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A Linear Predictive Coding Filtering Method for
the Time-resolved Morphology of EEG Activity

Jin Xu∗, Mark Davis†, and Ruairı́ de Fréin‡
School of Electrical and Electronic Engineering, Technological University Dublin

Dublin, Ireland
Email: ∗D17128410@mytudublin.ie, †mark.davis@tudublin.ie, ‡ruairi.defrein@tudublin.ie

Abstract—This paper introduces a new time-resolved spectral
analysis method based on the Linear Prediction Coding (LPC)
method that is particularly suited to the study of the dynamics of
EEG (Electroencephalography) activity. The spectral dynamics
of EEG signals can be challenging to analyse as they contain
multiple frequency components and are corrupted by noise. The
LPC Filtering (LPCF) method described here processes the LPC
poles to generate a series of reduced-order filter transform func-
tions which can accurately estimate the dominant frequencies.
LPCF is a parameterized time-frequency method that is suitable
for identifying the dominant frequencies of multiple-component
signals (i.e. EEG signal). We define bias and the frequency
resolution metrics to measure the ability of LPCF to estimate
the frequencies. The experimental results show that LPCF can
reduce the bias of the estimates of LPC in the low and high
frequency bands and LPCF provides finer frequency resolution
than LPC. Furthermore, the LPCF method is less sensitive to
the filter order and has a higher tolerance of noise than the LPC
method. Finally, we apply LPCF to a real EEG signal where it
can identify the dominant frequency in each frequency band and
significantly reduce the redundant estimates of LPC.

Index Terms—EEG analysis, modified linear predictive coding,
time-frequency method.

I. INTRODUCTION

EEG is an important bioelectric signal for researchers
to explore the diagnosis and treatment of mental [1] and
brain neuron-degenerative diseases [2] and abnormalities [3].
Dynamically exploring the key spectral characteristic infor-
mation in EEG signals via time-frequency analysis can help
researchers better understand human brain activity. Many of
the traditional time-frequency methods are waveform methods
such as the short-time Fourier transform [4] and the continuous
wavelet transform [6]. They are excellent at demonstrating
whether a certain frequency component exits or not by show-
ing how the energy of the signal is distributed across the time-
frequency domain. In this paper, we proposed a LPCF method
which is a parameterized time-frequency method and it can
robustly and accurately identify the dominant frequencies of
noisy signals in the different frequency bands. An EEG signal
is a multiple components signal and it has different frequency
bands (δ, θ, α, β, γ) to analyse the different brain functions.
The typical EEG signal is a high noise time-varying signal
which requires the time-frequency method to be robust to
noise. The LPCF method is particularly suitable for studying
the dynamics of the dominant frequency at different EEG
bands.

The LPC method can give us a numerical estimation
frequency result. It has been extensively applied in speech
signal processing for formant frequency identification [5].
However, standard LPC suffers from a sensitivity to noise and
its performance is dependent on the filter order [8], [10]. In
this paper, we propose a LPC Filtering (LPCF) method to
further process the LPC poles into different frequency bands
to generate a series of reduced-order filter transform functions
to estimate the dominant frequency. The LPCF method is
a further modification of our previous work [8], [9]. The
LPCF method can overcome the shortcomings of the LPC
method: sensitivity to noise and LPC order. We use the Monte
Carlo simulation method to obtain the Probability Density
Function (PDF) and use the mean and standard deviation
of the PDF to define the bias and frequency resolution of
the LPC-based method. These results show that (1) LPCF
significantly reduces the bias of the estimates of LPC in the
low and high frequency bands; (2) LPCF can provide finer
frequency resolution than LPC; (3) The LPCF method has
less sensitivity to the filter order and has a higher tolerance of
noise than the LPC method. Furthermore, the LPCF method
accurately identifies the dominant frequencies of different
frequency bands of EEG.

This paper is organised as follows. In Section II, we first
present details of the LPCF method. In Section III, we intro-
duce the EEG frequency bands and the experimental metrics.
Experimental results are presented in Section IV. Finally, the
conclusions of the paper are presented in Section V.

II. METHOD INTRODUCTION

The LPC algorithm provides a method for estimating the pa-
rameters that characterize the linear time-varying system [10].
It is based on the assumption that the current signal sample
s(n) can be closely approximated as a linear combination of
past samples

ŝ(n) =

P∑
i=1

ais(n− i), (1)

where the factor ai is the predictor coefficient, which is
determined by minimizing the mean-squared error between
the actual samples s(n) and the predicted values ŝ(n).



A. LPC Method

The LPC analysis operates on frames containing data sam-
ples. In the z-transform domain, a P th order linear predictor
is a system of the form

L(z) =

P∑
i=1

aiz
−i =

Ŝ(z)

S(z)
(2)

where Ŝ(z) is the output of the filter. The prediction error
e(n) is of the form

e(n) = s(n)− ŝ(n) = s(n)−
P∑
i=1

ais(n− i) (3)

where ŝ(n) is the linear prediction and the z-transform for the
prediction error can be written as

E(z) = S(z)−
P∑
i=1

aiS(z)z
−i. (4)

The prediction error is the output of a system with transfer
function

A(z) =
E(z)

S(z)
= 1− L(z) = 1−

P∑
i=1

aiz
−i (5)

where A(z) is an inverse filter for H(z) given by

H(z) =
1

A(z)
=

1

1−
∑P

i=1 aiz
−i

. (6)

The fundamental theorem of algebra tells us that H(z) has
P poles, which are the values of z for which H(z) = ∞.
Therefore in finding the poles of H(z) we obtain the set
{z1, z2, z3, · · · , zP }. As each pole zi is complex, where each
pole zi can be expressed as

zi = γie
jωi , (i = 1, 2, 3, · · · ,M) (7)

in which ωi = tan−1[Im(zi)/Re(zi)] is the angle correspond-
ing to the pole. The magnitude of a pole is mi = |zi| and the
corresponding pole frequency is

pi =
ωi

2πTs
, (i = 1, 2, 3, · · · ,M) (8)

where Ts is the sample period. The poles of H(z) are often
used to directly estimate the frequency content of signals [10]
[16] [17]. The LPC method is the benchmark for our approach
and the poles resulting from LPC are used as the frequency
estimates for the analysed signals. Given that the poles occur
in the filter as complex conjugate pole pairs, we only consider
those poles with non-negative imaginary parts Im(zi) ≥ 0 and
the number of LPC estimates is denoted by M .

B. LPCF Method

The proposed LPCF method further processes the LPC poles
to generate a series of reduced-order transform functions to
estimate the dominant frequencies in the different frequency
bands. The details of further processing of LPC poles are as
follows:

1) Obtain the set of poles of LPC filter H(z), i.e.
{z1, z2, z3, · · · , zM} and partition the poles into differ-
ent frequency bands.

2) Organise the poles of each frequency band into the
dominant pole and local poles. The LPC pole with the
largest magnitude is classified as the dominant pole z̃i
and the number of dominant poles is N , other poles
are the non-dominant poles. The non-dominant poles
around the dominant poles are called local poles ẑ,
which can affect the final location of the spectral peak. A
distance threshold λ is defined to identify the local poles.
When the distance (frequency separation) ∆f between
the dominant poles z̃i and non-dominant poles is less
than λ, we consider these non-dominant poles to be
the local poles {ẑi1, ẑi2, · · · , ẑiL}, where the L is the
number of local poles for ith dominant pole.

3) The dominant pole and its local non-dominant pole(s)
form a new reduced order transform function which is
denoted

H̃i(z) =
1

(1− z̃−1
i )

×
L∏

j=1

1

(1− ẑ−1
ij )

. (9)

As the new filter transfer function H̃i(z) has a lower
order, it has fewer local maxima, which makes it easier
to find the peaks.

4) Estimate the dominant frequencies. The maximum peak
p̃i of the H̃i(z) is the dominant frequency component
of the ith frequency band. So the estimates of LPCF are
{p̂1, p̂2, · · · , p̂N}.

III. PERFORMANCE EVALUATION METRICS

A. EEG Frequency Bands

Many EEG research works have divided the spectra of
EEG waveforms into several fixed frequency bands, they are
named based on their frequency range using Greek letters
(δ, θ, α, β, γ). Different researchers have defined different fre-
quencies for these bands with little consensus between them
[11]–[15]. In this paper, we use the EEG frequency band
standard from [12], as shown in Table I.

TABLE I
EEG FREQUENCY BANDS.

Name of EEG Waves δ θ α β γ
Frequency Range (Hz) 0-4 4-8 8-12 13-30 over 30
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Fig. 1. The EPDF of the LPCF method and LPC method under the different frequency bands. The y-axis of each EPDF is fixed from 0 to 0.04 to zoom the
EPDF so that it easier to observe the low P (e) in EDPF.

B. Metrics
As LPCF is a parameterized method, Monte Carlo simula-

tion is used to generate the Error Probability Density Function
(EPDF) to measure the bias of the estimates and to estimate
the frequency resolution of the LPCF method. The trials of
Monte Carlo in all experiments of this paper are repeated
1, 000 times and the simulation signals are sinusoidal signals
whose frequencies are uniform distribution. To ensure that we
do not unfairly penalize the LPC method, we only considered
the frequency estimates whose error was less than 5 Hz from
the true frequency in the experimental evaluation conducted
in this paper. In this paper, we use the mean value of each
EPDF as the bias of LPC-based methods. A histogram of the
frequency errors where the error e range is from -5 Hz to +5
Hz and the bin size is 0.1 Hz. For each histogram bar, we
start by multiplying the central e-value to the corresponding
bar height and the height of each histogram bar is expressed
as a probability P (e) (i.e.

∑
P (e) = 1). The bias is defined

as
µ =

∑
eP (e), (10)

where the µ is the bias of the all estimates. The standard
deviation σ of the EPDF is used to measure the frequency
resolution of the LPC-based method. The frequency resolution
∆f is defined as

∆f = σ =
√
Σ(e− µ)2P (e) (11)

The Heisenberg-Gabor uncertainty principle tells us what
can be achieved with regard to time-frequency localization
for the short-time Fourier transform [7], by referring to the
dimensions of the tiles (∆t×∆f ) in the time-frequency plane.
Therefore, the Time-Bandwidth Product (TBP) of the LPC-
based method is

TBP = ∆f ×∆t (12)

where ∆t represents the time resolution.

TABLE II
THE FREQUENCY RANGE OF DIFFERENT FREQUENCY BANDS.

Label B1 B2 B3 B4 B5
Frequency Range (Hz) 0-16 16-32 32-48 48-64 64-80

IV. EXPERIMENTAL RESULTS

In this section, the first three experiments are Monte Carlo
experiments and the experimental signals are sinusoidal signals
with uniform frequency distribution. The last experiment ap-
plies LPCF to a real EEG signal and shows the parameterized
time-frequency analysis results of LPCF.

A. Frequency Bands Analysis

In the first experiment, we demonstrate the EPDF of LPCF
and LPC in the different frequency bands. The sampling
frequency of simulation signal is fs = 160 Hz, the time
resolution is ∆t =1 s. These frequencies of experimental
signals are uniform distribution for each frequency band. The
details of the frequency bands are shown in Table II. The
frequency domain is equally divided into 5 frequency bands
(i.e. B1, B2, B3, B4 and B5). The bands B1 and B2 correspond
to low frequencies, B3 corresponds to middle frequencies, B4
and B5 correspond to high frequencies. In order to simulate
a high noise environment, Additive White Gaussian Noise
(AWGN) is used to perturb the signal. The Signal-to-Noise
Ratio (SNR) in dB is defined as the ratio of the power of the
signal to the AWGN power. The SNR of this experiment is 3
dB, the order of filters is P = 15 and λ = 5 Hz.

The EPDF results are shown in Fig. 1. The spread of EPDF
of the LPC method is bigger than that of LPCF method within
each frequency band. For the bias analysis in Fig. 2, the bias
µ of the LPC method is greater than 0 in the low frequency
band (i.e. B1), and is less than 0 in the high frequency band
(i.e. B5). This indicates that the LPC method overestimates



the frequency at low frequency band and underestimates the
frequency at high frequency band. The LPCF method can
reduce this bias of the LPC method.

For the frequency resolution analysis in Fig. 3, the LPC
method has a lower frequency resolution in the middle band.
The reason is that the estimates of LPC in the low and high
frequency EEG bands are biased to one side, while the EPDF
in the middle frequency band is not biased, thus causing the
∆f in the middle frequency band to be higher than in other
frequency bands. This is also one of the reasons why the LPC
method has a bigger bias in the high and low frequency bands
than in the middle band. For the LPCF method. it can provide
a finer frequency resolution than that of LPC in the different
EEG frequency bands. The details of TBP are shown in Table
III. The TBP value of the LPCF method is much lower than
that of the LPC method. This result is consistent with the
result of the bias analysis in Fig. 3 when the time resolution
is fixed. In the following experiments (i.e. subsection IV-B and
IV-C ), we focused on selecting three representative frequency
bands for detailed analysis, namely, B1 represents the high
frequency band, B3 represents the middle frequency band, and
B5 represents the high frequency band.

B1 B2 B3 B4 B5
Frequency Band

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

 (
H

z)

LPCF
LPC

Fig. 2. The bias of the LPCF and LPC methods under the different frequency
bands.

B1 B2 B3 B4 B5
Frequency Band
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 f 
(H
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LPCF
LPC

Fig. 3. The frequency resolution of the LPCF and LPC methods under the
different frequency bands.

TABLE III
LPCF VS LPC: THE TBP UNDER DIFFERENT FREQUENCY BANDS.

Frequency Band B1 B2 B3 B4 B5
TBP(LPCF) 0.3587 0.0628 0.0640 0.0622 0.3334
TBP(LPC) 1.1450 1.4955 1.4923 1.4134 1.1863

B. LPC Order Analysis

In this experiment, we analyse the influence of LPC order on
the bias and frequency resolution of the LPC-based methods.
The filter order P is changed from 5 to 25 and the step size
is 5. The SNR of the signal is 3 dB; the other experimental
parameters are the same as those used in the previous subsec-
tion. Fig. 4 and Fig. 5 show the bias analysis and the frequency
resolution of LPCF and LPC for different filter orders. As we
can see in Fig. 4, the bias µ of the LPC method in the low
frequency band is greater than 0 and in the high frequency
band is less than 0. This indicates the LPC method has a
bigger bias in the low and high frequency bands than in the
middle frequency band. The bias µ (Fig. 4) and the ∆f (Fig.
5) of the LPC method first decreases and then increases with
the increase of LPC order. The LPC method has the smallest
bias value at P = 15 and it has the smallest ∆f at P = 10.
These results indicate the performance of the LPC method is
dependent on the filter order. For the LPCF method, it can
provide a smaller bias than the LPC method after P is greater
than 10. The reason is that the number of filter order is too
low to provide sufficient spectral information when P = 5. In
Fig. 5, the LPCF method has very high frequency resolution
under different filter orders and they are not affected by the
filter order. So the performance of the LPCF method is much
less sensitive to the filter order than that of the LPC method.
Table IV shows the TBP results of this experiment in which
the LPCF values are less than the LPC for all cases.

5 10 15 20 25

P

-0.8
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LPC-B3

LPCF-B5
LPC-B5

Fig. 4. The bias of the LPCF and the LPC methods under different filter
orders.

TABLE IV
LPCF VS LPC: THE TBP UNDER DIFFERENT FILTER ORDER.

LPC order 5 10 15 20 25

B1(TBP) LPCF 0.7398 0.2702 0.1945 0.1529 0.4639
LPC 0.7399 0.2707 0.5647 1.1282 1.9428

B3(TBP) LPCF 0.3036 0.1065 0.0756 0.0624 0.0588
LPC 0.3049 0.2426 0.5803 1.3860 2.1785

B5(TBP) LPCF 0.7558 0.2712 0.3370 0.3677 0.4467
LPC 0.7559 0.3650 0.5968 1.0877 1.9075

C. Signal Noise Analysis

In this experiment, we analyse the effect of noise on
the LPC-based methods. The LPC order P =15, and other
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Fig. 5. The frequency resolution of the LPCF and LPC methods under
different filter orders.

experimental parameters are the same as the experiment in
the previous subsection. Fig. 6 and Fig. 7 demonstrate the
bias µ and ∆f of the LPCF method and LPC method under
different SNR conditions. We can see that LPCF has a smaller
µ than LPC under the same SNR level and LPCF can provide
a higher frequency resolution than that of LPC at the same
SNR level. In Fig. 7, the ∆f of the LPC method becomes
bigger as the SNR of noise is increased. The reason is that
the range of EPDF only analyses frequency errors less than 5
Hz. But the error of estimates of the LPC method is over 5 Hz
when the signal has a low SNR. So only the errors between
the -5 and 5 Hz are counted, which is why the µ and ∆f of
the LPC method become bigger as the SNR increases. Fig. 8
and Fig. 9 show the results when the error range extends from
-15 to 15 Hz. Fig. 8 shows that the bias of both methods is
decreased as the SNR increases and Fig. 9 shows that the ∆f
of both methods is decreased as the SNR increases. The bias
of the LPCF method still is much lower than that of LPC and
the frequency resolution is much lower than that of LPC at B3.
These results show that LPCF method has a higher tolerance
to noise than LPC. Table V shows the TBP values of the LPC
method and LPCF method and the error range of EPDF is
from -5 to 5 Hz. In short, the TBP value of LPCF is lower
than the LPC method for the different SNR levels.
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Fig. 6. The bias of the LPCF and LPC methods under the different SNR.
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Fig. 7. The frequency resolution of the LPCF and LPC methods under the
different SNR.

TABLE V
LPCF VS LPC: THE TBP UNDER DIFFERENT SNR LEVELS.

SNR(dB) 0 3 6 9 12

B1(TBP) LPCF 0.3195 0.2497 0.1385 0.2779 0.2681
LPC 0.5363 0.6414 0.7316 0.8568 1.3547

B3(TBP) LPCF 0.1200 0.0734 0.0527 0.0388 0.0202
LPC 0.6966 0.7367 0.9320 1.3950 1.6848

B5(TBP) LPCF 0.2223 0.1892 0.3631 0.1957 0.1790
LPC 0.5469 0.4649 0.7195 0.9631 1.2289
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Fig. 8. The bias of the the LPCF and LPC methods under different SNR
where the error range extends from -15 to 15 Hz.
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Fig. 9. The frequency resolution of the LPCF and LPC methods under
different SNR where the error range extends from -15 to 15 Hz.



D. EEG Analysis

In this experiment, we demonstrate a real EEG signal
application using LCP and LPCF to identify the dominant
frequency components of different EEG waves (δ, θ, α, β, γ).
The EEG signal used in our experiment comes from the public
dataset BCI2000 [18]. The sampling frequency of the EEG
signal is fs=160 Hz, the length of the EEG is 60 s. The
order of LPC P=20, the time resolution ∆t = 1 s. Other
experimental parameters are the same as the experiments
in the previous subsection. Fig. 10 compares the frequency
estimations response between LPC and LPCF method. The
black line is the reference line for different EEG frequency
bands. It is particularly noticeable that both LPC and LPCF
methods have identified the AC power supply frequency of
60 Hz. The LPC method directly generates many estimation
frequencies as it does not distinguish between the dominant
and non-dominant poles. These results show that LPCF has a
greater ability to estimate the dominant frequency in different
frequency bands than LPC. The LCPP method can reduce the
bias of LPC in the same frequency band and it can provide
higher frequency resolution at the same time resolution as the
LPC method. The LPCF method allows us to estimate the
dominant frequency component in each of the EEG bands and
it can track the dominant frequency changes of the different
EEG frequency bands.
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Fig. 10. Comparing time-resolved spectra of the LPC and LPCF methods in
a EEG signal. The x-axis is the time. The left y-axis is the frequency. The
right y-axis is the boundary value of EEG frequency band. The black line is
the boundary line of different EEG frequency bands.

V. CONCLUSION

This paper introduces a parameterized time-frequency
method LPCF which further processes the LPC poles to
generate a series of reduced-order filter transform functions to
estimate the dominant frequency at different frequency bands.
The bias and the frequency resolution are defined to analyse
the performance of the LPCF method. The experimental results
show that the LPCF method can significantly reduce the
bias of the LPC method in the low and high frequency
bands. It can provide higher frequency resolution than LPC
in different frequency bands and different orders. LPCF is
a robust method, which has less sensitive to the filter order
and has a higher tolerance of noise than LPC. Due to EEG
is a noise multi-component EEG signal, LPCF is particularly
suited to study the dynamic of EEG activity. It can estimate the
dominant frequencies of different EEG frequency bands and
effectively reduce redundant estimates compared to LPC. In
further work, the LPCF method can support further processing
of the EEG signal using machine learning techniques.
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