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Speech Intelligibility prediction using a Neurogram

Similarity Index Measure

Andrew Hines, Naomi Harte

Department of Electronic & Electrical Engineering, Sigmedia Group, Trinity College
Dublin, Ireland

Abstract

Discharge patterns produced by fibres from normal and impaired auditory
nerves in response to speech and other complex sounds can be discriminated
subjectively through visual inspection. Similarly, responses from auditory
nerves where speech is presented at diminishing sound levels progressively
deteriorate from those at normal listening levels. This paper presents a
Neurogram Similarity Index Measure (NSIM) that automates this inspec-
tion process, and translates the response pattern differences into a bounded
discrimination metric.

Performance Intensity functions can be used to provide additional in-
formation over measurement of speech reception threshold and maximum
phoneme recognition by plotting a test subject’s recognition probability over
a range of sound intensities. A computational model of the auditory periph-
ery was used to replace the human subject and develop a methodology that
simulates a real listener test. The newly developed NSIM is used to evaluate
the model outputs in response to Consonant-Vowel-Consonant (CVC) word
lists and produce phoneme discrimination scores. The simulated results are
rigorously compared to those from normal hearing subjects in both quiet
and noise conditions. The accuracy of the tests and the minimum number
of word lists necessary for repeatable results is established and the results
are compared to predictions using the speech intelligibility index (SII). The
experiments demonstrate that the proposed Simulated Performance Inten-
sity Function (SPIF) produces results with confidence intervals within the
human error bounds expected with real listener tests. This work represents
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an important step in validating the use of auditory nerve models to predict
speech intelligibility.

Keywords:
auditory periphery model, simulated performance intensity function, NSIM,
SSIM, Speech Intelligibility

1. Introduction

It has been shown that auditory nerve (AN) discharge patterns in re-
sponse to complex vowel sounds can be discriminated using a subjective
visual inspection, and how impaired representations from those with sen-
sorineural hearing loss (SNHL) differ from the normal (Sachs et al., 2002). If
this subjective visual inspection can be replaced by a quantitative automated
inspection, rapid prototyping of hearing aid algorithms could become possi-
ble. This would, however, require another question to be answered - how to
directly link the quantitative measure of degradation in neural patterns to
speech intelligibility. If this were achieved, it could allow simulated speech
intelligibility tests, where the human listener would be substituted with a
computational model of the auditory periphery and measured outputs would
correlate with actual listener test results. This concept is illustrated in Fig.
1.

Recent work by the authors (Hines and Harte, 2010) developed a tech-
nique for assessing speech intelligibility by using image similarity assessment
techniques to rank the information degradation in the modelled output from
impaired AN models. It demonstrated effective discrimination of progres-
sively deteriorating hearing losses through analysis of the spectro-temporal
outputs and showed that hearing losses could be ranked relative to their
scores using the structural similarity index (SSIM). A review and discussion
of other techniques (Elhilali et al., 2003; Bondy et al., 2004) using AN mod-
els was also presented. Example outputs from the AN model for progressive
hearing losses are displayed in Fig. 2 along with their SSIM scores.

In this paper the inspection process is extended to translate the SSIM
measure from ranking AN discharge pattern differences into an actual phone-
mic recognition metric. This involved developing a test procedure that can
simulate a real human listener test, with the person in the test being sub-
stituted with the AN model. The objective of the test is to determine the
percentage of words or phonemes correct by using an image similarity as-
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sessment technique to analyse the AN model output, and a transfer function
to produce an objective measure of speech discrimination. The methodology
has been developed to allow testing over a wide range of SNHLs and speech
intensity levels. While the ultimate goal of this work is to assess hearing loss
and hearing aid assessment, this paper focuses on validating the methodology
with normal hearing at low signal levels in a quiet environment. Preliminary
tests in steady state background noise are also presented, however, testing
could be extended in future to include other signal distortions.

It was necessary to develop a simulated listener test methodology that
would map to a human listener test and scoring system. The methodology
needed to use the same dataset and produce results that were formatted in
a comparable way to real listener test. In addition, the methodology needed
to be validated to ensure that results were consistent and repeatable. The
accuracy of the tests and the minimum number of word lists necessary for
repeatable results were also measured. To demonstrate that the AN model
was an essential element in the system, an end-to-end test was also carried
out with an adaptation of the methodology excluding the AN model.

Section 2 describes the AN model and how image similarity metrics can
assess the model’s output neurograms. It presents the structural similarity
index and details how it can be adapted to neurogram degradation assess-
ment as well as introducing performance intensity listener testing. Section 3
details the general experimental setup. Section 4 describes the specific exper-
iments undertaken to develop and assess the simulated performance intensity
tests and presents results. Section 5 reviews these results in the context of
other work and uses the Simulated Performance Intensity Function (SPIF)
method presented to compare the results in quiet and noise with the Speech
Intelligiblity Index (SII) standard (ANSI, 1997).

2. Background

2.1. Auditory Nerve Models

Previous work (Hines and Harte, 2010) used the AN model of Zilany and
Bruce (2006) that is derived from empirical data matched to cat auditory
nerves. The model has since been extended and improved. In this study,
their new model (Zilany et al., 2009) was used which includes power-law
dynamics as well as exponential adaptation in the synapse model. The AN
model is the latest version based on ongoing research and has been extended
and enhanced over the last decade (Zhang et al., 2001; Bruce et al., 2003).
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It has been developed through extensive testing and matching with physi-
ological data to a wide variety of inputs. This study focused on using the
AN model to develop a simulated listener intelligibility metric and the model
was treated as a black box. Changes to the AN model to incorporate hu-
man cochlear tuning (e.g. Ibrahim and Bruce (2010)) were not implemented
as currently a difference in tuning between the human cochlea and that of
common laboratory animals has not been definitively shown (Young, 2008).

2.2. Neurograms

A neurogram is analogous to a spectrogram. It presents a pictorial repre-
sentation of a signal in the time-frequency domains using colour to indicate
activity intensity.

As in prior work (Hines and Harte, 2010), neurograms with 30 charac-
teristic frequencies (CFs) were used, spaced logarithmically between 250 and
8000 Hz. The neural response at each CF was created from the post stimu-
lus time histogram (PSTH) of 50 simulated AN fibres varying spontaneous
rates. Two types of neurograms were used, an average discharge or envelope
(ENV) and a fine timing or temporal fine structure (TFS). The TFS and
ENV responses were smoothed by convolving them with a 50% overlap, 32
and 128 sample Hamming window respectively.

When referring to neurograms, the terms ENV and TFS are distinct from,
although related to, the corresponding signal terms. Although the ENV
and TFS neurograms allow auditory nerve firing rates to be investigated at
different time resolutions they are not the strict isolating metrics of acoustic
ENV and TFS (Rosen, 1992; Smith et al., 2002). As the ENV neurogram
is a smoothed average discharge rate, only slow temporal modulations will
be available, which allows the envelope information that is embedded to
be assessed. TFS neurograms preserve spike timing information and the
synchronisation to particular stimulus phase, or phase-locking phenomenon
(Young, 2008), allow TFS cues to be examined.

An example signal, the word “ship” presented to the AN model, is shown
in Fig. 3. The top row shows the time domain signal. Below it, the spec-
trogram presents the sound pressure level of a signal for frequency bands in
the y-axis against time on the x-axis. Three ENV neurograms, created from
AN model outputs for signals presented at progressively lower presentation
levels (65, 30 and 15 dB SPL), are then shown. The colour represents the
neural firing activity for a given CF band in the y-axis over time in the x-
axis. The neural activity is binned into time bins (TFS=10µs; ENV=100µs)
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to create PSTH information. The fine timing information of neural spikes is
retained and presented in TFS neurograms (not illustrated) while the ENV
neurogram smoothes the information and presents an average discharge rate
using a larger bin and a wider Hamming window.

2.3. Structural Similarity Index (SSIM)

The neurograms created from the AN model output can be treated as
images. The output created by presenting words at a conversational level to
a model of a normal hearing listener can be used as a reference. Segregating
the neurogram into images for each phoneme and comparing the reference
to degraded versions allows an image similarity metric to assess the level of
degradation.

Prior work (Hines and Harte, 2010) demonstrated that the structural
similarity index (SSIM) (Wang et al., 2004) could be used to discriminate
between a reference and degraded neurogram of a given phoneme. SSIM
was developed to evaluate JPEG compression techniques by assessing image
similarity relative to a reference uncompressed image. It exhibited better
discrimination than basic point to point measures, i.e. relative mean squared
error (RMSE) and relative mean absolute error (RMAE), for image similarity
evaluations carried out between neurograms of the reference and degraded
versions of phonemes. Unlike these measures, SSIM “looks” at images over a
patch or windowed area rather than just using a simple point-to-point pixel
comparison. The optimal window size was found to be 3x3 pixels for both
TFS and ENV neurograms (covering three CF bands on the y-axis and a
time duration on the x-axis of approximately 0.5ms and 20ms respectively).

SSIM uses the overall range of pixel intensity for the image along with a
measure of three factors on each individual pixel comparison. The factors:
luminance, contrast and structure, give a weighted adjustment to the simi-
larity measure that look at the intensity (luminance), variance (contrast) and
cross-correlation (structure) between a given pixel and those that surround
it versus the reference image.

The SSIM between two neurograms, the reference, r, and the degraded,
d, is constructed as a weighted function of luminance (l), contrast (c) and
structure (s) as in eqn. (2). Luminance looks at a comparison of the mean (µ)
values across the two neurograms. The contrast is a variance measure, and
structure equivalent to the correlation coefficient between the neurograms
(r) and (d). Let k be the CF band index, and m the index for the sub-
sampled smoothed auditory nerve output. As per Wang et al. (2004), for each
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phoneme neurogram, the local statistics (µr,σr,σxy) are computed within a
3x3 square window, which moves pixel by pixel (k = 1..K, m = 1..M)
over the entire neurogram. At each point, the local statistics and SSIM are
calculated within the local window, producing an SSIM map. The mean of
the SSIM map is used as the overall similarity metric. Each component also
contains constant values (C1 = 0.01L and C2 = (0.03L)2, where L is the
intensity range, as per Wang et al. (2004)) which have negligible influence
on the results but are used to avoid instabilities at boundary conditions.
The weighting coefficients, α, β and γ, can be used to adjust the relative
importance of the components, expressing SSIM as in eqn. (2). See Hines
and Harte (2010) for further information on neurogram ranking with SSIM
and Wang et al. (2004) for a full description of the metric.

S(r, d) = l(r, d)α · c(r, d)β · s(r, d)γ (1)

S(r, d) = (
2µrµd + C1

µ2
r + µ2

d + C1

)α · ( 2σrσd + C2

σ2
r + σ2

d + C2

)β · ( σrd + C3

σrσd + C3

)γ (2)

The SSIM is calculated for each point on a neurogram. The overall SSIM
similarity index for two neurograms is computed as the mean of the SSIM
index values computed for all patches of the two neurograms.

A cursory investigation of the component weightings in SSIM was under-
taken in prior work, where the weightings proposed by Kandadai et al. (2008)
for auditory signal analysis were compared to the un-weighted results. As
phoneme discrimination was significantly poorer using the suggested weight-
ings when compared to the un-weighted SSIM results, undertaking a full
investigation was deemed necessary. This work seeks to establish the com-
ponent weights for SSIM that give the best correlation with human listener
test results when being used to compare phoneme neurograms.

2.4. The Performance Intensity Function

A useful way of presenting listener test results is the performance versus
intensity (PI) function. It describes recognition probability as a function
of average speech amplitude, showing the cumulative distribution of useful
speech information across the amplitude domain as speech rises from inaudi-
bility to full audibility (Boothroyd, 2008). Boothroyd uses phoneme scoring
of responses to Consonant-Vowel-Consonant (CVC) words to obtain PI func-
tions and argues that the potentially useful information provided by the
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PI function over a basic speech reception threshold test and maximum word
recognition test with CVC word lists is worth the extra time and effort.

According to Mackersie et al. (2001) PI evaluation can provide a more
comprehensive estimation of speech recognition. Before computerised ver-
sions of the test, such as the Computer-Aided Speech Perception Assess-
ment (CASPA; Boothroyd (2006)), automated the procedure, calculating a
PI function with phoneme scoring was a significantly more time consuming
test.

There are a number of advantages to phonemic scoring tests over simi-
lar word scoring tests (Markides, 1978; Gelfand, 1998). From a statistical
perspective, the simple increase in the number of test items improves test-
retest reliability by decreasing variability (Boothroyd, 1968a; Gelfand, 1998).
Phoneme scores are less dependent on a listeners vocabulary as they can be
instructed to repeat the sounds that they hear, not the word, even if they
believe it to be a nonsense word. Results are less influenced by the listener’s
vocabulary knowledge than whole-word scoring and provide a well-grounded
measure of auditory resolution (Boothroyd, 1968b; Olsen et al., 1997). This
factor is important in testing with children, who would have a more limited
vocabulary than adults (McCreery et al., 2010).

The PI test has been shown to be useful for comparative tests of aided
and unaided speech recognition results and it has been proposed as a useful
method of evaluation of the performance improvement of subjects speech
recognition under different hearing aid prescriptions or settings (Boothroyd,
2008). It has also been used in testing for rollover effect at high intensities
(Jerger and Jerger, 1971).

The test corpus used here contains 20 word lists of 10 phonemically bal-
anced CVC words. It was developed by Boothroyd for use with the CASPA
software for PI measurement. Words are not repeated within lists and lists
are designed to be isophonemic, i.e. to contain one instance of each of the
same 30 phonemes. There are 10 vowels and 20 consonants in each list and
they are chosen to represent those that occur most frequently in English
CVC words. The lists are balanced only for phonemic content - not for word
frequency or lexical neighbourhood size. Word lists comprising 10 words are
presented over a range of intensity levels. The tester records the subject’s
responses with the CASPA software. It scores results in terms of words,
phonemes, consonants, and vowels correctly identified and generates sepa-
rate PI functions for each analysis. A sample word list is illustrated in Fig.
1.
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3. Simulation Method

Experiments using the AN model were designed to allow comparison of
simulated listener test results with real listener data. The real listener tests,
presented by Boothroyd (2008), were carried out dichotically via insert head-
phones on a group of normal hearing listeners in quiet at speech presentation
levels between 5 and 40 dB SPL. The tests are reproduced here, substituting
the human listener with the AN model and measuring neurogram degrada-
tion to predict phoneme discrimination.

First, different image similarity metrics were investigated to quantify the
measurements’ fitting accuracy to human listener data. Then PI functions
were simulated for normal hearing listeners over a wide range of presentation
levels in both quiet and noise conditions, using the newly refined metric and
methodology.

3.1. Experimental Setup

Timing label files marking the phoneme boundaries were created for the
200 words in Boothroyd’s dataset. For each word, the time was split into
5 portions: a leading silence, a trailing silence, and 3 distinct phonemes.
All calculations were based on lists containing 10 words (30 phonemes). For
actual listener tests Boothroyd (2008) made an assumption of 25 independent
phonemes per list, due to the overlap of phoneme sounds within words.

The most comfortable level (MCL) for speech listening with normal hear-
ing is generally around 40-50 dB above the initial speech reception threshold
(Hochberg, 1975; Sammeth et al., 1989) and the mean sound field pressures
of conversational speech is 65-70 dB SPL (Moore, 2007). A level of 65 dB
SPL was taken as the standard level to generate reference neurograms for
similarity comparisons. The word lists were presented to the AN model at
speech intensity levels of 5 through to 50 dB SPL in 5 dB increments and
neurograms were created from the simulated AN output.

Phoneme Recognition Threshold (PRT) is the level in dB SPL at which
the listener scores 50% of their maximum. The modal PRT value for normal
hearing listeners was 15 dB SPL in Boothroyd (2008) but was previously
set at 20 dB SPL (Boothroyd, 1968a). The 15 dB value was used for these
experiments.

The similarity measurement between a reference neurogram at 65 dB SPL
(MCL level) and a degraded neurogram at 15 dB SPL (PRT level) measured
over a large sample of phonemes gives a neurogram PRT (NPRT) for a given
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image similarity metric (ISM). The NPRT for each ISM was evaluated per
phoneme position (p = {C1, V 1, C2}) using lists of CVC words. The NPRT
values were calculated as the medians, µ̃p, of the subsets Sp, containing image
similarity metric F for the 100 phonemes in each subset, between the PRT
and MCL levels. Using the notation from eqn. (2), the MCL level is r and
the PRT level is dPRT , the NPRT value is µ̃ for K phonemes of the set,

Sp = {F (r(i), dPRT (i))|1 ≤ i ≤ K} (3)

The threshold was calculated per phoneme position (C1,V1,C2) rather
than across all phonemes together. While Boothroyd does not differentiate
between recognition by phoneme type in calculating the PI function, the
image similarity metrics are susceptible to differences in some circumstances,
e.g. noise. This is discussed further in section 5.

The same procedure that was used for evaluation of the NPRT was re-
peated at each speech intensity level. The results for each image similarity
metric were recorded and a phoneme discrimination score was calculated by
counting the number of phonemes scoring above the NPRT value. Fig. 8
illustrates SSIM scores per phoneme position with the NPRT marked. The
comparison measurement was carried out in the same manner for both ENV
and TFS neurograms and allowed a PI function to be plotted from the results
for both neurogram types.

4. Experiments and Results

4.1. Image Similarity Metrics

The first experiment compared the ability of three image similarity met-
rics (SSIM, RMAE and RMSE) to predict human listener test scores directly
from neurograms. Ten lists (100 words) were presented at each presentation
level. Phoneme discrimination scores were calculated for phonemes scoring
above the NPRT for SSIM (as it is an ascending similarity metric) and below
the NPRT value for RMSE and RMAE (as they are ascending error metrics).

The relative contribution from each of the SSIM components: luminance,
contrast and structure was also investigated for both neurogram types. From
eqn. (2), α, β and γ are the exponents associated with each component of
the SSIM metric. Each combination of α, β and γ for .05 increments between
.05 and 1 was tested.

Following the same methodology to calculate phoneme neurogram simi-
larity, PI functions were created for each weighting combination. The curve
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fitting error was calculated as the sum of the least square difference between
the real listener PI function and the simulated PI function at each of the
ten presentation levels. The minimum error score gave the best weighting
combination to curve fit modelled results to the human listener tests.

The PI curves for each image similarity metric are presented in Fig. 4.
There are two for SSIM, one with un-weighted components, Fig. 4B, and
one using the optimal SSIM component weightings, Fig. 4D.

The 10 lists are isophonemic and should thus be comparable in terms
of the PI scores yielded. The PI function for each list was calculated and
the mean PI discrimination scores are presented. The error bars show stan-
dard error 95% confidence interval measurement between lists at each speech
intensity level.

The highlighted area in the graph highlights the speech intensity range
from 20-40 dB SPL which was used to evaluate the correlation between the
PI function for each ISM and the actual listener data PI curve. Boothroyd
(1968a) recommends that clinicians carry out tests at a minimum of three
levels along the sloping part of the curve. The scores above 40 dB SPL were
100% for all ISMs tested and the threshold 15 dB level was used to anchor
the 50% level. The intermediate 5 data points were used as the range to
assess deviation from the actual listener test PI function.

The root mean square deviation (RMSD) between modelled PI results
and listener data results over the 20-40 dB SPL range was calculated for
both ENV and TFS neurogram types. This quantified how closely the mod-
elled results (PIneuro) followed the real listener PI function (PIlistener). The
expected RMSD value was calculated between 20 and 40 dB SPL as:

RMSD =
√
E(PIlistener − PIneuro)2 (4)

The superior PI function fit for SSIM can be seen in Fig. 4 where RMSE
and RMAE have significantly poorer RMSD scores for both ENV and TFS.

The SSIM PI function, shown in Fig. 4B, tracks the listener PI curve
significantly better than either the RMSE or RMAE. The root mean square
deviation in the highlighted box shows the deviation from the actual listener
test curve for the AN modelled results when calculated for ENV and TFS
neurograms.

The optimised SSIM, where exponents α, β and γ were varied to find
the factors contributing most to neurogram similarity measurement, are pre-
sented in Fig. 5. The curve fitting errors demonstrate that the measure is
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fairly robust to changes in weightings with α and γ being the primary mea-
sures over β. Fixing α and β at their optimum values, the graph displays
the error for weightings of γ over full range in 0.05 increment tests. Results
for α and β are similarly shown. The results for both TFS and ENV neuro-
grams were optimal with α and γ closer to full weighing and β as a minimal
contribution. The optimal weightings for the SSIM components are in Table
1. It should be noted from Fig. 5 that while the error trends downwards as
the α weighting increases, both β and γ are relatively flat with local minima,
such that the difference between the TFS results for a γ value of .65 or 1 is
negligible. The PI function for optimised SSIM is shown in Fig.4D. It can
be seen that the results display an improvement in correlation to the listener
test data over un-weighted SSIM for both ENV and TFS neurogram types.

α β γ

TFS 1 0.05 .65

ENV 0.95 0.05 0.9

Table 1: SSIM component weighting test. The optimal weightings for α, β and γ expo-
nentials when using SSIM to assess listener tests results with TFS and ENV neurograms.

4.2. Neurogram Similarity Index Measure (NSIM)

The optimally weighted SSIM results are better than those for the un-
weighted metric although the magnitude of the improvement is not as pro-
found as the difference between SSIM and the other similarity metrics tested.
Looking at the results in Fig. 5, there is a strong argument for dropping the
contrast component β, which contributed minimal positive correlation, and
setting α and γ at 1. Testing this proposal with 10 lists gave results com-
parable in accuracy and reliability to those measured using the optimum
SSIM weightings. This would simplify the metric considerably and also cre-
ate a uniform calculation for both ENV and TFS neurograms. It is proposed
that this simplified adaptation of SSIM will be used and referred to as the
Neurogram Similarity Index Measure (NSIM):

NSIM(r, d) =
2µrµd + C1

µ2
r + µ2

d + C1

· σrd + C2

σrσd + C2

(5)

4.3. Accuracy and Repeatability

Tests were carried out using multiple different lists at each presentation
level as well as with repetitions of a single list to assess the repeatability and
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accuracy of the simulations.
The accuracy was assessed by measuring the root mean squared deviation

between the real listener and simulated PI functions. The repeatability was
measured by comparing the standard error variability at each presentation
level.

A single word list (list #1) was presented to the model 10 times. PI
functions were calculated and the confidence intervals were estimated using
3, 5, 8 and 10 iterations of a single list (Fig. 6). 95% confidence intervals
(1.96 times the standard error) between iterations above and below the mean
value are shown at each presentation level tested.

For iterations of the same list, the ENV and TFS PI functions do not
follow as closely to the real listener PI function as for the same number
of varied lists. A comparison of the RMSD values quoted in Fig. 6 show
that the deviation remains consistent as the number of simulation iterations
increased. More iterations did however decrease the variability, as the error
bars illustrate.

Multiple word lists were presented to the model and PI functions were
calculated and the confidence intervals were estimated using 3, 5, 8 and 10
lists at each presentation level (Fig. 7). The RMSD values show the deviation
decreases for tests using 3 to 5 lists but is relatively consistent for 5,8 and 10
lists.

As with multiple presentations of the same list, the variability decreases
as the number of lists increases, illustrated by the error bars decreasing in
size in Figs. 7A-D.

These results show that repeating lists do not improve the accuracy but
does improve the confidence interval in the simulated PI functions. Using 5
different lists improves the accuracy and the confidence interval over using
3 lists in the simulated PI functions, but more than 5 has little impact on
either accuracy or reliability. This result coincides with the recommendations
to present a minimum of 3 lists in the original PI listener test proposal
(Boothroyd, 1968a).

4.4. Method and Model Validation

To rule out the potential of false-positive results, and to verify that the
AN model was the principle factor influencing the PI function shape, PI func-
tions were created using spectrograms of the input signal with comparable
resolutions to neurograms. The number of frequency bands matched the 30
CF bands in the neurograms and the sampling and smoothing windows were
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comparable to those used to created ENV and TFS neurograms from the
AN model PSTH outputs. The spectrograms were created directly from the
input dataset signals (i.e. the words at each intensity level). Using the same
methodology that was used for neurogram assessment, SSIM was used with
the spectrograms to calculate PI functions. The NPRT level was set at 15 dB
SPL, although without the AN model present, there is no inherent reception
threshold boundary at this level in the signal spectrogram.

Fig. 9 confirms that the AN model is the critical factor influencing the
PI function shape. The RMSD values are an order of magnitude worse than
those measured using neurograms from the AN model. This is primarily
attributable to the 100% scores for 30 dB SPL and above. The reason for
this is apparent when the SSIM results are examined. Although the range
in the SSIM scores is much wider for the spectrograms than it is for the
neurograms, the NPRT line is much closer to zero. The wider range and
spread in SSIM values are indicative of the procedure purely measuring the
increase in signal intensity from the spectrograms.

This validates the assumption that the accuracy of the simulated PI is
primarily a function of the AN model and not just a function of the data or
test parameters used in the methodology.

4.5. Simulated Performance Intensity Functions (SPIFs)

Further experiments were carried out to assess the prediction of normal
hearing across a wider range of presentation levels in quiet and a range of
signal to noise ratios in steady state noise. Based on the prior findings, 5
word lists were used and the neurograms were compared using the NSIM.

A test in quiet was carried out over 5 dB intervals from 5 to 100 dB
SPL with the reference neurogram level set at 65 dB SPL. The results are
presented in Fig. 10. The ENV results reached 100% phoneme recognition
at 45 dB SPL and remain there through to 100 dB SPL. The TFS results
begin to fall from 90 dB SPL.

A second test was carried out, with a steady state noise fixed at 55 dB SPL
and the words were presented at 5 dB increments between -15 and +15 dB
SNR. A reference +20 dB SNR was used for comparisons and a -11 dB SNR
was used as the phoneme recognition threshold in line with results presented
in Boothroyd (2008). The results are presented in Fig. 11.

In noise, NSIM provided a marginally superior fit to RMAE or RMSE.
Further tests in a range of noise and reverberations may allow further re-
finement and assessment of the SPIF methodology. This basic test in noise
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demonstrates the model is not limited to speech intelligibility assessment in
quiet.

4.6. Comparison to SII

A comparison was carried out between the results presented for NSIM
and the speech intelligibility index. The SII was calculated by the one-
third octave procedure in ANSI (1997) using the long term spectrum for five
CASPA word lists. SII was calculated in quiet over 5 dB steps between 5 and
100 dB SPL. SII is a measure, bounded between zero and one, that computes
the amount of audible speech cues that are available to a listener. An SII
score of 0.5 does not translate directly to a speech discrimination score of
50%. The frequency importance and transfer functions for NU6 words were
used to convert SII to word recognition (Studebaker et al., 1993) followed by
a word-to-phoneme recognition transfer function(Boothroyd, 2008). Fig. 10
shows the SII and the SII phoneme recognition predictions in quiet and Fig.
11 shows SII in noise. The SII input was adjusted to match the PRT of the
listener test results.

In quiet, SII follows the listener PI function well but overestimates results
in the 20-40 dB SPL range (RMSD=0.059). The linear correlation between
modelled and listener phoneme discrimination is presented along with their
RMSD values in Fig. 10.

SII and NSIM both underestimated the phoneme recognition in the pre-
liminary tests in noise, with gradients more linear than the real listener PI
function between 50% and 90% phoneme discrimination levels. Results for
both ENV and TFS neurograms showed similar levels of accuracy but both
underestimated phoneme discrimination more than SII.

5. Discussion

Using the Neurogram Similarity Index Measure to compare the neuro-
gram outputs from an AN model has been shown to produce a PI function
with statistically significant correlation accuracy to real listener data. This is
an important step that not only validates the AN model as a tool for assessing
speech intelligibility, but provides a mechanism for quantitatively assessing
phoneme and word recognition at progressive speech intensity levels. It must
be acknowledged that so far this has only been demonstrated for simulations
of normal hearing in quiet and steady state noise. The methodology, having
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been developed and validated, now has the potential to be extended to sim-
ulations in other environments such as speech shaped noise or reverberation
and also for simulation of SNHL in aided and unaided scenarios.

Measuring the similarity of spectrograms instead of neurograms demon-
strated that the AN model was essential to the overall accuracy of the sim-
ulated PI function. One limitation of the AN model is its computational
requirements preclude real time simulation of even limited word lists. While
this paper focused on the development of a methodology for using image simi-
larity metrics in neurogram assessment, one could speculate that substituting
an alternative, simpler AN model to that of Zilany et al. (2009), may yield
comparable results. In its current form, the proposed methodology could
ultimately prove effective as a measure for use in the assessment of hearing
aid algorithms, but would be unsuitable for any real-time applications.

NSIM provides a simpler metric to SSIM while still giving comparable
results that are superior to basic point-to-point similarity metrics in quiet
conditions. The simulated PI functions demonstrate that modelled results
for both ENV and TFS neurograms can be correlated with psychometric
tests. One apparent weakness, is the poor correlation below the PRT level,
where RMAE and RMSE performance was superior (see Fig. 4A). As testing
at these levels has limited practical applications in hearing assessment or
enhancement, it is not perceived as a major shortcoming.

The methodology presented is based on transforming an image similarity
metric to an estimate of phoneme discrimination, by measuring the similarity
between a reference and degraded neurogram. The premise is that, over a
long run of phoneme neurogram comparisons, a threshold value (NPRT) for
similarity can be matched to a psychoacoustic phoneme recognition level.

The NPRT is set based on the median levels for the leading consonant,
vowel and trailing consonant (C1,V1,C2). For early experiments, the NPRT
was set as the median across all phonemes regardless of position. This worked
well in quiet conditions and the difference in value between the NPRT calcu-
lated across all phonemes versus the NPRT, calculated per phoneme position,
was negligible (for ENV and TFS µ̃−µ̃p < 0.016). In noise this was found not
to be the case where the NPRT range was up to 0.056. It is illustrated in Figs.
10 & 11 where the NPRT lines are plotted on the NSIM boxplots. While
the results in quiet show similar maximum, minimum and NPRT scores for
C1,V1 and C2, the pattern is not repeated in noise. The trailing consonant,
C2, has a lower maximum, minimum and NPRT than either C1 or V1. The
likely reason for this is due to the higher occurrence of stop phonemes at
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the end, rather than at the start of the test words. When analysed as an
image, a time-frequency neurogram plot of a stop phoneme is predominantly
an empty image followed by an vertical line of intensity across the frequency
range and then trailing off (see Fig. 3 from approximately 0.55 seconds).
Comparison of the stop in quiet will rank the silence portion of the image
equally and the similarity ranking is dominated by differences in the intensity
of the plosive burst. When comparing stop phonemes in noise, the absence
of comparative features in the pre-plosive burst section of the neurogram re-
sults in a dominance of noise over spectro-temporal phoneme features in the
similarity analysis and a consequent shift down in similarity scores.

Using a image similarity metric has a dependence on the spectro-temporal
features within a phoneme’s neurogram. While this causes problems when
assessing the similarity of stop consonants in noise, an analogous problem is
faced by real listeners decoding speech, where noise masks the expected si-
lence and reduces the intensity difference at the start of the plosive burst. The
full reference, time-aligned neurogram comparison, means that each phoneme
is assessed based on its degradation in isolation. Practically, the measure-
ment is devoid of any advantage of context, but it also means that slight
misalignments will not critically impact the results as a vowel phoneme that
is shorter, or longer, will still yield a comparable similarity score due to the
periodic nature of the neurogram.

5.1. Comparison with other models

Approaches similar to those presented in this paper have been adopted by
a number of authors in their work on the prediction of speech intelligibility
using AN models.

Huber and Kollmeier (2006) used the Dau et al. (1996) auditory model to
develop PEMO-Q, an audio quality assessment. While their goal was quality
assessment, a strong correlation between quality and speech intelligibility has
been shown (Preminger and Tasell, 1995). The PEMO-Q approach is based
on a full reference comparison between “internal representations” of a high
quality reference signal and distorted signals. The metric uses a correlation
co-efficient and requires time-aligned signals and uniform band importance
weightings that are applied across frequency bands. The envelope modulation
from each band forms a weighted cross correlation of modulations to obtain
the quality index.

Spectro-temporal modulation transfer functions (MTF) have been used
to develop intelligibility indices (STI/STMI). The spectro-temporal modu-
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lation index (STMI) was developed by Elhilali et al. (2003) to quantify the
degradation in the encoding of spectral and temporal modulations due to
noise, regardless of its exact nature.

Zilany and Bruce (2007) combined the use of STMI with their AN model
(Zilany and Bruce, 2006) to measure intelligibility by presenting sentences
and words in quiet and noise. They showed correlation between STMI scores
and word recognition, but only tested with a limited number of presentation
levels. They demonstrated that STMI would predict the same general trends
as listener tests in quiet, noise and with SNHL. Quantitative prediction or
mapping to word recognition via a transfer function was not demonstrated.

A key difference in this work is the quantitative link between neurogram
similarity and phoneme recognition performance across a range of intensity
levels. The measurement and scoring on a per phoneme basis aims to allow
direct comparison between clinical testing techniques and simulated mod-
elling. Phoneme based modelling was undertaken by Jurgens and Brand
(2009) who correlated simulated recognition rates with human recognition
rates and also looked at confusion matrices for vowels and consonants. In
their Perception Model (named PeMo), the comparisons are made using a
distance measurement between unseen, noise corrupted sounds and reference
sounds. A dynamic time warp speech recogniser computes the distance for
each reference and the reference with the smallest distance measurement is
recognised. This means that recognition is based on guessing words from a
limited vocabulary and that there is a threshold percentage correct that can
be scored (random hit probability), which necessitated adjustments in the
intelligibility scores. Their model showed similar prediction accuracy to SII.
As in this paper, Gallun and Souza (2008) investigated the affect on intel-
ligibility changes to the envelope at a phonemic level using a time-averaged
modulation spectrum alone, without measuring phase components. They
concluded that it could capture a “meaningful aspect” of information used
in speech discrimination.

The results presented here show that, in both quiet and noise, neurogram
similarity can be used to predict the phoneme recognition across a range of
presentation levels or SNRs for a normal listener within the levels of accuracy
expected from real listener tests. Jurgens et al. (2010) noted that observed
speech reception thresholds in normal hearing individuals varied by about 5
dB. They note that inter-individual differences in SRT is an important and
not adequately represented factor in modelled speech intelligibility, either
using their model or the ANSI (1997) standard model, speech intelligibility
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index (SII). Here, comparison of modelled data with real listener data neces-
sitated calibrating the PI function to the phoneme reception threshold. In
the results presented, the PRT was set according to the measured level from
the psychoacoustic tests.

The NSIM results show a similar trend to SII. In quiet, the SII peaks
just below 60 dB SPL and remains at a maximum through approximately
10 dB before beginning to degrade dropping to 0.84 by 100 dB SPL. The
NSIM results plateau at 65 dB SPL, where they show a maximum similarity
before tailing off at a faster rate than SII. It should be pointed out that the
maximum NSIM value reached is not 1 as the 65 dB reference neurograms and
the 65 dB test neurograms compared are from independent simulations with
the AN model. A score of between .7 and .8 is the maximum similarity that
occurs even for the same signal presented at the same level to the AN model.
The fact that the ENV neurograms predict 100% phoneme discrimination all
the way up to 100 dB SPL but that TFS predicts a sharp drop off beginning
at 90 dB SPL is mainly due to the NSIM vowels scores dropping below the
NPRT rather than the consonant similarity scores. It can be speculated that
this behaviour in neurogram similarity may be linked to hearing phenomena,
e.g. the rollover effect (Jerger and Jerger, 1971). However, this work only
demonstrates that both ENV and TFS neurograms can be used to predict
speech intelligibility in normal hearing listeners. Modelling sensorineural
hearing loss will allow better insight in distinguishing the predictive qualities
and factors influencing ENV and TFS neurograms.

The simulated performance intensity functions presented here compare
favourably to predictions with SII and are a good validation of NSIM’s po-
tential. Like SII, it is not a direct measure of intelligibility. NSIM measures
the difference between simulated auditory nerve firings at given intensities
compared to a reference level. SII predicts the proportion of speech infor-
mation that is available to the listener in given conditions. It does this by
estimating the loss of information due to the masking of noise, audibility
threshold or hearing impairment. A transfer function is required to predict
speech intelligibility. Unlike SII, which is using importance weightings for
general speech at each frequency band, NSIM is equally weighted across all
neurogram CF bands measuring similarity per phoneme. As the NSIM scores
are based on per phoneme neurograms, a direct comparison with results from
real listener tests is possible. The methodology also opens up the possibility
of examining other factors that may provide insight into cues used in speech
intelligibility, such as different neurograms types (TFS or ENV) or individual
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phoneme performance.
The superior performance of NSIM in quiet conditions compared to in

noise is not surprising given the underlying methodology. In quiet, the AN
activity decreases with presented sound intensity, and consequently there is
less ‘information’ in the neurogram. Conversely, phonemes presented in noise
contain additional erroneous information, in the form of AN activity due to
the noise. The NSIM comparison between neurograms is not weighted by
band or by time, so differences between noise patterns or between noise pat-
terns and quiet patches are weighted equally with changes to actual phonemic
features. This is an area where the metric could be further optimised, pos-
sibly even through the inclusion of features from SII such as frequency band
importance weightings.

6. Conclusions and future work

The results presented for normal hearing listeners demonstrate that sub-
stituting an auditory nerve model for a real human listener can quantitatively
predict speech intelligibility. The methodology and newly proposed Neuro-
gram Similarity Index Measure (NSIM) have been shown to produce accurate
and repeatable results. The confidence intervals for the simulated tests are
within human error bounds expected with real listener tests. The simu-
lated performance intensity functions in both quiet and in noise compared
favourably with SII predictions of phoneme recognition of the CVC material
tested with normal hearing listeners.

Work is ongoing to investigate simulating performance intensity func-
tions for listeners with SNHL in unaided and aided scenarios. This opens
up the potential to test and quantitatively compare the speech intelligibil-
ity improvements offered by hearing aid fitting algorithms in a simulated
environment.
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Human Subject

List 1 List 2 List 3

ship fish thug

rug duck witch

fan path teak

cheek cheese wrap

haze race vice

dice hive jail

both bone hen

well wedge shows

jot log food

move tomb bomb

Fig. 1: The Simulated Performance Intensity Function. Above: In a standard
listener test, word lists are presented to a human test subject who listens and re-
peats the words over a range of intensity levels. The words are manually scored per
phoneme and a PI function is plotted. Below: the listener is replaced with the AN
model and scoring is based on automated comparisons of simulated auditory nerve
firing neurograms to quantify phoneme recognition. The results are quantifiable
and are used to create a simulated PI function.
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Fig. 2: Sample ENV and TFS neurograms of the vowel /aa/ presented at 65
dB SPL to progressive SNHLs simulated with an AN model. Sample hearing
loss audiograms were used, described as mild (gentle sloping), moderate (steeply
sloping) and profound (gently sloping) as per Dillon (2001). Neurograms were
compared to the unimpaired neurogram shown and the unweighted SSIM scores
are shown. A score of 1 indicates a matching image, with scores bounded from -1
to 1 with -1 being an inverse image.
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Fig. 6: AN Model variance test. PI functions calculated with SSIM (optimal
weightings) using model data from 3, 5, 8 and 10 iterations of list no. 1.
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Fig. 7: Word List Test: PI functions calculated using model data from 3, 5, 8 and
10 lists.
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Fig. 8: SSIM scores for 10 lists. Broken down by phoneme (C1, V, C2) and a
whole word plot combining the phoneme results in a single chart. The dashed line
shows the neurogram phoneme recognition threshold level (NPRT).
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Fig. 9: Spectrogram tests. PI function generated using optimal SSIM weights with-
out the use of the AN model. Raw SSIM data for spectrograms with resolutions
equivelent to ENV and TFS neurograms.
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Fig. 10: Top: Simulated performance intensity functions for NSIM evaluation of
ENV and TFS neurograms in quiet with SII phoneme discrimination predition
plotted for comparison. Second Row: NSIM scores plotted per phoneme position
with NPRT level at 15 dB SPL. Third Row: SII plot and real versus modelled
data linear correlation and RMSD.
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Fig. 11: Top: Simulated performance intensity functions for NSIM evaluation of
ENV and TFS neurograms in 55 dB SPL steady state noise with SII phoneme dis-
crimination prediction plotted for comparison. Second Row: NSIM scores plotted
per phoneme position with NPRT level at -11 dB SPL. Third Row: SII plot and
real versus modelled data linear correlation and RMSD.
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