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Abstract 

Raman spectroscopy can provide a molecular-level fingerprint of the biochemical 
composition and structure of cells with excellent spatial resolution and could be useful to 
monitor changes in composition for dysplasia and early, non-invasive cancer diagnosis 
(carcinoma in situ), both ex-vivo and in vivo. In this study, we demonstrate this potential by 
collecting Raman spectra of nucleoli, nuclei and cytoplasm from oral epithelial cancer (SCC-
4) and dysplastic (pre-cancerous, DOK) cell lines and from normal oral epithelial primary cell 
cultures, in vitro, which were then analysed by principal component analysis (PCA) as a 
multivariate statistical method to discriminate the spectra. Results show significant 
discrimination between cancer and normal cell lines. Furthermore, the dysplastic and cancer 
cell lines could be discriminated based on the spectral profiles of the cytoplasmic regions. 
The principal component loading plot, which elucidates the biochemical features responsible 
for the discrimination, showed significant contributions of nucleic acid and proteins for 
nucleolar and nuclear sites and variation in features of lipids for the cytoplasmic area. This 
technique may provide a rapid screening method and have potential use in the diagnosis of 
dysplasia and early, non-invasive oral cancer, the treatment of which involves much less 
extensive and complex surgery and a reduction in associated co-morbidity for the patient. 
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1 INTRODUCTION 

Oral cancer is one of the more common cancers worldwide, and in non-developed 

countries is next in prevalence to skin and breast cancer. Tumours are primarily located 

around the tongue, floor of the mouth, gingiva and buccal mucosa (Kelly et al., 2014; Cabral 

et al., 2011). Although clinical diagnosis of late stage, invasive oral cancer is relatively 

straightforward, the clinical challenge remains to detect early cancerous lesions, which are 

significantly harder to identify. Surgical treatment of early oral squamous cell carcinoma 

involves much less extensive and complex surgery and leads to a significant reduction in co-

morbidity. Currently, the gold standard for diagnosis is histological analysis of tissue 

biopsies. However, numerous studies are being conducted in order to improve 

histopathological techniques with the ultimate goal to obtain a non-invasive, high 

throughput detection method for screening suspect cancer cells (Deer, 2014). 

In this context, optically-based spectroscopic techniques are prominent among 

potential candidate non-invasive and rapid diagnostic methods. These methods are widely 

used as a tool for analysis of many biological tissues and the technique has been referred to 

as an “optical biopsy” (Kallaway et al., 2013; Evers et al., 2012; Nawaz et al., 2011; Carvalho 

et al., 2010) or “spectral cytopathology” (Schubert et al., 2010) because of its capacity to 

show features of underlying pathological tissues when compared with normal samples. 

Raman spectroscopy is one of the most popular techniques with demonstrated potential in 

studies examining different types of cancer, including lung cancer (Wang et al., 2014), 

neural cancer (Tanahashi et al., 2014), breast cancer (Marro et al., 2014; Damayanti et al., 

2013) cervical cancer (Lyng et al., 2007), gastric cancer (Luo et al., 2013), skin cancer (Mittal 

et al., 2013) and head and neck cancer (Singh et al., 2012).  



The power of the method is primarily related to the molecular and biochemical 

signature it provides of the biological sample when the fingerprint region is analysed. The 

Raman effect is a result of inelastic scattering of monochromatic electromagnetic radiation 

due to interaction with molecular vibrations, such that the frequency of the scattered 

radiation is different from the incident radiation (Raman, 1928). The Raman spectrum of a 

given molecule consists of a series of peaks or bands, each corresponding to a characteristic 

vibrational mode of that molecule. Each molecule exhibits a characteristic spectrum, and 

thus the Raman spectrum can provide a "fingerprint" of a substance from which the 

molecular composition can be determined (Nawaz et al., 2011; Lyng et al., 2007). Changes in 

molecular composition due to the presence of disease are often subtle, requiring the use of 

multivariate statistical analysis (Byrne et al., 2014). In this way, Raman spectroscopy has 

been demonstrated to elucidate biochemical signatures not only from cancer studies but 

from other different pathological conditions in tissues and cells. Carvalho et al., (2010), 

using Raman spectroscopy to discriminate buccal inflammatory processes and normal 

tissues, revealed that the discrimination is possible using Soft Independent Modelling of 

Class Analogy (SIMCA) methods of analysis.  

Although there are increased numbers of studies involving Raman spectroscopy as 

an optical biopsy method, as the technique is based on optical microscopy, it can also be 

extended to the analysis of cytological samples at a cellular and subcellular level (Bonnier et 

al., 2010). Thus, interactions of, for example, anticancer agents and nanoparticles can be 

explored at a subcellular level (Dorney et al., 2012; Nawaz et al., 2011). Of clinical relevance, 

Raman spectroscopy has been explored for routine cytological screening for cervical cancer 

(Bonnier et al., 2014, Vargis et al 2012). However only a few studies have been published  



on oral squamous cell carcinoma and Raman micro-spectroscopy (Lasalvia et al., 2015; Su et 

al., 2012; Guze et al., 2011). The present study demonstrates the potential of Raman 

spectroscopy to provide and differentiate the biochemical signature from sub-cellular 

regions of oral cell lines, such as cytoplasm, nucleus and nucleolus, in a label free manner. 

Also, we illustrate the potential of the technique to discriminate between cancer, pre-

cancerous dysplastic cells and normal oral cell lines. 

2 MATERIALS AND METHODS 

2.1 ORAL CELL LINES 

To determine the efficacy of Raman Spectroscopy in distinguishing between the cellular 

states observed during carcinogenic transformation, three different types of oral cell lines: 

SCC-4 (malignant cell line), DOK (dysplastic cell line) and Primary cells (normal oral epithelial 

cell line) were utilised. 

2.1.1 SCC-4 and DOK cell cultures. It is important to note that both pathological cell lines 

were originally from tongue, one of the sites of highest incidence of oral squamous cell 

carcinoma. 

The SCC-4 and DOK (HPA cultures, UK) cell lines were cultured in Dulbecco Modified 

Eagle’s Medium (DMEM) supplemented with 10% (v/v) FBS, penicillin/streptomycin 

(100U/100ug) and L-glutamine (2mM). For the DOK cell line, hydrocortisone (5ug/ml) was 

also added. The medium was pre-warmed at 37°C before incubation of the cells. Cells were 

cultured until 90% confluency in a humidified environment at 5% CO2, before being 

passaged. When confluent, the cells were washed in pre-warmed phosphate buffered saline 

(PBS) (0.01M phosphate buffer, 0.154 M sodium chloride) and incubated with trypsin-EDTA 



(0.5% trypsin, 0.02% EDTA) for 5 min at 37°C. Fresh, pre-warmed medium was added to 

deactivate trypsin, and the suspended cells were centrifuged at 250g for 5 min. The 

supernatant was discarded and the cell pellet was resuspended in a sufficient volume of 

fresh pre-warmed medium, counted and passaged at a ratio of 1:3. 

2.1.2 Primary cell culture 

Human oral mucosa was recovered at the Dublin Dental University Hospital from 

patients undergoing routine third molar extraction in the Department of Oral and 

Maxillofacial Surgery. The sample was immediately placed into pre-warmed collection 

medium [DMEM, penicillin/streptomycin (100U/100μg), amphotericin B (2.5μg/ml)] for 10 

min before washing the tissue three times with pre-warmed 1X PBS and placing it in 0.17% 

trypsin overnight at 4°C. The following day, the sample was washed with 1X PBS and 

connective tissue was removed using a scalpel. The tissue was cut into small pieces (1mm x 

2mm) and the small sections were placed in pre-treated T25 flasks (CELL+, Sarstedt), each 

with a small coating of keratinocyte growth medium (KGM). These were left to adhere to 

the flask for 1-2h and the flask was subsequently flooded with KGM. Once sufficient growth 

of cells from tissue was achieved (2-3 weeks), KGM was replaced with Epilife medium 

(Invitrogen) to select for epithelial cell growth. Cells were passaged using 0.05% trypsin and 

spun at 250g for 10min at 4°C and cultured to 90% confluency. 

2.1.3 Sample preparation 

To facilitate Raman spectroscopy measurements, cells were detached from the flasks 

using 0.025% Trypsin–EDTA at 37°C and pelleted at 250g for 5 min at room temperature. 

The supernatant was removed and cells were counted and seeded at a density of 5 x 104 



cells/calcium fluoride (CaF2) disc in a multiwell plate and maintained, as previously 

described, until a monolayer of cells was stably growing on the disc. The cells were then 

fixed with 10% neutral buffered formaldehyde for 5 min, washed with 1X PBS and stored in 

0.9% physiological saline solution prior to capture of the Raman spectrum. 

2.2 RAMAN SPECTROSCOPY MEASUREMENTS 

The study was conducted with a Horiba Jobin-Yvon LabRam HR800 instrument using 

a 532 nm laser as the source in a backscattering geometry, and a 300 lines/mm grating, 

providing a dispersion of ~1.5cm-1 per pixel. The laser power was approximately 35 mW at 

the sample. Spectra were taken in the range from 600 cm-1 to 1800 cm-1 with a confocal 

hole diameter of 100 µm. A 100x water immersion objective (LUMPlanF1, Olympus, N.A.: 1.0) 

was used to focus the laser on the sample, immersed in distilled water, providing a spatial 

resolution of ~1μm (Fullwood et al., 2014; Bonnier et al., 2012 and Bonnier et al., 2010). 

Water immersion has been demonstrated to reduce any photothermal damage to the cells 

during measurement, and the signals were observed to be stable and reproducible (Bonnier 

et al., 2012). For each cell line, 20 cells were analyzed. For each cell, three different 

subcellular regions were analyzed, resulting in one spectrum for each subcellular region of 

each cell. Thus, for each cell line, 20 nucleolar, 20 nuclear and 20 cytoplasmic spectra were 

recorded, each for a period of 2 x 20 seconds. 

2.3 DATA PREPROCESSING 

Data preprocessing was performed using Matlab (Mathworks, USA). Before statistical 

analysis, a Savitsky-Golay filter (5th order, 7 points) was applied to smooth the spectra. As it 

has been demonstrated that, in water immersion, the background to the Raman spectrum is 



simply the spectrum of the overlying water (Bonnier et al., 2011), no background was 

subtracted. All spectra were (vector) normalized to remove point to point intensity 

variations and facilitate comparison of all spectra.  

 

2.4 DATA ANALYSIS 

Principal Components Analysis (PCA) is a method of multivariate analysis broadly 

used with datasets of multiple dimensions (Varmuza, 2009; Korenius et al., 2007; German et 

al., 2006). It allows the reduction of the number of variables in a multidimensional dataset, 

although it retains most of the variation within the dataset. The order of the principal 

components (PCs) denotes their importance to the dataset. PC1 describes the highest 

amount of variation, PC2 the second highest, and so on (Kelly et al., 2011; Martin et al., 

2007). A PCA Scatter plot groups similar datasets (spectra) according to the loadings of the 

PCs and can be used to distinguish different datasets (samples). The loadings represent the 

variance for each variable (wavenumber) for a given PC. Analysing the loadings of a PC can 

give information about the source of the variability inside a dataset, in the case of 

spectroscopy, derived from variations in the molecular components contributing to the 

spectra. 

PCA was employed in this study to highlight the variability existing in the spectral 

data set recorded for the different subcellular regions, and to differentiate the 

spectroscopic signatures of different cell lines.  

 

 



3 RESULTS AND DISCUSSION 

3.1 SINGLE CELL ANALYSIS (Normal primary cell culture) 

Analysis of the subcellular regions, nucleolus, nucleus and cytoplasm, from the 

primary cell culture (Figure 1 A), was completed and the different subcellular regions were 

compared using PCA analysis. Figure 1 (B, C, D) shows the average spectra for each 

subcellular region, the standard deviation being illustrated by the shaded region. Visually, it 

is possible to note the similarities, but few differences, between the average spectra of the 

nucleolus and nucleus. That of the cytoplasm is, however, clearly different. Notable 

differences, highlighted by the boxes in figures 1 B, C and D, include the peak at ~700cm-1 

observed in cytoplasm, the single peak around ~800cm-1 observed in the nucleolus and 

nucleus, and also the profiles of the spectra between 1200cm-1 and 1400cm-1. These 

features can be associated with specific chemical moieties as indicated in Table S1 of the 

Supplementary Information, and their differing relative strengths are an indication of 

differing chemical composition of the subcellular region analysed. For example, the peak at 

~720cm-1 can be associated with lipidic components, which are relatively strong in the 

cytoplasm, while the peak at ~790cm-1 is associated with nucleic acids, predictably relatively 

strong in the nucleus and nucleolus. The changes in the spectral region from 1200 to 1400 

cm-1 are more complex and subtle, illustrating the need for more sophisticated multivariate 

data analysis techniques such as PCA (Yasser et al., 2014; Bonnier and Byrne, 2012). 

Using PCA clustering, the nucleolus, nucleus and cytoplasm were clearly 

differentiated and spatially located. In confocal operation, the focal depth is ~ 1-2 µm, and 

thus it can be expected that while sampling the nucleus or nucleolus, the overlying 

plasmatic membrane and cytoplasm may contribute to the observed signal. Nevertheless, 



good discrimination of the respective subcellular regions is achievable. The nuclear 

(nucleolus and nucleus) regions and cytoplasm are effectively separated according to PC1 as 

shown in figure 2A. Similarly, it can be seen that the nucleolus and nucleus are 

differentiated according to PC3, although no significant differences in the average spectra 

are immediately obvious in Figure 1 B, C. No significant differentiation is observed according 

to PC2, and the loadings plot of this component is dominated by spectral features of water. 

A detailed analysis of the peaks of the loadings of PC1 and PC3 is provided in Supplementary 

Information S3.1. The analysis shows that it was possible to separate the subcellular regions 

from each other based on their biochemical content, even though the nucleolus and nucleus 

are molecularly quite similar (Bonnier and Byrne, 2012). 

The spectral loadings from PC1 and PC3 are respectively illustrated in Figures 2B and 

2C. With respect to PC1, the spectra from the nucleolus and nucleus are clustered on the 

right (positive values) and the spectra from cytoplasm clustered on the left (negative values) 

of Figure 2 B. Thus, positive peaks in the loading of PC1 correspond to chemical species 

which are more abundant in the nucleolus and nucleus, and negative to species which are 

relatively more abundant in the cytoplasm (Notinger, 2007). Clearly, the main features 

associated with the nucleolus and nucleus are related to nucleic acids, and protein 

structural components, whereas the features associated with the cytoplasm are derived 

from lipids and carbohydrate components, which could be related to organelle membrane 

content. 

With respect to PC3, the spectra from the nucleolus are clustered on the top right 

quadrant (positive values) and the spectra from the nucleus are clustered on the bottom 

right (negative values) of Figure 2A Thus, positive peaks in the loading of PC3 shown in 



Figure 2C correspond to species which are more abundant in the nucleolus, and negative to 

species which are relatively more abundant in the nucleus (Notinger, 2007). Thus, the main 

features associated with the nucleolus are related to nucleic acids, whereas the features 

associated with the nucleus are related to protein structural components, indicating a 

higher density of these components in the respective subcellular regions. 

 
3.2 SQUAMOUS CELL CARCINOMA vs DYSPLASTIC CELLS vs NORMAL CELLS 

In individual cell lines, Raman spectroscopy, coupled with multivariate statistical 

analysis, has thus been demonstrated to be a powerful tool to discriminate different 

subcellular regions based on their biochemical content. The technique can also be extended 

to differentiate between different cell lines, representing different oral pathologies.  

A similar spectral screening was conducted for the three cell lines, SCC-4, DOK and 

primary mucosal epithelial cells and PCA was used for statistical analysis of the Raman 

spectroscopic data from the respective subcellular regions for each cell line. In all cases, PC1 

was discarded, as it was dominated by water contributions and the analysis was therefore 

based on PC2, PC3 and PC4 in order discriminate the cell lines according to each subcellular 

region. The variances explained by each PC for the respective cellular regions are tabulated 

in Table 2. 

The peak at ~720cm-1 can be associated with lipidic components, which are relatively 

strong in the cytoplasm, while the peak at ~790cm-1 is associated with nucleic acids, 

predictably relatively strong in the nucleus and nucleolus. The changes in the spectral region 

from 1200 to 1400 cm-1 are more complex and subtle, illustrating the need for more 



sophisticated multivariate data analysis techniques such as PCA (Yasser et al., 2014; Bonnier 

and Byrne, 2012). 

 

3.2.1 Nucleolus 

The scatter plot of Figure 3A shows the PCA of the Raman spectral data of the 

nucleolar regions of the three cell lines, comparing PC2 and PC3. Normal cells (blue) score 

predominantly negative with respect to PC2, while abnormal cells (SCC-4 (red) and DOK 

(green), both score predominantly positively, giving a 90% discrimination according to PC2, 

calculated as the ratio of the number of spectra which are “correctly” clustered negatively, 

to those which are “incorrectly” clustered positively. The loading plot for this PC (Figure 3B), 

therefore shows positive peaks corresponding to species which are more prominent in the 

spectra of nucleoli of abnormal cells, while the negative peaks are related to spectra of 

normal cells. A detailed analysis of the features of the loadings is provided in Supplementary 

Information S3.2.1. In summary, the nucleolar region contains the main percentage of 

nucleic acids (Chen et al., 2014) compared to the other subcellular regions, so we can argue 

that, from a spectroscopic point of view, every peak related to vibrational modes of nucleic 

acids could be important as a biomarker for discrimination of the cell lines in the nucleolus 

region. 

Positive features include bands at: 788/811 cm-1, related to O-P-O stretching of DNA 

and nucleic acids in general, 1420 cm-1 related to CH2 deformation from lipids and 

carbohydrates, and 1680 cm-1, related to amide I vibrational modes of proteins. Negative 

peaks include 1220 cm-1, related to A (adenine), T (thymine) vibrational modes from nucleic 

acids (Notinger, 2007). 



 

3.2.2 Nucleus 

Figure 4A shows the PCA scatter plot for the Raman spectral data from the nuclear 

region of the three cell lines. In this case, there is little or no differentiation of the data 

according to PC2, but there is some degree of differentiation between the cell lines 

according to PC3, the normal cell lines being predominant distributed on the negative axis, 

while the diseased SCC-4 and DOK data points are primarily distributed on the positive side, 

giving an 82.5% differentiation.  The loading plot for this PC (Figure 4B) shows positive peaks 

corresponding to biochemical species which are more abundant in the nucleus of abnormal 

cell lines, whereas the negative peaks were related to spectra from the normal primary 

cells. A detailed analysis of the features of the loadings is provided in Supplementary 

Information S3.2.2. The subcellular region of the nucleus contains a large percentage of 

nucleic acids compared to the cytoplasm, although some changes to lipid content is 

observed. Thus, a combination of nucleic acid/lipid content has spectroscopic significance as 

a biomarker to discriminate the normal and abnormal cell lines in the nuclear region. In this 

case, little or no differentiation is observed between the two abnormal cell lines, however. 

Positive features include mostly bands at: 1065 cm-1, related to PO2
- of nucleic acids, 

and 1680 cm-1, related to the Amide I vibrational modes from proteins (Chen et al., 2014). 

Negative peaks mostly include: 788/811 cm-1, related to O-P-O stretching of DNA and 

nucleic acids in general, 1301 cm-1 related to CH2 twist of lipids and 1420 cm-1 related to CH2 

deformation from lipids and carbohydrates (Notinger, 2007). 

 

 



3.2.3 Cytoplasm 

The scatter plot of Figure 5A shows PCA of the cytoplasmic regions of the three cell lines. 

Some degree of differentiation between the normal and abnormal cell lines according to 

PC3 is apparent giving 90% of discrimination. Similarly, PC2 differentiates between the 

spectra of the dysplastic and cancer cell lines giving 77.5% of discrimination (Figure 5A).  

Analysing PC3, the main features include positive bands at 788/811 cm-1, related to O-P-O 

stretching of DNA, 1301 cm-1 related to CH2 twist of lipids and 1420 cm-1 related to CH2 

deformation from lipids and carbohydrates. Negative peaks include: 937 cm-1, related to the 

C-C backbone stretch of the α-helix of proteins and the C-O-C vibrations of carbohydrates, 

and 1658 cm-1, related to Amide I -proteins (Figure 5B) (Notinger, 2007). The spectral 

profile of the cytoplasm subcellular region is dominated by vibrational modes from lipids 

and carbohydrates, which could be related to any physiologic subcellular transport and 

organelle membranes and both constituents could be important as biomarkers for 

discrimination of the cell lines in cytoplasm region. Notably, the cytoplasm was the only 

subcellular region in which some discrimination between dysplastic and cancer cells was 

observed according to the loading plot of PC2 (Figure 5B).  

The analysis demonstrates that the technique may not only be utilized to differentiate 

normal and abnormal cells, but also dysplastic and cancer cells, based on cytoplasmic 

biomarkers. It is notable that the dysplastic and cancer cells are discriminated only based on 

cytoplasmic, rather than nucleolar or nuclear biomarkers, suggesting that the cells are 

relatively similar in biochemical content in these regions and the pathological differences 

are largely manifest in the cytoplasmic regions. Further analysis is required to explore this 

further, however. 



Notably, the cytoplasm was the only subcellular region in which some discrimination 

between dysplastic and cancer cells was observed according to the loading plot of PC2 

(Figure 5B). Positive features include mostly bands at: 788 cm-1, related to O-P-O stretching 

of DNA and nucleic acids in general, 1301 cm-1 related to CH2 twist of lipids and 1420 cm-1 

related to CH2 deformation from lipids and carbohydrates. Negative peaks mostly include: 

937 cm-1, related to C-C backbone stretching in α-helical proteins and C-O-C vibrations in 

glycosylated carbohydrates, 1220 -1284 cm-1 related to =CH bend of lipids and 1640 cm-1 

related to the Amide I band of proteins (Notinger, 2007). 

Variations between the samples as reported here have a number of possible origins, 

both intrinsic and due to measurement conditions. As the measurements were performed 

in immersion geometry, and no explicit removal of it was carried out, the water spectrum 

emerges as one of the most significant principal components, in all measurements. In the 

case of the normal cells, the water contribution to the variance of the difference between 

nucleus, nucleolus and cytoplasm, described by PC2, as the differences between the 

subcellular regions are dominantly those associated with the biochemical make up and 

described by PC1 (~70% variance). In the case of the comparison of the same subcellular 

regions of different cells, slight variations in size and shape contribute significant variations 

in the contributions of the overlying water, represented by PC1 (~70 % variances). This 

variance is larger than the more subtle differences in biochemical makeup of the respective 

subcellular regions between the cell types. Cancer cells are continually undergoing 

transformation to enable survival, replication and metastasis and potentially changes 

observed in the Raman spectra may be a direct observation of some of these changes. 

These changes are driven through a number of cellular mechanisms and can manifest as 



posttranslational modification (chemical processes resulting in the cleavage or modification 

of proteins) e.g. glycosylation, phosphorylation or epigenetic changes (heritable changes not 

due to changes in the DNA sequence) e.g. histone modification, DNA methylation. The 

sensitivity of the analysis used in this study is unlikely to identify such specific changes in 

cells, but both posttranslational modification and epigenetic changes have been observed 

utilizing surface-enhanced Raman spectroscopy (Barhoumi & Halas, 2011; Sundararajan  et 

al 2006) and variation between the cell types used are potentially the result of an 

accumulation of these cellular changes (>75%). Notably, however, more sophisticated 

multivariate classification techniques can be applied to achieve higher degrees of sensitivity 

and specificity for real clinical applications (Lasalvia et al., 2015; Knipfer et al., 2014; Lyng et 

al., 2007).   

 

5 CONCLUSION 

 

It has been demonstrated that Raman micro-spectroscopy can differentiate each 

subcellular region (nucleolus, nucleus and cytoplasm), based on biomolecular content, 

revealing specific spectral biomarkers for each region. Although the spectral differences are 

subtle, the use of an unsupervised multivariate analytical method, PCA, allows a detailed, 

high content analysis of the spectral markers associated with the biochemical differences. 

The technique is completely label free, requires little sample preparation and is 

nondestructive. 

Importantly, it was also possible to discriminate the pathological cell lines from the 

normal primary cells based on differences in the spectral profiles of either the nuclear 



(>90%) or nucleolar (>80%) regions of the respective cell lines. Interestingly, the dysplastic 

and cancer cells were only discriminated in the analysis of the cytoplasmic regions.  

Although the study presented is a proof of concept, and more elaborate analysis of 

normal and dysplasia/cancer cytological samples from the same patients will be required to 

explore intra and inter patient variabilities, the model cells used in this study are well 

established oral cancer models and are representative of the stage of the disease described 

and are indicative of clinical samples. The inclusion of isolated primary cells which are of a 

normal phenotype are an acceptable comparator in this study. Further such studies of a 

range of clinical samples are planned. 

Notably, as an optically-based microscopic technique, the Raman spectroscopic 

analysis is readily adaptable to clinical applications. The development of fiber optic Raman 

probes ultimately offer the promise of in vivo, optically-directed biopsy in extensive areas of 

leukoplakia and intraoperative applications in determining tumour resection margins. In the 

short term, existing microscope based Raman technologies might also be adopted for chair-

side diagnosis based on exfoliated cytological samples which could yield a rapid outcome 

and a significant reduction in the number of false negatives/positives along with early 

cancer detection, as evidenced by the observed changes in established cancer and 

dysplastic lesions.  
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Table 1: Band assignments of Raman peaks (Notinger, 2007) 

Band (cm-

1)/Subcellular region 
Nucleolus 

Vibrational 
mode/Structural 

component 

Nucleus 
Vibrational 

mode/Structural 
component 

Cytoplasm 
Vibrational 

mode/Structural 
component 

717   CN+(CH3)3 str. - Lipids 

729 A – Nucleic acids   

760 Ring breath Try -
Proteins 

  

811-14 O-P-O str. RNA – 
Nucleic acids 

  

937   C-C Bk str. α-helix – 
Proteins 

C-O-C glycos. – 
Carbohydrates 

1065 PO2
- str. - Nucleic 

acids 
PO2

- str. – Nucleic 
acids 

Chain C-C str. – Lipids 

1301  CH2 twist - Lipids CH2 twist – Lipids 

1320-4 G – N ac./ C-H – 
Proteins 

  

1342  A, G – N ac./ C-H – 
Proteins 

C-H def. – 
Carbohydrates 

1441 G, A, CH def – 
Nucleic acids 

G, A, CH def – Nucleic 
acids 

C-H def. – 
Carbohydrates/Lipids 

1487   C-H def. – 
Carbohydrates/Lipids 

1658  Amide I – Proteins  

 

 

 

 

 

 



Table 2: Variances explained by each PC for the respective cellular regions 

PC/Region Nucleolus% Nucleus% Cytoplasm% 

PC1 (water) 76.08 76.69 63.42 

PC2 5.42 6.30 17.72 

PC3 4.05 4.05 6.34 

 

 

  



 

Figure captions 

 

Figure 1: A - Optical Micrograph of a primary cell cultured from human mucoperiosteal 
tissue. Mean Raman spectra from (B) Nucleolus (C) Nucleus (D) Cytoplasm of primary cell 
line with the standard deviation denoted by the shaded region. 

Figure 2: A - PCA Scatter plot of Raman spectra of primary cell line Nucleolus (red), Nucleus 
(green) and cytoplasm (blue). B - Spectral loading of PC1, differentiating cytoplasm 
(negative) from nucleus/nucleolus (positive) of primary cell line. C - Spectral loading of PC3, 
differentiating nucleus (negative) from nucleolus (positive) of primary cell line. 

Figure 3: A - PCA scatter plot differentiating the Raman spectra of the nucleoli of the 
primary (normal) cell line (blue), from those of the abnormal cell lines (SCC-4 (red) and DOK 
(green)). B - Spectral loading of PC2, differentiating the Raman spectra of the nucleoli of the 
primary (normal) cell line (negative), from those of the abnormal cell lines (positive). 

Figure 4: A - PCA scatter plot differentiating the Raman spectra of the nuclei of the primary 
(normal) cell line (blue), from those of the abnormal cell lines (SCC-4 (red) and DOK (green)). 
B - Spectral loading of PC3, differentiating the Raman spectra of the nuclei of the primary 
(normal) cell line (negative), from those of the abnormal cell lines (positive). 

Figure 5: A - PCA scatter plot differentiating the Raman spectra of the cytoplasm of the 
primary (normal) cell line (blue), from those of the abnormal cell lines (SCC-4 (red) and DOK 
(green)). B - Spectral loading of PC2 and PC3, differentiating the Raman spectra of the nuclei 
of the primary (normal) cell line (negative), from those of the abnormal cell lines (positive). 
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