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1 INTRODUCTION 
The application of reliability theory to the assess-
ment of the safety of bridge structures requires the 
accurate modeling of both the applied loading and 
the strength and stiffness of the bridge structure. In 
its simplest form, a bridge is safe when its capacity 
to resist load exceeds the load applied. More precise-
ly, a bridge can be considered safe when there is an 
acceptably low probability that load exceeds re-
sistance capacity. A great deal of work has been car-
ried out on methods of evaluating the load-carrying 
capacity of bridges and the associated uncertainties. 
Load-carrying capacity can be reduced by different 
forms of deterioration, depending on factors such as 
the structural material, the quality of workmanship 
during construction, the age of the structure, the en-
vironment and the loading history. 

The modeling of traffic loading is usually based 
on measurements of highway traffic taken at select-
ed sites over a period of some months, typically us-
ing weigh-in-motion (WIM) technology. One ap-
proach is to fit a statistical distribution to the 
calculated load effects for the measured traffic and 
to use these distributions to estimate characteristic 
lifetime maximum effects (Miao & Chan 2002, 
Nowak 1993, Vrouwenvelder & Waarts 1993). An 
alternative approach adopted here and by many au-
thors is to use Monte Carlo simulation to generate 
typical traffic and hence load effects (Bailey & Bez 
1999, O’Connor & OBrien 2005, OBrien et al. 
2006). For reliability analysis, Monte Carlo simula-

tion can be used to generate values from the statisti-
cal distributions of both the applied loading and the 
resistance of the structure, and thus calculate the 
probability of failure (and hence the reliability) of 
the structure. Long-run simulations reduce the varia-
bility of the estimated probability but are computa-
tionally demanding. An enhanced Monte Carlo 
method has been developed recently by Naess et al.  
(2009). This method attempts to reduce computa-
tional cost while preserving the advantages of more 
conventional, computationally intensive, simulation. 
In this paper, this enhanced Monte Carlo method is 
applied to two sample problems. In the first, a sim-
ple example based on the Normal distribution is 
used for which the exact theoretical probability of 
failure is available. Hence, the error in estimation 
can be assessed directly. In the second, ‘long-run’ 
simulations are used to generate a very large data-
base of load effects from which very accurate esti-
mates can be deduced for the probability of failure, 
based on a theoretical model of resistance. In both 
examples, sub-samples are drawn from the loading 
data, and three different methods are used to esti-
mate the probability of failure from these samples. 
The first method uses the enhanced Monte Carlo 
technique to estimate the probability of failure. In 
the other two methods, the Generalized Extreme 
Value (GEV) and Normal distributions are fitted to 
the load effect data and used to calculate the proba-
bility of failure. The results of each method are then 
compared with the known ‘true’ probability. Five 
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ABSTRACT: A framework is presented for the assessment of the safety of a bridge deck under actual traffic 
loading using an enhanced Monte Carlo method which attempts to reduce computational cost while preserv-
ing the advantages of more conventional, computationally intensive, simulation. To generate the bridge load-
ing scenarios, an extensive Weigh-in-Motion (WIM) database is used to calibrate a sophisticated simulation 
model of two-directional traffic. Traffic and vehicle characteristics are generated from statistical distributions 
derived from measured traffic data. Two examples are used in this study to assess the usefulness and accuracy 
of the enhanced method. In the first, a simple example is used for which the exact theoretical probability of 
failure is available. Hence, the error in estimation can be assessed directly. In the second, ‘long-run’ simula-
tions are used to generate a very large database of load effects from which very accurate estimates can be de-
duced of lifetime maximum effects. 
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sub-sample sizes are considered - 1000, 2500, 5000, 
10 000 and 20 000 working days. In the case of the 
1000-day sample, the exercise is repeated 20 times 
to investigate the variability of the results from each 
of the methods.  

2 LITERATURE REVIEW 

2.1 Structural reliability and enhanced Monte 
Carlo 

The basic structural reliability problem is described 
by Melchers  (1999). A structural element is consid-
ered to have failed if its resistance R is less than the 
load effect S acting on it. Both R and S are random 
variables, described by probability distributions fR( ) 
and fS( ) respectively. It is common for R and S to be 
independent and in this case, the probability of fail-
ure, Pf, is given by the convolution integral:  
 

    (       )  ∫   ( )  ( )  
 

  
  (1) 

 
where FR( ) is the cumulative distribution function 
for the resistance R, and M (i.e. R-S) is the safety 
margin. A widely-used approach to calculating the 
probability of failure is use Monte Carlo simulation 
to generate values of load and resistance from their 
respective assumed distributions and to count the 
number of times the load exceeds the resistance as a 
proportion of the total number of values generated. 
As the probability distribution of loading becomes 
more complex, as in the case of traffic loading on 
bridges, the simulation requires significant computa-
tional effort. Naess et al.  (2009) have proposed an 
enhanced Monte Carlo technique that can yield a 
substantial reduction in the computation time. It ex-
ploits the regularity of tail probabilities to calculate 
the far tail failure probabilities based on estimates of 
the failure probabilities obtained by Monte Carlo 
simulation at more moderate (near tail) levels. It 
achieves this using a parameterized class of safety 
margins using a scaling parameter, λ, for the safety 
margin, M:  

 
 ( )    (   )              (2) 
 
where 0 ≤ λ ≤ 1, and    is the mean safety margin, 
i.e.     , -. 
Using this parameter the following assumption is 
made about the behavior of the failure probability: 
 
  ( )   ( )   *  (   )
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where q(λ) is slowly varying compared with the ex-
ponential term. Using this expression, the target 
probability of failure (Pf = Pf(1)) can be estimated 
from values of Pf(λ) for λ < 1. In other words this 
parametric form of the failure probability allows us 

to estimate the target value by extrapolation. Values 
of Pf(λ) for λ < 1 are generally easier to estimate ac-
curately than the target value, since they are larger, 
and hence will require less simulation. The method 
requires the estimation by simulation of values of 
Pf(λ)  for a range of values of λ between 0 and 1, and 
then using Equation 3 to extrapolate to Pf(1). As a 
simplification, Naess et al.  (2009) propose that q(λ)  
may be assumed to be constant. Levenberg-
Marquardt least-squares optimization is used here to 
find values for the parameters a, b, c and q by opti-
mizing the fit on a log probability scale. 

2.2 Block Maximum – Extreme Value Distributions  

Extreme value theory is based on the extreme value 
theorem (Gnedenko  1943), following initial work 
by Fisher & Tippett  (1928) and Gumbel  (1935), 
and the Generalized Extreme Value (GEV) distribu-
tion is:  
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It is defined in terms of parameters μ, σ and ξ, where 
μ ∈ R is the location parameter, σ > 0 the scale pa-
rameter and ξ ∈ R the shape parameter.  

Extreme value distributions have been applied by 
many authors to bridge load effects (such as bending 
moments and shear forces) that have been calculated 
from either measured or simulated traffic. The dis-
tributions are usually fitted to block maximum val-
ues – daily, monthly or yearly maxima. Many stud-
ies (Caprani & OBrien 2006, Caprani et al. 2008, 
Kanda & Ellingwood 1991, O'Connor & O'Brien 
2005) indicate that load effect data is either Weibull 
or Gumbel. Given that Gumbel is a special case of 
Weibull (with shape parameter, ξ = 0), an assump-
tion that load effect is always of the form of Equa-
tion 4, with ξ ≤ 0, seems reasonable. 

2.3 Block Maximum – Normal Distribution 

Block maximum data is often fitted with extreme 
value distributions as each data point represents the 
maximum of a number of parent values. However, 
block maximum data is also sometimes fitted with a 
Normal distribution. Nowak  (1993) uses 2.4 hours 
as the block size and fits a Normal distribution to the 
maximum-per-block data. This distribution is then 
raised to an appropriate power to obtain the 75-year 
maximum load effect distribution.  

To calibrate the traffic load model for the 
AASHTO load and resistance factor design (LRFD) 
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approach, Nowak and others use Normal probability 
paper to extrapolate the maximum load effects for 
time periods from 1 day to 75 years, based on a set 
of 9250 heavy vehicles representing about two 
weeks of heavy traffic measured on a highway in 
Ontario (Kulicki et al. 2007, Moses 2001, Nowak 
1994, Nowak 1995, Nowak 1999, Nowak & Hong 
1991, Nowak et al. 1993, Sivakumar et al. 2011). 
The expected value of the lifetime maximum is 
found by fitting a straight line to the tails of the data 
on Normal probability paper.  

Kulicki et al.  (2007) identify the fact that block 
maximum load effects due to measured trucks are 
not Normal but fits the Normal distribution to tail 
data. In the background studies for Eurocode 1, Flint 
& Jacob  (1996) fit half-normal curves to the ends of 
the histograms of load effects. They adopt a least-
squares best fit method to estimate the distribution 
parameters. Multimodal (bimodal or trimodal) 
Gumbel and Normal distributions are also used. 

2.4 Traffic simulation 

As part of the European 7th Framework ARCHES 
project [1], extensive WIM measurements were col-
lected at five European sites: in the Netherlands, 
Slovakia, the Czech Republic, Slovenia and Poland. 
The ARCHES site in Slovakia is used as the basis 
for the simulation model presented here. Measure-
ments were collected at this site for 750 000 trucks 
over 19 months in 2005 and 2006. The traffic is bi-
directional, with average daily truck traffic (ADTT) 
of 1100 in each direction. Very heavy trucks were 
recorded at all sites, with a maximum gross vehicle 
weight (GVW) of 117 t being recorded in Slovakia.  

A detailed description of the methodology adopt-
ed is given by Enright & OBrien  (2012), and is 
summarized here. For Monte Carlo simulation, it is 
necessary to use a set of statistical distributions 
based on observed data for each of the random vari-
ables being modeled. For gross vehicle weight and 
vehicle class (defined here simply by the number of 
axles), a semi-parametric approach is used as de-
scribed by OBrien et al.  (2010). This involves using 
a bivariate empirical frequency distribution in the 
regions where there are sufficient data points. Above 
a certain GVW threshold value, the tail of a bivariate 
Normal distribution is fitted to the observed fre-
quencies which allows vehicles to be simulated that 
may be heavier than, and have more axles than, any 
measured vehicle. Results for lifetime maximum 
loading vary to some degree based on decisions 
made about extrapolation of GVW, and about axle 
configurations for these extremely heavy vehicles. 
These decisions are, of necessity, based on relatively 
sparse observed data. 

Bridge load effects for short- to medium-span 
bridges are very sensitive to wheelbase and axle lay-

out. Within each vehicle class, empirical distribu-
tions are used for the maximum axle spacing for 
each GVW range. Axle spacings other than the max-
imum are less critical and trimodal Normal distribu-
tions are used to select representative values. The 
proportion of the GVW carried by each individual 
axle is also simulated in this work using bimodal 
Normal distributions fitted to the observed data for 
each axle in each vehicle class. The correlation ma-
trix is calculated for the proportions of the load car-
ried by adjacent and non-adjacent axles for each ve-
hicle class, and this matrix is used in the simulation 
using the technique described by Iman & Conover  
(1982).  

Traffic flows measured at the site are reproduced 
in the simulation by fitting Weibull distributions to 
the daily truck traffic volumes in each direction, and 
by using hourly flow variations based on the average 
weekday traffic patterns in each direction. A year’s 
traffic is assumed to consist of 250 weekdays, with 
the very much lighter weekend and holiday traffic 
being ignored. This is similar to the approach used 
by Caprani et al.  (2008) and Cooper  (1995). For 
same-lane multi-truck bridge loading events, it is 
important to accurately model the gaps between 
trucks, and the method used here is based on that 
presented by OBrien & Caprani  (2005). The ob-
served gap distributions up to 4 seconds are modeled 
using quadratic curves for different flow rates, and a 
negative exponential distribution is used for larger 
gaps. 

The modeled traffic is bi-directional, with one 
lane in each direction, and independent streams of 
traffic are generated for each direction. In simula-
tion, many millions of loading events are analyzed, 
and for efficiency of computation, it is necessary to 
use a reasonably simple model for transverse load 
distribution on two-lane bridges. The load effect 
considered for this paper is the mid-span bending 
moment on a simply-supported 15 m bridge, and it is 
assumed that for this there is an equal contribution 
laterally from each lane, i.e., the girder considered is 
located where the two lanes meet. 

3 ANALYSIS AND RESULTS 

3.1 Normal example 

To assess the safety of a bridge, a limited quantity of 
data is generally used to infer a probability of fail-
ure, a characteristic maximum or a statistical distri-
bution of maximum load effects. Probability of fail-
ure is clearly the most definitive measure of bridge 
safety. However, it is strongly influenced by re-
sistance which varies greatly from one example to 
the next. In order to retain the focus on load effect, 
the resistance distribution used here is taken to be a 
Normal distribution with parameters chosen so as to 
give a daily probability of failure of 10

-5
. 
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Three different extrapolation methods are tested to 
estimate the daily probability of failure: 
 Enhanced Monte Carlo Simulation 
 Generalized Extreme Value (GEV) 
 Normal distribution 

In this first sample problem, the loading is repre-
sented by a Normally distributed random variable 
(such as vehicle weight in tonnes), with a mean of 
40 and a standard deviation of 5: 

 
S  N (40, 5)                (5) 

 
Values are generated from this distribution and 

three thousand values of S are considered as a block, 
say per day, with a maximum for day j of: 

 

      (    )                    (6) 

 
The resistance is also assumed to be Normally 

distributed, with parameters chosen to give a 
benchmark probability of failure of 10

-5
: 

 
R  N (70.2, 1.5)              (7) 
 
The following simple safety margins are used for 

the enhanced Monte Carlo method: 
 

                          (8) 

 
where m is the number of days (blocks) of data. It 
should be noted that all random variables are as-
sumed to be independent. The probability of failure 
is calculated for a range of values of λ, as defined in 
Equation 2. The mean safety margin is calculated 
from the simulated Mj values, and for each value of 
λ, the proportion of days on which failure occurs 
(i.e.,  ( )   ) is calculated. An example of the 
curve fitting for Equation 3 is shown in Figure 2. 

 
 
 

In the other two methods, GEV and Normal dis-
tributions are fitted to the daily maximum data, and 
the probability of failure is calculated by numerical 
evaluation of the convolution integral in Equation 1. 
The process is repeated for five different quantities 
of daily maximum data: 1000, 2500, 5000, 10 000 
and 20 000 days. For the first case (i.e., 1000 days), 
the probability of failure is calculated 20 times so 
that a measure of the variability in the results can be 
found. 

The results are illustrated in Figure 3 which 
shows how the estimation error generally reduces 
with increasing quantities of data, and in Figure 4 
which shows, in each case (i) the median value 
(dashed line), (ii) the 25% to 75% range (boxed), 
(iii) the 0.7% to 99.3% range (median ± 2.7 standard 
deviation for normally distributed data, shown as er-
ror bars) and (iv) individual outliers beyond that 
range. Figure 3 shows that the Enhanced Monte Car-
lo and GEV fitting methods converge to the bench-
mark result as the quantity of data considered in-
creases. Fitting to a Normal distribution gives a 
more ‘bounded’ distribution in this example, i.e., 
tending more towards an asymptote at extremely low 
probabilities. This results is a smaller probability of 
failure in comparison to the other two methods. 

 
Figure 3. Effect of quantity of data on estimate of probability of failure – 

Normal example 

Figure 2. Curve fitting for enhanced Monte Carlo method 
Figure 1. Load effect and resistance 
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3.2 Long-run simulation example 

A set of runs is performed consisting of 20 000 days 
of simulated traffic at the site in Slovakia, as de-
scribed earlier. The benchmark probability of failure 
is calculated by fitting a GEV distribution to the dai-
ly maxima and numerically evaluating the convolu-
tion integral. In order to retain the focus on load ef-
fect, the resistance distribution chosen is a 
Generalized Extreme Value distribution (Equation 4) 
with parameter values µ = 30.2, σ = 1.5 and ξ = 
0.001 which gives a  probability of failure of 10

-5
 for 

this simulated traffic. As in the Normal example, the 
process is repeated for five different quantities of 
daily maximum data: 1000, 2500, 5000, 10 000 and 
20 000 days. For the first case (i.e., 1000 days), the 
probability of failure is calculated 20 times so that a 
measure of the variability in the results can be 
found. 

 
The results are shown in Figures 5 and 6, which 

are quite similar to the corresponding results for the 
simpler Normal example, although in this case the 
enhanced Monte Carlo method does not converge to 
the same result as the GEV method. As before, the 
Normal method gives a smaller probability of failure 
(i.e. is non-conservative), and does not vary signifi-
cantly as the quantity of data increases. 

 

 
 

 
 

4 CONCLUSION 

The enhanced Monte Carlo method of estimating 
probabilities of failure is compared with two other 
methods (GEV and Normal), using two sample 
problems. In both problems, the loading distribution 
is defined by a sample of daily maximum values, 
and an analytical resistance distribution is used. In 
the enhanced Monte Carlo method, samples are 
drawn from the resistance distribution and the num-
ber of failures is counted. The GEV and Normal 
methods entail fitting a GEV and Normal distribu-
tion respectively to the sample loading data, and us-
ing the fitted distribution and the assumed resistance 
distribution to evaluate the convolution integral nu-
merically. The first, simple, problem is based on a 
Normal distribution of both loading and resistance, 
and the second problem is based on a long-run simu-
lation of traffic loading, and a GEV distribution of 
resistance. In both problems, the ‘true’ or ‘near-true’ 
probability of failure is known, allowing the estima-
tion error to be calculated. The calculations are done 
for five different sample sizes for the loading data, 
and are repeated twenty times for the smallest sam-
ple (1000 daily maximum values) to establish the 
variability of the results. The results may be summa-

Figure 5. Effect of quantity of data on estimate of probability of fail-

ure – long run example 

Figure 6. Estimates of probability of failure – long run example 

Figure 4. Variability of estimates of probability of failure – Normal 

example 
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rized by describing the enhanced Monte Carlo meth-
od as relatively accurate, but not very precise (i.e., 
results are variable); the GEV method as being simi-
larly accurate and significantly more precise, and the 
Normal method as having similar precision to the 
GEV method, but being less accurate. 
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