of area and L is the 

length of the element. 

4. The stiffness matrices of elements which share a common node are inserted into the 

global stiffness matrix and continuity is ensured throughout the structure. 

5. Boundary conditions are enforced on the global stiffness matrix and Equation (4.1) is 

solved.  

6. Deflections and internal forces in each element can be solved by manipulating 

Equation (4.1) once the displacement vector is known. 

4.3 Nonlinear Finite Element Modelling 

In NFEA the assumption that loads can be superimposed and reversed are invalid. The 

deformations beyond the elastic limit depend on the load history of the structure. This can be 

incorporated into the analysis by applying the load in small increments and altering the local 

stiffness matrices of each element accounting for non-elastic deformations. This increment 

loading procedure is commonly used in NFEA modelling (Chen et al, 1996). 
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NFEA problems are traditionally grouped as follows: 

1. Material nonlinearity: Material nonlinearity is concerned with inelastic behaviour of a 

material. This behaviour may be described using a moment-rotation curve as shown in 

Figure 4.1. This figure illustrates that once material reaches its yield point, further 

moment will cause a rotation that moves away from elastic behaviour (Abell, 2012). 

 
Figure 4.1: Moment rotation curve (adapted from Becker, 2004) 

2. Geometric Nonlinearity: accounts for the change in geometry of the structure due to 

the displacements caused by the applied load. 

3. Boundary Nonlinearity: This involves a situation where two surfaces come in and out 

of contact and the behaviour of the contacting bodies is not linearly dependent on the 

applied load. 

4.4 Material Nonlinearity 

Material Nonlinearity is the only nonlinearity consider in this study. Using plastic hinge 

theory local stiffness matrices are derived which account for the presence of yield and plastic 

hinges. A plastic hinge allows large rotation to occur at a constant moment as shown in 

Figure 4.1. Two common assumptions in plastic hinge theory are: 
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1. Plastic hinges can only form at the ends of an element (Li et al, 2007). 

2. Plastic hinges have zero length (Chen, 1996). 

The local stiffness matrix for an element with a hinge located at the left node is: 

 [ ]1 3

2

3 0 3 3

0 0 0 0

3 0 3 3

3 0 3 3

L

EI
k

LL

L L L

− 
 
 =
 − −
 

− 

 (4.3) 

The local stiffness matrix for an element with a hinge located at the right node is: 

 [ ]
2

2 3

3 3 3 0

3 3 3 0

3 3 3 0

0 0 0 0

L

L L LEI
k

LL

− 
 − =
 − −
 
 

 (4.4) 

These local stiffness matrices are the fundamentals of plastic hinge theory and are combined 

with a hysteric model in the development with a NFEA model. A hysteric model describes 

the relationship between moment and rotation due to loading. Two NFEA models were 

examined in this work. 

4.5 Clough Model 

The Clough model is a NFEA model which combines the matrix displacement method, 

plastic hinge theory and a simple hysteric model. The hysteric model has a bilinear moment 

rotation relationship. The Clough model is known as a two component model and accounts 

for strain hardening ( )q  using the summation of a) an idealised elastic-plastic component and 

b) an infinitely elastic component. The idealised elastic component is altered with the 

occurrence of plastic hinges. This is illustrated in Figure 4.2. 
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Figure 4.2: Clough model components (Li et al, 2007). 

Assuming that the moment at the left node of the element ( )LM is greater than the plastic 

moment ( )PM , the local stiffness matrix ( )k  can be formed from the following equation: 

 [ ] [ ] [ ]1(1 ) ek q k q k= − +  (4.5) 

where 1k is the local stiffness matrix for an element with a hinge located at the left node as 

given by Equation (4.3) and 
ek is the elastic local stiffness matrix given in Equation (4.2). 

Conversely, if the moment at the right node of the element ( )RM  is greater than
PM , the 

stiffness matrix is given by: 

 [ ] [ ] [ ]2(1 ) ek q k q k= − +  (4.6) 

where 2k  is the local stiffness matrix for an element with a hinge at the right node as given 

by Equation (4.4) 

4.6 Generalized Clough Model 

The main flaw with the Clough Model is the assumption of the bilinear moment rotation 

curve.  The Generalized Clough model was developed in Clough et al (1990) as cited in Li et 

al (2007). This model uses a moment rotation curve which accounts for nonlinear material 

behaviour between yield and plastic moment capacity. The stiffness ( )K of the structure can 

be written as: 
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 K REI=  (4.6) 

where R  is a force recovery parameter which depends on the ratio, denoted Γ , of the current 

moment ( )M  on the section its plastic moment capacity.   

 p

M

M
Γ =  (4.7) 

The force recovery parameters trace the spread of plasticity through a section and represent 

the relative stiffness of the structure at different stages of loading. This is shown in Figure 

4.3. Importantly a high force recovery parameter represents a low stiffness.  

 
(a) Force recovery parameters under cyclic loading; 
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(b) Moment rotation relationship; 

Figure 4.3: Stages in the behaviour of the cross section adapted from Li et al, 2007. 

When the structure is subject to loading and is behaving elastically (Stage 1) the force 

recovery parameter is equal to one, as no reduction in stiffness has taken place:  

 : 1y RΓ ≤ Γ =  (4.8) 

where  

 Γ
y

y

p

M

M
=  (4.8) 

The slope of the moment rotation curve for this stage is the equivalent of EI. Once the yield 

capacity (Stage 2) has been reached, the force recovery parameter and the stiffness of the 

structure reduce as follows: 

 
-

: 1- (1- )
-

y

y p

p y

R q
Γ Γ

Γ < Γ < Γ =
Γ Γ

 (4.9) 

where 
pΓ  is unity and q represent the strain hardening of the material. 
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When a plastic hinge has fully formed (Stage 3) the force recovery parameter at that location 

equals the value of strain hardening ( )q  of the critical material in the section. The slope of 

the moment rotation curve for this stage is qEI , obtained as follows: 

 :p R qΓ ≥ Γ =  (4.10) 

During an unloading event at any point (Stage 4), the structure is assumed to behave 

elastically (Li et al, 2007). Hence the unloading force recovery parameter is: 

 Unloading : 1R =  (4.11) 

In the Generalized Clough Model the stiffness of a beam element is obtained from two 

components as described in Figure 4.4.  

 

Figure 4.4: Generalized Clough model 1 2( )R R≥  adapted from Li et al, 2007. 

These components are a) a clamped two-end component and b) hinge-clamped end 

component. Thus the local stiffness matrix of the beam element can be written in either of the 

following formats, depending on the recovery force parameter at either end of the element

1 2
( , )R R : 

 [ ] [ ] ( )[ ]2 1 2 2 1 2, when ek R k R R k R R= + − ≥  (4.12) 

 [ ] [ ] ( )[ ]1 2 1 1 1 2, when ek R k R R k R R= + − ≤  (4.13) 
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When 1 2R R> , the stiffness at each node is increased by multiplying the element stiffness 

matrix ( )ek  by 2R . This is component (a) in Figure 4.4. The difference in the force recovery 

parameters is multiplied by the local stiffness matrix with a plastic hinge at the right node

2( )k , component (b) in Figure 4.4. By adding these components together only the stiffness at 

the left node is reduced giving an accurate representation of stiffness at both nodes in the 

element. 

4.7 NFEA Model Validation 

The NFEA Model is validated using the same three examples outlined in Section 3.4. The 

limit state functions derived for each example are manipulated to find the load factors 

required to form a collapse mechanism and are given in Table 4.1. A mesh size of 1 m was 

chosen along with an increment size of 0.001. 

The results validating the NFEA model are outlined in Table 4.1. The point load examples 

produce results equal to those found using the formulae. When examining a UDL using a 

FEA the mesh size is important. From the load factor derivation it is known that the one 

hinge occurs over the internal support and the second occurs 0.414L  or 4.968 m from the left 

hand support. As it is unpractical to have a mesh fine enough to allow a hinge develop at this 

location (without manually placing at node at this location) meaning that only an approximate 

load factor can be found. 

Table 4.1: NFEA Model Validation 

Example Equation Theoretical λ  NFEA Model λ  

1 3
λ

6

PM

P
=  

2.156 2.156 

2 2.414
λ

29.82

PM

w
=  

1.745 1.722 

3 

1 2

2
λ

(4) (2)

P
M

P P
=

+
 

1.568 1.568 
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4.8 Incremental Loading Procedure  

The accuracy of the incremental loading procedure, described in section 4.2 depends on the 

size of the increments used. As the load increases, and the behaviour of the material becomes 

nonlinear the equilibrium path will drift away from the true path (Chen, 1996). Two solutions 

are known to overcome this difficulty 1) use small loading increments (as done in Section 

4.7) 2) apply a convergence check after each increment has been applied to ensure 

convergence. For simplicity reducing the size of the increment ( )λ∆ was chosen for this 

work. However, to reduce the computational expense an adaptive increment size is used as 

shown in Figure 4.5. Initially, the load is applied in relatively large increments of a load 

factor of 0.1 until the force recovery parameter at any location falls below 0.5. Then the 

increment size is reduced to 0.01 until a force recovery parameter below 0.25 is found 

anywhere in the structure. Finally the load increments are reduced further (0.001) until a 

collapse mechanism is formed.  

 
Figure 4.5: Adaptive increment size procedure. 

The values for the force recovery parameter at which the increment size is to be reduced were 

obtained from trial and error. Example 1 from Section 4.7 is re-run to highlight the efficiency 

of the adaptive increment procedure and these results are shown in Table 4.2. 
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Table 4.2: Example 1 results using different increment sizes  
λ∆  λ  No of increments 

0.1 2.2 23 

0.01 2.16 217 

0.001 2.156 2157 

Adaptive increment size 2.156 156 
 

As can be seen from Table 4.2, the accuracy of NFEA model depends on the size of the 

increment. Using the theoretical load factor given in Table 4.1, and the results for each 

increment size given in Table 4.2, it can be seen the NFEA model is more accurate when a 

fine increment size is used. In a NFEA model the number of increments used is directly 

proportional to computational time. It is seen from Table 4.2 that the adaptive incremental 

procedure achieves the required load factor for a reduced number of increments. 

4.9 Summary 

The development of the one dimensional NFEA model used in this work is summarized. The 

model traces the spread of plasticity through a structure using the Generalized Clough model. 

It is validated against three benchmark examples. The model incorporates an adaptive 

increment procedure to ensure accuracy and reduce computation time. This NFEA model will 

be used in both a deterministic and a probabilistic study of a representative group of steel 

composite bridge structures subjected to realistic traffic events for collapse. 
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Chapter 5 

Response Surface Modelling 

5.1 Introduction 

This chapter outlines the theory behind RSM. In particular, attention to the choice of response 

surface function, experimental design, convergence criteria and methodology is given. A 

RSM model is successfully developed and validated for the three benchmark examples. 

The RSM is a very useful and efficient technique when explicitly-known limit state functions 

are unavailable. Generally when assessing existing structures subjected to various loading 

scenarios to collapse, advanced modelling procedures such as NFEA must be used. 

Simulation methods can be combined with a NFEA model easily to deal with complex 

problems when the probability of failure is high. However, this is not practical when dealing 

with low probabilities typical of structures, since a great number of iterations are required. A 

more efficient technique for analysing such complex problems is RSM. The main concept 

behind RSM is to find a polynomial approximation to the actual (unknown) limit state 

function. This is achieved by conducting numerical experiments at prescribed values and 

fitting a function to represent the surface. This function may be a first, second, or higher- 

order polynomial. Once an explicit approximated response function is established, a 

reliability analysis such as FORM (see Section 3.3.3) can be used to estimate the probability 

of failure of the structure under the particular loading scenario. 

When using the RSM to approximate the response function, the approximated polynomial is 

only accurate in the area where it has been evaluated (Bucher et al, 1990). It does not 

represent the entire true limit state function. If the limit state surface is approximated at the 

most probable point (MPP) of failure (see Section 3.3.2) an accurate closed-form surface 
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closely representing the failure surface can be established. Since the MPP is generally 

unknown in nonlinear problems an iterative process involving a reliability analysis is required 

to identify this point.  

Although the RSM method is far less computationally expensive when compared to 

simulation techniques it is does have limitations. Difficulties can arise when actual limit state 

functions are highly nonlinear, when dealing with extremely low probabilities of failure 

(Wisniewski et al, 2009) or when the structure is subjected to multiple loading sequences, 

such as dead load and live load (Wong et al, 2005). 

Key aspects to the response surface method are, the choice of response function, degree of 

polynomial, experimental design, and convergence criteria. 

5.2 Response Surface Function Selection 

The response surface function is generally in the form of a polynomial due to its simplicity 

(Lei, 2010). The order of the polynomial is of particular importance. Higher order 

polynomials produce more accurate response surfaces to a certain level. However higher 

order polynomials may also lead to ill conditioned system of equations, and erratic behaviour 

in areas of valuable space not covered in the experiment design (Bucher et al, 1990). The 

order of the approximating function should be equal to or less than the order of the actual 

function (Rajashekhar et al, 1993). Commonly in the literature, first order and second order 

polynomials have been used and have been found to produce satisfactory levels of accuracy 

(Bucher, 1990; Rajashekhar, 1993; Wong, 2005). However an investigation into the use of 

higher- order polynomials was conducted by Gavin et al (2008) which found significant 

benefit to using higher-order polynomials when examining highly nonlinear limit states with 

multiple points of failure. Despite this, only second-order polynomials will be examined in 

this study due to the high computational cost associated with using higher order polynomials. 
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A first-order polynomial consisting n random variables can be expressed as follows: 

 0 1 1 2 2 ... n nğ x x xβ β β β= + + + +  (5.1) 

Where ğ  is a function if the random variables 1 2
, ,...

n
x x x  and the regression coefficients

0 1, ,..., nβ β β . The first-order response surface model is only appropriate when approximating 

the true response surface over a small region of design space where there is little curvature 

(Carley et al, 2004). A minimum of 1n +  experiments are required to determine a first-order 

polynomial (Myers, 1995). A second order polynomial takes the following format:  

 
2

0

1 1

n n

j j jj j

j j

ğ x xβ β β
= =

= + +∑ ∑  (5.2) 

A minimum of 2 1n +  experiments are needed because the quadratic terms are added to the 

function (Kolios, 2010). The complexity can be further increased with the addition of the 

mixed terms of the random variables: 

 
2

0

1 1 2

n n n

j j jj j ij i j

j j i j

ğ x x x xβ β β β
= = < =

= + + +∑ ∑ ∑∑  (5.3) 

The required number of samples for a second-order polynomial including mixed terms is 

between 
( 1)

2 1
2

n n
n

− 
+ + 

 
 and 3n

(Kolios, 2010). A better representation of the nonlinearity 

of the actual limit state function is achieved when the cross terms are included. A second-

order polynomial including mixed terms was chosen for this work. 

5.3 Experimental Design 

The Experimental Design (ED) is the manner in which different combinations of the random 

variables are chosen. A NFEA will be performed at each combination. This will result in a set 
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of structural responses. From these the response surface is fitted using Least Squares 

regression. In the literature many suggestions for experimental designs can be found.  

5.3.1 Star Experimental Design 

This simple ED contains a centre point and two symmetrical combinations for each random 

variable (star points) as illustrated in Figure 5.1. The total number of combinations in this ED 

is 2 1n + , where n is the number of random variables. This design is popular for its simplicity 

(Bucher et al, 1990).  

 
Figure 5.1: Star ED for two variable problems. 

The dispersion of the star point ( )ix  from the centre point ( )mx  is given by:  

 i m i ix x hσ= ±  (5.4) 

where i
σ is the standard deviation of the random variable and 

ih  is the number of standard 

deviation setting the size of the design space. The number of standard deviations was 

traditionally a user-defined input. It is important that this value is appropriate so no extreme 

values for any random variables are generated. For example, we assess a bridge structure 

subjected to dead load and live load to collapse. If an extremely low resistance and an 

extremely high dead load are examined, the structure may fail without any contribution from 

live load. Not only is this unrealistic but it will affect the approximated response surface as 

the live load has no influence on that experimental point. Trial and error was traditionally 

h
iσ
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xm 

hiσi 

xi 
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used to set this value and it was only from the work of Wong et al (2005) that a link between 

this value and statistical properties of each random variable was made. They established that 

the value of i
h

 
depends on the coefficient of variation (CoV) of the variable and proposed 

the value outlined in Table 5.1. 

Table 5.1: Spread of design point, i
h values (Wong et al, 2005) 

Range of CoV 
ih  

0.05CoV ≤  0.15 / CoV  

0.05 0.2CoV≤ ≤  3 

0.2 0.5CoV≤ ≤  2 

0.05CoV ≥  1 

5.3.2 Full Factorial Experimental Design 

Another simple ED is the Full Factorial Experimental Design. This design is called a two 

level factorial design if both "high" and "low" combinations of random variables are 

examined as shown in Figure 5.2.  

 
Figure 5.2: Full Factorial ED for a two variable problem. 

The distance from the centre to the factorial point is σi ih . A full factorial design examining 

two levels has 2n experimental points, where n is the number of random variables. 

The ED is described as a full factorial design if all combinations of the variables at both high 

and low levels are examined. Otherwise if some combinations are omitted, it is called a 

fractional factorial design.  Fractional factorial designs may be useful when a reduced number 

xi 
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of experiments are required, such as when each numerical experiment is computational 

intensive. 

5.3.3 Central Composite Design 

The Star experimental design and the Full Factorial experimental design can be combined to 

create Central Composite Designs (CCDs) which are the most commonly used experimental 

designs in RSM (Deng et al, 2010). They can be combined in three ways as illustrated in 

Figure 5.3. 

 
Figure 5.3: CCD for two variable problems (a)-CCC, (b)-CCI, and (c)-CCF 

 

a) Central Composite Circumscribed Design (CCC) 

These star locations represent new high and low extreme values and are a distance 
i ihα σ  

from the centre of the experiment design, where α  is a scale parameter. The value of the 

scale parameter depends on the number of experiments evaluated in the factorial component 

of the design: 
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Table 5.2 shows the value of the scale parameter corresponding to the number of factorial 
runs. 
 

Table 5.2: α-values for various number of variables (NIST/SEMATECH, 2012). 
Number of random variables Factorial Runs α  scaled relative to 1±  

2 2
2
 1.414 

3 2
3
 1.682 

4 2
4
 2 

5 2
5
 2.378 

6 2
6
 2.828 

 

As the CCC design generates new extreme values, there is a requirement to assess the 

reasonability of the experimental points, since some points generated may be unrealistic 

when applied to practical problems.  If the factors involved in the experiment are unlimited 

the CCC design type produces high quality predictions over the entire design space. 

b) Central Composite Inscribed (CCI) 

The Central Composite Inscribed (CCI) is a scaled-down version of the CCC design. The 

distance from the centre point of the ED to the star points is 
i ihσ  and the distance from the 

centre point to the factorial points is ( /α)i ih σ . The scale parameter (α)  is calculated as 

before. This is used for situations when a variable has limits. The CCI design type provides a 

less accurate prediction over the entire spaced when compared to the CCC design type. 

However, it is a more feasible design in practical scenarios as no unrealistic values are 

examined. 

c) Central Composite Face Centred (CCF) 

This Central Composite Face Centred design differs as the star points are located at the centre 

of each factorial design. This ED provides relatively accurate predictions over the entire 

design space, however it is inappropriate when a high level of curvature is present 

(NIST/SEMATECH, 2012). 



Chapter 5 

46 

 

5.3.4 Box-Behnken Design (BB) 

The Box-Behnken design (BB) is an ED which can only be applied to problems containing at 

least three variables. It examines locations at the midpoints of the edges of the design space 

and at the centre as shown in Figure 5.4. This experimental design is rotatable, but it contains 

regions of poor prediction as it ignores combined factor extremes (NIST/SEMATECH, 

2012). The distance from the centre of any face in the design space to an experimental point 

is
i ihσ .  

 
Figure 5.4:  Box-Behnken design for three variables. 

5.3.5 Experiment Design Working Space 

The working space in which experiments are formed is an aspect of the RSM in which 

opinions are divided. Several researchers build the experiment design in the physical space so 

as non-physical/realistic experiments can be monitored (Bucher, 1990; Rajashekhar, 1993; 

Kim et al, 1997; Lemaire, 1996). Likewise, studies have been conducted which favour the use 

of building the experiment in U-space so as there is more control over numerical experiments 

(Gayton, 2003; Waarts, 2000). The experiment designs for this study were built in physical 

space. 

h
iσ

i
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5.4  Fitting of a Response Surface 

A multiple regression model and the method of least squares can be used to determine the 

unknown regression coefficients in Equation (5.3). This is a commonly used approach in 

RSM (Gayton et al, 2003).  The model is written in matrix notation assuming there is n  

variables and k  experimental runs in terms of observations (Carley et al, 2004): 

 = +y Xβ ε  (5.6) 

where y  is an 1k × vector of observations, X is an ( 1)k n× +  matrix of the levels of 

independent variables, β is a ( 1) 1n + ×  vector of the regression coefficients, and ε  is an 

( 1) 1n + ×  vector of random errors. The matrix of independent variables X  depends on the 

response surface function selected. An example of the independent variable matrix for a 

second-order polynomial with mixed terms with two random variables is shown: 

 

2 2

11 12 11 12 11 12

2 2

21 22 21 22 21 22

2 2

1 2 1 2 1 2

1

1

1
k k k k k k

x x x x x x

x x x x x x
X

x x x x x x

 
 
 =
 
 
  

� � � � � �
 (5.7) 

The regression coefficients can be obtained by using the method of least squares, as follows: 

 ( )
1

' 'X X X yβ
−

=  (5.8) 
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5.5 RSM Methodology 

Various techniques for ensuring an accurate response surface approximation have been 

developed through the years. These techniques vary slightly with regards to ED, response 

surface selection and convergence criteria. The model developed in this work is based on that 

of Rajashekhar et al (1993). This methodology is an extension of the work of Bucher et al 

(1990). It involves an iterative process to ensure the ED used to approximate the polynomial 

is expanded around the MPP of failure. This procedure has the following steps: 

1. Select only the most important random variables. A preliminary sensitivity study 

should be carried out and random variables of low uncertainty should be replaced by 

deterministic values (Melchers, 1999). The computational expense increases with 

every additional random variable. 

2. Sample points of the variables are defined. The number of sample points depends on 

the Experimental Design (ED) chosen (Section 5.3). For the first iteration the centre 

of the ED is chosen as the mean values of each of the random variables. The design 

space dispersion is set by selecting a value for 
ih  from Table 5.1. 

3. Using the "observations" obtained from the NFEAs a response surface is fitted to 

represent the actual (unknown) limit state function (Section 5.4). 

4. Assuming the variables are uncorrelated Gaussian variables, the design point ( )
d

x

corresponding to the MPP of failure on the approximated limit state function is found. 

This may be found using the FORM see Section 3.3.2 (Soares et al, 2002). From this 

the distance ( )d  from the design point to the centre of the experimental design is also 

measured. 

5. A new experiment centre point is found using the formula below:  

 ( )
( )

( ) ( )m d

d

g
x x

g g x

µ
µ µ

µ
= + −

−  
 (5.9) 
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where ( )g µ  is the actual experimental observation at the mean of the variables and 

( )dg x is the actual experimental observation at the design point. This formula is based 

on linear interpolation to locate the new centre point on the straight line between the 

design point and the experiment centre point. 

6. Another experiment design is performed around the new centre point followed by 

another approximation of the response surface.  

7. A convergence value ε  is set depending on the design space dispersion, when

23 ε 10ih
−= ⇒ = , when 32 ε 10ih

−= ⇒ = and when 41 ε 10ih
−= ⇒ = . Typically ε is 

selected between 10
-4

 - 10
-2

 (Wong, 2005). This process is repeated until d  is below 

the convergence criteria ( )ε . 

8. This procedure is repeated with a refined design space dispersion (
ih  is reduced). As 

outlined in Rajashekhar et al (1993) if this process is repeated indefinitely with 

reduced values for 
ih
 
an ill-conditioned system of equations may be achieved. For this 

reason once convergence has been achieved 1ih =  the iteration process is stopped.  

This process is illustrated in Figure 5.5 and ensures that the centre of the ED is 

located approximately on the MPP of failure. 

 
Figure 5.5: Schematic of procedure, a) hi = 2, b) hi = 1 (adapted from Bucher et al, 1990) 

9. Once the final polynomial has been approximated, a traditional reliability calculation 

such as FORM (Section 3.3.2) can be conducted to find the probability of failure. 
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5.5.1 RSM Validation 

To validate the operation of the RSM model, a recreation of an example outlined in 

Rajashekhar et al (1993) is performed. This example consists of a cantilever beam with a 

rectangular cross section subjected to a UDL. The limit state function is concerned with 

maximum deflection at the free end of the beam: 

 

4

3

( )

325
8

12

wb l l
g

bd
E

−
= +

 
 
 

 (5.10) 

The stochastic problem consists of two random variables which are the load ( )w  and the 

depth of the beam ( )d . Young's Modulus ( )E , the width of the beam ( )b , and the length of the 

beam ( )l  are considered as deterministic. The statistical properties of the random variables 

are given in Table 5.3. 

Table 5.3: Variable properties (Rajashekhar et al, 1993) 

Variable µ  σ  

w 0.001 N/mm
2
 0.0002 N/mm

2
 

d 250 mm 37.5 mm 

E 42.6 10× MPa --- 

l 6 m --- 

 

The methodology outlined in Section 5.8 is implemented; however, the observations are 

obtained using Equation (5.10) rather than a NFEA. A star experiment design is used (see 

Section 5.3.1). It was found that this approximated response surface had two failure 

boundaries as shown by the blue lines in Figure 5.6.  
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Figure 5.6: Approximated limit state functions. 

The Importance Sampling (IS) technique was implemented to determine the probability of 

failure: 1000 samples were conducted and are plotted on Figure 5.7. 

 
Figure 5.7: Incorrect importance sampling plot. 

 A sample failed if the approximated response surface 0ğ ≤ . Since, incorrectly there are two 

boundaries of failure, an incorrect probability of failure is determined in this case. As 

Wisniewski et al (2009) outlines, the RSM method is inefficient in dealing with problems 

containing several modes of failure. However, as can be seen from Figure 5.6 the lower limit 
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state function represents a good approximation of the actual limit state function around the 

design point as desired. The IS failure is re-defined as when a) 0ğ ≤ ; and b) the resistance 

parameter is below its mean value than an approximately correct probability of failure of 

9.7×10
-3

 is established. This is shown in Figure 5.8. 

 
Figure 5.8: Correct importance sampling plot. 

Provided that there is only one mode of failure, the RSM method is an appropriate procedure 

for incorporating a nonlinear structural model into a probabilistic assessment. 

5.6 Reliability Analysis Considering Material Nonlinearity 

The NFEA model developed in Chapter 4 is connected to the RSM to perform a reliability 

analysis considering material nonlinearity. The NFEA model is used as the numerical 

experiment in the RSM. An "observation" is taken from the NFEA model to describe how far 

each point in the ED is from failure. This "observation" is taken as:  

 ( ) 1obsg λ= −  (5.11) 

where λ  is the load factor required to cause a defined failure. A flowchart outlining the RSM 

methodology (Section 5.8) linked with the NFEA model is given in Figure 5.9 
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Inputs:

1) Structure data

2) Material properties

3)Load data

Define Failure

1) Initial Yield

2) Plastic Hinge

3) Collapse Mechanism

Select/reduce 

experimental dispersion 

value (hi) 

(see Section 5.5)

Determine experimental design 

centre point (xm)

xm = µ for first iteration

xm = Equation 5.9 for other 

iterations

Select experimental design

(see Section 5.3)

Determine λ and g(obs) for 

each experiment design 

point (see Section 5.6)

Response Surface

Approximation

(see Section 5.4) 

Determine distance 

(d) from xm to MPP 

using FORM

Check converge

Is d < ε

No

Is hi = 1
No

Yes

Yes

Determine Reliability 

Index (β) using 

FORM

(see Section 3.3.2)

Convergence 

Criteria

If hi = 3, ε = 10
-2

If hi = 2, ε = 10
-3

If hi= 1, ε = 10
-4

 
Figure 5.9: RSM -NFEA method flowchart 
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5.6.2 RSM-NFEA Model Validation 

The RSM-NFEA model is validated against the three benchmark examples outlined in 

Section 3.4. The Central Composite Inscribed design is used in all examples (Section 5.3.3). 

The closed-form limit state functions derived in Section 3.4 are replaced by the NFEA model. 

The results are validated against those obtained earlier using the FORM code and are given in 

Table 5.4  

Table 5.4: Example 1-RSM results 

Experimental 

Design 

No. 

Iterations  

( 3)ih =  

No. 

Iterations  

( 2)ih =  

No. 

Iterations  

( 1)ih =  

Total 

Iterations 

No. 

FEA 

Reliability 

Index 

( )β  

Probability 

of Failure 

( )fP  

CCI 1 0 1 3 45 4.422 4.882×10
-6

 

FORM Model 4.459 4.117×10
-6

 

CCI 2 1 0 3 45 3.665 1.236×10
-4

 

FORM Model 3.436 2.952×10
-6

 

CCI 2 1 0 3 45 3.302 1.236×10
-4

 

FORM Model 3.308 2.952×10
-6

 
 

All three examples converge after three iterations and the reliability indices found are close to 

those found using the FORM model with the known limit state function. Figures 5.10 and 

5.11 show plots of the approximated limit state function after each iteration against the actual 

limit sate function. A good representation of the actual limit state function around the design 

point is obtained for Example 1. However, Example 2 displays a slight divergence. It is 

believed this is due to the mesh sizing problem as outlined in Section 4.7. 
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Figure 5.10: Example 1 RSM approximating functions for each iteration. 

 

 
Figure 5.11: Example 2 RSM approximating functions for each iteration. 
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5.7 Summary 

In this chapter a RSM model is developed. This model is based on the work of Rajashekhar et 

al (1993).  This model is appropriate as it uses an iterative process to locate the ED around 

the MPP meaning an accurate representation of failure at that point is given. This model 

proves to be effective provided only one mode of failure is present. The RSM model was also 

linked to the NFEA model and validated using the three benchmark examples. This provides 

the methodology to conduct a probabilistic assessment considering nonlinear material 

behaviour.  
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Chapter 6  

Bridge Models 

6.1 Introduction 

This chapter outlines a representative group of bridge structures used for this work. Each 

bridge structure differs with regard to configuration, span length, and resistance capacity. 

This representative group of bridge structures are used in assessing live load application in 

nonlinear structural models and the development of both deterministic and probabilistic 

assessment procedures considering material nonlinearity. 

6.2 Bridge Model Geometry 

The bridge configurations studied for this work are given in Figure 6.1. 

 
a) Two-span; 

 
b) Three-span; 

Figure 6.1: Bridge configurations. 

Each bridge configuration is examined for the following total bridge lengths ( )TL : 30, 40, 50, 

60 m. Thus, in total, eight bridge structures are examined. Table 6.1 outlines the descriptive 

name given to each of the bridge structures.  

 

  

 

LS LS 

LT 

 

0.75 LS LS 0.75 LS 

LT 
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Table 6.1: Bridge descriptive names 

Configuration Length (m) Name 

Two-span 30 2span-30 

Two-span 40 2span-40 

Two-span 50 2span-50 

Two-span 60 2span-60 

Three-span 30 3span-30 

Three-span 40 3span-40 

Three-span 50 3span-50 

Three-span 60 3span-60 

 

6.3 Lane Distribution Factors 

A one-dimensional NFEA beam model is used in this work and so Lane Distribution Factors 

(LDF) are determined to represent transverse distribution of load. The AASHTO (AASHTO-

LRFD, 2007) bridge design code outlines girder distribution factors following extensive work 

in the area using both in-situ tests and finite element models (Eom et al, 2001; Huo et al, 

2004; Satelino et al, 2004; NCHRP report 592). For this work, similar to these studies, finite 

element models are developed for each bridge structure. To obtain accurate lateral 

distribution, LUSAS is used to develop a grillage. Common properties were assumed for each 

structure: Each bridge has two 3.65 m wide lanes of bi-directional traffic. Each bridge 

consists of a 250 mm concrete slab sitting on 4 steel plate girders spaced 2650 mm apart. The 

cross section used for all the bridge structures is shown in Figure 6.2. 

 
Figure 6.2: Composite cross section used for each bridge studied. 

A linear elastic finite element analysis is used to determine the lateral distribution factors of 

the live load moment on the bridge. A grillage analysis is conducted with longitudinal 

2650

125 mm Surfacing

250 mm Slab

300 × 25  mm Bottom Flange

300 × 25  mm Top Flange

20 × 730  mm Web
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members representing the beam and slab composite section and the transverse members 

representing the slab section. The torsion constants of these sections were altered to allow for 

the overlap of members. The live load applied in this study is two 50 kN point loads 2 m 

apart representing a single truck axle as shown in Figure 6.3.   

 
Figure 6.3: LUSAS model (2span-40 bridge) 

From this analysis influence lines for each beam were drawn for predefined load effects for 

each bridge configuration as given in Table 6.2. An example of this is shown in Figure 6.4. 

Table 6.2: Predefined load effects. 

Configuration Load Effect Description 

2 1 first span mid span bending moment 

2 2 hogging moment over interior support 

3 1 hogging moment over first interior support 

3 2 interior span mid span bending moment 

3 3 exterior span mid span bending moment 
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Figure 6.4: 2span-40 load effect 1 beam influence lines. 

A LDF is the percentage distribution of load to each beam. This is the ratio of the bending 

moment (BM), at position causing maximum moment in each beam, to the total bending 

moment over the cross section. The LDFs are reversed for the opposite lane as each bridge is 

symmetrical. The critical beam for each bridge is identified as the beam carrying the highest 

percentage bending moment when both lanes are loaded. These beams are used for the 

duration of this study. A sample calculation of the LDFs of the 2span-40 bridge for load 

effect 1 is shown in Table 6.3. The external beams are determined critical for this example. 

Table 6.3: 2span-40 load effect 1 LDF calculation. 

 Beam 1 Beam 2 Beam 3 Beam 4 

BM (kNm) -107.70 -82.12 -38.20 -12.92 

Total BM (kNm) -240.94 -240.94 -240.94 -240.94 

LDF-Lane 1 0.447 0.341 0.159 0.054 

LDF-Lane 2 0.054 0.159 0.341 0.447 

Total 0.501 0.499 0.499 0.501 
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The critical beam LDFs for each load effect are given in Table 6.4. 

Table 6.4: Critical beams for each load effect. 

Bridge Load Effect Critical Beam LDF-Lane 1 LDF-Lane 2 

2span-30 
1 Interior 0.3722 0.1583 

2 Interior 0.3344 0.1812 

2span-40 
1 Exterior 0.447 0.054 

2 Exterior 0.484 0.051 

2span-50 
1 Exterior 0.444 0.072 

2 Exterior 0.490 0.067 

2span-60 
1 Exterior 0.438 0.083 

2 Exterior 0.489 0.077 

3span-30 

1 Interior 0.375 0.180 

2 Interior 0.416 0.154 

3 Interior 0.415 0.156 

3span-40 

1 Interior 0.337 0.182 

2 Interior 0.386 0.156 

3 Interior 0.389 0.158 

3span-50 

1 Exterior 0.480 0.046 

2 Interior 0.359 0.157 

3 Interior 0.367 0.158 

3span-60 

1 Exterior 0.487 0.061 

2 Exterior 0.445 0.056 

3 Exterior 0.448 0.054 

6.4 Plastic moment capacity calculation 

The plastic moment capacity for each critical composite beam is calculated as required for the 

NFEA model. Following the work of Nowak (2001), the plastic moment capacity ( )PM  is 

chosen to represent the minimum required capacity as specified in the Eurocode:  

 ( ) ( )1 2 3 ( ) /p D LM D D D L LDFα α φ= + + +    (6.1) 

where 
D

α  is dead load factor (1.35) (EC1.1, 2005), 
L

α  is the live load factor (1.5) 

(EC1.1,1990), φ  is the resistance factor (0.88) (Nowak et al, 2001),
1D  is the dead load 

moment due to the beam, 
2D  is the dead load moment due to the slab, 

3D is the dead load 

moment due to the road surfacing, L  is the live load moment on the structure and LDF  is 

the maximum total LDF of the critical beam in the bridge. The live load on each structure is 

determined using LM1 (EC1.2, 1991). This plastic moment capacity was chosen to show the 
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effect of assessing existing structures to albeit a simple representation of the Eurocodes. The 

plastic moment capacities for each bridge are shown in Table 6.5. 

Table 6.5: Plastic moment capacity for each bridge. 

Bridge Plastic Moment Capacity (kNm) 

2span-30 2694 

2span-40 4279 

2span-50 6295 

2span-60 8592 

3span-30 1422 

3span-40 2015 

3span-50 2963 

3span-60 4055 

 

6.5 Summary 

A representative group of steel composite structures is outlined.  The structures vary in regard 

to structural configuration and bridge length. Each structure is designed to have the minimum 

required Eurocode flexural capacity. Grillage models are developed for all structures to 

determine lane distribution factors and the critical beam in each structure. 
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Chapter 7 

Live Load Application 

7.1 Introduction 

This chapter examines the application of live loads in a nonlinear structural model for use in a 

probabilistic assessment. The live loads considered are vehicles traversing a structure. 

Dynamic effects are not considered. A proposed moving load approach is developed and 

compared to the commonly used approach of applying the live load as critically positioned 

static loads. 

7.2 Common Approach 

Commonly, in nonlinear structural models moving live loads are applied as stationary static 

loads (see Section 2.2.1).  Commonly, the positions of these static loads are found using an 

elastic analysis.   The live load is positioned so as to cause the maximum desired load effect. 

This approach is used in literature outlined in Table 7.1. 

Table 7.1: Live load application literature summary 

Reference Bridge Type No. 

Spans 

Load Position 

Val et al 

(1997b) 
RC Slab 1 H20 causing maximum moment 

Val et al 

(1997b) 
RC Slab 3 HS20 causing maximum moments 

Ghosn et al 

(1998) 
Steel Truss 1 HS20 causing maximum moments 

Casas et al 

(2007) 

Concrete 

Girder 
4 Various UDLs causing maximum moments 

Casas et al 

(2007) 
Steel Beam 2 Various UDLs 

causing maximum 

deflection/shear 

Czarnecki et al 

(2007) 

Steel 

Composite 
1 HS20 causing maximum moment 

Wisniewski et 

al (2009) 

Concrete 

Girder 
4 

UDL Train 

Model 

causing maximum moment at 

mid-span first span 

Zona et al 

(2010) 

Steel 

Composite 
3 Load Model 1 

causing maximum moment at 

left intermediate support 
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As can be seen from Table 7.1 real traffic crossing events are not considered, only notional 

load models applied at positions found using an elastic analysis. 

7.3 Proposed Moving Load Approach 

A load must be applied incrementally when conducting a nonlinear static analysis. The 

proposed moving load approach is applied in increments, but also moved in increments. The 

load is moved in steps along the structure to represent a moving load traversing the structure.  

The load is initially applied at the start of the bridge as a static load and incrementally 

increased in magnitude. Once fully applied, the force at this position is unloaded and 

concurrently incrementally applied to the next location. This procedure is illustrated in Figure 

7.1 and is repeated until the load has completely traversed the structure.  

 
Figure 7.1: Propose moving load procedure. 

Importantly, an increment is unloaded assuming that the structure behaves elastically (Li et 

al, 2007) .The force recovery parameters (Section 4.5) are calculated once an increment has 

been unloaded and before the increment is applied at its new location. This allows for the 

spread of plasticity through the structure. The load required to cause a defined failure is 

increased after each complete run across the structure. 

Excluding the initial incremental loading at the first load position, and the incremental 

unloading at the last load position, the full load is completely applied to the structure at all 

times. This is shown in Figure 7.2. 

 

(a) (b) 

(c) (d) 
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Figure 7.2: Load through time for proposed moving procedure 

The methodology behind the proposed moving load approach is shown in the flowcharts 

given in Figure 7.3 - 7.6. 

L
o

a
d

Unloading
Loading
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Figure 7.3: Analysis procedure of bridge subject to moving load 
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Figure 7.4: Unloading process 



Chapter 7 

68 

 

 
Figure 7.5: Loading process (part A) 

 
Figure 7.6: Loading process (part B) 

7.3.1 Single Moving Point Load Analysis Example 

To demonstrate the proposed moving load approach, the 2span-30 bridge (Section 6.1) is 

subjected to a single point load of speed 1 m/s to get collapse. To establish the collapse load 
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factor, that is, the ratio of failure load to working load, the load is increased after each 

complete run across the structure, and this is continued until a collapse mechanism forms. A 

time step of 0.1 s corresponding to a step length of 0.1 m is used, see Figure 7.2. The yield 

function  defined in Equation (4.7) is a ratio of bending moment to plastic moment capacity 

as described in Section (4.6) is used to describe the spread of plasticity though the structure 

as the load moves. The yield function time history is shown in Figure 7.7.  

 
 

(a) Hinge formation at 6 m; 

 
(b) Hinge formation at 15 m; 

Figure 7.7: Time history of yield function. 

These graphs show the difference between the proposed moving approach and an elastic 

analysis when strain hardening is both included and excluded. When strain hardening is 

included, the global stiffness matrix is prevented from turning singular meaning the analysis 
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will continue until the load has fully traversed the structure. When examining the nonlinear 

analysis excluding strain hardening it is seen that a collapse mechanism forms when the point 

load is approximately 6 m from the left hand side. The circles on each graph represent times 

at which the initial yield capacity of the structure has been exceeded at any location on the 

bridge. Table 7.2 gives this post-elastic behavior.  Since the structure is one-degree 

indeterminate, a collapse mechanism occurs when two plastic hinges form at 6 m and 15 m. 

Table 7.2: Post elastic behaviour activity. 

Activity Time (s) Location 

Initial Yield 2.50 2.5 m 

Initial Yield 2.79 3.5 m 

Initial Yield 3.16 4.5 m 

Initial Yield 3.78 5.5 m 

Initial Yield 4.45 15.0 m 

Initial Yield 4.93 15.5 m 

Initial Yield 4.54 16.0 m 

Initial Yield 4.64 14.5 m 

Initial Yield 4.77 17.0 m 

Initial Yield 5.38 18.0 m 

Initial Yield 5.38 6.5 m 

Initial Yield 5.46 14.0 m 

Initial Yield 5.93 7.0 m 

Plastic Hinge 5.93 6.0 m 

Plastic Hinge 5.93 15.0 m 

 

7.4 NFEA mesh refinement 

To obtain an accurate comparison between the common approach and the proposed moving 

load approach the mesh refinement must be kept consistent in the NFEA model. A finer mesh 

separates the structure into more elements. Generally this leads to a higher level of accuracy 

but is computational more expensive. In this study a non uniform mesh is used to reduce the 

number of elements. Points of interest are identified prior to loading such as mid span or over 

internal supports. A finer mesh size is used for a defined distance around these points. This 

non-uniform mesh is illustrated in Figure 7.8.   
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Figure 7.8: Non-uniform mesh. 

The size of the coarse mesh is chosen as 0.5 m, while the size of the fine mesh was arbitrarily 

chosen as 0.25 m. The fine mesh covers a one metre either side of the defined point of 

interest. These points of interest were located on over the mid-spans and interior supports. 

This mesh refinement was used along with the adaptive increment process (see Section 4.7) 

in both the common approach and the proposed moving approach. 

7.5  Live Load Combinations 

A series of experiments are devised to compare the proposed approach with the commonly-

used approach of placing loads at critical positions. A range of axles spacings and a number 

of axles are examined as given in Figure 7.9. Each experiment was applied to the eight bridge 

structures outlined in Chapter 6 yielding a total of 80 results for comparison. 

Table 7.3: Live load combination description 
Live Load Combination Description 

AS1 Single axle load 

AS2-H20 Two axles, H20 design truck 

AS3-HS20 Three axles, HS20 design truck 

AS5-T1103 Five axles, T1103  European truck 

AS2-X Two axles, axles spacing ( )x  = 1.5, 3.0, 4.5, 6.0, 

7.5, 9.0 m 

* AS means Axle Scenario. 

  

 

coarse mesh point of interest fine mesh 

fine mesh region 
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(a) AS1; 

 
(b) AS2 - H20; 

 
(c) AS3 - HS20; 

 

 
(d) AS5 - T1103; 

 

 
(e) AS2 - X; 

Figure 7.9 Load live combinations. 

For each experiment a load factor required to cause failure is found using the common 

approach and the proposed moving approach. Failure is defined to occur when the global 

stiffness matrix becomes singular in the nonlinear analysis (Owen, 1986; Val, 1997b; Wong, 

2005). This corresponds to the formation of a mechanism (Ghosn, 1998). 

7.6 Common Approach Positions 

For the common approach an elastic analysis is used to identify load positions, defined in 

Table 7.4. 

Table 7.4: Static load positions 

T
w

o
-

sp
an

 CP 1 causing maximum bending moment at any location 

CP 2 causing maximum sagging moment at mid span of first span  

CP 3 causing maximum hogging moment over interior support 

T
h

re
e-

sp
an

 

CP 1 causing maximum bending moment at any location 

CP 2 causing maximum hogging moment over first support 

CP 3 causing maximum sagging moment at mid span of centre span 

CP 4 causing maximum sagging moment at mid span of third span 

* CP refers to Common approach position.  

  

300 kN 145 kN 35 kN 

4.3 m 4.3 m 4.3 m 

35 kN 145 kN 145 kN 

130 kN 145 kN 35 kN 

3.79 m 1.32 m 5.59 m 

150 kN 150 kN 
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7.7 Load Factor Ratio 

The static load factors found using the common approach ( )
C

λ are compared to the load factor 

found using the moving load approach ( )
M

λ  in terms of a load factor ratio ( *)λ : 

 * C

M

λ
λ

λ
=  (7.1) 

If * 1λ < , the common approach under-estimates the flexural capacity of the structure; 

similarly if * 1λ >  the common approach over-estimates the flexural capacity of the structure. 

Load factor ratios are determined for all static positions, as per Table 7.4. Table 7.5 shows 

sample results for the live load combination AS5-T1103 on the 3span-50 bridge. 

Table 7.5: *λ for AS5-T1103 on bridge 3span-50. 

1
1* CP

M

λ
λ

λ
=  2

2* CP

M

λ
λ

λ
=

 

3
3* CP

M

λ
λ

λ
=

 

4
4* CP

M

λ
λ

λ
=

 
1.0054 1.0031 1.0424 1.2319 

 

Table 7.5 shows the importance of applying the loads in the correct position when using the 

commonly used approach.  If the axle loads of the T1103 truck are applied at the position 

causing maximum hogging moment over the first interior support an accurate estimation of 

the structure strength capacity is found when compared to the true result (Moving load 

approach). However, if the loads are positioned such as the maximum moment at mid span of 

the third span is found, the strength capacity of the structure is over-estimated by 

approximately 25%. The positions used in the common approach, as per Table 7.4, are shown 

in Figures 7.10 - 7.13. The collapse mechanisms for each position are also shown. 



Chapter 7 

74 

 

 
Figure 7.10: AS5-T1103, 3span-50, CP1 

 
Figure 7.11: AS5-T1103, 3span-50, CP2 
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Figure 7.12: AS5-T1103, 3span-50, CP3 

 
Figure 7.13: AS5-T1103, 3span-50, CP4 
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7.8 NFEA Modelling Issue 

Due to the non-uniform mesh used in the NFEA model (Section 7.4) a modelling issue occurs 

which under-estimates the strength capacity for a number of static live load combinations. 

The global stiffness matrix turns singular without producing a true collapse mechanism. 

Since a fine mesh is adopted over mid-spans and internal supports (see Section 4.6) 

illustrated in Figure 7.14a, multiple hinges occur at closely located node points as shown in 

Figure 7.15a. 

 
(a) Non-uniform mesh. 

To rectify this, the problematic loading scenarios are re-run with a coarser mesh illustrated in 

Figure 7.14a so that non-trivial collapse mechanisms are formed as shown in Figure 7.15b. 

 
(b) Uniform coarse mesh. 

Figure 7.14: Mesh refinement 
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(a) Collapse mechanism with wrong mesh refinement; 

 
(b) Collapse mechanism with corrected mesh refinement; 

Figure7.15: Bridge 2span-60 experiment AS5-T1103 
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7.9 Live Load Application Results 

For each experiment the load factor ratio for each common approach position (see Table 7.4) 

is found. Figure 7.16 shows live load combination AS3-HS20, performed on bridge lengths, 

30, 40, 50 and 60 m with a two equal span configuration.  

 
Figure 7.16: Load factor ratios versus bridge length (Configuration 1 - AS3-HS20) 

Significant differences in collapse load factors are found depending on the position of load 

examined. The best case load position, producing a load factor similar to the moving load 

approach is highlighted with a red circle for each bridge length. Similarly, the worst load 

position is highlighted with a blue circle for each bridge length. This is done to emphasize the 

importance of examining several load positions using the common approach. Figure 7.16 

shows that there is a difference in strength capacities of at least 5% found between the best 

and worst case load positions used in the common approach. The complete set of graphs for 

each live load combination can be found in Appendix 1.  
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For all live load combinations examined on the two-span structures, the best load factor ratio 

is found when the load is positioned to cause maximum bending moment (Table 7.4 - CP1). 

Numerous load positions need to be examined for three span structures because the position 

causing maximum bending moment does not guarantee lowest load factor ratio (lowest 

strength capacity estimation).  

The best case load factor ratios (red) and the worst case load factor ratios (blue) for each live 

load combinations are shown in Figures 7.17- 7.20. If the best case load factor ratios are used 

to compare the common approach to the moving load approach, it is found that the strength 

capacities found using the two approaches are within 1% for two span structures and 3% for 

three span structures meaning that load redistribution as a vehicle moves across the structure 

has very little significance. However, if the worst case load factors are examined, the 

common approach overestimates the strength capacities greatly. This highlights the 

requirement of correctly locating the loads when using the common approach. This 

requirement is not present when using the proposed moving load approach as the load 

position is found automatically.  
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Figure 7.17: Two-span live load combinations 1-4 

 
Figure 7.18: Three-span live load combinations 1-4 (see Figure 7.17 for legend). 
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Figure 7.19: Two-span AS2-X. 

 
Figure 7.20: Three-span AS2-X (see Figure 7.19 for legend). 
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7.10 Relation to Literature 

From the observations obtained, a closer examination of the work of Val et al (1997b) is 

conducted. In the study the authors conduct both a deterministic and a probabilistic study of a 

three-span continuous slab bridge. The structure is subjected to a HS20 design truck load 

located at various positions to cause maximum bending moment at different locations. These 

locations include the mid-span of the first span, the mid-span of the interior span, and at the 

second interior support. The truck position causing maximum bending moment at the interior 

support is indeed critical as it produces the lowest estimation of strength capacity. On 

comparison with the moving load approach, Val's critical truck position performs a good 

estimation of the required strength capacity of the structure is obtained. 

7.11 Summary 

Through the use of the proposed moving load approach it is found that some elastic means of 

locating the load perform well, giving accurate collapse load factors, whilst others perform 

poorly. For two-span structures it is concluded that locating the vehicle such that the 

maximum elastic bending moment anywhere is achieved gives a close estimate of the true 

collapse load factor found from the moving load approach. Conversely for three span 

structures it is important to examine numerous positions when using an elastic means to 

locate the load. 



Chapter 8 

83 

 

Chapter 8 

Deterministic Safety Assessment 

8.1 Introduction 

In this chapter a deterministic approach is used to assess the structural safety of the 

representative group of steel composite structures. All resistance and load properties are 

treated as deterministic variables. The structural safety of the bridges considered, subjected to 

realistic traffic loading events, is described in terms of a load factor required to cause failure. 

Three definitions of failure are examined: 

1. The exceedance of the initial yield capacity at any section. 

2. The formation of the first plastic hinge. 

3. The formation of a collapse mechanism. 

Furthermore, a semi-probabilistic assessment is carried out in which resistance and dead load 

are assumed to be deterministic while live load is examined as a random variable. 

8.2 Annual maximum traffic loading events 

Monte Carlo simulation was used to generate 100 years of free flow traffic files based on 

measured traffic data, representing a bridge lifetime. This data was obtained using Weigh-In-

Motion (WIM) data from the A6 motorway near Auxerre between Paris and Lyon, France. 

The model used to generate these traffic files is that of Caprani (2005). To identify severe 

loading events, annual maximum load effects are obtained using linear elastic analysis for 

considered load effects. The load effects for each bridge configuration are outlined in Table 

8.1. 
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 Table 8.1: Considered load effects. 

Configuration Load Effect Description 

2 1 first span mid span bending moment 

2 2 hogging moment over interior support 

3 1 hogging moment over first interior support 

3 2 interior span mid span bending moment 

3 3 exterior span mid span bending moment 

 
The influence lines corresponding to each of these load effects are given in Figure 8.1. 

 
(a) Two-span structures;  

 
(b) Three-span structures; 

Figure 8.1: Influence lines for each structural configuration. 

Each annual maximum loading event consists of a unique traffic scenario typically comprised 

of a number of heavy trucks. Consequently the random variables describing the annual 

maximum loading event include the number of trucks, speed, truck positions, number of axles 
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trucks were considered in each loading event but the influence of cars is allowed for in the 

spatial arrangement of these trucks. For this study, an event begins with the arrival of a truck 

and ends with the departure of a truck. Sample annual maximum loading events are shown 

for bridge 2span-50 in Figure 8.2. 

 
(a) 2span-50 m bridge; load effect 1; first span mid-span bending moment; 

 
(b) 2span-50 m bridge; load effect 2; hogging moment over interior support.; 

Figure 8.2: Sample annual maximum load events. 

Notably, different load effects identify different traffic arrangements by virtue of the shape of 

the influence lines as shown in Figure 8.2. 

  

-10 0 10 20 30 40 50 60

Longitudinal Truck Position (m)

818 kN

-10 0 10 20 30 40 50 60

Longitudinal Truck Position (m)

466 kN 645 kN



Chapter 8 

86 

 

8.3 Load application 

The NFEA model described in Chapter 4 is used for this deterministic assessment. Both dead 

and live load is considered, while any dynamic effects are ignored. The dead load is divided 

into three components: dead load due to the slab, beam and surfacing. Each bridge is 

subjected to the dead load prior to the application of any live load. The moment induced is 

subtracted from the plastic moment capacity of the bridge. 

8.3.1 Extension to Live Load Application Study 

The study in Chapter 7 concludes that moving live loads may be applied as non-moving static 

loads in the NFEA model provided appropriate positions are examined. These positions may 

be found using an elastic analysis. However, the study in Chapter 7 was limited to one-truck 

loading events. To extend this study, a comparison is made between the commonly used 

approach and the proposed moving load approach for a two-truck loading event for collapse 

shown in Figure 8.3. 

Figure 8.3: Two-truck loading event. 

Truck 1 as shown in Figure 8.3 moves from right to left at a constant velocity of 22.3 m/s. 

Truck 2  is 12.98 m away from the bridge when the event begins and moves from left to right 

at a velocity of 23.6 m/s. A time step of 0.05 s is used. The non-uniform mesh in the NFEA 

model (see Section 4.6.1) consists of a fine mesh (0.25 m) at mid-span and over the interior 

support and a coarse mesh (0.5 m) everywhere else. The stationary static positions are those 

outlined in Table 7.4 and shown in Figure 8.4.  

15 m 15 m 

12.98 m 

Truck 2 (GVW = 671 kN) Truck 1 (GVW = 528 kN) 
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(a) position causing maximum bending moment anywhere (CP 1); 

 
(b) position causing maximum sagging moment at mid-span of first span (CP 2); 

 
(c) position causing maximum hogging moment over interior support (CP 3); 

Figure 8.4: Truck positions causing maximum desired load effects. 

These positions were found using an elastic analysis and the elastic bending moment 

diagrams for each is given in Figure 8.5. 
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Figure 8.5: Elastic bending moment diagram for each position. 

The same event is analysed using the proposed moving load procedure (see Section 7.3).  The 

first truck is 3.24 m from the left-hand support when failure occurs as shown in Figure 8.6. 

This position is the same position found that causes maximum bending moment anywhere in 

the structure (see Figure 8.4(a)). 

 
Figure 8.6: Failure position found using proposed moving load procedure. 

The comparison between the common approach and the proposed moving approach is 

described in terms of a load factor ratio (see Section 7.6). These are given in Table 8.2 
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Table 8.2: *λ for two truck event on bridge 2span-30. 

1
1* CP

M

λ
λ

λ
=  2

2* CP

M

λ
λ

λ
=  3

3* CP

M

λ
λ

λ
=  

1.0047 1.0844 1.2712 

 

The stationary position causing maximum moment bending moment at any location (CP1) 

compares the best to the proposed moving load approach as concluded in Chapter 7. Not only 

are the vehicle positions at failure the same but the load factors found are approximately 

equal.  

8.3.2 Deterministic Study Live Load Application 

Despite the findings of Chapter 7 and the extended live load application study, the traffic 

events used for this deterministic study are applied as stationary loads positioned according to 

the considered load effects given in Table 8.1. This may result in an over-estimation of the 

structures strength capacity. However, it allows a comparison on the suitability of each load 

effect (Table 8.1) for generating extreme traffic events for collapse to be made.  

8.4 Deterministic Study Results 

The 100 pre-selected annual maximum loading events were analysed for each load effect 

using the NFEA model to determine the load factor for each definition of failure. These load 

factors are calculated by increasing the axle weights proportionally. Table 8.3 outlines the 

notation used for each load factor. 

Table 8.3: Load factor symbols for each failure definition. 

Symbol Failure Definition 

1λ  exceedance of the initial yield capacity 

2λ  formation of the first plastic hinge 

3λ  formation of a collapse mechanism 

 



Chapter 8 

90 

 

A sample of the results obtained are given in Figure 8.7. As may be expected, less 

conservative definitions of failure yield higher the load factors. Notably, all load factors 

found are above one which would indicate failure. Thus for the structures and traffic 

examined no flexural failures are found to occur. This indicates that the minimum flexural 

resistance outlined in the Eurocode is adequate (see Section 6.3).  The results shown in 

Figure 8.7 are typical of all the results found which are given in Appendix 2 

 
Figure 8.7: 2span-50 bridge; load factors found for the events identified using load effect 1. 

 

8.5 Semi-probabilistic study 

The deterministic analysis of each annual maximum event does not describe the lifetime 

safety level of the bridge. A statistical analysis is therefore required to estimate this lifetime 

load factor. This can be seen as a semi-probabilistic study since only live load is considered 

as random. Extreme value statistical theory is implemented to arrive at such an estimate. It is 

assumed that individual loading events are independent and identically distributed. 

Traditionally, an extreme value distribution is fitted to maximum values recorded in a 

reference period (day, week, month, or year). However, the load factor values obtained 
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represent the minimum load factor for each year. This minimum problem is rescaled to a 

maximum problem so that typical extrapolation techniques can be employed as follows: 

 1g λ= −  (8.1) 

where g is the limit state, failure is deemed to occur when the g > 1 (i.e. when 1λ < ). The 

limit state values found using Equation (8.1) for each annual load factor are then used to fit a 

Generalized Extreme Value (GEV) distribution, given by: 

 

1/

( ) exp 1
s

G s

ξ
µ

ξ
σ

+

  −   
= − −   

    
 (8.2) 

where [ ] max( ,0)h h
+

=
 

and µ ,σ ,ξ are the location, scale and shape parameters 

respectively (Coles, 2001). The lifetime limit state value ( )LTg  is estimated for a return 

period of 1000 years. This return period is chosen as it approximates a 5 % probability of 

exceedance in 50 years given in Eurocode 1 Part 2 (EN 1991-2). A sample extrapolation plot 

on Gumbel probability paper (Ang & Tang, 1975) is shown in Figure 8.8. 

 
Figure 8.8: Bridge 2span-50 load effect 1: extrapolation for lifetime safety level. 
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The life-time load factor ( )LTλ  can then be estimated as follows: 

 1
LT LT

gλ = −  (8.3) 

8.6 Semi-Probabilistic Study Inaccuracy 

Generally, it is found that the less conservative definitions of failure result in higher lifetime 

load factors as expected. However an interesting result occurs when the 3span-40 bridge is 

examined with regard to maximum hogging moment over the first interior span as 

highlighted in Figure 8.9. In this case, the lifetime load factor for the collapse limit state is 

lower than the lifetime load factor for the plastic hinge formation limit state. This result 

occurs due to the significant variability in the distribution for 
3λ (as may be seen by the 

difference between the 'shapes' of the data points in Figure 8.9).  

 
Figure 8.9: Bridge 3span-40 load effect 1 extrapolation results. 

On further examination of this structure and traffic, it is found that the load factors found 
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Figure 8.10: Bridge 3span-40 load factor results for load effect 1. 

The reason for the high variability of the load factors is mainly due to the positioning and 

number of the trucks. Figure 8.11 shows the truck positions for the annual maximum event 

with the highest collapse load factor.  

 
Figure 8.11: Bridge 3span-40-load effect 1-year 82- truck positions. 
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formation of a mechanism. This loading event does not represent an extreme traffic event for 

the formation of a collapse mechanism. 

 
Figure 8.12: Bending moment diagrams at failure for three limit states. 

As high load factors are required, events such as shown in Figure 8.11 may not be described 

as extremes. In cases where non-extreme data may be included, Castillo (1988) recommends 

extrapolating only the top 2 n  data points as shown in Figure 8.13. 

 
Figure 8.13: Bridge 3span-40 load effect 1 modified extrapolation results. 
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8.7 Semi-Probabilistic Study Results 

The semi-probabilistic study explained in Section 8.5 is completed for all representative 

bridge structures. The lifetime load factor results are given in Table 8.4 -8.5.  

Table 8.4: Two-span bridges lifetime load factors. 
 Load Effect 1 Traffic Load Effect 2 Traffic 

Bridge Length (m) 
1LTλ  

2 LTλ  
3LTλ  

1LTλ  
2 LTλ  

3LTλ  

30 2.614 3.600 3.859 3.235 4.763 4.898 

40 2.482 3.449 3.700 2.002 3.016 3.948 

50 2.735 3.819 4.031 2.144 3.278 3.915 

60 2.801 3.934 4.112 2.219 3.439 4.242 

 
 
Table 8.5: Three-span bridges lifetime load factors. 

 Load Effect 1 Traffic Load Effect 2 Traffic Load Effect 3 Traffic 

Bridge 

Length (m) 
1LTλ  

2 LTλ  
3LTλ  

1LTλ  
2 LTλ  

3LTλ  
1LTλ  

2 LTλ  
3LTλ  

30 2.669 3.795 5.120 2.575 3.515 3.817 3.082 4.155 4.508 

40 2.664 3.897 4.245 2.490 3.458 3.681 2.933 3.982 4.317 

50 2.157 3.245 3.600 2.685 3.745 4.015 3.113 4.239 4.723 

60 1.966 2.932 3.716 2.394 3.383 3.717 3.017 4.128 4.172 

 

The results for the two-span structures subjected to traffic generated using load effect 1(see 

Table 8.1) are shown in Figure 8.14. It can be seen that all lifetime load factors are above a 

load factor of one, indicating that the bridge is safe against failure by any definition for the 

traffic considered. All extrapolation graphs are shown in Appendix 2. 
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Figure 8.14: Two-span life-time load factors for load effect 1 events. 

From the results given in Table 8.4 a comparison of the load effects used to generate extreme 

traffic loading events is made and is given in Figure 8.15. For the majority of bridge lengths 

examined with a two span configuration, the traffic events generated using load effect 1 

produce lower lifetime load factors than load effect 2 (see Table 8.1). This means that 

identifying traffic events causing maximum sagging moment at mid-span of the first span is 

more critical than maximum hogging moment over the interior support because there is a 

higher possibility of structural collapse in the structures lifetime. 
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Figure 8.15: Two-span structures life-time collapse load factors for all events. 

The comparison of load effects used to generate traffic is also made for three span structures 

and is given in Figure 8.16. It is found that for bridge lengths below 45 m, the governing load 

effect for generating extreme load effects for collapse is maximum sagging moment at mid-

span of interior span. For the total bridge length over 45 m extreme traffic events for collapse 

should be generated causing maximum hogging moment over the first interior support. 

  

Figure 8.16: Three-span structures life-time collapse load factors for all events. 
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8.8 Discussion/Summary 

Simulated annual maximum traffic loading events based on real traffic data are identified. 

The safety of each event is described in terms of an axle load multiplier needed to cause 

failure. Three definitions of flexural failure are used. Each load factor is dependent on the 

numerous variables involved in the traffic loading event. It is found that all load factors are 

above one, and so, at the defined resistance, failure does not occur. Notably, the resistance 

used is the minimum flexural capacity prescribed by the Eurocode. The deterministic study is 

progressed to a semi-probabilistic study to determine the lifetime load factor. Live load is 

only described as a random variable. The lifetime load factor corresponds to the 1000-year 

return period. Again each lifetime load factor is far in excess of unity, and meaning that 

failure is unlikely to occur for the defined resistance and traffic.  

Notable conclusions can be drawn from examining the lifetime load factors found using the 

initial yield limit state. Twice the average annual maximum loading event is required to cause 

exceedance of the initial yield capacity. Importantly, the same traffic was used in this study 

as in the calibration of Eurocode LM1 (EN 1991-2). This highlights the significant reserve 

capacity the Eurocode prescribes with regard to flexure because of the safety factors applied 

(see Section 6.3). A further study comparing the minimum Eurocode flexure capacity with 

the minimum AASHTO flexure capacity is given in Appendix 3.  

Critical load effects are identified as those generating events giving the lowest lifetime load 

factor. For two-span structures, traffic events causing maximum bending moment at mid-span 

is critical for collapse. For three-span structures with bridge lengths less than 45 m, traffic 

events should be generated causing maximum sagging moment at mid-span of the first span 

when assessing collapse. While for bridge lengths between 45-60 m, traffic events causing 

maximum hogging moment over the first interior span are more important for collapse. 
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At a return period of 1000 years, the structures examined behave elastically as no yield is 

present. This then can confirms that it is appropriate to use an elastic structural model for a 

reliability assessment. However, an increase in the structural safety level may be found if 

material nonlinearity is accounted for in a reliability assessment. A reliability procedure 

accounting for material nonlinearity is presented in Chapter 9. 
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Chapter 9 

Reliability Analysis Considering Nonlinear Material 

Behaviour 

9.1 Introduction 

In this chapter a procedure for conducting a reliability analysis accounting for nonlinear 

material behaviour is developed. This procedure is applied to the representative steel bridges 

of Chapter 6, and compared to a traditional reliability analysis calculation. The traffic 

generated as part of the deterministic study described in Chapter 8 is used in both the 

traditional and proposed reliability calculations. 

9.2 Conventional Reliability Analysis 

The FORM model described in Chapter 3 is used here as the traditional reliability analysis 

approach (referred to in this work as the FORM approach). This approach is commonly used 

in practice as it is believed to provide a reasonably adequate measure of safety for very little 

computational expense. The limit state functions examined are: 

 
1 1 2 3Yg M D D D L= − − − −  (9.1) 

 
2 1 2 3Pg M D D D L= − − − −  (9.2) 

where Y
M  is the initial yield capacity of the cross section, P

M
 
is the plastic moment 

capacity of the cross section, 1
D  is the dead load moment due to the self weight of the beam, 

2
D  is the dead load moment due to the self weight of the slab, 3

D is the super-imposed dead 

load moment due to the road surfacing and L  is the live load moment on the structure. 

Equation (9.1) is the limit state function representing failure by exceedance of the initial yield 
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capacity. Equation (9.2) represents failure by the formation of the first plastic hinge. No 

nonlinear material behaviour is accounted for in these limit state functions. The bias factor 

and coefficient of variation chosen for the resistance capacity are 1.12 and 0.1 respectively, 

following Czarnecki & Nowak (2007). The bias factor for each of the three components of 

dead load is taken as 1.03, 1.05 and 1 respectively. The coefficients of variation for each dead 

load component are chosen as 0.08, 0.1, and 0.3 respectively (Nowak, 1993). The statistical 

properties of the live load are found by fitting a normal distribution to the load effect values 

found using an elastic analysis of the annual maximum truck events. This is similar to the 

approach used by Park et al (1998) and Nowak et al (2001). All variables are written in terms 

of moments with units of kNm and assumed to be normally distributed. As a sample, the 

input parameters for bridge 2span-50 are given in Table 9.1: 

Table 9.1: Sample FORM inputs for bridge 2span-50 

Variable Bias factor CoV Characteristic 

value (kNm) 

µ (kNm) σ (kNm) 

Y
M  1.12 0.1 4842 5423 542 

P
M  1.12 0.1 6295 7050 705 

1D  1.03 0.08 178 173 14 

2D  1.05 0.1 1294 1232 123 

3D  1 0.3 570 570 171 

L (LE1) 1 --- --- 1215 30 

L (LE2) 1 --- --- 1158 46 

 

The sensitivity factors for each variable given in Table in 9.1 are shown in Table 9.2 (see 

Section 3.3.2). These sensitivity factors highlight the contribution of each variable towards 

the probability of failure for the limit state function given in Equation 9.1 and 9.2. It is seen 

that the resistance ( , )Y PM M  is of vital importance and as expected has the highest 

contribution towards failure. 
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Table 9.2: Sensitivity factors ( )α for bridge 2span-50 load effect 1 events 
 

YM  
PM  

1D  
2D  

3D  L (LE1) 

1β  -0.9307 --- 0.0237 0.2155 0.2931 0.0512 

2β  --- -0.9572 0.0188 0.1673 0.2319 0.0405 

 

The lifetime reliability indices are found for each set of traffic generated for each bridge 

structure using FORM as described in Section 3.3. These results are shown in Table 9.3-9.4 

Table 9.3: Two-span bridges, FORM lifetime reliability indices. 

 Load Effect 1 Traffic Load Effect 2 Traffic 

Bridge Length 

(m) 
1LTβ  

2 LTβ  
1LTβ  

2 LTβ  

30 4.481 5.755 5.002 6.166 

40 3.911 5.304 4.105 5.457 

50 3.834 5.242 3.924 5.313 

60 3.755 5.178 3.799 5.208 
 
 
 

Table 9.4: Three-span bridges, FORM lifetime reliability indices. 

 Load Effect 1 Traffic Load Effect 2 Traffic Load Effect 3 Traffic 

Bridge 

Length (m) 
1LTβ  

2 LTβ
 1LTβ

 2 LTβ
 1LTβ

 2 LTβ
 

30 5.186 6.305 5.037 6.189 5.010 6.168 

40 5.019 6.176 4.454 5.734 4.163 5.468 

50 4.358 5.658 4.244 5.569 4.545 5.805 

60 4.120 5.469 3.895 5.293 3.910 5.305 

 

9.3 Reliability Analysis Considering Nonlinear Material Behaviour 

To develop a reliability analysis procedure which accounts for material nonlinearity, the 

NFEA model is linked to a FORM analysis using the RSM (see Section 5.8). This proposed 

reliability procedure is referred to in this work as the RSM reliability approach. This allows a 

reliability analysis to be conducted without explicitly defining a limit state function. This is 

useful because closed-form limit state functions describing collapse failure are generally 

unavailable. The RSM replace the NFEA model with an approximated polynomial function 

by conducting a series of nonlinear experiments.  
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9.3.1 Experimental Design 

The iterative process of Rajashekhar et al (1993) (see Section 5.8) is used along with the 

Box-Behnken ED (see Section 5.3.4). A performance study for each of the EDs given in 

Section 5.3 is given in Appendix 3. This study concludes that convergence criteria are met 

with the least number of NFEAs using the BB design. This design also performs to the 

highest level of accuracy when compared to a MCS. Each experimental design was built in 

the physical working space of the variables.  

9.3.2 Selection of Random Variables 

To simplify the reliability calculation using the RSM, selected variables in each loading event 

are assumed to be deterministic. The number of trucks, the axle spacing of each truck, the 

axle load distribution, the speed of each truck and the longitudinal position of each truck are 

treated in this way as they are not highly variable and are not considered to influence the 

result greatly. This is done because the RSM is highly impractical when dealing with a large 

number of random variables (Melcher, 1999). 

Similar to the traditional reliability analysis, the resistance capacity of the section, the dead 

load due to slab, the dead load due to the beam and the dead load due to surface are all 

considered to be random variables. Also the GVW of each truck in the loading event is 

considered random. The CoV for the GVW of each truck was taken as 0.1 and assumed to be 

normally distributed (Wong, 2005). For example, with the above considerations, a one-truck 

loading event has 5 random variables. The number of random variables increases in the 

presence of more trucks. Notably, the resistance capacity is expressed in terms of moment 

(kNm) while the random loading variables are expressed as load (kN). The statistical 

properties (Bias Factor and CoV) assumed for the FORM analysis are again adopted (Table 

9.1). As an example Table 9.5 outlines the inputs required for the 2span-50 bridge. 



Chapter 9 

104 

 

Table: 9.5 Sample RSM inputs for the 2span-50 bridge 

Variable Bias 

factor 

CoV Characteristic 

value 

µ  σ  

Y
M (kNm) 1.12 0.1 4842 5423 542 

P
M (kNm) 1.12 0.1 6295 7050 705 

1D (kN) 1.03 0.08 2.279 2.212 0.177 

2D (kN) 1.05 0.1 16.56 15.774 1.577 

3D (kN) 1 0.3 7.288 7.288 2.186 

GVW LE1 (kN) 1 0.1 818 818 81.8 

1GVW LE2 (kN) 1 0.1 466 466 46.6 

2GVW LE2 (kN) 1 0.1 645 645 64.5 

 

9.3.3 Nonlinear Reliability Indices for Each Annual Maximum Event 

Three approximate polynomial functions representing each definition of failure are found for 

each loading event. Each polynomial is a second order function including mixed terms (see 

Section 5.2). Examples of the coefficients of these functions are given in Table 9.6. 
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Table: 9.6 Example polynomial functions (2span-50, Load Effect 1 Events) 

Variables Initial yield 

coefficients 

Plastic hinge 

coefficients 

Collapse coefficients 

 1.496 2.247×10-1 1.780×10-1 

PM
 

8.181×10-4 1.207×10-3 1.132×10-3 

1D
 

-4.4314×10-1 -9.092×10-2 -2.566×10-1 

2D
 

-7.283×10-2 -5.405×10-2 3.960×10-3 

3D
 

-4.024×10-2 -3.343×10-2 3.594×10-2 

1GVW
 

-1.689×10-3 -5.791×10-4 -1.201×10-3 

2GVW
 

-3.443×10-3 -2.724×10-3 -2.746×10-3 

2

P
M

 
9.003×10-8 1.419×10-7 1.071×10-7 

2

1D
 

6.894×10-2 4.321×10-3 4.023×10-2 

2

2D
 

-6.202×10-5 -4.480×10-4 -9.800×10-4 

2

3D
 

-8.072×10-4 -1.090×10-5 -1.990×10-3 

2

1GVW
 

6.051×10-7 1.797×10-7 1.043×10-6 

2

2GVW
 

1.796×10-6 1.310×10-6 9.685×10-7 

1·PM D
 

-1.113×10-5 -1.903×10-5 -1.068×10-5 

2·PM D
 

-8.742×10-6 -1.130×10-5 -1.144×10-5 

3·PM D
 

-7.659×10-6 -1.215×10-5 -1.069×10-5 

1·PM GVW
 

-1.103×10-7 -1.452×10-7 -1.131×10-7 

2·PM GVW
 

-7.827×10-7 -1.031×10-6 -8.319×10-7 

1 2·D D
 

-4.51×10-16 -6.715×10-4 1.144×10-3 

1 3·D D
 

-3.589×10-3 -2.745×10-3 -4.431×10-16 

1 1·D GVW
 

1.099×10-4 1.730×10-5 5.493×10-6 

1 2·D GVW
 

1.075×10-4 1.088×10-4 5.805×10-5 

2 3·D D
 

-1.611×10-3 -1.894×10-3 -4.193×10-3 

2 1·D GVW
 

4.932×10-5 1.664×10-5 7.151×10-6 

2 2·D GVW  5.429×10-5 6.202×10-5 5.857×10-5 

3 1·D GVW  -5.117×10-19 1.201×10-6 3.736×10-6 

3 2·D GVW  1.044×10-4 1.079×10-4 8.017×10-5 

1 2·GVW GVW  5.329×10-7 4.436×10-7 4.690×10-7 

 
Table 9.7 shows the sensitivity factors for each variable for the event given in Table 9.6. 

Similar to the conventional reliability analysis the resistance capacity has the highest impact 

on the probability of failure. 
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Table 9.7: Sensitivity factors ( )α for bridge 2span-50 load effect 1 events 1 
 

YM  
PM  1D  2D  3D  1GVW  2GVW  

1β  -0.9370 --- 0.0281 0.2132 0.1757 0.0126 0.2114 

2β  --- -0.9610 0.0210 0.1722 0.1524 0.0114 0.1519 

3β  --- -0.9548 0.0133 0.1506 0.1578 0.0145 0.2010 

 

9.4 Reliability Indices Considering Material Nonlinear Behaviour 

The reliability indices are found using FORM with approximated polynomials representing 

the limit state functions. Table 9.8 gives the symbols for each calculated reliability index. 

Table 9.8: Reliability Index symbols for each failure definition 
Symbol Failure Definition 

1β  exceedance of initial yield capacity  

2β  formation of a plastic hinge 

3β  formation of a collapse mechanism 

 

The reliability indices for each year for the 2span-50 bridge examining the traffic found using 

load effect 1 are shown in Figure 9.1. A consistent difference can be found between the initial 

yield capacity exceedance and the plastic capacity exceedance limit states, as may be 

expected. This difference relies solely on the shape factor of the considered beam.  

 
Figure 9.1: Bridge 2span-50 RSM reliability indices for each traffic event 
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9.5 Cumulative Reliability Indices Considering Material Nonlinear Behaviour 

To compare the nonlinear reliability analysis with a traditional reliability analysis, the bridge 

lifetime reliability index is determined by combining the reliability indices from each annual 

maximum event. It is assumed that the annual maximum loading events are independent of 

each other and represent the annual reliability index (though it is acknowledged that this is 

not strictly true). The probability ( )fnP of bridge failure during ( )n  events can be found from 

(Melchers, 1999): 

 
1

1 [1 ( )]
n

fn i

i

P Ф β
=

= − − −∏  (9.3) 

Then the reliability index ( )nβ  describing the probability of failure through ( )n  years is: 

 
1( )

n fn
Ф Pβ −= −  (9.4) 

where 1Ф−− is the inverse standard normal distribution. The results are shown in Figure 9.2. It 

can be seen that the reliability index for each limit state reduces through time. The lifetime 

reliability index ( )LTβ  is taken as the cumulative reliability index ( )nβ  at 100 years. 

 
Figure 9.2: Bridge 2span-50 RSM cumulative reliability indices for each traffic event 
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The graphs for this procedure are given in Appendix 5.The results following this procedure 

are given in Table 9.9-9.10. 

Table 9.9: Two-span bridges; lifetime reliability indices considering nonlinear material 
behaviour (RSM). 

 Load Effect 1 Traffic Load Effect 2 Traffic 

Bridge Length (m) 
1LTβ  2LTβ  3LTβ  1LTβ  2LTβ  3LTβ  

30 4.328 5.620 5.953 4.148 5.467 6.350 

40 3.718 5.213 5.556 2.894 4.562 5.820 

50 3.576 5.112 5.593 2.654 4.395 5.675 

60 3.460 5.024 5.583 2.596 4.357 5.656 
 
Table 9.10: Three-span bridges; lifetime reliability indices considering nonlinear material 
behaviour (RSM). 

 Load Effect 1 Traffic Load Effect 2 Traffic Load Effect 3 Traffic 

Bridge 

Length (m) 
1LTβ  2LTβ  3LTβ  1LTβ  2LTβ  3LTβ  1LTβ  2LTβ  3LTβ  

30 4.313 5.572 6.803 4.593 5.740 6.080 4.494 5.689 6.037 

40 3.877 5.253 6.059 3.865 5.266 5.585 4.298 5.589 5.853 

50 3.340 4.857 5.435 3.888 5.269 5.614 4.584 5.828 6.397 

60 2.921 4.578 5.577 3.497 5.003 5.355 3.516 5.024 5.333 
 
The cumulative reliability index graphs for each bridge structure are in the Appendix 4. 

9.6 Comparison to Conventional Reliability Analysis 

The traditional reliability analysis is compared to the proposed reliability analysis accounting 

for nonlinear material behaviour. This comparison will assess the influence of nonlinear 

material behaviour on bridge safety. A direct comparison can be made when examining the 

exceedance of initial yield capacity and formation of a plastic hinge limit states as closed-

form limit states are available. This allows for the assessment of the performance of a 

traditional FORM analysis. A sample of the results are shown in Figure 9.3. The lifetime 

reliability indices found using each method for each definition of failure are shown plotted 

against total bridge length. These sample results are for bridges with a two-span 

configuration, subjected to traffic loading events found using load effect 1. 



Chapter 9 

109 

 

 
Figure 9.3: Configuration 1 life-time reliability indices for load effect 1 events. 

For the results shown in Figure 9.3, the two reliability approaches have a similar trend when 

examining the exceedance of initial yield capacity and the formation of a plastic hinge limit 
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procedure and the proposed RSM procedure for all definitions of failure. 

Structural safety of the collapse limit state found using the nonlinear method can only be 

compared to the structural safety found using the FORM method for the plastic hinge 
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Figure 9.4: Life-time reliability indices comparison. 
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This highlights the benefits of accounting for material nonlinear behaviour in a reliability 

assessment.  

The difference between the reliability indexes found using the conventional approach (which 

is based on the formation of the first plastic hinge) and the proposed approach (which allows 

for actual collapse) may be seen as a measure of the beam redundancy: differences of up to 

7% are found. 

The target reliability indices for serviceability and ultimate limit states for 1 year are given in 

the Eurocode (EC1.1 1990) to be 2.9 and 4.7 respectively. All annual reliability indices found 

using the proposed reliability procedure are well-above these target levels. The target 

reliability indices for serviceability and ultimate limit states after 50 years are also given in 

the Eurocode as 1.5 and 3.8 (EC1.1 1990). Even though the life-time reliability indices found 

using the proposed method considering material nonlinearity represent a 100 years, they are 

still far greater than these targets. This indicates the conservatism associated with the 

prescribed minimum Eurocode flexural capacity for the traffic and bridges considered. 

Parson Brickenhoff (2003) conducted an examination into why bridges failed assessments 

throughout the UK and concluded that the main contributing factor for these failures was 

conservative assessment methods. This study outlines a more rational assessment procedure 

accounting for the load redistribution associated with ductile material behaviour. 

9.8 Summary 

This chapter compares the proposed reliability analysis accounting for nonlinear material 

behaviour to a traditional reliability analysis. This comparison is performed on the 

representative group of steel composite bridges subjected to annual maximum loading events. 

The results indicate that a higher level of structural safety may be found when material 
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nonlinearity is accounted for. Accounting for nonlinear material behaviour in a probabilistic 

assessment is found to be beneficial. 
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Chapter 10 

Conclusions 

10.1  Objective Conclusions 

This study combines three main subject areas: structural reliability, nonlinear finite element 

modelling and the RSM to address the objectives in Chapter 1. The following conclusions are 

found for these objectives: 

10.1.1 Objective 1: Live Load Application in a Nonlinear Assessment 

Commonly live loads are applied as static loads positioned according to an elastic analysis in 

a nonlinear assessment positioned according to an elastic analysis. Two difficulties associated 

with this approach are: 1) where should the static loads be applied? and 2) does this 

accurately represent failure under a moving load? A series of experiments are conducted on a 

representative group of steel composite bridges. Initially the live loads are applied as static 

loads at several positions. These positions include those causing maximum bending at any 

location, at mid spans and at the internal supports. A load factor required to cause collapse is 

found for each of these positions. Further, it is found, that for a two-span bridge, it is 

sufficient to locate the live loads where it causes overall maximum moment anywhere. 

However, this is not the case for a three-span structure and various possible load positions 

should be examined to ensure the critical load factor is found. 

A proposed moving load procedure is developed to assess the performance of this commonly 

used technique. The moving load approach involves an incremental unloading/loading 

procedure which allows for the spread of plasticity to be traced throughout the structure while 

accurately representing a moving load. The lowest load factor found using the common 

approach is compared to that found using the proposed moving load approach, again for a 
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series of experiments. For the majority of scenarios examined it is found that the common 

approach slightly over-estimates the strength capacity of the structure. However, only 

marginal differences between the two approaches are found, the maximum being 3 % for a 

single point load on a three span structure. It is concluded that it is sufficient to apply live 

loads as static loads positioned according to an elastic analysis once multiple positions are 

examined and a critical position is determined.  

10.1.2 Objective 2: Deterministic Safety Assessment 

A one dimensional NFEA model is used to assess a representative group of steel composite 

bridges. These bridges are subjected to annual maximum traffic loading events determined 

from MCS based upon WIM traffic data. Three definitions of failure are examined: 

exceedance of initial yield capacity; the formation of a plastic hinge; and the formation of a 

collapse mechanism. Failure is described using a load factor, which is a multiple of the axle 

loads required to cause failure. The strength capacity of each bridge is defined as the 

minimum flexural requirement prescribed by the Eurocode. Load factors are found for each 

annual maximum event and are combined to determine a lifetime load factor using an 

extrapolation process based on extreme value statistical theory. As may be expected, the less 

conservative the definitions of failure give higher load factors. All lifetime load factors found 

are above a load factor of 1; there is adequate flexural capacity of each bridge structure. 

Using the lifetime load factors the suitability of each load effect for generating extreme traffic 

loading events is assessed. Critical load effects were determined as producing minimum 

lifetime load factors. It is found that for two span structures the maximum sagging moment in 

the spans is the critical load effect. For three span structures of a total length between 30-45 

m maximum sagging moment at mid-span of the interior span is critical while for total 

lengths between 45-60 m the hogging moment at first interior support is critical. 
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10.1.3 Objective 3: Probabilistic Safety Assessment 

While a deterministic assessment may provide some knowledge of structural safety, it is now 

common to assess structural safety using a reliability analysis. Since statistical properties are 

used in a reliability analysis, a more rational representation of safety is found.  

Traditionally an elastic structural model is used in a reliability assessment. The extra strength 

capacity available if material nonlinearity is accounted for is therefore ignored. This study 

examines a simplified probabilistic assessment which incorporates a nonlinear structural 

model and so allows for load redistribution.  A comparison between this method and a 

traditional reliability analysis is made. The difference between the traditional reliability index 

and the proposed method may be considered as a measure of the beam load 

sharing/redundancy capabilities. The difference between the two approaches is found to be as 

high as 7%.  

The nonlinear reliability procedure may act as a foundation in the development of an 

evaluation procedure for existing bridge structures. Thus for a more accurate assessment of 

the rehabilitation measures required may be found.  

10.2  Further Work 

There is no doubt that the increase in computer power has made reliability calculations more 

feasible to perform. However, a reliability analysis is only as accurate as the variables 

inputted. A limitation of this research and an area for further work is the definition of the 

resistance capacity of the structure. The resistance of each bridge used in this study is 

modelled as a single variable representing the minimum required design resistance. The 

reliance of the probabilistic assessments on this variable is highlighted by the large sensitivity 

factor found in Chapter 9. Not only should the resistance be extended to more variables but 

also should corporate a deterioration model to accurately represent an existing structure. 
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The reliability analysis procedure developed accounting for nonlinear material behaviour, 

although effective, still contains numerous limitations. The first limitation is the number of 

random variables which the RSM can be use effectively. The number of random variables 

effects the computation time greatly. For this reason it is common to assume deterministic 

properties for variables of low uncertainty. While this does make the problem more 

manageable, it does narrow the scope of the practical problem. Further work is required to 

identify important variables before a nonlinear reliability analysis can be performed i.e. a 

sensitivity analysis. 

 



Appendix 1  

117 

 

References 

AASHTO LRFD (1998), Bridge Design Specification, American Association of State Highway and 
Transportation Officials, Washington, DC. 

Abell, M. (2012). Material Nonlinearity, CSI Knowledge base [online].Available at 
wiki.csiberkeley.com/display/kb/Material+nonlinearity .Accessed on 15/08/12. 

Akgul, F. & Frangopol, D.M. (2004). Time-dependent interaction between load rating and reliability of 
deteriorating bridges. Journal of Structural Engineering, 130(12):1875-1888. 

Ang, A. H-S. and W. H. Tang (1975), Probability Concepts in Engineering Planning and Design, Volume1, 
John Wiley & Sons, pp. 198-199. 

Becker, A. (2004). An Introductory Guide to Finite Element Analysis. Suffolk: Professional Engineering 
Publishing. 

Biodini, F., Bontempi, Frangopol, D.M & Malerba, P.G. (2004). Reliability of material and geometrically 
nonlinear reinforced and prestressed concrete structures, Computers and Structures, 82:102 -1031. 

Box, G.E.P., Hunter, W.G. & Hunter, J.S. (1978). Statistics for Experimenters- An Introduction to Design, Data 

Analysis, and Model Building, John Wiley & Sons, Canada 

Bucher, C. & Most, T. (2008). A comparison of approximate response functions in structural reliability analysis, 
Probabilistic Engineering Mechanics, 23:154-163. 

Bucher, C.G. & Bourgund, U. (1990). A fast and efficient response surface approach for structural reliability 
problems. Journal of Structural Safety 7:57-66. 

Caprani , C. (2005). Probabilistic Analysis of Highway Bridge Traffic Loading. Phd Thesis University College 
Dublin. 

Caprani, C. (2011). Virtual Work. Dublin Institute of Technology. Lecture Notes 

Carley, K.M., Kamneva, N.Y. & Reminga, J. (2004) Response Surface Methodology, CASOS Technical Report, 
Centre for Computational Analysis of Social and Organizational Systems. 

Casas, J. R., Wisniewski, D.F. & Cervenka, J.(2007).Safety formats and required safety levels- 
Backgrounfddocument, SB4.4.3, Sustainable Bridges - VI Framework program, Brussels. 

Castillo, E. (1988). Extreme Value Theory in Engineering, Academic Press, New York. 

Chen, W., Goto, Y. & Richard Liew, J. (1996). Stability Design of Semi-Rigid Frames. New York: John Wiley 
& Son.  

Choi, S.K., Grandhi, R.V. & Canfield, R.A. (2007). Reliability - based structural design. London: Springer. 

Choudhury, D. (1986). Analysis of curved nonprismatic reinforced and prestressed concrete box girder bridges, 
Structural Engineering Mechanics and Materials, UCB/SEMM-86/13. 

Coles, S.G. (2001). An Introduction to Statistical Modelling of Extreme Values. London: Springer-Verlag. 

Collings, D. (2005). Steel-Composite Bridges, Thomas Telford, London. 

Cooper, D.I. (1997). Development of short span bridge - specific assessment live loading, Safety of Bridges, 
Thomas Telford, London, 64-89. 

Cost 345. (2004). Procedures Required for Assessing Highway Structures. Available from http://cost345.zag.si/: 
Cordis. 

Czarnecki, A.A & Nowak,A.S.(2007). Reliability-based evaluation of steel girder bridges, Proceedings of the 
Institution of Civil Engineers - Bridge Engineering, 1-7. 

Deng, L. & Cai, C.S.(2010). Bridge Model Updating Using Response Surface Method and Genetic Algoritim. 
Journal of Bridge Engineering, September/October, 2010. 

Du, J.S. & Au, F.T.K. (2005).Deterministic and reliability analysis of prestressed concrete bridge girders: 
comparison of the Chinese, Hong Kong and AASHTO LRFD Codes,  Journal of Structural Safety, 27:230-
45. 

EC1. 1(2005), Eurocode 1: Basis of Structural Design, European Standard EN 1990-1. Brussels: European 
Committee for Standardisation. 



Appendix 1  

118 

 

EC1.3. (2003), Eurocode 1: Actions on Structures, Part 2: Traffic loads on bridges, European Standard EN 
1991-2. Brussels: European Committee for Standardisation. 

Eom, J. & Nowak, A.S. (2001). Live Load Distribution for Steel Girder Bridges. Journal of Bridge Engineering, 

ASCE 489 -497. 

Estes, A. & Frangopol, D.M. (1999). Repair optimization of highway bridges using system reliability approach. 
Journal of Structural Engineering, ASCE, 125(7):766-775. 

Estes, A.C. & Frangopol, D.M. (2005). Load Rating versus Reliability Analysis, Journal of Structural 

Engineering, 131:843-847. 

Ferreira, L.M, Nowak, A.S., & El Debs, M.K. (2008). Development of truck weight limits for concrete bridges 
using reliability theory, Ibracon Structures and Materials Journal 1(4):421-450. 

Frangopol, D.M, Kallen, M.J. & Van Noortwijk, J.M. (2004). Probabilistic models for life cycle performance of 
deteriorating structures: review and future directions. Proceedings of Structural Engineering Materials, 
6:197 - 212. 

Gavin, H.P & Yau, S.C. (2008). High-order limit state function in the response surface method for structural 
reliability analysis. Journal of Structural Safety 30:162-179. 

Gayton, N., Bourinet, J.M. & Lemaire, M. (2003). CQ2RS: A new statistical approach to the response surface 
method for reliability analysis. Journal of Structural Safety 25:99-121. 

Ghali, A. Neville, A & Brown, T. (2009). Structural Analysis-A unified classical and matrix approach. London: 
Spon Press. 

Ghosn, M. & Moses, F. (1986). Reliability calibration of a bridge design code, Journal of Structural 
Engineering. 112 (4):745-763. 

Ghosn, M. & Moses, F. (1998). Redundancy in Highway Bridge Superstructures. Transportation Research 
Board, Washington, DC, NCHRP Report 406. 

Haldar, A. & Mahadevan, S. (2000). Reliability assessment using stochastic finite element analysis. John Wiley 
& Sons, 2000. 

Hendy, C.R. & Johnson, R.P. (2006). Designer's Guide to EN 1994-2 Eurocode 4: Design of composite steel an 
concrete structures. Part 2: General rules and rules for bridges. Thomas Telford. Bristol. 

Huo, X.S., Wassermann, E.P & Zhu, P.(2004). Simplified Method of Lateral Distribution of Live Load 
Moment. Journal of Bridge Engineering. ASCE 382 - 390. 

Hwang, E.S., Paik, I.R., & Nguyen, S., H. (2010). Reliability Analysis of Stresses in Prestressed Concrete 
Girder Under Service Load, Proceedings of 11th International Conference on Applications of Statistics and 

Probability in Civil Engineering, 1-4 August 2011, Zurich, Switzerland. 

Iles, D.C. (2001). Design Guide for Composite Highway Bridges. The Steel Construction Institute. Spon Press. 
London. 

Imhof, D. (2004). Risk Assessment of Existing Bridge Structures. PhD Thesis University of Cambridge 

Jeong, S.M., Kim, S.J., Kim, Y.B., & Park, K.T. (2003). Reliability Analysis on Flexural Behaviour of FRP 
Bridge Decks, Proceedings from the Conference on Advanced Materials for Construction of Bridges, 

Buildings and Other Structures III, Davos Switzerland. 

Khaleel, M.A. & Itani, R.Y. (1993). Safety Evaluation of Existing Partially Prestressed Concrete Girder Bridge, 

Journal of Computers & Structures 48(5):763-771. 

Kim, S.H. & Na, S.W. (1997). Response surface method using vector projected sampling points. Journal of 
Structural Safety 19(1):3-19. 

Kolios, A.I. (2010). A multi-configuration approach to reliability based structural integrity assessment for 

ultimate strength. PhD Thesis Cranfield University. 

Lei, Y. (2010). Fatigue Reliability of ship structure. PhD Thesis, University of Glasgow. 

Lemaire, M. (1998). Finite element and reliability: combined methods by response surface. In: Frantziskonis 
GN. editor, PROBAMAT-21st century: probabilities and materials. Tests, models and applications for the 
21st century, vol. NATO ASI series 3. High technology, vol. 46. Kluwer Academic; 1998:317–31. 

Li, G.Q. & Li, J.J. (2007). Advanced Analysis and Design of Steel Frames. Sussex: John Wiley & Sons. 



Appendix 1  

119 

 

Liu,Y. & Moses, F. (2001). Bridge design with reserve and residual reliability constrains. Journal of Structural 

Safety,11(1), 29-42. 

Marková, J. (2010). Reliability Assessment of Existing Concrete Bridges, Journal of KONBiN, (14, 15). 

Melchers, R.E. (1999). Structural Reliability Analysis and Prediction. Sussex: John Wiley and Sons. 

Myers, R.H. (1995). Response surface methodology: process and product optimization using designed 
experiments,Wiley, New York. 

NCHRP report 592(2007). Simplified Live Load Distribution Factor Equations, Transportation Research Board. 

Neves, R.A., Chateauneuf, A., Venturini, W.S. & Lemaire, M. (2005). Reliability analysis of reinforced 
concrete grids with nonlinear material behavior, Journal of Reliability Engineering and System Safety 
91:735-744. 

Nicholson, B.A. (1997). Simple Bridge Design using prestressed Beams. Leicester: Uniskill Ltd. 

NIST/SEMATECH e-Handbook of Statistical,Methods,http://www.itl.nist.gov/div898/handbook/,11/05/2012. 

Nowak, A.S. & Park, C.H. (2001). Reliability analysis of prestressed concrete bridge girders: comparison of 
Eurocode, Spanish Norma IAP and AASHTO. Journal of Structural Safety 23:331-344. 

Nowak, A.S. (1993).Live Load model for highway bridges, Journal of Structural Safety, 13:53-66. 

Nowak, A.S. (1999). Calibration of LRFD Bridge Design Code NCHRP Report 368, Washington D.C., 
Transportation Research Board, 1999. 

of Technology, Delft University Press, Delft 

Owen, D.R.J. & Hinton, E.(1986). Finite Elements in Plasticity Theory and Practice. Swansea: Pineridge Press 
Limited. 

Park, C.H., Nowak, A.S., Das, P.C. & Flint, A.R. (1998). Time-varying reliability model of steel girder bridges. 
Proceedings of the institution of Civil Engineers - Structures and Buildings, 128:359-367. 

Parsons & Brickenhoff (2003). A review of bridge assessment failures on the motorway and trunk road network. 
Final Project Report prepared for the Highways Agency. Parsons Brinckerhoff Ltd. 

Rackwits, R. (1982). Response surfaces in structural reliability. Berichte zur Zuverlassigkeitstheorie der 
Bauwerke, Heft 67 Munchen. 

Rackwitz, R. & Fiessler, B. (1978). Structural Reliability under Combined Random Load Sequences, Journal of 

Computer and Structures 9:489-494. 

Rajashekhar, M.R. & Ellingwood, B.R. (1993). A new look at the response surface approach for relaibiltiy 
analuysis. Journal of Strucutral Safety 12:205-220. 

Schneider, J. (2006). Introduction to Safety and Reliability of Structures. International Association for Bridge 
and Structural Engineering.IABSE-AIPC-IVBH, Zurich, Switzerland. 

Soares, R.C., Mohamed, A., Venturing, W.S. & Lemaitre, M. (2001). Reliability analysis of non-linear 
reinforced concrete frames using the response surface method. Journal of Reliability Engineering and 

System Safety 75:1-16. 

Sotelino, E.D., Liu, J., Chung, W. & Phuvoravan, K. (2004) Simplified Load Distribution Factor for use in 

LRFD Design, Indiana Department of Transportation and Federal Highway Administration. 

Spanish Norma IAP-98, Actions in highway bridges. Road Directorate, Spanish Ministry of Public Works, 
Madrid 1998. 

Stewart, M.G., Rosowsky, D.V. & Val, D.V. (2001). Reliability - based bridge assessment using risk-ranking 
decision analysis, Journal of Structural Safety 23:397-405. 

Tabsh, S.W. & Nowak, A.S. (1991). Reliability of highway girder bridges. Journal of Structural Engineering, 
ASCE, 117:23772 - 2388. 

Tonias, D.E. & Zhao, J.J. (2007). Bridge Engineering-Design, Rehabilitation and Maintenance of Modern 

Highway Bridges, 2
nd

 Edition, McGraw-Hill, New York 

Torrii, A.J. & Machado, D.A. (2010). Reliability analysis of nonlinear reinforced concrete beams. Proceedings 

for Asociacón Argentina de Mecánica Computacional Conference, 15 - 18 November 2010, Buenos Aires, 
Argentina. 



Appendix 1  

120 

 

Val, D & Melchers, R.E. (1997). Reliability of Deteriorating RC Slab Bridges, Journal of Structural 

Engineering,123(12), 1638-1644. 

Val, D., Bluger, F. & Yankelevsky D. (1997) Reliability evaluation in nonlinear analysis of reinforced concrete 
structures. Journal of Structural Safety 19(2):203-17. 

Vu, K.A.T. & Stewart, M.G. (2000). Structural reliability of concrete bridges including improved chloride - 
induced corrosion models, Journal of Structural Safety 22:313-333. 

Waarts, P.H., (2000), Structural reliability using finite element methods, Ph.D. thesis, Delft University. 

Wisniewski, D.F., Casas, J.R. & Ghosn, M. (2009). Simplified probabilistic non-linear assessment of existing 
railway bridges. Structural and Infrastructure Engineering: Maintenance, Management, Life - Cycle Design 

and Performance, 5(6):439-453. 

Wong, S.M., Hobbs, R.E. & Onof, C. (2005). An adaptive response surface method for reliability analysis of 
structures with multiple loading sequences, Journal of Structural Safety, 27:287-308. 

Xu, L., Liu, Y. & Grierson, D.E.(2005). Nonlinear analysis of steel frameworks through direct modification of 
member stiffness properties, Advances in Engineering Software, 36:312-324. 

Zona, A., Barbato, M., Dall'Asta, A. & Dezi, L. (2010). Probabilistic analysis for design assessment of 
continous steel-concrete composite girders. Journal of Constructional Steel Research 66:897-905. 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix 1  

121 

 

 

 

 

 

 

 

 

Appendix 1  

Live Load Application Graphs 

 

  



Appendix 1  

122 

 

Appendix 1 Live Load Application Graphs 

A1.1 Introduction 

This appendix contains the results graph form Chapter 7. The common approach of applying 

moving live loads as stationary loads is assessed against the proposed moving load procedure 

in terms of a load factor ratio (see Section 7.7). The stationary loads are positioned according 

to Table 7.4. The positions causing the maximum load factor ratio are highlighted in blue 

while the positions causing the minimum load factor ratio are highlighted in red. The 

common approach of applying the live loads as static loads positioned according to an elastic 

analysis is found to behave quite similar to the proposed moving load approach, when 

appropriate positions are examined. 

A1.2 Two-Span Structures 

 
Figure A1.1: AS1 (one axle) 
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Figure A1.2:AS2-H20 (two axles)  

 
Figure A1.3: AS3-HS20 (three axles) 
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Figure A1.4: AS5-T1103 (five axles) 

 
Figure A1.5: AS2-1.5 (two axles 1.5 m apart) 
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Figure A1.6: AS2-3.0 (two axles 3.0 m apart) 

 
Figure A1.7:AS2-4.5 (two axles 4.5 m apart) 
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Figure A1.8: AS2-6.0 (two axles 6.0 m apart) 

 
Figure A1.9: AS2-7.5 (two axles 7.5 m apart) 
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Figure A1.10: AS2-9.0 (two axles 9.0 m apart) 
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A1.3 Three-Span Structures 

 
 

Figure A1.11: AS1 (one axle) 
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Figure A1.12: AS2-H20 (two axles) 

 
Figure A1.13: AS3-HS20 (three axles) 
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Figure A1.14: AS5-T1103 (five axles) 

 
Figure A1.15:AS2-1.5 (two axles 1.5 m apart) 
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Figure A1.16:AS2-3.0 (two axles 3.0 m apart) 

 
Figure A1.17:AS2-4.5 (two axles 4.5 m apart) 
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Figure A1.18:AS2-6.0 (two axles 6.0 m apart) 

 
Figure A1.19:AS2-7.5 (two axles 7.5 apart) 
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Figure A1.20: AS2-9.0 (two axles 9.0 apart) 
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Appendix 2 Deterministic Study 

A2.1 Introduction 

The results of the deterministic study carried out in Chapter 8 are contained in this Appendix. 

Graphs of the failure load factors are shown for each annual maximum loading event. The 

limit state extrapolation graphs for the semi-probabilistic study are also given. 

A2.2 Two-Span Structures 

a) Load effect 1 events; a) Load effect 1 events; 

b) Load effect 2 events; b) Load effect 2 events; 

Figure A2.1: Two-span 30 bridge load factors.  Figure A2.2: Two-span 30 bridge limit state 

extrapolation. 
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a) Load effect 1 events; a) Load effect 1 events; 

b) Load effect 2 events; b) Load effect 2 events; 

Figure A2.3: Two-span 40 bridge load factors. Figure A2.4: Two-span 40 bridge limit state 

extrapolation. 
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a) Load effect 1 events; a) Load effect 1 events; 

b) Load effect 2 events; b) Load effect 2 events; 

Figure A2.5: Two-span 50 bridge load factors. Figure A2.6: Two-span 50 bridge limit state 

extrapolation. 
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a) Load effect 1 events; a) Load effect 1 events; 

b) Load effect 2 events; b) Load effect 2 events; 

Figure A2.7: Two-span 60 bridge load factors. Figure A2.8: Two-span 60 bridge limit state 

extrapolation. 

 

Table A2.1: Two-span bridges lifetime load factors 

 Load Effect 1 Traffic Load Effect 2 Traffic 

Bridge Length (m) 
1LTλ  2 LTλ  3LTλ  1LTλ  2 LTλ  3LTλ  

30 2.614 3.600 3.859 3.235 4.763 4.898 

40 2.482 3.449 3.700 2.002 3.016 3.948 

50 2.735 3.819 4.031 2.144 3.278 3.915 

60 2.801 3.934 4.112 2.219 3.439 4.242 
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Figure A2.9: Two-span structures life-time load factors for load effect 1 events. 

 

 
Figure A2.10: Two-span structures life-time load factors for load effect 2 events. 
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A2.2 Three-Span Structures 

 
a) Load effect 1 events; 

 
a) Load effect 1 events; 

 
b) Load effect 2 events; 

 
b) Load effect 2 events; 

 
c) Load effect 3 events; 

 
c) Load effect 3 events; 

Figure A2.11: Three-span 30 bridge load factors. Figure A2.12: Three-span 30 bridge limit state 

extrapolation. 
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a) Load effect 1 events; a) Load effect 1 events; 

b) Load effect 2 events; b) Load effect 2 events; 

c) Load effect 3 events; c) Load effect 3 events; 

Figure A2.13: Three-span 40 bridge load factors. Figure A2.14: Three-span 40 bridge limit state 

extrapolation. 
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a) Load effect 1 events; 

 
a) Load effect 1 events; 

 
b) Load effect 2 events; 

 
b) Load effect 2 events; 

 
c) Load effect 3 events; 

 
c) Load effect 3 events; 

Figure A2.15: Three-span 50 bridge load factors. Figure A2.16: Three-span 50 bridge limit state 

extrapolation. 
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a) Load effect 1 events; a) Load effect 1 events; 

b) Load effect 2 events; b) Load effect 2 events; 

c) Load effect 3 events; c) Load effect 3 events; 

Figure A2.17: Three-span 60 bridge load factors. Figure A2.18: Three-span 60 bridge limit state 

extrapolation. 
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Table A2.2: Three-span bridges lifetime load factors. 

 Load Effect 1 Traffic Load Effect 2 Traffic Load Effect 3 Traffic 

Bridge 

Length (m) 
1LTλ  2 LTλ  3LTλ  1LTλ  2 LTλ  3LTλ  1LTλ  2 LTλ  3LTλ  

30 2.669 3.795 5.120 2.575 3.515 3.817 3.082 4.155 4.508 

40 2.664 3.897 4.245 2.490 3.458 3.681 2.933 3.982 4.317 

50 2.157 3.245 3.600 2.685 3.745 4.015 3.113 4.239 4.723 

60 1.966 2.932 3.717 2.394 3.383 3.717 3.017 4.128 4.172 

 

 
Figure A2.19: Three-span life-time load factors for load effect 1 events. 
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Figure A2.20: Three-span life-time load factors for load effect 2 events. 

 

 
Figure A2.21: Three-span life-time load factors for load effect 3 events. 
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Appendix 3  Lifetime Load Factor Comparison  

A3.1 Introduction 

In this Appendix a further study into the lifetime load factors (see Section 8.5) for the 2span-

40 bridge (Figure A3.1) is performed.  

 

Figure A3.1: Two-span 40 bridge 

The lifetime load factors for a range of plastic moment capacities are found (see Section 8.5). 

The plastic moment capacities examined include: 

1. Minimum Eurocode flexure capacity (as before) (EC1.2, 2005). 

2. Minimum Eurocode flexure capacity excluding safety factors. 

3. Minimum AASHTO flexure capacity (AASHTO-LRFD, 2007). 

4. Minimum AASHTO flexure capacity excluding the safety factors. 

5. Actual plastic moment capacity of the steel composite section (see Figure 6.2) 

The structure is subjected to 100 annual maximum traffic loading events (see Section 8.2). 

These loading events are identified as causing maximum sagging moment at mid-span of the 

first interior span. This was deemed a critical load effect in Section 8.7. 

Load factors are found for each annual maximum event for three definitions of failure which 

are 1) Exceedance of initial yield capacity 1( )λ , 2) formation of the plastic hinge 2( )λ  and 3) 

formation of a collapse mechanism 3( )λ . These are then combined using the methodology 

given in Section 8.5 to determine the lifetime load factors (λ )LT
. 

 
20 m 20 m 
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A3.2 Flexure Resistance Design 

The plastic moment capacities (1-4) are calculated following the work of Nowak et al (2001): 

 ( )
1 2 31 2 3α ( ) α ( ) α ( ) α ( ) /p D D D LM D D D L LDF φ = + + +   (A3.1) 

where 1D  is the dead load moment due to the beam, 2D  is the dead load moment due to the 

slab, 3D is the dead load moment due to the road surfacing given in Table A3.1, L  is the live 

load moment on the structure and LDF  is the maximum total LDF of the critical beam in 

the bridge. The safety factors 
1 3Dα
−

and 
Lα  are given in Table A3.2. 

Table A3.1: Dead load calculation 

Type Density 

(kN/m
3
) 

Thickness 

(m) 

Width 

(m) 

Area 

(m
2
) 

Load (kN/m) Moment (kNm) 

1D  77* --- --- 0.0296 2.28 114 

2D  25* 0.25 2.65 0.6625 16.56 828 

3D  22* 0.13 2.65 0.3313 7.29 364 

Total
 

26.13 1306 

* Values taken from Iles (2010) 

Table A3.2: Safety factors 

Variable Eurocode AASHTO 

1D
 

1.35 1.25 

2D
 

1.35 1.25 

3D
 

1.35 1.5 

L  1.5 1.75 

φ  0.88 1 

 

The live load model as specified in the Eurocode and AASHTO design codes are used to 

calculate the live load subjected to each girder. These live load models are given in Figure 

A3.2. The live loads corresponding to each load model is given in Table A3.3 
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Table A3.3: Live load calculation. 

 Eurocode AASHTO 

Lane Live Load 2494.9 (kNm) 2284.2 (kNm) 

Lane Distribution Factor* 0.535 0.535 

Girder Live Load 1334.7 (kNm) 1221.97 (kNm) 

*see Section 6.3 

 
(a) Eurocode LM1 (EC1.2, 2005); 

 
(b) AASHTO live load model (AASHTO-LRFD, 2007); 

Figure A3.2: Live load models 

The plastic moment capacities examined are given in Table A3.4.  

Table A3.4: Flexure resistance capacities. 

Resistance 
P

M
 

Eurocode 4279.33 kNm 

Eurocode (excluding safety) 2641.19 kNm 

AASHTO 3862.68 kNm 

AASHTO (excluding safety factors) 2528.47 kNm 

Actual Moment Capacity (Iles, 2001) 5211.29  kNm 

 

  

2.0 m 

1.2 m 

1.2 m 

Q Q 

q 

Lane 1: Q = 300 kN q = 9.0 kN/m
3
 

Lane 2: Q = 200 kN q = 2.5 kN/m
3
 

Lane 3: Q = 100 kN q = 2.5 kN/m
3
 

4.3 m 

145 kN 145 kN 

9.3 kN/m 

45 kN 
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A3.3  Lifetime Load Factor Comparison Results 

The load factors for each loading events for each definition of failure are given in Figure 

A3.3-A3.5. The actual moment capacity of the structure displays the highest level of 

conservatism, followed by the Eurocode, then the AASHTO. A significant number of failures 

were found when examining the load factors required for exceedance of initial yield 1( 1)λ <  

when the AASHTO minimum moment capacity excluding safety factors is used. 

 
Figure A3.3: Load factors causing initial yield. 
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Figure A3.4: Load factors causing plastic hinge formation. 

 
Figure A3.5: Load factors causing collapse mechanism formation. 

The lifetime load factors corresponding to a 1000 year return period are given in Table A3.4 
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safety factors are excluded from the minimum flexure capacity as defined by the Eurocode, 

the structure will not reach the initial yield capacity. However if the moment capacities are 

removed from the AASHTO resistance calculation, the initial yield capacity of the structure 

will be exceeded in its lifetime ( 1 1LTλ < ). All plastic moment capacities are safe against 

plastic hinge and collapse mechanism failures for the traffic examined. 

Table A3.4: Lifetime load factors. 

Resistance 
1LT

λ  2LT
λ  3LT

λ  

Eurocode 2.482 3.449 3.700 

Eurocode (excluding 

safety factors) 

1.185 1.861 1.916 

AASHTO 1.926 2.730 2.888 

AASHTO (excluding 

safety factors) 

0.809 1.567 1.588 

Actual Moment 

Capacity 

3.172 4.357 4.675 

 

 
Figure A3.6: Initial yield lifetime load factor extrapolation results. 
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Figure A3.7: Plastic hinge lifetime load factor extrapolation results. 

 
Figure A3.8: Collapse lifetime load factor extrapolation results. 
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Appendix 4 Experimental Design Study 

A4.1 Introduction 

The performance of the EDs outlined in Section 5.3 are examined. A series of loading events 

are examined on the two-span bridge shown in Figure A4.1.  

 
Figure A4.1: Two-span 40 bridge. 

The reliability index is found using the RSM methodology described in Section 5.8 for each 

ED. These results are then compared to those found using MCS (see Section 3.2.1). The limit 

state function is the formation of a collapse mechanism. 

The loading events are randomly generated (see Section 8.2). The random properties for each 

loading event are the plastic moment capacity ( )PM of the structure and the GVW of each 

truck. The coefficient of variation of the plastic moment capacity was taken as 0.1 (Czarnecki 

et al, 2007) and the coefficient of variation of the GVW for each truck was taken as 0.18 

(Nowak et al, 2001). The structure is only subjected to live load. Importantly, the plastic 

moment capacity of each structure is chosen so as reliability index of approximately zero is 

found. This is to ensure a high probability of failure is found meaning a reduced number of 

Monte Carlo simulations are required.  

The accuracy of each ED is found by normalizing the reliability indices found using RSM 

with those found using MCS: 

 
accuracy

MC

β

β
=  

(A4.1) 

 
20 m 20 m 
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The closer this ratio is to unity the more accurate the ED design is. The number of NFEAs 

required for each ED to converge is also assessed.  

For each loading event a figure showing the position of each truck is given. A table 

presenting the random variable inputs and a table giving the performance of each ED are also 

given. 

A4.2 One Truck Loading Event 

 
Figure A4.2: One truck event truck position. 

Table A4.1: One truck event random variables. 
Variable µ

 CoV Distribution 

PM  (kNm) 726 0.1 Normal 

GVW (kN) 783 0.18 Normal 

 
Table A4.2: One truck event RSM results. 
 

Experimental 

Design 

No. 

Iterations 

(h=3) 

No. 

Iterations 

(h=2) 

No. 

Iterations 

(h=1) 

Total 

Iterations 

No. 

NFEAs 
β  / MCβ β

 

CCC 1 1 1 3 45 0.086 1.139 

CCI 1 1 1 3 45 0.085 1.123 

CCF 1  1 3 45 0.083 1.093 

BB Not applicable for problems with two random variables 

Monte Carlo 10000 0.076 1 
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Longitudinal Truck Position (m)
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A4.3 Two Truck Loading Event 

 
Figure A4.3: Two truck event. 

Table A4.3: Two truck event random variables. 
Variable µ

 CoV Distribution 

PM  (kNm) 834 0.1 Normal 

GVW (kN) 585 0.18 Normal 

GVW (kN) 575 0.18 Normal 

 
Table A4.4: Two truck event RSM results. 

Experimental 

Design 

No. 

Iterations 

(h=3) 

No. 

Iterations 

(h=2) 

No. 

Iterations 

(h=1) 

Total 

Iterations 

No. 

NFEAs 
β  / MCβ β

 

CCC 3 1 1 5 110 -0.207 0.989 

CCI 2 0 1 3 66 -0.208 0.994 

CCF Did not converge after 10 iterations. 

BB 1 0 1 2 34 -0.210 1.004 

Monte Carlo 10000 -0.2091 1 
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A4.4 Three Truck Loading Event 

 
Figure A4.4: Three truck event. 

Table A4.5: Three truck event random variables. 
Variable µ

 CoV Distribution 

PM  (kNm) 834 0.1 Normal 

GVW (kN) 696 0.18 Normal 

GVW (kN) 481 0.18 Normal 

GVW (kN) 327 0.18 Normal 

 
Table A4.6: Three truck event RSM results. 

Experimental 

Design 

No. 

Iterations 

(h=3) 

No. 

Iterations 

(h=2) 

No. 

Iterations 

(h=1) 

Total 

Iterations 

No. 

NFEAs 
β  / MCβ β

 

CCC 1 2 1 4 132 -0.209 0.963 

CCI 1 0 1 2 66 -0.208 0.958 

CCF Did not converge after 10 iterations. 

BB 1 0 1 2 58 -0.210 0.968 

Monte Carlo 10000 -0.217 1 
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A4.5 Four Truck Loading Event 

 
Figure A4.5: Four truck event. 

Table A4.7: Four truck event random variables. 
Variable µ

 CoV Distribution 

PM  (kNm) 645 0.1 Normal 

GVW (kN) 477 0.18 Normal 

GVW (kN) 485 0.18 Normal 

GVW (kN) 376 0.18 Normal 

GVW (kN) 234 0.18 Normal 

 

Table A4.8: Four truck event RSM results. 

Experimental 

Design 

No. 

Iterations 

(h=3) 

No. 

Iterations 

(h=2) 

No. 

Iterations 

(h=1) 

Total 

Iterations 

No. 

NFEAs 
β  / MCβ β

 

CCC Did not converge after 10 iterations. 

CCI 3 0 1 4 136 0.381 1.041 

CCF Did not converge after 10 iterations. 

BB 1 0 1 2 96 0.378 1.033 

Monte Carlo 10000 0.366 1 
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A4.6 Experimental Design Comparison Results 

The accuracy of ED is compared using Equation (A4.1). The results are shown in Figure 

A4.6. The Box-Behnken design is not applicable for the one truck loading event as a 

minimum of three random variables are required. The CCF design did not converge after ten 

iterations for the two, three, and four truck loading events.  When convergence is achieved all 

EDs produce a high level of accuracy. However, it is found that the BB design has the highest 

level of accuracy when compared to MCS for each of these loading events. 

 
Figure A4.6: Experimental design accuracy comparison. 

The number of NFEAs required for each experimental design to reach convergence is also 

important. These results for each ED are shown in Figure A4.7.  
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Figure A4.7: No. NFEAs required for convergence with each experiment design. 

It is found that the BB design requires the least number of NFEAs to reach convergence for 

each of these loading events. From this study is recommended that the BB design be used in 

the reliability analysis procedure considering nonlinear material behaviour.  
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Appendix 5 Probabilistic Study 

A5.1 Introduction 

This appendix contains the graphs for the probabilistic study as part of Chapter 9 carried out 

on the representative set of steel composite structures. The reliability indices found using the 

probabilistic assessment methodology given in Section 5.5. The reliability indices for each 

annual maximum loading event are given along with the cumulative reliability indices. 

A5.2 Two-Span Structures 

a) Load effect 1 events; a) Load effect 1 events; 

b) Load effect 2 events; b) Load effect 2 events; 

Figure A5.1: Two-span 30 bridge reliability indices. Figure A5.2: Two-span 30 bridge reliability indices 

cumulative reliability indices. 
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a) Load effect 1 events; a) Load effect 1 events; 

b) Load effect 2 events; b) Load effect 2 events; 

Figure A5.3: Two-span 40 bridge reliability indices. Figure A5.4: Two-span 40 bridge reliability indices 

cumulative reliability indices. 
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a) Load effect 1 events; a) Load effect 1 events; 

b) Load effect 2 events; b) Load effect 2 events; 

Figure A5.5: Two-span 50 bridge reliability indices. Figure A5.6: Two-span 50 bridge reliability indices 

cumulative reliability indices. 
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a) Load effect 1 events; a) Load effect 1 events; 

b) Load effect 2 events; b) Load effect 2 events; 

Figure A5.7: Two-span 60 bridge reliability indices. Figure A5.8: Two-span 60 bridge reliability indices 

cumulative reliability indices. 

 

Table A5.1: Two-span bridges; lifetime reliability indices considering nonlinear material 
behaviour (RSM). 

 Load Effect 1 Traffic Load Effect 2 Traffic 

Bridge Length (m) 
1LT

β  
2LT

β  
3LT

β  
1LT

β  
2LT

β  
3LT

β  

30 4.328 5.620 5.953 4.148 5.467 6.350 

40 3.718 5.213 5.556 2.894 4.562 5.820 

50 3.576 5.112 5.593 2.654 4.395 5.675 

60 3.460 5.024 5.583 2.596 4.357 5.656 

 
Table A5.2: Two-span bridges; lifetime reliability indices (FORM). 

 Load Effect 1 Traffic Load Effect 2 Traffic 

Bridge Length (m) 
1LT

β  
2LT

β  
1LT

β  
2LT

β  

30 4.481 5.755 5.002 6.166 
40 3.911 5.304 4.105 5.457 
50 3.834 5.242 3.924 5.313 
60 3.755 5.178 3.799 5.208 
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Figure A5.9: Two-span structures life-time reliability indices for load effect 1 events. 

 

 
Figure A5.10: Two-span structures life-time reliability indices for load effect 2 events. 
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A5.3 Three-Span Structures 

 
a) Load effect 1 events; 

 
a) Load effect 1 events; 

 
b) Load effect 2 events; 

 
b) Load effect 2 events; 

 
c) Load effect 3 events; 

 
c) Load effect 3 events; 

Figure A5.11: Three-span 30 bridge reliability indices. Figure A5.12: Three-span 30 bridge reliability indices 

cumulative reliability indices. 
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a) Load effect 1 events; a) Load effect 1 events; 

b) Load effect 2 events; b) Load effect 2 events; 

c) Load effect 3 events; c) Load effect 3 events; 

Figure A5.13: Three-span 40 bridge reliability indices. Figure A5.14: Three-span 40 bridge reliability indices 

cumulative reliability indices. 
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a) Load effect 1 events; 

 

a) Load effect 1 events; 

 

b) Load effect 2 events; 

 

b) Load effect 2 events; 

 

c) Load effect 3 events; 

 

c) Load effect 3 events; 

Figure A5.15: Three-span 50 bridge reliability indices. Figure A5.16: Three-span 50 bridge reliability indices 

cumulative reliability indices. 
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a) Load effect 1 events; a) Load effect 1 events; 

b) Load effect 2 events; b) Load effect 2 events; 

c) Load effect 3 events; c) Load effect 3 events; 

Figure A5.17: Three-span 60 bridge reliability indices. Figure A5.18: Three-span 60 bridge reliability indices 

cumulative reliability indices. 
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Table A5.3: Three-span bridges; lifetime reliability indices considering nonlinear material 
behaviour (RSM). 

 Load Effect 1 Traffic Load Effect 2 Traffic Load Effect 3 Traffic 

Bridge 

Length (m) 
1LTβ  2LTβ  3LTβ  1LTβ  2LTβ  3LTβ  1LTβ  2LTβ  3LTβ  

30 4.313 5.572 6.803 4.593 5.740 6.080 4.494 5.689 6.037 

40 3.877 5.253 6.059 3.865 5.266 5.585 4.298 5.589 5.853 

50 3.340 4.857 5.435 3.888 5.269 5.614 4.584 5.828 6.397 

60 2.921 4.578 5.577 3.497 5.003 5.355 3.516 5.024 5.333 
 
Table A5.4: Three-span bridges; lifetime reliability indices (FORM). 

 Load Effect 1 Traffic Load Effect 2 Traffic Load Effect 3 Traffic 

Bridge 

Length (m) 
1LTβ  2LTβ  1LTβ  2LTβ  1LTβ  2LTβ  

30 5.186 6.305 5.037 6.189 5.010 6.168 

40 5.019 6.176 4.454 5.734 4.163 5.468 

50 4.358 5.658 4.244 5.569 4.545 5.805 

60 4.120 5.469 3.895 5.293 3.910 5.305 

 

 
Figure A5.19: Three-span life-time reliability indices for load effect 1 events. 
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Figure A5.20: Three-span life-time reliability indices for load effect 2 events. 

 

 
Figure A5.21: Three-span life-time reliability indices for load effect 3 events. 
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1 INTRODUCTION 

1.1 Bridge assessment 

Better assessment of existing highway structures can 
prolong the life of such structures with consequent 
savings to rehabilitation and replacement budgets. 
At present, there are over one million bridge struc-
tures in Europe with a total replacement cost of €400 
billion (Cost 345). Appropriate procedures and tech-
niques are vital for an accurate assessment of a 
bridge structures. It is no longer feasible to assess 
bridge stock in accordance to design rules for new 
structures as this may be overly conservative and un-
realistic in many cases. The European Cost 345 
project identified five levels of assessment ranging 
from a simple conservative method to an accurate 
probabilistic assessment. This study is concerned 
with a probabilistic method of calculating the relia-
bility of a bridge structure.  

Presently the reliability of bridge structures is 
generally based on an elastic analysis, or a static col-
lapse analysis based on an idealized moment–
rotation curve. Whilst this is a safe approach by vir-
tue of the Lower Bound Theorem, it may give unac-
ceptably conservative results in many cases. By 
modeling real structural behavior better, it is possi-
ble to obtain more accurate assessment of safety le-
vels.  

Traffic loading is a highly variable loading phe-
nomenon and so bridge safety is sensitive to the 
model assumed for it. Extreme bridge traffic loading 

events may lead to elastic-plastic deformation of a 
bridge beam, or even failure. However, it is common 
to model such events in a reliability framework us-
ing elastic analysis. At the ultimate limit state, an 
elastic-plastic analysis may be more appropriate to 
estimate the actual strength of the structure. 

1.2 Nonlinear modeling in reliability analysis 

Several researchers have investigated reliability 
analysis incorporating a nonlinear structural beha-
vior models. The main difficulty associated with a 
First Order Reliability Method (FORM) is that the 
gradient of the failure function needs to be estab-
lished (Torii et al 2010). This proves very complex 
when incorporating a nonlinear structural model. Val 
et al (1997) proposed a method directly combining a 
finite element model with FORM, taking geometric 
and material nonlinearities into account. Torii et al 
(2010) linked a nonlinear finite element model to 
FORM using sensitivity analysis. Soares et al (2001) 
and Neves et al (2005) both successfully imple-
mented a reliability analysis with a nonlinear struc-
tural model using the response surface method. All 
of the studies outlined examine concrete structures 
subjected to static loading. However, Khaleel et al 
(1992) determine bridge capacity using a nonlinear 
finite element model and investigated the reliability 
analysis for a moving load. However they limit their 
study to single vehicle cases. 

Reliability analysis of highway bridge structures considering ultimate 
load effects 

L.A. McCarthy & C.C. Caprani 
Department of Civil & Structural Engineering, Dublin Institute of Technology, Ireland 

 

 
 

 

 

 
 
ABSTRACT: In the reliability analysis of bridge structures, it is often assumed that the bridge responds elas-

tically to the highway loads it is subjected to. In this work a nonlinear material response of a three span beam 

and slab bridge structure is assessed using a nonlinear finite element model. The bridge is subjected to a life-

time of simulated traffic: 100 years annual maximum truck traffic loads determined from Monte Carlo Simu-

lation of Weigh in Motion (WIM) data are used. A load factor for bending failure for each annual maximum 

event is established. Extrapolations are carried out to determine the load factor at the level of characteristic 

loading using a 1000-year return period, in order to determine if linear elastic response is appropriate at this 

level. Furthermore the reliability index for this indeterminate structure is also established using the First Order 

Reliability Method. 
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2 NONLINEAR FINITE ELEMENT MODEL 

2.1 Introduction 

Nonlinear elastic-plastic analysis of structures is 
suitable when the actual strength of a structure is re-
quired when subjected to a certain form of loading 
(Chen et al, 1996). Only material nonlinearity is 
considered in this study.  

Using the matrix displacement method, the for-
mation of plastic hinges can be found based on in-
cremental loading of the structure. At each incre-
ment the stiffness equations for the elements are 
found on the basis of forces and displacement in-
duced on the structure in the previous increment (Li 
& Li, 2007). This analysis updates the stiffness equ-
ations so as to allow for the formation of plastic 
hinges. Plastic hinge formation is based on the as-
sumption that plasticity is concentrated at the ele-
ment ends only (Chen et al, 1996). 

This work uses 1-dimensional beam elements to 
represent the bridge. As a result, the Generalized 
Clough Model, described in Li & Li (2007) is suita-
ble, and used for this work. This model is also well-
suited to this problem as it does not require integra-
tion of the constitutive equations over the element 
cross section at each increment. With this simpler 
computational approach, the analyses can perform 
more quickly. This is required for this study given 
the large number of separate analyses involved in 
analyzing bridges subjected to moving truck loads. 
Further, cyclic loading histories are accounted for. 
This is necessary for proper consideration of bridge 
traffic loading events, when vehicles traversing the 
bridge  can cause sagging and hogging moments at a 
given cross section depending on the bridge 
configuration (for example two-span bridge). 

2.2 Formulation 

Clough et al (1990) proposed a moment rotation 
curve that traces the spread of plasticity through a 
section by the use of force recovery parameters (R). 
This approach is described in detail by Li & Li 
(2007). The force recovery parameters are calculated 
based on a yield function, given by: 

p

M

M
Γ =  (1) 

where M = the moment currently on the cross sec-

tion, and Mp = the plastic moment capacity of the 

section. The values of the force recovery parameters 

are based on the yield function, as shown in Figure 

1, in which Γy is the yield function at the yield mo-

ment of the cross section, My, and Γp is the yield 

function at Mp. 
When the structure behaves elastically (Stage 1) 

the force recovery parameters are unity: 

: 1y RΓ ≤ Γ =  (2) 

Beyond yield (Stage 2), the stiffness reduces due to 
the formation of plasticity in the cross section, 
identified through the yield function: 

: 1
y

y p

p y

R
Γ − Γ

Γ ≤ Γ ≤ Γ = −
Γ − Γ

 (3) 

Once the section is fully plastic (Stage 3), the force 
recovery parameter takes the value of strain 
hardening of the material, q: 

:p R qΓ ≥ Γ =  (4) 

During an unloading event at any point (Stage 4), 
the structure is assumed to have its elastic stiffness:  

Unloading : 1R =  (5) 

 

 

(a) Force recovery parameters under cyclic loading; 

 

 

(b) Moment rotation relationship; 
 
Figure 1. Stages in the behavior of the cross section. 
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Unloading states are identified through the yield 
function at successive increments i, as: 

1 : loading
i i−Γ ≥ Γ  (6) 

1 : unloading
i i−Γ < Γ  (7) 

The force recovery parameters are determined at 
each end of the beam element, and are denoted R1 
and R2 for ends 1 and 2 respectively. The force re-
covery parameters alter the element local stiffness 
matrices as follows: 

[ ] ( )[ ]1 2 2 1 2 2:
g e

R R k R k R R k ≥ = + −   (8) 

[ ] ( )[ ]2 1 1 2 1 1:
g e

R R k R k R R k ≥ = + −   (9) 

in which kg is element tangent stiffness matrix at the 

current loading state. The elastic element stiffness 

matrix, ke, is given by: 

[ ]
2 2

3

2 2

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

e

L L

L L L LEI
k

L LL

L L L L

− 
 − =
 − − −
 

− 

 (10) 

The stiffness matrix with an element with a hinge at 
end 1, k1, is given by: 

[ ]1 3

2

3 0 3 3

0 0 0 0

3 0 3 3

3 0 3 3

L

EI
k

LL

L L L

− 
 
 =
 − −
 

− 

 (11) 

The stiffness matrix with an element with a hinge at 
end 2, k2, is given by: 

[ ]
2

2 3

3 3 3 0

3 3 3 0

3 3 3 0

0 0 0 0

L

L L LEI
k

LL

− 
 − =
 − −
 
 

 (12) 

where EI is the flexural rigidity of the cross section 
and L is the element length. 

2.3 Incremental approach for bridge traffic loading 
events 

The incremental procedure outlined in Ghali et al 
(2009), Becker (2004), and Chen et al (1996) is used 
as the vehicle(s), represented by point loads, move 
across the bridge structure. At each increment of 
loading, the equilibrium equation is formulated and 
solved: 

{ } { }g
F K uλ  =    (13) 

where λ = load factor, F = external force vector, Kg = 

global stiffness matrix and u = displacement vector. 

To represent the moving loads that the bridge is 
subjected to, a loading -unloading procedure is used. 
Loading and unloading are both done simultaneous-
ly to signify a moving load across a bridge structure, 
as shown in Figure 2. Node locations are subject to 
mesh refinement. Node 1 unloads as node 2 loads. In 
this way, the effects of a plastic hinge forming from 
loads positioned at a previous location can be ac-
counted for when the load moves position. 

 

 
 
Figure 2. Incremental Loading/Unloading Procedure. 

 
The accuracy of the incremental procedure de-

pends on the size of the increments used, since at the 
onset of nonlinearity the equilibrium path will drift 
away from the actual path (Chen et al, 1996). A 
convergence study was used to determine the maxi-
mum acceptable increment step for minimum com-
putational effort. 

3 RELIABILITY ANALYSIS 

3.1 Background 

In recent years reliability analysis has become a vital 
tool in the safety assessment of structures. The prob-
ability of failure of a structure is evaluated based on 
a limit state function. Limit sate functions can be de-
scribed as ultimate limit states, in which the struc-
ture is assessed against actual collapse, and servi-
ceability limit states, in which the structure is 
assessed for the acceptability of its in-service func-
tionality (Choi et al, 2007).  

The probability of failure for a given limit state 
function can be defined as follows: 

( ) 0

( )
f x

g x

p f x dx
≤

= ∫∫�  (14) 

where g(x), is a limit state function of basic random 
variables x, and fx(x) is the joint probability density 
function of those variables. The probability of fail-
ure is approximated by the Hasofer-Lind reliability 
index, β (Melchers, 1999), given by: 

1 ( )fpβ −≈ −Φ  (15) 

where Φ
-1

 is the inverse standard normal distribution 
function. 
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3.2 Limit State Function 

For structural safety at the ultimate limit state, fail-
ure is often deemed to occur when the applied load 
effect (S) is greater than the structural resistance (R) 
giving a limit state equation of: 

 

g R S= −  (16) 

For which the probability of failure, Equation (14), 
is then given by: 

[ 0]fp P g= <  (17) 

where g < 0 is the failure region, g = 0 is the failure 
surface, and g > 0 is the safe region, and it is as-
sumed that R and S are statistically independent. 

Typically failure is deemed to occur when the 
load effect, found using linear elastic methods, 
reaches Mp at a single cross section. This ignores the 
extra strength of a structure in resisting collapse due 
to plastic redistribution of loads. When considering a 
nonlinear analysis, it is preferable to consider failure 
as total collapse of the structure, or a similar cata-
strophic condition of the structure. Failure at the on-
set of collapse occurs when the global stiffness ma-
trix becomes singular (Owen & Hinton, 1986): 

( )det
g

g K=  (18) 

However, because strain hardening is considered as 
part of this study, singularity of the global stiffness 
matrix does not occur. As a result, Failure was de-
fined for this analysis when the bending moment at 
any section reaches a maximum allowable post-yield 
bending moment. For this work, this value was taken 
as 1.1Mp, which reflects an allowance for the ductili-
ty ratio of the cross section: 

1.1 pg M M= −  (19) 

In this manner, the extra strength of a structure in re-
sisting collapse due to plastic redistribution of loads 
is allowed for. 

3.3 Structure loading 

The moments caused on the structure are a combina-
tion of those due to the dead load of the structure, 
and the live load due to the traffic.  

1 2 3S D D D L= + + +  (20) 

where D1 is the dead load moment due to the beam, 
D2 is the dead load moment due to the slab, D3 is the  
dead load moment due to the road surfacing, and L is 
the live load moment on the structure. The limit state 
function, Equation (19), therefore becomes:  

1 2 31.1  ( )pg M D D D L= − + + +  (21) 

at any cross section in the structure. 

4  BRIDGE & TRAFFIC MODEL 

4.1 Bridge model 

A three span slab and beam bridge was chosen for 

this investigation. The bridge caters for two lanes of 

traffic and consists of a 220 mm slab sitting on nine 

Y8 prestressed concrete girders spaced 1.275 m 

apart, as shown in Figure 3. The two outer spans are 

20 m in length and the middle span is 28 m in 

length. The modulus of elasticity is taken as 31 GPa 

for the slab and 34 GPa for the beam. The modulus 

of strain hardening was taken to be 1.5 % of the 

modulus of elasticity of the prestressed concrete 

beam. (Li et al, 2007). The load effects considered in 

this study are shown in Table 1. 

 
Table 1. Load effects considered in this study. 

Load Effect 1 hogging moment over first interior support 

Load Effect 2 interior span mid span bending moment 

Load Effect 3 exterior span mid span bending moment 

4.2 Lane distribution factors 

A linear elastic finite element analysis was used to 
determine the lane distribution factors of the live 
load moment on the bridge. A grillage analysis was 
conducted with longitudinal members representing 
the beam and slab composite section and the trans-
verse members representing the slab section. The 
torsion constants of these sections were altered to al-
low for the overlap of members. The slab and beam 
were both assumed to have identical material proper-
ties of grade C50 concrete. The live load considered 
was two 50 kN point loads 2 m apart representing a 
single truck axle.  

 
 

 
Figure 3. Bridge cross section. 



179 

 

Influence lines for each beam were drawn for 
three specified load effects and are shown in Figure 
4. The percentage distribution of the lane load was 
found by calculating the ratio of the bending mo-
ment of each beam to the total bending moment at 
the cross section. The lane distribution factors are 
reversed for the opposite lane as the bridge is sym-
metrical. 

 

 
 
(a) Load Effect 1; 
 

 
 
(b) Load Effect 2; 
 

 
 
(c) Load Effect 3; 
 
Figure 4. Influence lines for the longitudinal beams. 

When only the left lane was loaded, beam 3 (see 
Figure 3) was determined to be critical. However, 
since the critical loading events typically involve 
trucks in both lanes, beam 5 is critical. Beam 5 car-
ries approximately 16 % of the load when one lane 
is loaded and 32 % when the bridge has two lanes 
loaded. This value varies slightly depending on the 
load effect under analysis. 

4.3 Traffic simulation 

Monte Carlo simulation was used to generate 100 
years of free flow traffic files based on measured 
traffic data obtained using Weigh-In-Motion from 
the A6 motorway near Auxerre between Paris and 
Lyon, France. As a form of pre-selection of critical 
loading events, annual maximum load effects were 
obtained using linear elastic analysis for the consi-
dered load effects. The lane distribution factors and 
influence lines described were used for this pre-
selection. Typical annual maximum loading events 
are shown in Figure 5. 

 

 
 
(a) Load Effect 1; 
 

 
 
(a) Load Effect 2; 
 

 
 
(a) Load Effect 3; 
 
Figure 5. Sample annual maximum loading events (the truck 
weight is shown in deci-tonnes on each vehicle). 

4.4 Resistance Model 

The initial yield and plastic moment capacities of the 
prestressed beams are required for the nonlinear 
analysis. The plastic moment capacity was chosen to 
represent a minimum required resistance defined in 
the Eurocode, following the work of Nowak et al 
(2001): 

( ) ( )1 2 3 ( ) /
p D L

M D D D L LFα α φ= + + +    (22) 

where αD is dead load factor (1.35), αL is live load 
factor (1.5) and ϕ is the resistance factor (0.88). D1, 
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D2 and D3 were calculated as 847 kNm, 423 kNm 
and 176 kNm. LF is the lane factor (0.16) calculated 
as described previously. The live load, L was calcu-
lated using Load Model 1 from Eurocode 1 Part 2 
(EN 1991-2) to be 5757 kNm. An allowance of 10 % 
over-design was accounted for resulting in a plastic 
moment capacity of 4167 kNm using Equation (22). 
The initial yield moment capacity was then deter-
mined on the basis of a shape factor of 1.79 (Nichol-
son, 1997) to be 2328 kNm. 

5 BRIDGE SAFETY RESULTS 

5.1 Calculation of load factor at failure 

The 100 pre-selected annual maximum loading 
events were analyzed for each load effect using the 
described non-linear finite element model to deter-
mine the load factor at failure. Each such loading 
event was unique and consists of a large number of 
variables such as number of trucks, number of axles, 
axles spacing, vehicle spacing, speed of trucks and 
axle weights. The failure load factor was calculated 
by increasing the axle weights proportionally, Equa-
tion (13), and repeating the non-linear analysis until 
failure occurred, as defined by Equation (19). 

For each loading event, the elastic analysis result 
is plotted against the load factor: an example is 
shown in Figure 6 where strong linear correlation is 
evident. However, this was not found to be the case 
in general, as will be seen in later results. 

 

 
 
Figure 6. Load factor and elastic analysis load effect relation-
ship for Load Effect 2. 

5.2 Characteristic load effect 

Based on the elastic analysis results, the annual max-
imum data is fitted using the Generalized Extreme 
Value (GEV) distribution, given by: 

( )
1/

exp 1
s

G s

ξ
µ

ξ
σ

+

  −  
= − −   

    
 (23) 

where [h]+ = max(h, 0) and µ, σ, ξ, are the location, 
scale and shape parameters respectively. The 1000-
year return period load effect value is then esti-

mated, as shown in the Gumbel paper plot of Figure 
7. See Coles (2001) for further details on the fitting 
and extrapolation procedure used. 

 

 
 
Figure 7. Sample extrapolation to 1000-year return period for 
Load Effect 2. 

5.3 Combined set of results 

Given the (albeit approximate) linear relationship 
between the load factor and elastic analysis results, 
and knowledge of the elastic analysis characteristic 
load effect, it is possible to infer the load factor that 
could be observed in the 1000-year return period. To 
this end, Figures 6 and 7 are overlaid, and the load 
factor at 1000-years predicted as shown in Figure 8 
for each of the load effects considered. 

Table 2 gives the numerical results corresponding 
to the predictions of Figure 8. It is clear that the 
means of arriving at a 1000-year load factor should 
include an allowance for variation from the simple 
linear regression of load factor against elastic load 
effect. Consequently the method used here is only an 
approximate estimation of return period safety. 

The results of Table 2 also demonstrate that the 
prestressed concrete bridge design examined is 
probably not governed by ultimate load effect con-
siderations, but by the more usual in-service stress 
limits. 

 
Table 2. Results from extrapolations. 

Variable 
1000-year load effect 

(elastic analysis) 
kNm 

1000-year load factor 
(non-linear analysis) 

Load Effect 1 585.3  2.43 
Load Effect 2 677.6   2.28 
Load Effect 3 554.8  2.64 
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(a) Load Effect 1; 
 

 
 
(b) Load Effect 2; 
 

 
 
(c) Load Effect 3 
 
Figure 8. Elastic extrapolations and determination of lifetime 
load factor. 

5.4 FORM analysis 

To complement the results presented, the more 
common FORM is applied to the bridge for compar-

ison. The statistical descriptions of the variables 
needed to perform the reliability analysis are shown 
in Table 3. The coefficients of variation and distribu-
tions are similar to those outlined in previous studies 
(Nowak et al, 2001 and Hwang et al, 2010). The live 
loads were taken as the extrapolated characteristic 
load effects. Similar to the nonlinear analysis Equa-
tion (21) was taken as the limit state function. 

The Rackwitz-Fiesler (1978) algorithm was used 
to determine the lifetime reliability index corres-
ponding to each load effect. This describes the life-
time probability of failure for each load effect. This 
method consists of an iterative process which 
searches for a point on the limit state surface where 
the probability of failure is greatest. It is of interest 
to compare the load effect values at this point, with 
those estimated both from the elastic prediction, and 
from the non-linear results.  

 
Table 3. FORM reliability analysis variables 

Variable Distribution 
Location 
(kNm) 

Scale 
(kNm) 

CoV* 

D1 Normal 847 67.8 0.08 
D2 Normal 423 42.3 0.10 
D3 Normal 177 53.1 0.30 
Mp Log- normal 3724 279.3 0.075 
LE1 Gumbel 585.3  117.1 0.20 
LE2 Gumbel 677.6  135.5 0.20 
LE3 Gumbel 554.8 111 0.20 

* CoV – Coefficient of Variation. 

 
Table 4 gives the results of the FORM analysis. 

For comparison, the target reliability indices are also 
given (EC 1). The design point live load effect val-
ues are also given, and it can be seen that they are 
considerably higher than the characteristic load ef-
fects previously found. This confirms that there is a 
low probability of failure. When the design point 
live load effects are compared to the extrapolated 
failure load effects, interesting comparisons can be 
made. For load effects 1 and 3, the extrapolated fail-
ure load effects exceed the design point load effects. 
Therefore an elastic analysis is appropriate. Howev-
er, the extrapolated failure live load effect is similar 
to the design point live load effect for load effect 2. 
In this case, a nonlinear structural model is more ap-
propriate than an elastic analysis when conducting a 
reliability analysis, as is conventional.  

 
Table 4. FORM analysis results. 

Load Effect 1 2 3 

β 5.56 5.06 5.74 
pf 13.2×10

-9
 205×10

-9
 4.54×10

-9
 

ΒTarget 3.8 3.8 3.8 
DPLE* 1807.9 kNm 1902.2 kNm 1771.3 kNm 
ECLE** 4384.9 kNm 1926.2 kNm 2244.4 kNm 

* DPLE – design point live load effect. 
**ECLE – extrapolated critical live load effect corresponding 
to a load factor of 1 
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6 DISCUSSION & SUMMARY 

6.1 Discussion of results 

For each of the annual maximum loading events 
identified, a load factor for failure was established. 
This load factor is dependent on numerous variables 
in the loading event such as, number of trucks, num-
ber of axles, axles spacing, axle weights and spacing 
between trucks. For instance, considering Load Ef-
fect 2 in this paper, a loading event consisting of two 
trucks 40 m apart would expect to require a higher 
load factor for failure than a similar two-truck event 
with a 20 m gap between vehicles.  

The correlation between load factor and elastic 
load effect was found to be weak to strong, depend-
ing on the load effect examined. This may be due to 
the distribution and/or number of variables in the 
comprising loading events. It is clear that further 
analysis of the phenomenon is required.  

The 1000-year load effect and load factors for 
each load effect type analyzed are presented in Table 
2. The load factors found are well above the crucial 
load factor of 1 and the reliability indices are well 
above the target indices. These results confirm that 
the minimum Eurocode design resistance is safe for 
the traffic, bridge, and load effects analyzed. Fur-
ther, since no yield was observed at the extrapolated 
elastic load effect, elastic structural analysis models 
are adequate to be used in reliability analysis of the 
given bridge. However, whilst this is true for the 
beams examined here, and most probably true for 
prestressed beams in general, it may not be true for 
reinforced concrete or steel beam-and-slab bridges. 

In this work it was found that a crucial compo-
nent of the nonlinear analysis is the definition of the 
yield and plastic moment capacities. Accurate mod-
eling of the behavior of the structure in the inelastic 
and ultimate ranges is clearly required. Considering 
that the moment capacities of the structure generally 
deteriorate over time, lower load factors may result. 
As such, nonlinear methods may yet be well-suited 
to estimate the true safety in such cases. 

6.2 Summary 

A nonlinear analysis is performed on a three-span 
beam-and-slab structure subjected to 100 years of 
annual maximum traffic for three specific loading 
effects. The 1000-year load effects and correspond-
ing load factors were established using an approx-
imate method to relate the two. The strength capaci-
ty of this structure was deemed to be adequate as the 
extrapolated load factors were significantly greater 
than the critical load factor of 1. 

The structural safety of the bridge was deter-
mined using a reliability analysis. Load and resis-
tance parameters were modeled as random variables. 
The live load distributions were from the distribution 

of 100 annual maximum loading events. The dead 
load and resistance parameters were the same as 
considered for the nonlinear analysis. Statistical dis-
tributions for the variables were taken from the 
available literature and both the nonlinear analysis 
and reliability analysis indicated that the structure 
has adequate safety under the considered traffic.  
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ABSTRACT: In the probabilistic assessment of existing bridge structures, elastic structural models are typically used. At the 

ultimate limit state this may not be appropriate. In this work, the response of an indeterminate beam structure subjected to static 

and moving loads is assessed using a one dimensional nonlinear material finite element model. A deterministic study is used to 

calculate the load factor required to cause structural collapse for static and moving loads. A probabilistic assessment of the 

structure is conducted using the first order reliability method for static loads. Importance Sampling is used for moving loads. It 

is found that in some cases the common assumption used to locate the load does not lead to the true collapse load factor. 

KEY WORDS: Bridges; Loading; Reliability analysis; Nonlinear; Finite element; Importance sampling. 

1 INTRODUCTION 

1.1 Bridge Structural Safety 

Bridge maintenance is an ever-growing concern due to 

reducing financial budgets and increasing traffic volumes. 

Accurate bridge assessment is now a necessity as it is no 

longer acceptable to assess a bridge structure using excessive 

conservatism. According to a recent survey, one major reason 

for a bridge structure to fail an assessment is “conservative or 

inappropriate methods of assessment” [1]  

Typically, bridge failure is deemed to occur when the load 

effects found using an elastic structural assessment reach the 

resistance capacity at single location in the structure [2]. 

According to the Lower bound Theorem of plastic theory, this 

ensures safety against structural collapse. However, this 

ignores the structure’s ability to carry further load by 

redistribution of bending moments. For efficient assessment, 

this extra reserve of strength can be accounted for when using 

sufficiently ductile materials and cross-sections. 

1.2 Nonlinear Modelling in Reliability Analysis 

Several researchers have used a nonlinear structural model in 

probabilistic analysis methods. These methods are grouped as 

follows: 1) Monte Carlo Simulations; 2) the Response Surface 

Method, and; 3) sensitivity-based analysis [3]. Monte Carlo 

simulation, including efficient sampling techniques such as 

Importance Sampling, produce high levels of accuracy but can 

require extensive simulations, especially when dealing with 

low probabilities of failure [4]. The response surface method 

uses a polynomial to approximate an unknown limit sate 

function, thereby allowing a closed-form probabilistic analysis 

such as the first order reliability method to be carried out. This 

method has proved to be successful [5] and [6]. However, it 

may be inaccurate when dealing with several modes of failure 

[3]. Sensitivity-based methods have a high level of accuracy 

[7], but are not easily adapted to practical applications [3] 

This study uses the first order reliability method (FORM) to 

examine static loads considering material nonlinearity. When 

the problem is extended to a moving load, Importance 

Sampling combined with a nonlinear finite element model is 

used to determine the probability of failure. The results are 

compared to those established using the common assumption 

that locates the load according to the elastic critical location. 

By incorporating a nonlinear structural model into a 

reliability assessment, an improved estimate of the structure’s 

true safety level can be determined for a given traffic loading 

scenario. This is because a better model of material behaviour 

is accounted for. Consequently, this work can find practical 

application in safety assessment of existing highway 

infrastructure due to the considerable potential savings to 

maintenance budgets that may be realized. 

2 STRUCTURAL RELIABILITY 

2.1 Introduction 

For a basic structural problem with a known limit state 

function, the probability of failure can be defined as follows: 

 
( ) 0

( )
f X

g x

p f x dx
≤

= ∫∫�  (1) 

where g(x), is a limit state function of basic random variables 

x, and fX(x) is the joint probability density function of those 

variables.  

Failure is often deemed to occur when an applied load effect 

(S) is greater than the structural resistance (R) giving a limit 

state function (g) of: 

 g R S= −  (2) 

Equation 1 can be rewritten as: 

 [ ]... ( , ) 0 ( ) ( ) f R Sp I g r s f r f s drds= ≤∫ ∫  (3) 

Where: I[ ] is an indicator function which takes on a value of 

unity if the term in the brackets is true, or zero if the term in 

the brackets is false; and fR and fS are the probability density 

functions of resistance and load.  
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Evaluation of the probability integration outlined above can 

prove difficult when a large number of random variables (the 

vector X) are involved. Generally this equation cannot be 

solved in closed form due to the complexity of establishing 

the joint probability density function. Also, the limit state can 

often only be evaluated using simulation models such as finite 

element analysis. For this reason, approximate methods such 

as the FORM have been developed.  

2.2 First Order Reliability Method 

FORM simplifies the integration process by transforming 

variables from their original random space (X-space) into a 

standard normal space (U-space). This may be done using the 

Rosenblatt transformation [4] to ensure the contours of the 

integrand fX(x) are regular and symmetric: 

 [ ]1 1 µ µ
Ф ( ) Ф Ф

σ σ
X

X X
U F X

− −  −  − 
= = =  

  
 (4) 

where Φ is the standard normal cumulative distribution 

function (cdf), Φ
-1

 is the inverse of the standard normal cdf, 

FX(.)  is the cdf of variable X, µ is the mean value of X and σ is 

the standard deviation of X. 

Another measure FORM takes to simplify the integration 

process is to linearize the limit state g(X) = 0. A  first order 

Taylor series expansion is performed at the Most Probable 

Point (MPP); that is, the point on the limit state function 

which has the largest probability density (denoted U*). An 

iterative process is implemented to establish this point and the 

reliability index, β, can be evaluated as follows [8]: 
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 (5) 

The probability of failure and reliability index are related: 

 Φ( )fp β= −  (6) 

where β, originally defined by Cornell (1969), represents the 

shortest distance from the origin to the limit state function in 

standard normal space and Ф is the standard normal cdf. 

2.3 Importance Sampling 

Monte Carlo simulation can be used to estimate the 

probability of failure. Samples of the random variables are 

generated and the limit state function evaluated for each set. 

The probability of failure is then given by: 

 [ ]
1

1
( ) 0

N

f

j

p I g x
N =

= ≤∑  (7) 

where N is the total number of samples. This approach is 

inefficient when dealing with low probabilities of failure 

because a very large sample set is required. 

Importance Sampling can produce an accurate estimate of 

the probability of failure. If sampling occurs around random 

variables that are more likely to contribute to the probability 

of failure fewer samples are required. This is achieved by 

using a biased sampling distribution. This bias is corrected for 

by weighting the outputs of the simulation. The probability 

integral may be estimated as follows: 

 [ ] ( )
( )

... ( ) 0
( )

X

f v

v

f x
p I g x h x dx

h x
= ≤∫ ∫  (8) 

where hv(x) is the importance sampling function. It is common 

to use a normal distribution for h with the mean shifted to the 

MPP (Melchers, 1999). The above integral may be then 

estimated using: 

 [ ]
( )1

( )1
( ) 0

N
x

f

i v

f x
p I g x

N h x=

 
= ≤  

 
∑  (9) 

3 NONLINEAR FINITE ELEMENT MODEL 

3.1 Finite element model 

One-dimensional Euler-Bernoulli elements are used to model 

the beams for this work. Using the element stiffness matrices 

end forces and moments are calculated on each element. To 

minimize computation but retain accuracy, a non-uniform 

mesh is used. A fine mesh of 0.2 m is used at critical mid-span 

locations while a coarse mesh of 1 m is used for the remainder 

of the structure.  

3.2 Material nonlinearity model 

The approached used to represent the nonlinear response is 

that established by Clough et al (1990) as outlined in [9]. The 

spread of plasticity through the section is traced using force 

recovery parameters (R). The force recovery parameters are 

established from the following yield function: 

 
p

M

M
Γ =  (10) 

where M is the moment currently on the cross section, and   

Mp  is the plastic moment capacity of the section. The values 

of the force recovery parameters can be seen in Figure 1 at 

different stages of loading. When the structure is subject to 

loading and is behaving in an elastic manner (Stage 1) the 

force recovery parameters are equal to one, as no reduction in 

stiffness has taken place:  

 : 1y RΓ ≤ Γ =  (11) 

The slope of the moment rotation curve for this stage is EI, 

where E is the modulus of elasticity of the material and I is the 

second moment of area of the section. 

Once the initial yield capacity (Stage 2) has been reached, 

the force recovery parameters and the stiffness of the structure 

reduce as follows: 

 : 1
y

y p

p y

R
Γ − Γ

Γ ≤ Γ ≤ Γ = −
Γ − Γ

 (12) 

When a plastic hinge has fully formed (Stage 3) the force 

recovery parameter at that location equals the value of strain 

hardening (q) of the critical material in the section. The slope 

of the moment rotation curve for this stage is qEI: 

 :p R qΓ ≥ Γ =  (13) 
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During an unloading event at any point (Stage 4), the 

structure is assumed to behave elastically [9]. Hence the 

unloading force recovery parameter is: 

 Unloading : 1R =  (14) 

Γ

Γy

Γp
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(a) Force recovery parameters under cyclic loading; 
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(b) Moment rotation relationship; 

Figure 1. Stages in the behaviour of the cross section. 

Once the force recovery parameters have been identified at 

each end of the element, the local stiffness matrix of each 

element is altered as follows: 

 [ ] ( )[ ]1 2 2 1 2 2: g eR R k R k R R k ≥ = + −   (15) 

 [ ] ( )[ ]2 1 1 2 1 1: g eR R k R k R R k ≥ = + −   (16) 

in which kg is element tangent stiffness matrix at the current 

state of loading. The elastic element stiffness matrix, ke, is 

given by: 

 [ ]
2 2

3

2 2

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

e

L L

L L L LEI
k

L LL

L L L L

− 
 

− =  − − −
 
 − 

 (17) 

 

The stiffness matrix with an element with a hinge at end 1, k1, 

is given by:   

 [ ]1 3

2

3 0 3 3

0 0 0 0

3 0 3 3

3 0 3 3

L

EI
k

LL

L L L

− 
 
 =
 − −
 

−  

 (18) 

The stiffness matrix with an element with a hinge at end 2, k2, 

is given by: 

 [ ]
2

2 3

3 3 3 0

3 3 3 0

3 3 3 0

0 0 0 0

L

EI L L L
k

LL

− 
 

− =
 − −
 
  

 (19) 

 

where EI is the flexural rigidity of the cross section and L is 

the element length. 

3.3 Incremental Loading/Unloading Approach 

The incremental loading procedure outlined in [10], [11], and 

[12] is implemented to model the stress history at a cross 

section. At each increment the equilibrium equation is 

formulated and solved: 

 { } { }gF K uλ  =    (20) 

where λ is the load factor, F is the external force vector, Kg is 

the  global stiffness matrix, and u is  displacement vector. The 

stiffness is altered after each increment using the force 

recovery parameters as previously outlined. At the onset of 

the nonlinearity the equilibrium path drifts away from the 

actual path. This drift can be minimized by using sufficiently 

small increments [12].  

As extreme loads traverse the structure, plastic hinges may 

form and so load redistribution along the structure may occur. 

The incremental procedure is adapted to represent a moving 

load. This is implemented using a loading-unloading process, 

illustrated in Figure 2. The load at Position 1 unloads as the 

load at Position 2 loads. Hence, a residual rotation remains 

after plastic behaviour ensues in the beam once the load is 

unloaded. In this manner a true representation of the moving 

load is accounted for. 
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Figure 2. Incremental Loading/Unloading Procedure. 

4 DETERMINISTIC ANALYSIS 

4.1 Problem parameters 

A two-span beam of 10 m equal spans is examined. To size 

the beam initially, the maximum elastic bending moment 

when subjected to moving 100 kN point load is used. A 

minimum resistance formula ignoring dead load (Nowak, 

2001) is used: 
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 ( ) /MIN L LR Mα φ=     (21) 

where αL is live load factor (1.5), ϕ is the resistance factor 

(0.88) and ML is the live load on the structure. The section 

used is a 457×152×74 hot-rolled universal beam. The steel is 

assumed to have yield strength of 265 N/mm
2
 and a modulus 

of elasticity of 210 kN/mm
2
. 

Failure is defined to occur when the global stiffness matrix 

becomes singular in the nonlinear analyses [13]. This 

corresponds to the formation of a mechanism [14]. For 

comparison, a moving elastic analysis and a moving nonlinear 

analysis taking strain hardening into account are also 

presented in some cases. The strain hardening stiffness is 

taken to be 1.5% of the elastic stiffness [9]. This prevents the 

global stiffness matrix turning singular and a collapse 

mechanism forming. However, significant ductility and 

rotation of cross sections can occur numerically using this 

assumption. Whilst these rotations should be checked for real 

sections, for this work, the allowance of strain hardening 

identifies the residual moments in the structure and provides a 

comparison to an elastic analysis of the moving load 

4.2 Example moving single point load analysis 

A moving single point load of 100 kN is considered. To 

establish the collapse load factor, that is, the ratio of failure 

load to the working load of 100 kN, the load is increased after 

each complete run across the structure, and this is continued 

until a collapse mechanism forms. An arbitrary speed of 1 m/s 

is used with a time step of 1 s. It must be noted that vibration 

of the beam is ignored. The bending moment time-history is 

shown in Figure 4 at each plastic hinge location. 

From Figure 4(b) and 4(c), it can be seen that a collapse 

mechanism forms when the point load is approximately 4 m 

from the left hand side. As the load traverses the structure, 

plastic hinges successively form at 3 m, 4 m, and 10 m. The 

plastic hinge formed at 3 m is not present at collapse as the 

load has travelled beyond this point and unloading has taken 

place. This is identified in Figure 4(a). 

4.3 Collapse load factors for a single moving point load 

Typically, the collapse load factor for moving load problems 

is found by first identifying the location of the loads that 

causes the maximum elastic moments. Then, a nonlinear 

analysis is carried out with the load(s) located statically at this 

location [3]. A difficulty arises in choosing what is meant by 

the critical elastic location. For example, in the two-span 

continuous beam considered here, the point load locations 

causing the maximum sagging moment and maximum 

hogging moment are different. Furthermore, the load factors 

corresponding to failure of the beam are different for these 

two different locations. However, the true collapse load factor 

can be found using the nonlinear moving load approach 

developed here. 

The load factors (λ) corresponding to failure are found for 

three scenarios: a static nonlinear analysis is carried out with 

the load located at the critical elastic maximum sagging (1) 

and hogging (2) positions; and a moving load nonlinear 

analysis (3) is carried out using the procedures outlined 

earlier. The results for each of these scenarios are given in 

Table 1. It is clear from these results that the location 

identified by the maximum elastic sagging moment is the 

closest to the true collapse load factor. However, it is 

significant that the true result (scenario (3)) is not given by 

either elastic means of locating the load. 
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(a) Hinge formation at 3 m; 
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(b) Hinge formation at 4 m; 
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(c) Bending moment at 10 m through time; 

Figure 4. Time history of bending moment. 

Table 1. Failure Load Factors. 

Loading 

scenario* 
(1) (2) (3) 

Position (m) 4.3 5.8 --- 

λ 2.516 2.796 2.524 

* Refer to text for description of scenarios. 

4.4 Collapse load factors for two point loads travelling in 

the same direction 

A range of inter-load spacings (ILS) for two same-direction 

50 kN point loads are considered. The ILS is expressed as a 

ratio of the spacing (x) to the length of the beam (L = 20 m). 

The elastic critical location collapse load factors (sagging 

position-λ(1) and hogging position-λ(2)) are found for 

comparison. The results are shown in Figure 5, expressed as a 

ratio of the true collapse load factor. 

Figure 5 shows that for the majority of inter-load spacings 

the load factor found using sagging is close to the true 

collapse load factor. The collapse load factors found using 
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hogging are often far higher than the true value, and this could 

lead to an unsafe assessment. 
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Figure 5. Two point loads moving in the same direction. 

4.5 Collapse load factors for two point loads travelling in 

opposite directions 

Two 50 kN point loads travelling in opposite directions are 

considered for a range of relative starting positions (again 

termed inter-load spacings). The results are again compared to 

those found using the elastic critical locations through a ratio 

of load factors and are shown in Figure 6. 

It can be seen from Figure 6 that similar to the uni-

directional case, the elastic sagging critical location generally 

gives load factors close to the true collapse load factor. 

However, for an ILS of 0.2 the elastic locations give load 

factors higher than the true load factors and so are unsafe. 

Further, for an ILS of around 0.8, the elastic hogging location 

gives unsafe load factors. 
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Figure 6. Two point loads moving in opposite directions. 

5 PROBABILISTIC ANALYSIS 

5.1 Reliability analysis of static loads 

Loads located at the critical elastic sagging moment location 

are examined further using reliability analysis. This is to 

reflect common practice for bridge reliability analyses [3][15]. 

The results are compared to the actual failure probabilities 

obtained using a moving-load nonlinear analysis. 

The section plastic moment capacity and the point load are 

the random variables of the problem and are assumed 

independent: all other variables are taken to be known. The 

coefficients of variation (CoV) of the random variables given 

in Table 2 are taken from [16] and [17]. 

 

Table 2. Statistical Properties. 

Variable µ CoV Distribution 

Mp 431.16 kNm 0.075 Normal 

P 100 kN 0.25 Normal 

 

Only flexural failures are considered and other failure 

mechanisms were ignored. Two limit sates are considered. An 

elastic limit state is used in which failure occurs when the 

elastic moment exceeds the plastic moment capacity:  

 ( )2

3
4 ( )

4
p

Pab
g M L a L a

L
= − − +  (21) 

This in effect assumes an ideal elastic-plastic material.  

Ultimate collapse due to the formation of a mechanism 

brought about by the formation of plastic hinges is also 

considered. Virtual work for the collapse mechanism (one 

hinge forming at the position of the point load and the other at 

the interior support) gives the plastic limit state function:  

 

2
(1 )p

a
g M aP

b
= + −

 (22)  

5.2 First-order reliability analysis results 

The FORM results are given in Table 3 for the two limit state 

functions of Equations (21) and (22). The functions are 

plotted in standard normal space (U-space) in Figure 6. This 

allows a visual comparison between reliability indices to be 

made.It can be seen clearly that a higher reliability index (β) 

can be achieved when using a less conservative limit state 

function. This expected result corresponds to a lower 

probability of failure.  

Table 3. FORM Results 

 Elastic Plastic 

β 3.69 4.84 

pf 1.121×10
-4

 6.492×10
-7

 

Mp (design value) 337.78 kNm 178.186 kNm 

P (design value) 336.93 kNm 196.54 kNm 
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Figure 7. Limit state comparison in standard normal space. 
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5.3 Importance sampling for reliability analysis of moving 

load 

The common assumption of locating the loads at the elastic 

critical locations for a reliability analysis is assessed using 

Importance Sampling and the moving load analysis model. 

The design point found using the FORM analysis considering 

a plastic limit state function is used as the MPP for the 

Importance Sampling (see Section 3). Ten thousand samples 

are generated around this design point. Each combination of 

random variables is analysed using a constant speed of 1 m/s 

and a refined time step of 0.2 s.  

A ‘success’ rate of approximately 50 % is found and so the 

estimate of MPP is reasonable. Figure 9 gives the histogram 

of point load locations at failure. All failures occur while the 

load is on the first span. Most occur when the moving load is 

positioned 3 metres from the left hand support. 
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Figure 8. Number of fails at each point load position 

A reliability index of 4.84 is found corresponding to a 

probability of failure of 6.488×10
-7

. This is only marginally 

different to the probability of failure found using the plastic 

static critical load location (Table 3 – pf = 6.492×10
-7

). This 

interesting result means that locating the loads using an elastic 

analysis may not give the true probability of failure. 

6 DISCUSSION & CONCLUSIONS 

A moving nonlinear analysis method is proposed in this work. 

The response of an indeterminate steel beam subjected to 

moving loads is examined and compared to that when 

subjected to static loads. Both deterministic and probabilistic 

analyses are performed.  

The deterministic study is used to establish load factors 

causing collapse for moving loads and critically placed static 

loads. Static load positions were identified as positions 

causing maximum sagging and hogging bending moments 

using an elastic analysis. For this particular structure and the 

various loading scenarios analysed, it is established that the 

static load factor found using the position causing maximum 

sagging moment closely relates to the load factor found using 

the proposed moving load approach. For the majority of 

circumstances examined the load factor found using the 

maximum hogging position over-estimates the strength 

capacity of the structure. 

A probabilistic study is presented examining a single static 

load, using FORM and Importance Sampling when examining 

a moving load. An elastic limit state function which is 

typically implemented in practice is analysed and compared to 

a plastic limit state function. The plastic limit state function 

has a less conservative definition of failure and produces a 

higher reliability index and a lower probability of failure as 

expected.  

The reliability index found when analysing the moving load 

corresponded exactly to that found using a static analysis. The 

common assumption of locating the point load at a critical 

position can be deemed appropriate for this structure 

subjected to a single point load. However the moving load 

approach provides a more complete overall assessment of 

failure. 

It can be concluded from this study that taking a less 

conservative definition of failure, significantly higher 

reliability indices can be found, more indicative of the true 

safety of the structure. An accurate representation of a 

structure’s nonlinear behaviour when subjected to moving 

loads can be found using the proposed method. Both these 

findings when applied to practical problems may lead to a 

more accurate assessment of existing bridge structures and 

consequently a more informed decision on required 

rehabilitation measures. 
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