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ABSTRACT 

Arterial restenosis limits the effectiveness of coronary stenting. Restenosis is caused 

by excessive tissue growth which is stimulated by arterial injury and alterations to 

the arterial WSS. The altered WSS results from stent-induced disturbances to the 

natural haelnodynamics of the artery. Recent numerical studies have predcted only 

minor digerences in altered WSS between different stent designs using a commonly 

employed threshold assessment technique. While it is possible that there are only 

minor differences, it is more likely that the assessment technique is incapable of fully 

elucidating the altered WSS created by stent implantation. This thesis proposes a 

methodology that involves a more complete level of investigation into the stent- 

induced alterations to the WSS by incorporating the full suite of WSS-based 

variables: WSS, WSS gradient (WSSG), WSS angle gradient (WSSAG) and 

oscillatory shear index (OSI). Each of these variables highlights a different type of 

alteration to the arterial WSS that could lead to excessive tissue growth. The four 

variables are analysed quantitatively and qualitatively using statistical methods to 

assess the effect of the stent implantation. The methodology is applied to three stents 

with contrasting designs: the Palinaz-Schatz (PS), the Gianturco-Roubin II (GR-11) 

and the Bx-Velocity (Bx) stents. From the results, the sients are ranked (best to 

worst) for WSS: GR-11, PS, Bx (Cohen's d: -0.01, -0.6131, for WSSG: PS, Bx, GR-I1 

(d: 0.159,0.764), for WSSAG: PS GR-I1 Bx (d: 0.213, 0.082), and for OSI: PS, GR- 

11, Bx (d: 0.3 15, 0.380). The proposed method of analysis is shown to elucidate the 

alterations to the WSS created by the stents to a far greater level than with the 

previously used threshold technique. This method of stent assessment could be 

utilised to minimise WSS alterations at the design stage of future bare metal, as well 

as permanent and bioabsorbable drug-eluting coronary stents. 
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Introduction 

1.1 Background 

Cardiovascular diseases are the main cause of death in Europe, accounting for 48% 

of the mortality or approximately 4.3 million deaths in 2008 [I]. The main forms of 

cardiovascular disease are coronary heart disease (CHD) and stroke, responsible for 

22% and 14% of the total European mortalities respectively in the same year [I]. 

CHD refers to a failure of the coronary circulation to supply adequate blood flow to 

the cardiac muscle and surrounding tissue. This coronary circulation failure is most 

commonly precipitated by the growth of atherosclerotic plaque in the coronary 

arteries, a condition known as coronary artery dlsease (CAD). 

Implantation of one or more coronary stents is the current state-of-the-art 

treatment for CAD. Basically, a stent is a metal scaffold inserted into the artery and 

then, most commonly, expanded by a balloon to restore the blood flow orignally 

restricted by the atherosclerotic plaque. Over two million stents are implanted 

annually worldwide, with a market value of approximately €4.3 billion ($5.4 billion) 

in 2009 and a forecast to reach €5.1 billion ($6.5 billion) in 2016 [38]. 

Unfortunately, the stented artery is susceptible to restenosis, whch is a re- 

blockage of the artery. Restenosis is caused by in-stent tissue growth whch is the 

body's response to stent implantation. Tissue growth in an artery is predominantly 
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stimulated by arterial injury [27, 103, 1091 and by alterations to the arterial wall 

shear stress (WSS) [9, 13, 35, 52, 55, 56, 58, 59, 72, 921. In a stented artery, the 

altered WSS results from stent-induced Qsturbances to the natural haemodynamics 

of the artery. 

With the advent of powerful high-speed computers, the environment of the 

stented artery can be simulated using numerical techniques. Computational fluid 

dynamics (CFD) has recently proved useful to preQct the arterial haemodynamics 

resulting from stent implantation. If the haemodynamic features which lead to 

restenosis could be predicted, CFD could be utilised to pre-clinically assess coronary 

stents based on their haemodynamic impact on the artery. However, the numerical 

methodology employed in several of the most recent attempts [4,26,61] found only 

minor differences in the altered WSS between different stent designs, even though 

these stents had different in vivv restenosis rates. 

This thesis proposes a novel stent assessment methodology which provides a 

greater depth of analysis of the arterial WSS in the stented artery than previously 

conducted in this field. The methodology incorporates physiologically realistic 

models of the stented artery, a multi-variable approach to the identification of stent- 

induced alterations to the arterial WSS, and a robust statistical method of analysis of 

the predicted variables. The benefits of the proposed methodology over the 

conventional methods are demonstrated by application to three sample stents. 

1.2 Coronary Artery Disease 

CAD is a chronic disease which is the result of the slow formation of atherosclerotic 

plaque in the coronary arteries, generally over a period of decades. As shown in 

Figure 1-1 the disease is initiated as low-density lipopoteins (LDL), which transport 



cholesterol in the blood stream, become oxidised and damage the artery wall. 

Oxidisation occurs as the LDL come into contact with free rdca l s  in the blood 

stream, particularly reactive oxygen species (ROS). ROS are oxygen molecules with 

unpaired valence shell electrons which makes them hghly reactive. They are 

produced natually in the human body as a by-product of cellular respiration but their 

numbers can be increased through environmental factors such as cigarette smoking, 

exposure to X-rays and air pollution [66]. The oxihsed LDL become trapped 

beneath and cause damage to the endothelial cells (ECs) whch line the inner artery 

wall [125]. 

Specialised whte blood cells known as macrophages travel to the site of the 

damaged ECs to absorb the offending oxidsed LDL; these cells migrate through the 

ECs and situate themselves withn the subendothelial layer. Once inside the artery 

wall the macrophages begin absorbing the oxidised LDL and turn into large foam 

cells. Messenger particles called cytokines are released from foam cells to attract 

vascular smooth muscle cells (VSMCs) from deep in the artery wall to the 

subendothelial layer. The foam cells eventually rupture depositing the oxidised LDL 

back into the artery wall, attracting more macrophages. This continual cycle leads to 

the accumulation of cells (foam, VSMCs) in the subendothelial layer forming fatty 

streaks in the artery. These streaks eventually grow into lesions or plaques narrowing 

the arteries as shown in Figure 1-2, a condition known as atherosclerosis. Advanced 

lesions usually fonn a fibrous cap over the fatty core, which can rupture leading to 

thrombus formation (blood clots), sudden myocardial infarction (heart attack) and 

death. 
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Figure 1-1: The progression of arteriosclerosis in an initially healthy coronary 

artery. The disease begins with endothelial injury from oxidised LDL and 

progresses as plaque forms consisting of foam cells and vascular smooth muscle 

cells (VSMCs). The plaque is finally covered by a fibrous cap (original 

illustration taken from Huittinen [47]). 

Atherosclerosis can be accelerated through various risk factors such as 

cigarette smolung, high blood pressure, high blood cholesterol, physical inactivity, 

obesity and diabetes [I]. When coronary arteries become narrowed by more than 

50% to 70%, they can no longer meet the increased blood and oxygen demand of the 

cardiac muscle during exercise or stress. Lack of oxygen to the heart muscle causes 

chest pain or angina which is usually a warning sign of the presence of significant 

CAD. Patients with angina are at risk of developing a myocardal infarction if left 

untreated. Myocardial infarction is the death of the heart muscle precipitated by the 

complete blockage of a diseased coronary artery by an obstruction, often plaque due 

to atherosclerosis. 
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Figure 1-2: Comparison of a healthy artery and an artery with advanced CAD 
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1.3 Therapeutic Treatments 

Due to the major prevalence of CAD, several therapeutic treatments have been 

developed over the past half century. This section details three of the most popular 

treatments for CAD. 

1.3.1 Coronary Arrery Bypass Grap 

Traditionally, a coronary artery bypass graft (CABG) was the most popular 

procedure for the treatment of symptomatic atherosclerosis. The first successfbl 

CABG reported in the USA [30] was performed by Dr. R. Favaloro (Cleveland 

Clinic, USA) in 1967, three years after Dr. V. I. Kolesov (First Leningrad Medical 

Institute, Russia) performed the fust successful CABG in Russia in 1964. A CABG 

surgery begins by opening the patient's chest with an incision over the sternum, after 

which the sternum is opened to expose the heart, a procedure known as a median 

sternotomy. The patient's heart is stopped to allow the surgeon to achieve better 

technical results. A blood vessel is then harvested from elsewhere in the body and 



used to bypass the site of the blockage as shown in Figure 1-3. Originally, the greater 

saphenous vein from the leg was used as the bypass graft, but now the vessels of 

choice are the internal mammary arteries from the chest as they are less prone to 

disease and subsequent re-blockage [37]. Another corninonly harvested blood vessel 

is the radial artery from the forearm which has also shown improved results over 

vein grafts [13 71. 

Figure 1-3: Illustration of two CABGs. During a CABG an artery (pink) or vein 

(blue) is grafted to bypass the site of the arterial blockage (yellow) to restore 

blood flow to the downstream myocardial muscle and tissue. 

A cardiopulmonary bypass is usually provided by a heart-lung machne 

which maintains the circulation of blood and oxygenation of the body during the 

operation while the heart is stopped. The heart-lung machine has however been 

implicated in various complications associated with the CABG operation including 

adverse cerebral outcomes [12 81, renal failure [I 91, and systemic inflammatory 

response [12]. These complications have lead to a rise in popularity of off-pump 

procedures, where the bypass grafting is performed whilst the heart is still beating. 

However, a clinical study [I151 comparing on-pump versus off-pump procedures 

with 2,203 patients revealed that patients in the off-pump group had worse outcomes 



at one-year follow-up. A recent meta-analysis 11221 of on-pump versus off-pump 

procedures revealed that ofifrpump CABG may increase late (>I year) all-cause 

mortality by a factor of 1.37 over on-pump CABG. 

I 
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Figure 1-4: The number of CABG procedures (in thousands) conducted per 

year in the USA from 1979 to 2003 [IS]. 

Reports fiom the National Centre for Health Statistics [15] in the USA show 

that the amount of CABG procedures kas been declining since the mid-nineties as 

shown in Figure 1-4. This decline is due to the introduction of percutaneous 

coronary interventions (FCI). 

1.3.2 Percutaneous Tran,~luminul Coronary Angioplusty 

The first minimally invasive treatment of atherosclerosis was performed in 1977 by 

Dr. A. Gruentzig (University Hospital Zurich, Switzerland) [40] and is known as 

percutaneous transluminal coronary angioplasty (PTCA) or balloon angioplasty, a 

subset of PCI. During PTCA, a physician guides a long thin tube called a catheter 

through a patient's arteries, usually entering through the groin or arm, and advances 

to the plaque site in the coronary artery, under fluoroscopic guidance. The catheter is 

tipped with an inflatable balloon. At the site of obstruction the balloon is inflated for 

about 1 minute, compressing the plaque and enlarging the lumen of the coronary 

artery. Balloon inflation pressures may vary fiom five atmospheres of pressure [50], 
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to as much as 20 atmospheres [l 11. 

Although h s  revolutionary procedure greatly reduced patient trauma, 

restenosis (defined as >50% re-blockage of the artery) was common with PTCA, 

with rates as high as 30% - 40% within three to six months of the procedure [46,95]. 

A comparative study by the Bypass Angioplasty Revascularisation Investigators 

(BARI) [I241 conducted in 1997 examined the choice of treatment for multivessel 

disease amongst 1,829 patients. They found that by five years after study entry, 8% 

of the patients assigned to CABG had undergone additional revascularisation 

procedures, as compared with 54% of those assigned to PTCA. Restenosis after 

PTCA most commonly takes the form of elastic recoil of the vessel wall and also 

vessel contraction known as negative remodelling [75]. 

Another disadvantage of PTCA is the significant risk posed from weakening 

of the artery wall. Although the artery would be opened successfully using a balloon, 

in certain cases the artery would collapse after the balloon was deflated. Acute 

closure occurs in approximately 4 - 8% of balloon angioplasty procedures within the 

first 24 hours [21, 231. When acute closure occurs, it is a medical emergency with 

many patients requiring emergency CABG. Elastic recoil, negative remodelling and 

acute closures were virtually eliminated by the introduction of stents in the early 

1990s. 

1.3.3 Coronary Stenting 

Coronary stenting grew directly out of interventional cardiologists' experience with 

PTCA and acute closures during the 1980s. A coronary stent is an artificial support 

device used in the coronary artery to keep the artery open. Usually, the stent is 

mounted on a balloon catheter in a "criinped" or collapsed state. During the stenting 



procedure, the balloon is threaded to the site of the blockage and inflated causing the 

stent to expand and push itself against the inner wall of the coronary artery. This acts 

as a scaffold to hold the artery open; the balloon is then deflated and removed. By 

fonning a rigid support, the stent can prevent acute closures and also significantly 

reduces elastic recoil and negative remodelling. 
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Figure 1-5: The number of PC1 procedures conducted (in thousands) per year 

in the USA from 1986 to 2003 [15]. 

The first self-expanding stent was inserted into a human coronary artery in 

1986 by Dr. J. Puel and Dr. U. Sigwart (Centre Hospitalier Regional Universitaire, 

France) [116]. The first balloon-expandable stent was developed by Dr. J. Palmaz 

(University of Texas Health and Science Centre, USA) and Dr. R. Schatz (Brooke 

Army Medical Centre, USA) in 1989 and approved for use in the USA by the Food 

and Drug Administration (FDA) in 1994. Approval was based on the results of two 

clinical trials (BENESTENT-I [112] and STRESS [3 11) conducted to compare 

implantation of Palmaz-Schatz (PS) stents (Cordis, Johnson & Johnson, NJ, USA) 

to PTCA with short (45mm) de novo lesions in large vessels (>3mm). The 

incidence of restenosis in the stented arm of the BENESTENT-I and STRESS trials 

was 22% and 3 1.6% respectively, significantly less than in the PTCA group (3 1% 

and 42.1% respectively). Over the next decade, a plethora of stent designs emerged 

as several generations of these bare metal stents (BMSs) were developed. The 
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growth of stent technology lead to a steady increase in the number of PCIs 

performed in the USA over the last two decades as shown in Figure 1-5. 

While BMSs virtually eliminated the complication of acute artery closure and 

reduced elastic recoil and negative remodelling, restenosis persisted. Restenosis 

following stent implantation is mainly due to intiinal hyperplasia (El), which is the 

proliferation and migration of VSMCs to the inner artery wall where they proceed to 

narrow the lumen inside the stent. In an intravascular ultrasound study [45] of 142 

patients with PS stents, late lumen loss, defined as the cross sectional area (CSA) of 

the lumen post intervention minus the CSA of the lumen at follow up, was shown to 

correlate strongly with the amount of tissue growth from IH as shown in Figure 1-6. 

This study demonstrates that restenosis following stent implantation is primarily due 

to IH in the lmnen. 

Neointimal Hyperplasia (mm2) 

Figure 1-6: Strong correlation between IH and late lumen loss in stented 

coronary arteries [45]. 

In recent years, drug-eluting stents (DESs) have been developed to address 

the problem of IH. A DES typically consists of a BMS pIatforrn which has been 

coated in a fornulation of a drug and carrier material. The drugs commonly 

employed are known to interrupt key cellular processes associated with VSMC 

proliferation. A proliferating cell undergoes a process known as mitosis, in whch it 
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replicates itself. The drug employed on DESs target mechanisms in the VSMC 

proliferation cycle to inhbit IH. 

To date, clinical evaluation has proven the superiority of DESs for the 

reduction of restenosis rates compared to BMSs, leading to the regulatory approval 

of a number of DESs by both the European Union (EU) Conformite Europdenne 

(CE) and the FDA. At present there are five dstinct DESs that have received both 

CE and FDA approval: the first-generation Cypher sirolimus-eluting stent (Cordis) 

and Taxus ~ x ~ r e s s ~  paclitaxel-eluting stent (Boston Scientific, MA, USA), and the 

second generation Endeavor zotarolimus-eluting stent (Medtronic Vascular, MN, 

USA), Xience-V everolimus-eluting stent (Abbott Vascular, CA, USA) and Taxus 

Libertk paclitaxel-eluting stent (Boston Scientific). First-generation DESs showed a 

reduction in restenosis rates to less than 10% in equivalency trials against BMSs [18, 

20, 39, 76, 77, 106, 107, 1201. However, long-term biocompatibility of these stents 

has been the source of much concern in recent years due to late (6-12 months) cases 

of poor neointimal coverage and stent thrombosis [49, 73, 941. First-generation 

DESs employ permanent polymer coatings to hold and gradually release the drug 

into the artery. Due to the fact that most cases of late dent thrombosis occur long 

after the period of drug release from the DES, it has been widely postulated that 

permanent polymers may contribute to late adverse events by inhibiting endothelial 

coverage and inducing late hypersensitivity reactions. 

As a result of these observations, biocompatible co-polymer coatings which 

actively promote healthy neointimal coverage have been employed by second- 

generation DESs. Furthermore, significant efforts are currently being made to 

improve the overall biocompatibility of DESs with research in this area currently 
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centred on the identification and evaluation of biocompatible and fully bioabsorbable 

stent platforms and coatings, improved mechanisms of drug-delivery and potent 

therapeutic agents capable of reducing the risk of late stent thrombosis. 

BMSs, permanent and bioabsorbable DESs will ultimately always create 

disturbances to the arterial haelnodynamics after implantation leading to altered 

WSS. This altered WSS has previously been known to encourage IH [55,56,64, 72, 

921. As different stents are known to produce diEerent restenosis rates [2, 3, 53, 54, 

671, it is reasonable to assume that this may be influenced by different levels of 

stent-induced alterations to the WSS. 

Currently, state-of-the-art numerical investigations into haemodynamics in 

the stented artery employ three-dimensional (3D) and transient CFD. In most of 

these investigations the WSS is predicted, as the influence of this variable on M in 

the artery has been well established The wall shear stress gradient (WSSG) is the 

spatial rate of change of the WSS and is also frequently calculated, as this too is 

known to influence M in the artery. The level of altered WSS caused by stent 

implantation is analysed using threshold values of the WSS (WSS<O.S N/m2) and 

WSSG (WSSG>200 N/m3), as M has been found to be more prolific in regions 

exceeding these thresholds [57, 58, 921. However, in several studies this "threshold 

method" has not successfully identified significant differences in altered WSS 

between the different stents [4, 26, 59, 61, 621. In these studies, there is evidence to 

suggest that there may be a difference in the level of altered WSS caused by the 

different stents and therefore the threshold method is not capable of identifying it. 

One such study [59] investigated the haemodynamic effects of a rigid versus 

a flexible stent in a curved coronary artery. At mean flow, the stented area exposed 
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to low WSS ( ~ 0 . 5  N/m2) was 99.1 and 103.7 mm2 and the stented area exposed to 

high WSSG (>200 N/m3) was 73.8 and 68.3 mm2 for the flexible and rigid stents 

respectively. These results do not show much difference between the stents, yet 

Fontaine et al. [32] have shown greater neointirnal thckness with the rigid compared 

to the flexible stent (1.08 vs 0.74 mm respectively). If altered WSS is a factor in the 

difference in neointimal thicknesses between these stents, this would indcate that a 

greater depth of analysis is required to investigate the effects of stent rigidity on 

arterial WSS. 

Another CFD study 1611 investigating the influence of stent design 

properties on haemodynamics reported low WSS in 0.3 and 2.4% and hgh WSSG in 

32 and 38% of the stented area for stent strut thicknesses of 0.056 and 0.096 rnm 

respectively. Balassino et al. [4] also analysed the haemodynamic impact of strut 

thickness using CFD. Analysing the JoStent Flex stent (JOMED AB, Helsingborg, 

Sweden), they compared strut thicknesses of 0.05 with 0.15 mrn by measuring the 

areas exposed to low WSS. They reported 60.6 and 57.3% of the stented area 

exposed to low WSS for the 0.05 and 0.15 mm thicknesses respectively. The ISAR- 

STERO stent trial resulted in restenosis rates of 15.0 and 25.8% ( ~ 0 . 0 0 3 )  for the 

similarly designed ACS RX Multilink stent (Guidant, IN, USA) (strut thckness 0.05 

mm) and the ACS RX Multilink Duet stent (Guidant) (strut thickness 0.14 mm). The 

ISAR-STERO I1 trial resulted in restenosis rates of 17.9 and 3 1.4% ( ~ 0 . 0 0  1) for the 

differently designed ACS RX Multilink stent (Guidant) (strut thickness 0.05 mm) 

and the Bx-Velocity (Bx) stent (Cordis) (strut thickness 0.14 mm). The different 

restenosis rates in these studies may result from diEerent levels of altered WSS due 

to the different strut thicknesses. However, the threshold method of analysis in the 

numerical studies above does not find m y  significant differences in altered WSS 
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between stents of different strut thickness. As before with the rigid versus flexible 

stents, there may be no sigmficant difference in altered WSS; however, it does seem 

possible that this is not the case and the method of analysis is simply not sufficient to 

elucidate the difference. 

In a more recent study [4], CFD analyses of four commercially-available 

BMSs were conducted. Comparisons between two of the stents with contrasting 

design, the Bx stent (Corhs) and the Jostent Flex (JOMED AB), showed 58% and 

57% of the stented area with low WSS respectively. Duraiswamy et al. [26] also 

conducted CFD analyses of three, second-generation, commercially-available BMSs: 

the Bx stent, the Aurora stent (Medtronic Vascular) and the NIR stent (Boston 

Scientific). They found 59%, 57% and 59% of the stented area with low WSS and 

75% 83% and 88% of the stented area with high WSSG for the Bx, Aurora and N R  

stents respectively. These previous studies depict only minor differences in the 

altered WSS between these stent designs. However, clinical studies have shown stent 

design to be linked to restenasis rates [54, 67, 1031. In light of this, it is highly 

probable that using threshold values of only the WSS and WSSG variables is not 

sufficient to fully elucidate stent-induced disturbances to the arterial WSS. 

1.4 Aim and Objective 

Several attempts to investigate the haernodynamics in sknted arteries using CFD 

have been made over the last decade. Some of these works have used a method of 

analysis (the "threshold method) which has failed to identi6 significant differences 

in altered WSS between different stents. Therefore, the aim of this work is to 

develop a novel methodology to assess the haemodynamic impact of coronary stent 

implantation The objective of the methodology is to fully elucidate the stent-induced 
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alterations to the arterial WSS. The proposed numerical prediction methodology 

utilises the two commonly used variables, i.e. WSS and WSSG, plus two additional 

WSS-based variables, the WSS angle gradient (WSSAG) and the oscillatory shear 

index (OSI). Each of these variables highlights a different type of disturbance to the 

arterial WSS which could lead to IH. Instead of using threshold values, statistical 

measures of the full distribution of each of these variables are calculated for a more 

complete analysis. To demonstrate the methodology, it is applied to three stents with 

contrasting features. These stents are then assessed and compared based on the level 

of stent-induced alteration to the WSS. It is intended that the proposed methodology 

can be used to identify areas of disturbed arterial haemodynamics at the design stage 

of future bare metal, as well as permanent and bioabsorbable drug-eluting coronary 

stents. 

1.5 Structure of Thesis 

Chapter 2 details the chronological steps in the mechanism of in-stent restenosis. 

Also discussed are the stimulating haemodynamic factors which encourage M, the 

primary process which leads to in-stent restenosis. Chapter 3 contains basic fluid 

mechanics theory, presenting the mathematical description of the stresses that exist 

in a fluid. This background theory serves as a platform for Chapter 4 which gives the 

important WSS-based variables calculated in h s  work to assess the haemodynamic 

impact of a coronary stent on the artery. The chapter then concludes with a review of 

the recent literature in this field. The proposed methodology for stent assessment 

based on the level of altered WSS in the artery is presented in Chapter 5. This 

chapter gives the details of a novel and efficient methodology to numerically predct 

tissue prolapse between stent struts in the stented section of an artery and also of the 

transient CFD analyses conducted to simulate pulsatile blood flow through the 



Introduction 

stented artery. The new statistical method for analysing the results is also presented 

in this chapter. Chapter 6 contains the results of the CFD, analysed using the 

proposed statistical method. This chapter contains a section for each of the WSS- 

based variables, followed by a section for analysis. Finally, the overall conclusions 

of this work and recommendations for future work are discussed in Chapter 7. 

1.6 Publications 

The work reported in this thesis has led to three international journal publications 

[87,88,90] and also publications in the proceedings of four international [79,8 1,83, 

851 and five national bioengineering conferences [80,82,84,86,89]. 

Coronary stenting is now the most commonly used treatment for CAD. This work 

focuses on coronary stents and their main deficiency, which is restenosis. Ultimately, 

the goal is to develop a tool to assess any particular coronary stent based on its 

likelihood to develop restenosis. It is well established that stent design has a 

significant effect on the risk of restenosis in the treated vessel. Stent design is likely 

to influence the WSS of the treated artery, which would influence the restenosis rate. 

If the alterations to the arterial WSS created by stent implantation could be fully 

elucidated, it could be used to pre-clinically assess the stent. In order to develop this 

assessment methodology an understandng of restenosis must first be developed, or 

more specifically restenosis that occurs within a coronary stent known as in-stent 

restenosis. This is the objective of the following chapter. 
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2.1 Introduction 

Restenosis of vascularised arteries has been the major drawback of PC1 for over 30 

years since its inception to treat cardiovascular disease. Restenosis can best be 

described as a loss of the gain that was originally achieved by the PCI, i.e. a return of 

the lumen of the vessel to a size resembling that prior to intervention. Restenosis is 

typically diagnosed using angiography where a radio-opaque dye is injected into the 

blood vessel while the vessel patency is examined using fluoroscopy as shown in 

Figure 2-1. Several different definitions of restenosis exist which are based on the 

extent of the re-narrowing of the vessel at angiographic follow-up. The definition of 

restenosis in a treated vessel can also be based on adverse clinical outcomes such as 

myocardial infarction or the need for target lesion revascularisation (TLR). However, 

the most commonly used definition of restenosis is angiographic evidence of a loss 

of greater than 50% of the lumen size p s t  intervention [46J This definition was 

used in the BENESTENT-I [112], STRESS [3 11 and BENESTENT-I1 [I131 clinical 

trials to compare PTCA to implantation of the PS stent and also stent equivalency 

trials such as NlRVANA [3] and ASCENT [2] where the PS stent was compared to 

the NIR and the ACS RX Multilink stents respectively. This method of binary 

classification for vessel restenosis based on the 50% re-blockage threshold is likely 

to conceal a good deal of detail from the results of clinical trials. Hence, this method 
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of classification has become less popular since the introduction of DESs in the last 

decade. A more commonly used measure of a stent's performance in recent years is 

"late loss" usually defined as the lumen Qameter achieved from PC1 minus the 

lumen diameter at follow-up angiography. This method gives an absolute value for 

the decrease in lumen size, allowing a more informed decision on stent performance. 

Figure 21: (a) Angiogram showing a stenosis (white arrow) in the left anterior 

descending &AD) coronary artery and (b) the same artery following stent 

implantation restoring pa tency to the vessel [69]. 

As shown in Table 2-1, restenosis rates at short-term follow up have been 

steadily declining over the past three decades due to advances in technology and 

clinical procedures. Firstly, implantation of the PS stent showed improvement over 

PTCA [31, 1121. Second generation BMSs were then assessed by their non- 

inferiority to the PS stent in the stent equivalency trials [2, 31 where the majority 

showed a modest reduction in restenosis rates. First-generation DESs were compared 

to BMSs and showed a significant reduction in restenosis rates [77, 1201. In recent 

years, trials are now predominantly DES vs DES with restenosis rates usually below 

10% for most current DESs [121, 1291. 
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Trial (year) 

BENESTENT [I 121 (1 994) 
STRESS [3 11 (1 994) 
NIRVANA [?I (2001) 
ASCENT [2] (200 I) 
SIRUS [77] (2003) 
TAXUS IV [I201 (2005) 
TAXrrS ATLAS [I291 (2007) 

Trial Design 

PS vs PTCA 
PS vs PTCA 
m vs PS 
h4L vs PS 
SES vs BMS 
PES vs BMS 
Liberte PES vs Express2 
PES 

No. of 
Pittients 

520 
410 
849 
529 

1058 
446 

2 862 

Follow up Restenosis 
(n~onthsj Rate (%) 

7 22 vs 32 
6 32 vs 42 
9 19 vs 22 
9 1 6 ~ 2 2  
9 9vs 36 
9 8 vs 27 
9 9 %  11 

SPIRIT m 11211 (2008) EES vs PES 1002 12 2 vs 6 
PS - Palmaz Schatz (Cordis, Johnson and Jol~nson, NJ, USA), PTCA - Percutaneous transluminal 
coronary angioplasty, NIL2 - NIR stent (Boston Scientific, MA, USA), ML - Multilink (Guidant, IN, 
USA), SES - Sirolimus-eluting st&, BMS - Bare metal st&, PES - Paclitaxel-eluting stent, EES - 
Everolimus-eluting stent, Liberte - Taxus Libertr5 stent (Boston Scientific, MA, USA), Express2 - 

Table 2-1: Selected clinical trials over the last two decades charting the decline 

of restenosis rates after PCL 

In-stent restenosis is caused by the growth of new tissue in the stented vessel 

and is categorised into four different patterns. Pattern I is known as focal, and is 

where the lesion is less than 10 inm in length. As shown in Figure 2-2, Pattern I is 

further subdivided into Classes A, B, C, and D representing articulation, margin, 

focal body and multifocal tissue growths respectively. Pattern I1 is where the tissue 

growth is confined within the axid limits of the stent and is known as difjkse intra- 

stent. Pattern 111 is diffuse proliferative, where the tissue extends beyond the axial 

limits of the stent and Pattern IV is total occlusion where the stented artery has a 

thrombolysis in myocardial infarction (TIMI) flow grade' of 0. 

The biological mechanism of in-stent restenosis is different to the mechanism 

which results in atherosclerotic lesions. Firstly, the time course is very different 

between the two diseases; atherosclerotic lesions grow slowly in the arteries over a 

period of decades whereas in-stent restenosis typically develops within six months 

afler intervention. As described in Chapter 1, atherosclerotic lesions result from 

vascular damage and a gradual build up of plaque whereas in-stent restenosis results 

TIM1 flow grades: 0 (no flow), 1 (minimal flow), 2 (partial flow), or 3 (complete flow) 
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from the occurrence of thrombus deposition, inflammation, IH and negative 

remodelling of the artery. 

ISR Pattern I: Foca I I) 
fiz-- 
,&- 

Type L4: Articulation or Gap Type IB: Margin 

Type IC: Focal Body Type ID: Multifocal 

ISR Patterns II; 111, Z E  Diffuse 

1SR Pattern 11: Intra-stent ISR Pullern Ilk Proliferative 

ISR Putfern IV: Total Occlusion 

Figure 2-2: Schematic image of four patterns of restenosis. Pattern I is 

subdivided into four types (A-D). Patterns I1 - IV are classified according to the 

position of the in-stent restenosk in relation to the implanted stent [74]. 

2.2 Mechanism of Restenosis 

In contrast to in-dent restenosis, up to 40% of lumen loss following PTCA is due to 

the acute elastic recoil of the vessel wall [102]. Another contributing factor is the 

chronic negative remodelling of the vessel wall [75], as the muscular part of the 

artery realigns to fonn a smaller lumen. The mechanism of in-stent restenosis is quite 

different to that of PTCA and can be divided into the four phases shown in Figure 

2-3(a). In the first phase directly after stenting, platelets form clotting material called 

thrombus, which is deposited around the stent struts where the ECs have been 

damaged or denuded The duration of this phase is dependent on the extent of 

vascular injury fiom the stenting procedure, with greater injury leading to prolonged 
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thrombus deposition 1105, 1091. The s m n d  phase is inflammation as white blood 

cells called leucocytes adhere to the inju~y sites where the thrombus is forming and 

begin to infiltrate the tissue. The next phase is IH, which involves the migration of 

VSMCs fiom the media to the intima of the artery shown in Figure 2-3(b). The final 

phase is remodelling, where the muscles in the wall of the artery tighten in an effort 

to return the lumen hameter back to a smaller size. These four phases are discussed 

in more detail below. 

htellal  Elastic 
hlltlallulla tion Lalllitla 

Me Jia / 

1)at.s After Stenting 14 2 1 28 

Figure 2-3: (a) Four phases of the coronary artery's pathobiological response to 

stent implantation and (b) the components of the artery wall 1271. 

2.2.1 TPlrombu,~ Deposition 

Early concepts of PTCA were that the main mechanisms of lumen enlargement were 

compression and hsplacement of the atherosclerotic plaque by the inflated balloon 

[131, 1321. Evidence fiom histopathologic stuhes has now shown that in the 

majority of cases of PTCA and also stenting there is plaque splitting and endothelial 
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denudation, as well as some dissection of the internal elastic lamina and media [110]. 

These components of the artery wall are shown in Figure 2-?@). 

Activated Plate16 Aggregating Platelets 

Figure 2-4: Schematic diagram of a stent strut in the hours after implantation. 

The ECs have been damaged and denuded exposing subendothelial 

components, leading to platelet activation and aggregation. 

The intbna of the artery consists of ECs and a layer of subendothelial 

connective tissue called the basement membrane. Implantation of the stent denudes 

ECs close to the stent struts causing blood-stream exposure to the basement 

membrane and also to parts of the media. ECs which are not close to the stent struts 

can also be denuded by the angioplasty balloon used to expand the stent [41, 1041. 

The trauma inflicted on the artery wall from the stenting procedure will most likely 

damage all ECs in that region to some extent even if they are not denuded from the 

wall. 

Two glycoproteins called von Willebrand factor (vWf) and fibronectin which 

attract blood-borne platelets and help them bind together are released from damaged 

ECs. These glycoproteins recruit other proteins in the blood to activate platelets in 

the blood stream. Once activated, platelets change shape to aid aggregation (clotting) 

and also release granules such as platelet activating factor (PAF), adenosine 
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diphosphate (ADP) and thromboxane to activate more platelets and also encourage 

aggregation. As shown in Figure 2-4, activated platelets are transported to the injured 

site via the blood flow where they bind to the exposed subendothelial components 

using surface glycoprotein IaIIIa receptors. In the presence of activated platelets, 

blood-soluble proteins synthesize into fibrin strands which bind the activated 

platelets together into a thrombus. The formation and deposition of thrombus begins 

immediately after stent implantation and is the dominant physiological response in 

the first seven days after implantation. 

Inflammation is the immunological response to stent implantation and is the second 

phase of the arterial response as leucwytes are attracted to the stented region. 

Monocytes and lymphocytes are specific types of leucocyte designed to ingest and 

destroy foreign substances in the blood and tissue. In the weeks after stenting, these 

leucocytes are attracted to the site of the arterial injury where the thrombus has 

formed as shown in Figure 2-5. Activated platelets will express specific adhesion 

molecules on their surface such as P-selectin and glycoprotein Ib. Using these 

adhesion molecules, monocytes which are passing by in the blood flow will attach to 

the platelets using ligands on their surface. These monocytes are referred to as 

surface adherent monocytes (SAM) in Figure 2-3(a) above. Then, over a course of 

weeks these SAM will cross the platelet-fibrin thrombus to the site of endothelial 

injury where they will become tissue-infiltrating monocytes (TIM) or macrophages. 

These macrophages are usually found in the restenotic lesion near the stent struts. A 

linear relationship has been observed between the amount of macrophages present in 

the lesion and the amount of the tissue that subsequently develops from El [105]. 
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Thrombus Lymphocyte 
-P-selectin 
-Glymprotein Ib \ \ 

Tissue-Infiltrating 

C - > - JCU< 1 - 3c - >< - > 

Vascular Smooth Muscle Cells 

Pigure 2-5: Schematic diagram of the inflammation phase of io-stent restenosis. 

Monocytes adhere to the injured surface and infiltrate the tissue becoming 

macrophages, 

The majority of the restenotic tissue that grows after coronary stenting is comprised 

of VSMCs that migrate and proliferate around the stent in the IH phase of the arterial 

response to stenting [45, 781. VSMCs which normally reside in the media of the 

artery migrate inwards through the internal elastic lamina towards the stent where 

they proliferate and replace the thrombus in the artery. The migration and 

proliferation of VSMCs has several drivers with the major drivers shown in Figure 

2-6. 

The IH phase really begins as soon as the stent is implanted with activated 

platelets releasing mitogens (substances which encourage cell proliferation) such as 

platelet-derived growth factor (PDGF), fibroblast growth factor (FGF) and thrombin 

as discussed in Section 2.2.1. The TIM dscussed in Section 2.2.2 also release 

cytokines (signalling molecules) such as interleukin-1 and tuinor necrosis factor 

(TNF) that stimulate the migration of VSMCs. The injured ECs are also capable of 



synthesizing PDGF and FGF which encourage proliferation of the VSMCs. Finally, 

the VSMCs themselves which are usually contractile ceIls residing in the intima, 

when given enough stimulus from external sources (ECs, leucocytes, platelets), 

change from contractile to synthetic phenotype. Whilst in synthetic state the VSMC 

is activated and capable of producing its own mitogens such as PDGF, FGF and 

angiotesin 11. The activated VSMC is also far more responsive to cytokines and 

growth factors leading to increased migration and proliferation. The cascade of 

events which lead to M are briefly suininarised in Figure 2-7. 

Regenerating Endothelid Cells 
/ Active Vascular Smooth 

es 

Vascular Smootll Muscle Cells 

Figure 2-6: Schematic diagram of the IH phase of in-stent restenosis. 

Thrombus, damaged ECs, active VSMCs and macrophages are all capable of 

releasing cyto k i n a  which stimulate VSMC migration and proliferation. 

The VSMCs, platelets and leukocytes are all held together by extracellular 

matrix (ECM) comprised mostly of fibroblast, which is a connective tissue rich in 

collagen. It is this VSMC-rich connective tissue that forms the bulk of the restenotic 

growth. New ECs will grow fkom the ECs that survive the stenting procedure. These 

new cells must cover the restenotic lesion and separate the stent and injury site froin 

the blood flow in order for the arterial response and M to cease. If the M is 
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excessive, the vessel will not retain suficient patency and a repeat revascularisation 

will be necessary. 

Dalllaged Thrombus Id-tion VSMC 
EC Migration 

- 

IntimI 
Injury Hyperplasia 

-t@ 
VSMC 

Figure 2-7: Schematic diagram of key process (square) and chemical messenger 

particles (oval) involved in the mechanism of IH. 

2.2.4 Remodelling 

The final phase in the vascular response to the stenting procedure is remodelling, 

defined as long term changes in vessel size. From approximately four weeks after 

stenting, collagen deposits in the outer layers of the artery lead to arterial shrinkage 

known as negative remodelling. This phase, which is one of the major causes of 

restenosis with PTCA, is somewhat counteracted by the presence of the stent. 

However, the increase in pressure on the stent can squeeze some of the artery wall 

through the inter-strut space creating tissue prolapse between the struts. Also, if the 

stent if not sufficiently rigid, negative remodelling may cause crushing or radial 

recoil of the stent. 

2.3 Haemodynamics and Intimal Hyperplasia 

The mechanism of in-stent restenosis consists of the four phases described above in 

chronological order. These phases are triggered and maintained by stimuli from the 
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stent implantation. Broadly speaking, the predominant stimuli are the presence of the 

stent, the injury incurred from the stenting procedure and the disturbed 

haemodynamics due to the presence of the stent. 

The degree of injury to the ECs and underlying vessel layers has been 

correlated to the severity of the thrombotic reaction and amount of tissue growth 

from M [103]. In light of this a poorly designed stent, or indeed a poorly inserted 

stent, which creates severe injury will likely result in restenosis regardless of any 

haemodynainic effects. In this severe-injury scenario, the damage to intimal and 

medial cells results in the release of large amounts of growth factors directly into the 

artery wall promoting excessive IH without the influence of haemodynamics. If 

however, the stent implantation produces a manageable degree of injury then the 

haemodynamics are likely to play a significant role in the recovery of the artery. 

Thrombus formation immediately after stenting is heavily haernodynamically 

dependent. The glycoproteins vWf and fibronectin are released into the blood stream 

to attract platelets to the injured site. The platelets themselves are influenced by the 

advective forces of the flowing bloodstream [33], which indicates that 

haemodynamics are directly involved in the formation of thrombus. The same is true 

of the inflammatory cells which are known to play a significant role in IH. A direct 

relationship has been demonstrated between the amount of infiltrating monocytes 

and the volume of tissue growth froin M in rabbit models [105]. Therefore it is 

highly likely that haemodynamics influence restenosis through the transport of 

particles such as platelets, leucocytes, growth factors and cytokines to and from the 

artery wall. For example, an area of low or recirculating flow would be likely to 
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accumulate throinbotic and inflammatoq particles which would encourage tissue 

growth from IH in that area. 

The growth of a hctioning layer of endothelium between the blood flow 

and the restenotic tissue is critical to stop the further growth of the tissue. Healthy 

ECs functioning under normal condtions secrete cell-growth-inhibiting substances 

such as prostacyclin and nitric oxide. However, the growth and behaviour of ECs is 

highly sensitive to arterial haemodynamics. Adverse non-physiological 

haemodpinics are known to cause endothelial migration, dysfunction, and 

increased permeability to thrombogenic and inflammatory cells. The ECs have 

receptors on their membranes which are capable of detecting the arterial WSS. The 

WSS experienced by the ECs is the major determinant in the growth and behaviour 

of the ECs in the stented artery and as such, is hugely important in determining the 

risk of restenosis posed by any particular stent. A detailed discussion of the WSS- 

based variables and their role in M and restenosis will be presented in Section 4.2. 

2.4 Summary 

With in-stent restenosis, the growth of new tissue from the IH process is 

predominantly what re-blocks the artery, and if kept minimal the stenting procedure 

is likely to be successful. However, if the tissue growth is excessive and the artery 

cannot accoinmodate the new tissue without losing patency, a repeat procedure will 

be necessary. 

The mechanism of in-stent restenosis consists of the phases: thrombus 

deposition, inflammation, M and negative remodelling. Histopathology has shown 

that the M phase is responsible for the bulk of the lesion. However, it is important to 

keep in mind that the severity of the thrombus and inflammation determines the 



severity ofthe If% After the denhtian &om the stenting the re-growth of 

a functioning layer of healthy endothelium in the stented artery is the key to the 

cessation of the IH d. WSS plays 8 pivotal role in htb the mgrowi.h and 

normal m i o n  of ECs in the artery. The effects of WSS and other related variables 

on endothelid re-growth and function will be dis~ussed in full in Chapter 4. Before 

that it is necessary to mathematieally describe the m;Lid viscous stress which is 

exerted on the artery wall by the Mood flow, i-e- the WSS. This basic fluid 

mechanics theory is the focus ofthe foUowing chapter. 
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CHAPTER u 

3.1 Introduction 

A fluid element may undergo four types of motion or deformation: translation, 

rotation, shear strain, and linear strain Since a fluid element may be in constant 

motion, in fluid mechanics it is preferable to consider the motion and deformation of 

fluid elements in terms of rates. These are velocity (rate of translation), angular 

velocity (rate of rotation), shear strain rate (rate of shear strain) and linear strain rate 

(rate of linear strain). In order to examine these motion and deformation rates we 

will conduct an analysis of a fluid element which is initially cubic in shape. The 

dimensions of the fluid element are dx, dy, and dz in the Cartesian coordinate 

directions x, y and z respectively as shown in Figure 3-1. 

Figure 3-1: Fluid element employed for analysis of fluid motion and 

deformation. 
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3.2 Fluid Element Analysis 

The relationship between the rate of deformation of a fluid element and the related 

stresses forms one of the fundamental building blocks of all fluid mechanics theory. 

The fluid stresses and how they are calculated fiom the deformations are critically 

important to the work in this thesis. With this in mind, this section examines the 

mathematical description of these deformations and stresses in detail. 

3.2. I Rate of TrmrEution 

The rate of translation of a fluid element is mathematically described by the velocity 

vector written 

- -. 
V = u i  +vj+wi; (3-1) 

in Cartesian coordinates, where u, v and w are the velocities in the x, y and z 

directions respectively. At a point in the fluid, the translations in the x, y and z 

directions are equal to (u dt), (v ctt) and (z dt) respectively, where dt is an 

infinitesimally small increment of time. 

3.2.2 Rate ofRc7tafion 

The rate of rotation or angular velocity at a point on the fluid element is defined as 

the average rotation rate of two initially perpendicular lines that intersect at that 

point. For simplicity consider only one two-dimensional (2D) face of the fluid 

element in the xy plane shown in Figure 3-2 at two instances in time, t and t + dt, At 

the point B in Figure 3-2 the angular rotation about the z axis is defined as the 

average counter clockwise rotation of the two sides BC and BA. At time t + dt, BC 

has rotated a counter clockwise angle da. BA has rotated cloclnmse, thus by 

convention its counter clockwise turn is -dp. The average rotation around the z axis 
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is written 

and the rate of ratation is written 

Y 

Time, t + dt 

d 7 
L .  
r 

i3u 
A dx +-dxdt 

ax 

vdt 

X 

B C 

Pigure S2: Mution and deformation of a 2D fluid dement from time t to time t 

+ dt. 

The two angles in Equation (3-2) can be directly related to the velocity derivatives 

through the alculus limit 
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Substituting Equation (3-4) into Equation (3-31 the rate of rotation about the z axis 

is given by 

The rate of rotation around the x and y axes can be derived in the same way to 

produce the rate of rotation vector in Cartesian coordinates written 

(3-6) 

The factors of one-half disappear through the definition of a new quantity know as 

vorticity defined: 

such that velocity and wfticity are related by 
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3.2.3 Rate ofLimar Sirain 

The linear strain rate is defined as the rate of increase of length per unit length and is 

also known as &latation or extensional strain rate. Examining the horizontal side BC 

from Figure 3-2, the linear strain rate in the x direction is given by 

with similar expressions for the y and z directions. The three linear strain rates are 

therefore 

3.2.4 Rate of Shear Strain 

The 2D shear strain rate is coinmonly defined as the average rate of decrease of the 

angle between two lines which are initially perpendicular in the unstrained state. 

Taking BA and BC in Figure 3-2 as the initial unstmined lines the shear strain 

occurring from time t to t + dt is 

and the shear strain rate is written 

(3- 13) 

Similarly, the other two components of the shear strain rate in the YZ and ZX 

Cartesian coordinate planes respectively are 
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and by analogy with solid mechanics the shear strain rates are symmetric, i.e. e~ = ej; 

The angle under consideration A' B' C' in Figure 3-2 is by definition positive shear as 

the shear strain X, is increasing. 

3.2.5 Strain Rate Tensor 

For the remainder of this section, only the deformation of the fluid element is 

important, i.e. the linear strain rate and the shear strain rate. The linear strain rate and 

shear strain rate can mathematically be combined into one symmetric second-order 

tensor called the strain rate tensor whch is written 

A property of symmetric tensors is that there exists one, and only one, set of axes 

where the off diagonal terms i + j vanish. These are the principal axes, for which the 

strain rate tensor reduces to 

Q 0 E3 

where E ~ ,  E*, E, are called the principal strain rates. 
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3.2.6 Fluill Strel~Z'~ Ten~or 

The forces acting on a fluid element consist of body forces such as gravity and 

surface forces such as viscous and pressure forces. The most common body force is 

gravity which can be expressed as 

- 
FbGw = mg (3- 17) 

where m is the mass of the fluid element and g is the gravitational acceleration 

vector with a magnitude of 9.81 m/sZ at sea level. The analysis of the surface forces 

acting on a fluid element is more complex than that of the body forces. Firstly, a 

surface unlike a volume has both tangential and normal directions associated with it. 

Secondly, the force acting on a surface is independent of the orientation of the 

coordinate axis; however the description of the force in tenns of coordinate 

components changes with axis orientation. In order to describe the surface forces 

acting on a fluid element, a second order stress tenor is defined as 

where oxx, a, and o, are called the normal stresses, composed of pressure and 

viscous stresses and the remaining six components are cdled shear stresses. Since 

pressure can only act nonnal to a surface, shear stresses are composed entirely of 

viscous stresses. The nine positive components of the stress tensor are illustrated in 

Figure 3-3. 
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Figure 3-3: Infinitesimally small cubic fluid element with the three normal 

components and six shear components of the stress tensor in Cartesian 

coordinates. 

It is convenient to use the tensor notation of Equation (3-18) when dealing 

with second order tensors. Tensor notation uses the indices i and j to represent 

directions of stresses and surface normal vectors in the chosen coordinate system. 

For example, in Equation (3-1 8), Gij represents the stress in the j direction acting on a 

face whose normal vector is in the i direction. In the case of the stress tensor the 

indices i and j are replaced by the Cartesian coordinates x, y, and z to form all nine 

components. The stress tensor is a symmetric tensor, i.e. G~ = oji . This symmetry is 

required to satisfl equilibrium of moments about the thee axes of the element. The 

counterparts of the nine stresses shown in Figure 3-3 exist on the opposing faces and 

are not shown. When the element is in equilibrium the counterpart stresses will be 

exactly equal in magnitude and opposite in direction to the stresses visible in Figure 

3-3. 

For a fluid at rest the only stress acting on any surface of any fluid element is 

static pressure which always acts inward and normal to the surface as shown in 
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Figure 34.  h the case of a fluid at rest the stress tensor reduces to the static pressure 

tensor written 

where P is the local static pressure. When a fluid is in motion the static pressure 

tensor still applies; however viscous stresses may now also exist. For a fluid in 

motion the stress tensor can be written 

where the new tensor $ is the viscous stress tensor. 

Figure 3-4: The stress on an infinitesimally small fluid element in a fluid which 

is at rest. The stresses reduce to static pressure which only acts inwards and 

normal to a surface. 

3.3 Constitutive Equation for a Newtonian Fluid 

Stokes [I191 relates the strain rate tensor in Equation (3-15) to the stress tensor in 

Equation (3.19) in a deformation law through the three following thee postulates: 
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1. The stress tensorsG is a linear function of the strain rate tensor $ 

2. The fluid is isotropic, and therefore the deformation law is 

independent of the coordinate axis in which it is expressed. 

3. When the strain rates are zero, the deformation law must reduce to the 

static pressure condition which states 

6, =G, =o, =-P 

cijj = 0 for i + j 

Condition 2 of the deformation law requires that the principal strain axis of Equation 

(3-16) is exactly the same axis as the principal stress axis. On the principal axis the 

strain rate tensor only has the components E ~ ,  s2 and E, making it a convenient place 

to begin the derivation. Letting XI, yl and z~ be the principal axis directions, the 

deformation law could involve at most three linear coefficients 

n1 = -P + C,E, + C,E, + C 3 ~ 3  (3-22) 

The term -P is added to satisfy Condition 3 of the deformation law. Also for 

Condition 2 to be valid, the crossflow effect of E, and E, must be identical, i.e. C2 = 

C3. Equation (3-22) can be re-written 

where 

a l a v a w  
and + c2 + E, is equal to - + - + - from equation (3-1 1) and is called the 

ax ay az 

divergence of the velocity (9.9) and equal to zero for incompressible flow. To find 

-39-  
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a general deformation law, consider transforming Equation (3-23) to arbitrary axes x, 

y, z where the shear stresses are non zero. With respect to the principal axes XI, yl, 

21, let the x axis have directional cosines a,~, ax2 and ad. These are the cosines of the 

angles between the three principal axes and the arbitrary x axis respectively. 

Similarly, let the y axis have directional cosines gl, +2 and %3, and let the z axis 

have GI, and Q. For any set of directional cosines a:, +a:, +a:3 = l .  The 

transformation d e  (See Section C.3.1, p183-185 for more detail on the 

transformation procedure) between a normal stress or strain rate in the new arbitrary 

axes (x, y, z) and the principal stresses or strain rates is given by, for example 

Similarly the shear stresses and the strain rates described by the arbitrary axes are 

related to the principal stresses and strains by the transformation law 

ol, E,, 0, etc. Can now be eliminated from Equation (3-25) by combining Equation 

(3-23) and the fact that a:, +a: +& = 1 .  The result is 

- - 
rr, = -P + KE, + C2V.V (3 -27) 

with similar expressions for o, and o, Similarly, rr,, s,, a, etc. can be eliminated 

from equation (3-26) to give 

G, = KE, (3-2 8) 

with similar expressions for 0, and a,. Equations (3-27) and (3-28) can be 
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combined into a single general deformation law written 

- - 
nij = -P6, + Kcij + S,C,V.V (3-29) 

where 6ij is the Krunecker delta function ( ijii = 1 if i = j and 6ij = 0 if i # j ). To find 

the first coefficient K, consider Couette flow which is flow between a stationary 

plate and a moving plate as shown in Figure 3-5. 

Plate Moving with Velocity, V h 

/ /J ,' / /' / / ' / I d '  

L Velocity Vecior 
# 
I ,/' 
I . 0 

I , 
u , 
I 

I ' 
I /' 
I /  
L' 

/ / / C&iobwGa" / / / / 

Figure 3-5: Graphical representation of 2D Couette flow in which a fluid flow is 

driven by a moving top plate and the fluid is held stationary at the bottom plate 

due to the neslip condition. 

The plate is considered infinitely long in the x direction and the flow is fully 

developed. The velocity vector only has an x component (u), and only varies in the y 

direction. With these features of Couette flow in mind, the strain rate tensor reduces 

where V is the speed of the top plate and H is the vertical distance between the two 

plates. Experiments show that the shear stress is constant throughout the fluid and 

forms a linear relationship with the applied velocity, i.e. 
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where p is the coefficient of viscosity of a Newtonian fluid Comparing Equations 

(3-30) and (3-3 1) yields 

ow = 2~~ (3-32) 

and comparing to Equation (3-28) shows the coefficient K = 2p The second 

coefficient C2 in Equation (3-29) is independent of p and only associated with 

volumetric expansion; therefore it is known as the coefficient of bulk viscosity and 

given the symbol 1. The general deformation law for a viscous Newtonian fluid can 

be written 

Stokes hypothesis [I191 states that 

resulting in the following stress tensor for a viscous Newtonian fluid: 

When a fluid is incompressible the divergence of the velocity (?.v) is zero. The 

viscous components of the stress tensor for an incompressible fluid are therefore 

given by 
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The significance of this result is that for an incompressible Newtonian fluid, viscous 

normal stresses (main Qagonal) and the viscous shear stresses (off diagonal) can be 

computed directly from the velocity gradients in the flow. 

In this chapter the mathematical description of the motion and deformation of a fluid 

element is presented. The complete set of stresses acting on the same fluid element is 

then detailed followed by a famous constitutive equation for Newtonian fluids wbich 

relates the deformation to the stress. Now that viscous stresses in the fluid have been 

well addressed, variables are developed in the following chapter to quantifl these 

stresses and their derivatives in the stented artery. After the variables have been 

introduced, an overview of their typical use in the recent literature then concludes the 

chapter. 



Viscous Stress Variables and Corn~utational Modelling 

Virscloruls Stress i/mn.iabJ.es ant! 
CF20 Vod-elEing 

4.1 Introduction 

This first part of this chapter describes the variables employed in this work to fully 

elucidate the alterations to WSS following coronary stent implantation. The 

relevance of the variables is discussed with regard to the effect of high or low 

variable magnitudes. Complete mathematical descriptions of the variables are also 

presented. The second part of the chapter contains a brief literature survey of recent 

CFD modelling of haemodynamics in stented arteries. Some of the reviewed works 

employ a number of the variables predcted in this work which are described in 

Section 4.2. Additional variables whch are not predicted in this work will be 

described in Section 4.3 as necessary. 

4.2 Wall Shear Stress Based Variables 

Most of the arterial blockage associated with in-stent restenosis is due to IH, which 

is the excessive growth of new tissue inside the stented segment. As discussed earlier 

in Chapter 2, this growth is triggered by chemical signals from sources including EC 

damage and dysfunction, platelet adhesion, leucocyte infiltration and VSMC 

signalling. Disturbed haemodynamics near the stent stimulate M through the 

alteration of the natural WSS acting on both the ECs (leading to EC dysfunction) and 
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the subendothelial layer where ECs have been denuded (leading to disrupted EC 

regrowth). Disturbed haemodynamics can also stimulate M through the increased 

advection of platelets and leucocytes to the artery wall. Thus, haemodynamic 

variables have been formulated to identify sites in the artery where IH is more likely 

due to these factors. This section briefly describes the four WSS-based variables 

used in this work to quantifL the level of stent-induced alteration to the arterial WSS. 

Appendix C contains detailed mathematical descriptions of these variables, the 

numerical methodology used to calculate them and also validation procedures on 

devised test cases where theoretical solutions for the variables are known. 

4.2.1 Wall Shear Stress 

The distribution of WSS in arterial flows has been the subject of considerable 

research in the past decade due to its association with vascular disease. ECs 

subjected to elevated levels of WSSBl ~ / m l  tend to elongate and align in the 

direction of flow, whereas those experiencing low or oscillatory WSS<O.5 ~ / r n l  are 

circular in shape and have no preferred alignment pattern [72]. These circular cells, 

coupled with the low blood velociw usually present in areas of low WSS [6] lead to 

increased uptake of blood-borne particles to the artery wall as a result of increased 

permeability of the endothelial layer and increased particle residence time. Under 

low WSS conditions, ECs can themselves act as a catalyst for IH through, for 

example, the upregulation of tissue growth factors such as PDGF-A and PDGF-B 

[72, 1301. Numerous studies which incorporate numerical and experimental results 

have correlated areas of low WSS (WSS<O.5 N/m2) with increased M [64, 126, 134, 

1381. 
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In mathematical terns, the dot product of the unit normal vector i to a 

surface and the viscous stress tensor yields the WSS vector 

-- - - 
I.?, = 5, = rw,xi + rw,y j + r,,zG (4-1) 

where T , , ~ ,  z,, and r,,, are the Cartesian components of the WSS vector in the x, y 

and z dnections respectively. The magnitude of the WSS vector is calculated as 

4.2.2 Wall Sfaeur Stress Gradient 

Contact with the stent struts and balloon damages and denudes the ECs during stent 

implantation. It is important that a new layer of ECs grow in these denuded locations 

to form a barrier between the blood and exposed sub-endothelial layer to stop the M 

cascade [17, 1 181. High WSSGs are likely to affect this process as healthy ECs have 

been shown to migrate downstream of an area where the WSSG is above 3000 ~ / m "  

[22] [123]. As such, there is likely to be less EC regrowth in areas of high WSSG in 

the stented artery. In computational studies, sites that are susceptible to IH have been 

correlated with sites where the WSSG has been predicted to exceed 200 ~ / m ~  in an 

end-to-side anastomosis model [58,92] and a rabbit iliac model [64]. 

The WSSG is a measure of the spatial rate of change of the WSS vector and 

in a local coordinate system is calculated as 

where m is the WSS direction and n is the direction tangential to the arterial surface 

and normal to m. 
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4- 2.3 Wall Shear Stress Angle Gradlent 

ECs align with the flow direction creating a selective barrier to blood borne particles 

such as inflammatory cells [72]. Sudden directional changes in the WSS may lead to 

misalignment of these barrier cells resulting in increased permeability and risk of 

inflammation, a precursor of IH [127]. The WSSAG has been suggested to quantify 

these directional changes [70]. The magnitude of the WSSAG is calculated as 

where 4 is the angular diflerence between of the time-averaged WSS vector at the 

node of interest To and corresponding vector at the neighbur node TI, and is 

computed as 

for each of the neighbour nodes At the node of interest the value of 4 is set to zero 

and the WSSAG is calculated. The WSSAG is mesh dependent at points of boundary 

layer separation and reattachment in the flow, with values tending towards infinity as 

the mesh spacing reduces to zero. To ensure only relevant WSSAG values are 

considered, an upper limit of 300 radmm is set on the variable. This approximately 

corresponds to the WSSAG magnitude created by the maximum angular difference 

possible between two WSS vectors (x) acting on two small (- l o p )  adjacent ECs. 

4.2.4 Oscillatory Site~zr I ~ d a  

The OSI was originally proposed to evaluate regions of low oscillatory WSS in 

carotid arteries [56]. Regions of high OSI have been shown to be at greater risk of 



arterial narrowing from lesion development [ 13 81. Endothelial permeability to blood- 

borne particles is also shown to be increased with higher OSI [43] along with 

increased production of the gene endothelin-1 mRNA which increases cell 

proliferation [71]. It is therefore likely that sites of hgh OSI will be at an increased 

risk of IH in the stented artery. Although some regions of the coronary tree such as 

the left anterior descending (LAD) artery may exhibit some natural flow reversal 

over the cardiac cycle [91] the presence of a stent has been shown to greatly enhance 

the amount of OSI in certain parts of the artery [5,99]. The OSI is calculated as 

where T is the period of the cardiac cycle. The range of this variable is from 0 for 

flow, to a maximum of 1 in areas of highly-altered fully-oscillatory 

w s s .  

4.3 CFD Modelling of Haemodynamics in Stented Arteries 

This section contains a review of the recent literature published on CFD modelling 

of the haemodynamics in stented arteries. The ultimate goal of these reviewed CFD 

analyses is to provide reasons why some stents or stent locations are inore prone to 

restenosis and IH than others. Restenosis rates have been shown to vary from one 

BMS design to another [2, 3, 53, 54, 93, 1351. IH has also been shown to be more 

prominent in certain locations in the stented artery [34, 36, 64, 74, 1341. Specific 

value ranges of the variables discussed in Section 4.2 are believed to encourage IH. 

Therefore, some investigators predict these variables and quantitatively assess 



locations in the stented artery that fall inside the threshold of the "IH range". They 

may also qualitatively identify predicted features of the flow such as recirculation 

zones, separation and reattachment pints  to identify locations where IH may be 

accelerated. 

I Mesh 
Reynolds Wormersley Timestep Period nodes (n), 

Lead Author Year No. No. Cms) (s) elements (e) 
Chen [16] 2009 + - - - 
Duraiswamy 1261 2009 1 30 (avg.) 2.80 8.57 0.86 640,008 e 
Balossino [4] 2008 105 (avg.) 2.87 - 0.52 160,000 n 
Duraiswarny [25] 2008 130 (avg.) 2.80 8.57 0.86 640,008 e 
Banerjee [5] 2007 800 (peak) 2.32 0.1-1.0 0.80 650,000 e 
Faik [29] 2007 240 (avg. ) 2.80 * 0.80 192,000 e 
LaDisa 1591 2006 105 (avg.) 2.91 8.00 0.54 500,000 n 
Rajamollan [991 2006 800 (peak) 2.32 0.1-1.0 0.80 650,000 e 
He [42] 2005 50 - 240 5.00 8.57 0.86 279,083 e 
LaDisa [62] 2005 105 (avg.) 2.9 1 8.00 0.54 250,000 n 
LaDisa [63] 2005 105 (avg.) 2.91 8.00 0.54 250,000 n 
LaDisa [64] 2005 105 (avg.) 2.91 8.00 0.54 
Seo [l 1 11 2004 200 (avg.) 2.80 - - 99,492 n 
Frank [33] 2002 * - 7.81 * - 
Berry r71 2000 - - - - 

(able 4-1: A list of the puMieations that are reviewed in this chapter. Thes 

publicati~ns all involve CFD modelling of blood flow through a stented 

coronary artery. 

The research in this field is generally of a comparative nature. Soine studies 

will compare two or more similar stent designs with a well defined difference in the 

model, for example comparing straight and curved arteries, different stent sizing or 

Newtonian versus non-Newtonian blood flow. In contrast, other studies investigate 

the effects of the stent design itself and compare different stents under the same 

modelling conditions. All of the work reviewed in this section is srumnarised in 

Table 4- 1. 

In one study, LaDisa et al. hypothesised that axial stent strut angle influences WSS 

and WSSG in the stented artery [62]. Their models consisted of stents deployed at 
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1.2 to 1 stent to artery ratio at lengths of 16 mm (idea[) and progressively 

foreshortened models of 14 mm and 12 mm lengths as shown in Figure 4-I@). 

Thresholds for low WSS and high WSSG were set at 0.5 Nim2 and 200 N/m3 

respectively at mean blood flow velocity. The inain findings were that although the 

total area exposed to low WSS reduces with progressive foreshortening with 117 

2 min , 11 1 mm2 and 96.8 mm2, when normalised by the stented area there is an 

increase in normalised area exposed to low WSS with values of 0.71, 0.77 and 0.78 

for the 16 min, 14 im and 12 mm lengths respectively. There was no significant 

difference in normalised area exposed to high WSSG with values of 0.54, 0.50 and 

0.54 for the same three lengths respectively. However, the maximum WSSG 

increased with progressive foreshortening with values of 248 N/m3, 293 N/m3 and 

395 ~ / m ~ ,  again for the same three lengths respectively. Another finding was that 

under mean flow conditions the percentage of inter-strut area exposed to low WSS 

was greatest in the proximal area regardless of stent length or strut orientation. This 

study demonstrates that progressive strut misalignment with the flow Qrection 

increases nonnalised arterial wall area exposed to low WSS and elevates WSSG. 

The intuitive observation fiom this result is that stent struts should be aligned with 

the flow to reduce these effects. From an analysis perspective, it is interesting to note 

that the maximum WSSG has increased by almost 60% from the 16 mm stent to the 

12 inin stent yet the normalised area with WSSG>200 N/rn3 is 0.54 for the two 

stents. This indicates that the distribution of the WSSG may not be fully elucidated 

by the threshold method. 



Vis~ous Stress Variables and Corn~utational Madellug 

Figure 4-1: (A) Three models of a stented coronary artery which are different 

lengths due to foreshortening from LaDisa et aL 1621. (B) Model of a stented 

coronary artery from Rajamohan et al. 1991. 

The geometric model in Figure 4-1(b) was used by Rajamohan et al. 1991 and 

Banerjee at al. [5] in a joint study to compare the effect of developing versus 

developed flow in a stented coronary artery. Developing flow was simulated by 

imposing a transient plug flow at the inlet of the CFD model and was representative 

of flow through a stent deployed at the origin of a branched artery 1991. Developed 

flow was simulated with a transient parabolic velocity profile at the inlet [5] .  This 

model represented flow through a stent implanted at a downstream region of a 

coronary artery. The velocity profiles near the entrance and exit are shown in Figure 

4-2(a) and (b) respectively. The profiles are given at four different times for 

developed flow and at t = 2.0 s for developing flow which is the time of peak inlet 

velocity. For developed flow, a near parabolic velocity profile is observed with the 

peak velocity at the centre for all flow rates. For developing flow the peak velocity 

occurs close to the artery wall, near the entrance and exit. There is an 83% and 37% 

increase in the near wall velocity gradient at the inlet and outlet respectively from 

developed to developing hyperaemic flow of 200 mumin at time = 2.0 s. The higher 

near wall velocity gradient at the inlet for developing flow accounts for the higher 

WSS magnitude of 53 ~ l r n ~  predicted on the first strut intersection compared with 

the magnitude of 29 ~ l r n ~  on the first strut intersection with developed flow. 
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Figure 4-2: Velocity profiles from the centreline (0 cm) to the top of the stent 

wire (0.13 em) at the (A) first and (B) last stent strut intersection for developing 

flow from Rajamohan et al. [99] and for developed flow from Banerjee et al. [53. 

Figure 4-3: The MOSI for vertices Vl - V8 from the inlet to outlet respectively 

et al. [99]. Vertices V1 and V7 are also shown for developed flow from Banerjee 

et al. [5]. 

To further analyse the flow, the modified oscillatoq shear index (MOSI) written 

is plotted upstream and downstream of the four strut intersections which are shown 
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in Figure 4-l(b). These vertices are labelled V1-V8 from inlet to outlet respectively. 

For developed flow, MOSI values of nearly +1 and -1 are observed at the upstream 

and downstream of each strut intersection respectively for dI flow rates as shown in 

Figure 4-3. Ths  demonstrates that there is negative WSS at the downstream of each 

intersection (V2, V4, V6 and V8) and positive WSS at the upstream of each strut 

intersection (V3, V5 and V7) except near the entrance, where there is negative WSS 

for 50, 100 and 150 ml/min flow rates. These negative MOSI values signify 

recirculation zones downstream of each strut intersection for all flow rates and 

upstream of the first strut intersection for 50 mumin with developing flow and with 

50, 100 and 150 ml/min for developed flow. These studies have also shown that 

when compared with developed flow, maximum recirculation length and height 

downstream of strut intersections for developing flow are 100% and 50% higher 

respectively. These two studies highlight the significant impact of a stent's location 

in the artery on the local haemodynamic environment. 

LaDisa et a]. 1611 investigated the haemodynamic effect of the stent 

deployment ratio, number of struts, strut thickness and strut width. One finding was 

that reducing strut thickness fiom 0.096 mm to 0.056 mm reduced the stented area 

exposed to low WSS from 2.4% to 0.3%, and reduced the stented area exposed to 

high WSSG from 38% to 32%. Keeping the strut thickness constant at 0.096 mm and 

reducing the width fiom 0.329 rnm to 0.197 mm did not make significant differences 

with low WSS (2.4 vs 2.7%) and high WSSG (38 vs 37%) respectively. Maintaining 

constant strut width (0.197 mm) and thickness (0.096) and increasing from four 

struts to eight had an effect on the area of low WSS increasing it from 2.7% to 8.5% 

but the area of high WSSG remained the same for both at 37%. The most significant 

result of the study was produced by keeping the stent number (4), thickness (0.096 
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mm) and width (0.329 mm) constant and increasing the stent to artery deployment 

ratio fi-om 1.1: 1 to 1.2: 1. This increased the area of low WSS from 2.4 to 25% but 

only increased the area of hgh WSSG from 38 to 39%. 

Wunbrr WdLh Mdcnene DIployrnent 
of- (mm) (mm) Ratio 

4 4 0.328 0.096 1.1-1 

Figure 8-4: WSS contour plot from the results of a study by LaDisa et al. [61] 

examining the effect of deployment ratio, number of struts, strut thickness and 

%trrrt =*idtk. vT?SS is ~ ~ ~ ~ / ~ ~ 2 ,  =here 1 TmT# lTIm2 = :O ~ y i ~ ~ i e m ' .  1 

This study demonstrates the importance of modelling the stented artery as 

accurately as possible with regard to stent geometry and deployment ratio in 

particular, which has been shown to have a dramatic effect on the WSS result as 

shown in the contour plot in Figure 44. The study shows only minor differences in 

WSS and WSSG when coinparing stents with a different number of struts, strut 

thickness and strut width. In light of the fact strut thickness [53, 931 and 

configuration [2, 3, 54, 671 affect the restenosis rate associated with the stent, it 

again seems plausible that this threshold method may have missed some of the detail 

of the altered WSS associated with these stents. 



Figure 4-5: WSS Contour plot from the results of a study by LaDisa et al. 1631 

examining the effect of vascular deformation and number of struts. WSS values 

Many investigators use a simplified circular arterial cross section when 

modelling the arterial wall [5,29,60,62,99]. LaDisa et al. have examined the eff'fect 

of circumferential vascular deformation on a CFD model of the stented artery [63]. 

The models with circumferential vascular deformation were created simply by 

joining the vertices of the stent struts to make a polygonal shape as shown in Figure 

4-5. Four-strutted and eight-strutted stents were compared in arteries of circular and 

polygonal cross section. The major finding was that the maximum WSSG was 221 

N/m3 with a circular cross section and 706 N/m3 with a polygonal cross section of 

the artery with the four-strutted stents. The total area exposed to low WSS summed 

over six points in time in the cardiac cycle was 419.5 mm2 and 437.2 mm2 for four 

struts and 126.0 mm2 and 117.4 mm2 for eight struts with circular and polygonal 

cross sections respectively. The total area exposed to high WSSG summed over the 

same six points in time was 76.8 mm2 and 100 mm2 for four struts and 76.4 mm2 and 

89.2 mm2 for eight struts with circular and polygonal cross sections respectively. 
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The results demonstrate that when vascular deformation is taken into 

consideration, having fewer struts leads to increased areas of low WSS and elevated 

WSSG. From a modelling perspective, these results show that simpli@ing the 

arterial cross section to a circular shape can introduce significant error in the results, 

particularly with regard to WS S G. Furthermore, major digerences are evident 

between the WSS distributions of the circular and polygonal arterial cross sections 

with the four-strutted stent as shown in Figure 4-6. This is not sufficiently 

highlighted by the threshold method of WSS analysis which simply shows a 4% 

increase in area the exposed to low WSS. 

SO 4STRUTS 

- CIRCULAR 
-. POLYGC8ta 

30 .r a STRUTS 

0.015 0.020 0.025 0.030 0.035 

AXIAL POSITION (m) 

Figure 4-6: Axial plots demonstrating the influence of stent-induced vascular 

prolapse on WSS in an artery implanted with a faur-strutted stent 1631. WSS 

values given in ~~nes /cm' ,  where 1 ~ / m '  = 10 ~ ~ n e s / c m ~ .  

The majority of the coronary arteries have some degree of curvature. 

Atherosclerotic lesions and IH are more prominent on the inner or myocardial curve 

of the artery [117, 1341. It has been demonstrated that the velocity profile tends to 

skew to the pericardial (outer) surface in curved arteries [98, 1111. Wentzel et al. 

demonstrated that implantation of a stent may cause straightening of the coronary 

artery segment where the stent is deployed 11331. This straightening of the artery 
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causes an increase in curvature of over 1100% at the entrance and exit of the stented 

region. LaDisa et al. have attempted to quantifl this eEect on the WSS [59]. Two 

models were created and are shown in Figure 4-7, an artery stented with a flexible 

stent that conforms to the 20.3 inin radius of curvature of the artery and another 

stented with an inflexible stent which straightens the artery similar to that reported 

by Wentzel et al. [133]. The total area exposed to low WSS was similar for the two 

models with 29.0 mm2 and 99.1 mm2 for the flexible stent at peak and mean flow 

respectively and 24.4 mm2 and 103.7 rnm2 for the inflexible stent at peak and mean 

flow respectively. The most interesting finding from this study was the WSS values 

which were time averaged over the cardiac cycle. These WSS values were examined 

in the centre of the first proximal and last distal diamond along the pericard~al and 

myocardial lwninal surfaces as shown in Table 4-2. Both models show very low 

WSS on the myocardial surface at the proximal end The inflexible stent has high 

values of WSS on the proximal pericardial surface and the distal myocardial surface 

due to the reorientation of velocity profile as blood enters and leaves the region, 

respectively. The flexible stent allowed gradual transition from artery to stent and 

hence the velocity profile maintained its modest skewing toward the pericardial 

surface resulting in higher WSS values on that surface along the length of the stent. 

Previous work has shown that for a straight vessel implanted with a similar stent and 

conditions the time-averaged WSS has a value of 0.83 ~ / m ~  along the entire length 

of the stent [52]. The lower WSS values predicted on the myocardial surface and 

shown in Table 4-2, may account for the hgher tissue growth in this region, 

particularly in the proximal region of the stent where the WSS is low regardless of 

stent flexibility. From the perspective of analysing the results, more conclusions can 

be drawn from the values of the time-averaged WSS at four locations on each stent 
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model than fiorn the threshold analysis above which doesn't definitively distinguish 

between the stents. 

FLEX1 BLE INFLEXIBLE 

Figure 4-7: "Flexible" and "inflexible" models of a stented artery from LaDisa 

et al. [59]. 

Time-averaged Proximal Distal 
WSS m/m2] Pericardial Myocardial Pericardial Myocardial 
Flexible 0.89 0.49 1.15 0.89 

1 Mexihle 1.17 0.43 0.83 126 1 
Table 4-2: Values of timeaveraged WSS in the centre of the first proximal and 

last distal diamond on the pericardial and myocardial surfaces for the 

I ~ + ~ ~ . L I - T I  G A I W ~ S  and "inflexible" models ~f a stented c ~ r ~ s a q  artery fmx: I,aEis-, et 

al. [59]. 

Chen et al. have examined the effect of stent undersizing on endothelial WSS 

and WSSG, as well as OSI 1161. Three CFD models were created with stent 

undersizing of 5%, 10% and 20%. As shown in Figure 4-8, the presence of the stent 

struts decreases the WSS and increases the WSSG along the arterial wall with the 

5% undersized stent. The presence of the stent wires becomes less significant with 

the 10% undersized case as the WSS and WSSG get closer to the non-stented values. 

This trend is continued with the 20% undersized case with the WSS and WSSG 

approaching the non-stented value further (not shown). 
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Figure 4-8: The effmts of 5% and 10% stent undersizing on the axial WSS and 
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WSSG from Chen et al. [16]. WSS values given in Ilynes/cm2, where 1 ~ / r n ~  = 
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The results also include von Mises stress distribution in the arterial wall for 10% and 

20% oversized cases, but no CFD results are given for the oversized cases. Whilst 

the results show that undersizing the stent could increase the WSS and reduce the 

WSSG, in practice stent oversizing to ensure maximum ptmcy is more common 

Seo et al. created models to investigate flow disturbances in 2D straight and 

curved vessels with Newtonian and non-Newtonian flow [Ill]. Their main finding 

with time-dependent flow is that regions of flow dsturbance periodcally increase 

and decrease in size. The primary impact of the non-Newtonian properties of the 

blood is to reduce the size of the flow separation downstream of the stent by 

approximately 8%. 

Faik et al. have conducted time-dependent 3D simulations of a stented artery 

to study the characteristics of blood flow and shear rate [29]. The results show 

significant secondary flow in an annulus region near the artery wall as well as low 
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shear rates on the artery wall near the struts and high shear rates on the tips of the 

struts. 

He et al. have conducted a parametric comparison of strut design patterns 

which are illustrated in Figure 4-9 [42]. The near-strut region of the artery wall is 

usually denuded of most ECs during the stenting procedure and it is possible that the 

major influence of the blood flow on new tissue growth is through transport of 

particles to the artery wall. The inter-strut region is likely to retain most of the WSS 

sensitive ECs during stenting, provided they have not been damaged by the balloon. 

It is therefore important to quantify WSS and also flow separation in the inter-strut 

region, as both can influence tissue growth through IH. To this end, the flow 

separation parameter (FSP) was introduced by He et al. [42] and is written 

Ts @ = -  (4-8) 
'1' 

where T, is t.he amount of time the flow is separated and T is the duration of the 

cardiac cycle. Flow separation is defined by He et al. 14.21 as occurring when the 

angle between the WSS vector and the mean flow direction is greater than 90". The 

FSP has also been modified for low flow conditions to account for the natural WSS 

oscillation as follows: 

where cp,, is the separation parameter during the time of forward mainstream flow 

Tp, cp,, is the separation parameter during the time of reverse mainstream flow TN, 

and T is the total time of the flow cycle (T = Tp + TN). Blood was modelled as a 

homogeneous Newtonian incoinpressible fluid. The model had rigid wall boundaries 
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and a sinusoidal input velocity. A significant finding was that within the narrow 

band of model (b) in Figure 4-9 the mean axial WSS was very low at approximately 

0.2 ~ / r n ~ ,  and the mean traverse WSS (normal to the axial hrection) was 

approximately 30% hgher than that of model (a). Increasing the axial distance 

between the struts, h, to 3.6 mrn increased the degree to which axial WSS was 

restored between the struts in model (c) and reduced the traverse WSS by -40%. 

Increasing the axial strut length, f, &d not significantly increase axial or decrease 

traverse WSS. One of the most significant recommendations of this study was that 

the longitudinal distance between adjacent rows of struts should be maximised to 

restore WSS values between the struts. This has the effect of decreasing the FSP 

between the struts as shown in Figure 4-1 0 below. 

D M  base 
\ Mnnecm 

D i  apex 

Nanawbnd 

Figure 4-9: Stent strut configurations studied by He et aL in a parametric 

comparison of strut design patterns 1421. The parameters are r, the strut radius, 

h, the axial distance between the struts and f, the axial strut length. 
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Figure 4-10: (a) Axial WSS (b) traverse WSS and (c) 

strut coniiligurations from He et al. 1421. WSS values 

FSP for two different stent 

given in Ilynes/cmi, where 

Frank et al. 1331 conducted an in vitro platelet adhesion experiment in 

conjunction with a 2D CFD analysis to determine the effkct of stent strut spacing on 

WSS, the FSP and platelet deposition. The lowest platelet deposition occurred at the 

shortest spacing of 2.5H (2.5 x strut height) with approximately double the platelet 

deposition at strut spacing of 4H and 7H as shown in Figure 4-1 1. Figure 4-12 shows 

the WSS was low and reversed in d i r d o n  from the main flow for 2.5H and 4H 

spacing and only restored between the two struts for the largest strut spacing. The 

FSP was one everywhere between the two struts for the smallest spacing and had a 

value of zero for the majority of the space between the struts for the largest spacing 

as shown in Figure 4-13. As the spacing increased, there was flow reattachment 

between the struts which reduced the FSP. However, this reattachment transported 

platelets into the region between the two struts. This is an undesirable result as 

platelet accumulation around the stent struts is likely to increase the volume of IH. 

On the other hand, the ECs are more likely to be functional and prevent TH with the 
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larger spacing since the WSS has been restored. It can also be seen from Figure 4-1 1 

and Figure 4-12 that there is increased platelet deposition whether the WSS is low 

(4H spacing) or high (7H spacing). These results are consistent with the conclusions 

of Berry et al. that flow reattachment occurs after a strut spacing of six diameters for 

a circular shut [A. 

Figure 4-11: Inter-strut platelet deposition for three different ratios of stent 

strut spsriag te s t e ~ t  strnt height 

Figure 4-12: Mean inter-strut WSS values for three different ratios of stent 

strut spacing to stent strut height. WSS values given in ~ ~ n e s / c r n ~ ,  where 1 

 id - PO ~~ne5:i'crn'. 
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Figure 4-13: Inter-strut FSP values for three different ratios of stent strut 

spacing to s t a t  strut height. 

Duraiswamy et al. extended this work to four commercially available stents 

[26]. They created models of single units of the Wallstent (Boston Scientific), the Bx 

stent, Aurora stent and the NIR stent. The stents were modelled as single unit cells 

on a flat rigid surface and the computational domain had a sinusoidal input velocity 

with a frequency of 1.1 Hz. The main results are Iisted in Table 4-3 below. The time- 

averaged WSS was lowest for the Wallstent with a value of 0.29 ~ / m ~  and similar 

for the other three with values of 0.50, 0.53 and 0.58 ~ / m ~  for the Aurora, NIR and 

Bx stents respectively. The Wallstent had over 90% and 100% of its stented area 

with low WSS and high WSSG respectively for over 50% of the cardiac cycle. These 

are significantly poorer haemodynamic characteristics produced by the Wallstent 

compared to the other three. However, the low WSS threshold does not significantly 

distinguish between the Aurora, NIR and Bx stents, with the high WSSG threshold 

slightly favouring the Bx stent. Another significant finding fiom this study was the 

percentage stented area with FSP > 0.5 for over 50% of the cardiac cycle. The Bx 

stent had 20.4% which is relatively high compared to 5.5%, 5.2% and 0.6% for the 

Aurora, NIR and Wallstent stents respectively. This finding is explained by a 

coinciding in vitro/CFD study [25] detailed below. 
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Stetli Wallstetlt Bx Aurora NIR 
TAWSS m/rnZ] 0.29 0.58 0.50 0.53 
WSS < 0.5 ~ l m '  050%T) [%] 90.5 59.3 57.1 58.7 

87.9 
5.2 - 

Table 4-3: Indices of mean time-averaged WSS and normalised stented area 

with CVSS belmv 0.5 K ~ I ~ ,  WSSG abiive 200 pdk+i13 and FS? abwe 0,s f ~ r  

greater than 50% of the cardiac cycle, T, for the WaUstent, Bx, Aurora and 

NIR stents from Duraiswamy et al. [26]. 

The in vitro model of a repeating unit of the Walktent, Bx, Aurora and NIR 

stents from Duraiswamy [25] examined platelet deposition inside the stent unit. 

Further CFD analyses were also used to examine the streamlines of the flow in the 

near wall region of the strut unit. The CFD methodology was the same as that in the 

previous CFD study of the WSS, WSSG and FSP [26]. The main findmg was that 

there were regions of constant flow separation distal and proximal to the struts P 

(proximal) and D (distal) respectively as shown in Figure 4-14. These constant 

separation regions exhibited very low platelet deposition. Figure 4-15 shows the 

platelet deposition was highest downstream of the recirculation regions; t h~s  is likely 

due to advection towards the artery wall in this region. The streamlines also revealed 

complex helically recirculating flow patterns near the S-shaped axial connector of 

the Bx stent which is shown in Figure 4-16. This would explain the high FSP values 

associated with this stent in the previous CFD study [26]. Interestingly, Duraiswamy 

[24] has shown that platelet deposition to be quite high in this connector region even 

though the WSS is low. The helical flow patterns are likely to transport and trap the 

particles in this region. It has therefore been shown that platelet deposition can be 

high in areas of high [33] and low [24,33] WSS with the biggest risk factor for high 

platelet deposition being streamlines of flow toward the wall and complex 

recirculating flow patterns [25]. 
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Figure 414: Flow aeparsrtbn d&bi to strut pru~imal to strut D ~ I f i  the 

Bx stent from Duraiswamy et al. 1251. 

Figure 4-15: Platelet deposition between the stent struts of the Bx stent from 
Wurtfkirir--- - = *. amy & EL [25]= There dgp~sif i~f i  dhbl fg &gf P tfnig 

proximal to strut D where the flow separation occurs as shown in Figure 4-14. 

Figure 4-16: Instantaneous streamlines near the §=shaped axial connector of the 

Bx stent showing compIex helically recirculating flow patterns. 



Viscous Stress Variables and Computational Modelling 

Balossino et al. 141 have also compared four commercially available stent 

designs. In this paper, stents A, B, C and D correspond to the Bx stent, Jostent Flex, 

Sorin Carbostent (Sorin Biomehca, Saluggia, Italy) and PS stent respectively. They 

used finite element analysis (FEA) to model the expansion of a single unit of each 

stent into separate arteries containing idealised plaques. The rigid shape of deformed 

stent, artery and plaque was then used to define the boundaries of the CFD domain. 

A canine blood flow velocity waveform [63] was applied at the inlet. The most 

interesting result was that there was not significant variation in the results between 

the different stent models as shown in Figure 4-17. The time-averaged value of 

percentage of vessel area below 0.5 ~ / r n ~  was 57.8% for stent A and 57.3% for stent 

B. They also demonstrated that the highest WSS exists on the stent struts throughout 

the cardiac cycle. Thicker struts were also shown to slightly decrease the area 

subjected to low WSSKO.5  in^ over the cardiac cycle from 60.6% to 57.3%. A 

dsadvantage of this study was the only parameters used to differentiate between the 

stents were low and maximum WSS. 

Pigure ~ 1 ~ :  mtoga.-- r a f i S  ~f the pereeniage of vascahr wali surface w<iB %VSS 

values lower than 0.5 N/m2 for the four stents at six time intervals from 

Balossino et al. [4]. Stents A, B, C and D correspond to the Bx stent, Jostent 

Flex, Sorin Carbostent and PS stent respectively. 
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A large amount of information has been provided from LaDisa et al. regarding the 

effects of realistic features in the model of a stented artery, including stent 

deployment ratio, vascular deformation and curvature. The combined efforts of 

Banerjee et al. [5] and Rajahmon et al. [99] demonstrated the importance of applying 

boundary conditions that match the arterial location to be modelled, as the difference 

between developed and developing flow is quite substantial in relation to the effect 

on the WSS. Seo et al. have shown that even in large vessels (>3 inm) the non- 

Newtonian effects of the blood are important when a stent is present in the vessel. 

With regard to the geometric influence of the stent, He et aI. have demonstrated that 

increasing the &stance between the struts restores the WSS and reduces the 

recirculation in the inter-strut region. However, Frank et al. showed that restoring the 

WSS also increases the platelet deposition in this region. 

Some of the reviewed studies have shown evidence of stent-induced 

haemodynamic disturbance such as dramatic changes in: maximum WSSG values 

[62, 631, plots of WSS [63] and time-averaged WSS values [59] between different 

stents. Other studies [4, 26, 611 have examined different stent designs which have 

different in vivo restenosis rates, suggesting different levels of altered WSS. Yet, the 

majority of results from these studies (summarised in Table 4-4) have shown only 

minor differences between the stents using the threshold method of analysis. These 

results strengthen the argument that a more complete method of analysis is necessary 

to fidly elucidate the stent-induced alterations to the arterial WSS. 
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Study Design Model WSS<0.SN/m2 WSSG>200N/tn3 
The effects of stent 16 nlm stent 71.W 54.0% 
foreshortening. 14 mm dent 77.0Y0 

- . . . . . . . 
50.0% 

. - 
Miss et ai. 162J 1 z mm  tent m.u% 54.0% 

Stent thickness 0.096 mm 2.4% 38.0% 
Stent thickness 0.056 mm 0.3% 32.0% 

Stent width 0.329 mm 2.4% 38.0% 
0 atmi width G : 97 mm 3 ?"' 

1. 78 
- - 0." .! 
2 ! . ,L, -," 

l;he ectects of s t a t  Stent with 4 struts 2.7% 37.0% 
design. LaDisa et Stent with 8 struts 8.5% 37.0% 
al. 1611 Stent deployment ratio 

2.4% 38.0% 
1.1:l 

Stent depioyment ratio 25.0% 39.0% 
1.2:l 

Stent with 4 struts 419.5 mx? 76.8 mm2 
(Circular artery) 

q,.. t k  G ~ L G C I S  --E.- 4 i>f ~tit(;nt +;..+ ,- (CELL w i ~ ~ ~  -L*. 4 StiX.;tAS 43 7.2 mn13 li)O.O mm' 
design and vascular (Polygonal artery) 

deformation. Stent with 8 struts 126.0 n d  76.4 mm2 
LaDisa et al. 1631 (Circular artery) 

Stent with 8 struts I ,-, A +%A--z 
I l i .+ l l l t l t  

89.2 
polygonal artery} 

Flexible stent 29.1 mi2 " 

(peak flow) 
Itlflexible stent 

The effects of stent fpcall; +owl 24.4 mn12 - 
flexibiiiiy. -LaEisa Flexible stent 
et al. 1591 99.1 nun2 - (mean flow) 

Inflexible stent 
(mean flow) 

The eEms ocstent ~ $ 1 ~ ~ ~ ~  
design. Bx stent 
Duraiswm~y et a]. Aurora stent 

[26] NIR stent 
n- ,+, -r -K ardl? 

The eEecis of stem Jostent Flex 
design. BalOssino Strut thickness 0.05 rnm 
et al. [4] Strut thickness 0.15 mm 
- 

rle 4-4: Brief summary of the results from 

5zfi *""."% 

59.3% 75.0% 
57. I % 82.8% 
58.7% 87.9% 
Z? on! 
.J i A7ti  - 
57.3% - 
60.6% - 
57.3% - 

recent publications which use the 

threshold method to analyse the haemodynamic effect of stent implantation. 

This chapter outlines the relevance and mathematical descriptions of the WSS-based 

variables employed in this work to quantify the altered WSS in the stented artery. 

The use of some of these variables is examined in the literature review contained in 

the second half of t h s  chapter. Particular focus is placed on work where these 

variables are analysed using the threshold method of analysis, which is shown to do 

little to distinguish between alterations to the WSS induced by different stents. The 



6.1 Introduction 

This chapter contains the main body of results obtained from the numerical 

prediction of the haemodynarnics in a stented coronary artery. In these results, 

numerical predictions are produced for the three different stents: PS, GR-11 and Bx, 

each implanted separately in the LAD coronary artery. The first two sections contain 

the results of a mesh convergence study and timestep convergence study, conducted 

to ensure sufficient accuracy of the computational model. The results from the 

transient numerical analysis of the three stents above are then presented in Section 

6.4. This main section of the results is divided into four subsections, one for each of 

the WSS-based variables: WSS, WSSG, WSSAG and OSI. 

6.2 Mesh Convergence Study 

As discussed in the previous chapter, the computational domains are discretised 

using an unstructured mesh topology for the PS, GR-11 and Bx stents. A mesh 

convergence study is conducted for all stents to ensure the results are independent of 

the computational mesh density. The steady-state CFD analysis employed in each 

mesh convergence study is the same as that described in Section 5.3.4. Results are 

considered mesh converged when the difference in the RMS value of WSS between 

successive mesh densities is less than 1% along sample lines in the domain. Two 

sample lines are chosen for each stent and their locations are shown in Figure 6-1 for 

-95 - 



the PS, GR-I1 and Bx stents. The mesh density is varied by changing the maximum 

allowable element edge length on the stent struts between 35 and 20 pm. Elements 

on the struts have a minimum allowable edge length of 1 pm to allow adequate 

resolution of any coinplex geometric features. Elements in the centre of the artery 

have a maximum edge length of 200 pm. Three meshes are created for both the PS 

and GR-I1 stents and two meshes are created for the Bx stent. The details of the 

meshes are given in Table 6-1. Table 6-2 contains the results of the mesh 

convergence study and shows that mesh convergence as defined above is achieved 

between Mesh 1 and 2 for both the PS and GR-I1 stents. However, to ensure the 

similar results between Mesh 1 and 2 are not a symptom of too small an increase in 

mesh density, a third, denser mesh is created for both stents. Again, there is no 

significant change in the results between Mesh 2 and 3 for either stent and so mesh 

convergence has been achieved. The numerical analysis is therefore conducted on 

Mesh 3 for both the PS and GR-I1 stents. The Bx stent required Mesh 1 to be quite 

dense in order to resolve the geometry of the stent. Mesh 2, which is significantly 

bigger than Mesh 1, produced no significant change in results and therefore mesh 

convergence has been achieved for the Bx dent model and the numerical analysis is 

conducted on Mesh 2. Generally in a CFD analysis a very coarse mesh is used 

initially, with mesh convergence apparent as the results converge after several mesh 

refinements. This approach is not possible here as the initial mesh needs to be quite 

refined for adequate resolution of the stent and artery wall. However, the evidence 

from the mesh convergence study suggests that any further mesh refinement would 

not produce any significant change in the results and therefore the mesh resolution is 

sufficient. Plots of the WSS along the sample lines used in the mesh convergence 

study are shown in Figure 6-2 and Figure 6-3 for the PS stent. Figure 6-4 shows 
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images of the mesh chosen (Mesh 3) for the numerical analysis of the PS stent. The 

same results are shown in Figure 6-5 through to Figure 6-10 for the GR-I1 and Bx 

stents respectively. Mesh convergence is achieved with 4,551,484, 3,038,536 and 

5,840,890 elements for the PS, GR-I1 and Bx stents respectively. 

Figure 6-1: Sample lines (a) and (b) used in the mesh convergence study of the 

PS (top), GR-II (middle) and Bx (bottom) stent models. 



Mesh PS GR-I3 Bx 

mesh convergence study. 

1 

rn 
L 

3 

1 Stent Sample Line Mesh WSS (RMS) %Difference 1 

nodes 515,925 435,456 918,714 
elements 2,741,719 2,238,670 4.865,169 

nodes 778,825 493,947 1,100,608 
elements 4,149,976 2,548,027 5,840,890 

nodes 854,154 592,033 - 
elements 435 1,484 3,038,536 - 

b 2 1.0170 0.3 
3 1.0206 0.4 
1 0.6926 - 

a 2 0.6932 0.1 
3 0.6947 0.2 
1 0.7292 - 

b 2 0.731 1 0.3 
3 0.7295 -0.2 
1 0.5421 - 

a 
2 0.5429 0.1 
1 0.5957 - 

b 
2 0.5932 -0.4 

Table 5-2: Resl~lts of the mesh convergence s t d y  fer the PS, GR-II and Bx 

Table 61: &&& de"sities of the 35, GR-0 and Bn steat models used in the 

stent models. 



Figure 6-2: Plot of the WSS versus axial distance along sample line (a) of the PS 

stent model for three different mesh densities. 
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Figure 6-3: Plat of the WSS versus axial distance along sampte line (b) of the PS 

stent model for three different mesh densities. 
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Figure 6 4  Mesh used (Mesh 3) in the numerical sndysis of the PS stent model. 

The plots show (a) the surface mesh on the artery wall with (b) axial and (c) 

radial slices of the volume mesh. 



Figure 6-5: Plot of the WSS versus axial distance along sample line (a) of the 

GR-II stent model for three different mesh densities. 
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Figure 6-6: Plot of the WSS versus axial distance alang sample line (b) of the 

GR-I1 stent model for three different mesh densities. 
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Figure 6-7: Mesh used (Mesh 3) in the numerical analysis of the GR-11 stent 

model. The plots show (a) the surface mesh on the artery wall with (b) axial and 

jc j radial silces of the volume mesh. 
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Figure 6-8: Plot of the WSS versus axial distance along sample line (a) of the Bx 

stent model for two different mesh densities. 
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Figure 6 9 :  Plot of the WSS versus axial distance along sample line (b) of the Bx 

stent model for two different mesh densities. 
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6.3 Timestep Convergence Study 

The transient numerical simulation is performed over the 0.8 s duration of the 

cardiac cycle. Three consecutive cycles are simulated to ensure that the results were 

periodically similar. Almost identical results were obtained from Cycles 2 and 3, and 

hence results are taken from Cycle 3 for all simulations. Solutions are obtained by 

dividing the simulation time into steps (timesteps) where the flow field is predicted 

at the end of each one. The timestep chosen should be sufficiently small to ensure 

that any further reduction in size would not produce a significant change in the 

results. A timestep convergence study is conduced to examine the effect of the 

timestep on the time-averaged WSS along sample lines in the domain. Since the 

transient boundmy conditions are the same for all stents, it is only necessary to 

conduct the timestep convergence study on one of the stent models. The GR-I1 

model is chosen for the study as it has the most abrupt changes in WSS. As shown in 

Table 6-3, simulations are conducted using timesteps of 50, 25 and 12.5 ms, 

corresponding to 16, 32 and 64 timesteps per cardiac cycle respectively. Temporal 

convergence of the results is achieved between the last two simulations within 0.5%. 

The timestep of 12.5 ms is therefore wed in the numerical analyses. Plots of the 

WSS are shown in Figure 6-1 1 and Figure 6-12 along the two sample lines for the 

simulations conducted with the three different timesteps. 



b 25 0.74 12 4.2 
12.5 0.7376 -0.5 

Table &3: Rmdts of the timastep convergence study conducted on the GR-Il 

S tent Sample Line Timestep (ms) WSS (RMS) % Difference 
m/m2J 

50 0.742 1 - 
25 0.7083 -4.6 
12.5 0.7049 -0.5 
50 0.773 7 - 1 GR-II 

a 



Figure 6-11: Plot of the WSS versus axial distance along sample line (a) of the 

GR-I1 stent model for three transient simulations with different timesteps. 
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Figure 612: Plot of the WSS versus axial distance along sample line (b) of the 

GR-11 stent model for three transient simulations with different timesteps. 



6.4 Results of the Numerical Analysis 

In this section, the CFD results are presented for the models of the LAD artery 

implanted separately with the three different stents. The next four subsections 

contain the results for the calculated WSS, WSSG, WSSAG and OSI variables 

respectively. The results are displayed in histogram form for each variable. The 

histograms display the amount of arterial tissue area contained between specific 

intervals of each element-face-averaged variable. The area in the histograms is 

norrnalised by the total area analysed which is the tissue area confined within the 

axial limits of the stent. Colour and line contour plots as well as vector plots are also 

provided for each variable to help visualise and explain the prdcted variables. The 

distribution of the four variables is also quantified by the statistical measures given 

in each subsection. 

The distribution of the WSS is presented in Figure 6-13, Figure 6-14 and Figure 6-15 

for the PS, GR-I1 and Bx stents respectively with the statistical measures given in 

Table 6-4. Figure 6-16 shows contour plots of the WSS over the entire stented area 

for all three stents while Figure 6-17 shows the WSS near a strut of each stent with 

overlaid velocity vectors. 

Mean WSS values are similar for the PS and GR-I1 stents with values of 

0.760 N/m2 and 0.764 N/in2 respectively. The mean is substantially lower for the Bx 

stent with a value of 0.522 N/mZ. These WSS values are 25 - 50% lower than those 

expected for an unstented 3.2 mm artery under similar flow conditions (-1.0 N/m2). 

The results therefore predict that insertion of these stents reduces the WSS on the 

artery wall. Figure 6-16 shows that WSS values are reduced below 1.0 N/m2 in large 



areas around all stent struts. This is a similar result to previous studies [61, 621. 

Large areas of low WSS are visible on the proximal and distal sides of the GR-I1 

struts in Figure 6-16, due to low flow velocity in this region shown in Figure 6-17. 

The thicker struts of the Bx stent create large near-strut low WSS regions. In 

particular, these regions occur around the S-connectors where there is significantly 

retarded flow as shown in Figure 6-17. These low WSS regions with the Bx stent are 

much larger than those produced for the similarly shaped PS stent. 

The standard deviation of the WSS is highest for the GR-I1 stent, and the 

relatively low kurtosis reveals this is not due to extreme values but rather a wider 

spread of WSS values in the artery. This is due to the high WSS values at the peaks 

of the prolapse and lower values in the troughs around the GR-TI stent struts as 

shown in Figure 6-16. The GR-I1 stent allows more tissue to prolapse into the artery 

than the other stents. The higher standard deviation quantifies a haemodynamic 

effect of the larger volume of prolapsing tissue with the GR-I1 stent. The 63% higher 

value of kurtosis for the PS stent compared to the GR-I1 stent indicates that the PS 

mean WSS value represents a larger portion of the artery compared to the similar 

GR-11 mean value. This is because the higher PS kurtosis value means that the 

standard deviation is influenced more so by small areas of tissue where the value of 

the WSS deviates greatly from the mean. Figure 6-16 shows these areas of tissue at 

the peaks of the prolapsing tissue at the articulation site. The thinner struts of the PS 

stent have lead to a more uniform distribution of WSS in each of the closed cells in 

comparison to the wider spread of values in the closed cells of the Bx stent. This 

haemodynamic effect, which is attributable to the contrasting stent geometries, is 

captured by the different kurtosis values for the PS and Bx stents. Conditions are 

more favourable in the artery implanted with the GR-11 stent compared to the PS 



stent, with the worst WSS values created by implantation of the Bx stent. Comparing 

the stents gives PS to Bx (d = -0.703), PS to GR-I1 (d = 0.010) and GR-I1 to Bx (d = 

-0.613). This puts the stents in order from best to worst as GR-11, PS and Bx. 

The commonly used threshold method of analysis shows that the PS stent has 

22.4% of arterial tissue exposed to WSSx0.5 ~ / m ~  compared with 32.3% for the 

GR-I1 stent and 49.5% for the Bx stent. For the WSS, the threshold method does not 

rank the stents in agreement with the proposed methodology because the areas of 

high WSS are not taken into account by the threshold method. The proposed method 

also provides a far greater level of detail from the histograms and statistical measures 

about the distribution of the WSS in each stented artery. 

Figure 6-13: Distribution of WSS for the PS stent. The bars represent the 

amount of normalized area with WSS values bounded by the tick marks on the 

abscissa. Bin widths are 0.05 ~ / r n ~ .  



Figure 614: Distribution of WSS for the GR-I1 stent. The bars represent the 

amount of normalized area with WSS values bounded by the tick marks on the 

abscissa. Bin widths a re  0.05 ~/m'. 
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Figure 6-15: Distribution of WSS for the Bx stent. The bars represent the 

amount of normalized area with WSS values bounded by the tick marks on the 

abscissa. Bin widths a re  0.05 ~/m'. 
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Bx 0.522 0336 1.925 
Table 6-4: The statistical measures of the WSS for the PS, GR-II and Bx stents. 
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Figure 6-16: Contour plots of WSS for the PS, GR-II and Bx stents. 
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WSS m/m2]: 0.1 0.3 0.5 0.7 0.9 Velocity [mls]: 0.000 0.025 0.050 

Figure 617: Detailed contour plots of the WSS on the artery near the struts of 

the PS, GR-II znd Bx s i n k  Velocity vectors are also shown on a 2D plane 

crossing over the struts. 



6.42 Wall SIzear Streesrs Gradient 

The hstribution of the WSSG is shown in Figure 6-1 8, Figure 6-19 and Figure 6-20 

for the PS, GR-11 and Bx stents respectively with the statistical measures given in 

Table 6-6. Figure 6-21 shows a colour contour plot of WSSG for the entire stented 

region of the PS, Bx and GR-I1 stents, while Figure 6-22 shows colour contour plots 

of WSSG with overlaid line contour plots of WSS in the near-strut regions of all 

three stents. 

The mean WSSG value for the GR-I1 stent is 73% higher than that for the PS 

stent and 55% higher than that for the Bx stent. As shown in Figure 6-22, with the 

GR-I1 stent the WSS values quickly increase in the axial direction from the low 

values at the struts. This creates the large WSSGs visible between the struts and 

quantified by the large mean value. The mean WSSG value for the Bx stent is 12% 

higher than that for the PS stent. Contributing to this higher value are the regions of 

WSSG>2000 N/m3 on the uneven prolapse near the S-connectors of the Bx stent 

shown in Figure 6-2 1 caused by the sudden changes in WSS shown in Figure 6-22. 

The PS stent has much more favourable WSSG in the inter-strut region as shown in 

Figure 6-22 but is impaired by the high WSSG at the articulation site visible in 

Figwe 6-2 1. 

The results show the highest standard deviation and lowest kurtosis for the 

GR-I1 stent indicating a wider spread of WSSG values. This signifies large spatial 

fluctuations in the WSSG acting on the arterial tissue. Figure 6-21 illustrates this 

effect, with large regions of high WSSG (>2000 N/m3) on the proximal and distal 

side of the smallest inter-strut regions and low WSSG ( 6 0 0  N/m3) in the middle of 

the largest inter-strut regions of the GR-I1 stent. The standard deviation is 24% 



higher for the PS stent when compared to the Bx stent. However, the higher kurtosis 

value for the PS stent indicates that the standard deviation is influenced by small 

areas of tissue with very hgh WSSG values (>2000 N/m3). In contrast the Bx stent 

has larger areas with high WSSG values of 1000 - 2000 N/m3 as shown in the 

histograms of Figure 6-18 and Figure 6-20 and the contour plot in Figure 6-21. This 

demonstrates how the histograms, statistical measures and contour plots compliment 

each other to reveal the detail of the variable distributions produced by the different 

stent designs. Comparing the stents gives PS to Bx (d = 0.159), PS to GR-I1 (d = 

0.837) and GR-I1 to Bx (d = -0.764). This puts the stents in order from best to worst 

as PS, Bx and GR-11. 

Comparing the stents using the threshold method of analysis, the PS stent 

exposes 99.5% of the arterial tissue to WSSG>200 ~ / m ~  compared with 98.9% with 

the GR-I1 stent and 98.9% with the Bx stent. These results are very similar, and fail 

to distinguish between the stents. The results of extending the threshold method to 

examine the eEect of using different threshold values are shown in Table 6-5. These 

results show that threshold values of 500 N/m3 and 1000 N/m3 rank the stents from 

best to worst as PS, Bx and GR-11 in accordance with the proposed method. The 

threshold of 2000 N/m3 still ranks the GR-I1 the worst but ranks the Bx stent ahead 

of the PS. These hgher thresholds are better at ranking the stents than the commonly 

used 200 N/m3. However, the problem of which threshold value to choose is 

highlighted by the change in ranking between PS and Bx stents for the value of 2000 

N/m3. 
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C Stent Area > 200 N/m3 Area > 500 N/m3 Area > I000 N/m3 Area > 2000 N/ni3 

1 
Table 6-5: Areas of stented artery above different threshold values of WSSG. 

Figure 6-18: Distribution of WSSG for the PS stent. The bars represent the 

amount of normalized area with WSS values bounded by the tick marks on the 

abscissa. Bin widths are 100 ~ l r n ' .  
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Figure 6-19: Distribution of WSSG for the GR-II stent The bars represent the 

amount of normalized area with WSS values bounded by the tick marks on the 

abscissa. Bin widths are 100 ~ / m ~ .  

Figure 6-20: Distribution of WSSG for the Bx stent. The bars represent the 

amount of normalied area with WSS values bounded by the tick marks on the 

abscissa. Bin widths a re  100 ~ / m ~ .  



I Stat Mean Wrn? Standard Deviation v i m 3  Kurtosis 
PS 93%.8 783.3 8.9 - - 

GR-I1 l&6,9 858.4 3.9 
Bx LO5 L6 63 1.4 8.0 I 

Table 64: The statistical measures of the WSSG for the PS, GR-II and Bx 

stents. 

Figure 6-21: Contour plots of WSSG for the PS, GR-II and Bx stents. 
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Figure 6-22: Contour plots of WSSG near the PS, GR-II and Bx stent struts 

with overlaid line contour plots of WSS (labelled by magnitude [N/m2]). 



The distribution of the WSSAG is presented for the PS, GR-I1 and Bx stents in 

Figure 6-23, Figure 6-25 and Figure 6-27 respectively using semi-log plots to ensure 

that the trend of the data is identifmble and in Figure 6-24, Figure 6-26 and Figure 

6-28 respectively using log-log plots to ensure that all of the analysed area is visible 

on the plot. Statistical measures are provided in Table 6-7. Figure 6-29 shows a 

colour contour plot of WSSAG for the entire stented region of the PS, Bx and GR-I1 

stents, while Figure 6-30 shows more detailed colour contour plots of the WSSAG 

with overlaid WSS vectors in the near-strut regions of all three stents. 

The PS stent has the best result with the lowest mean WSSAG value of 2.405 

radfmm. This is followed by the GR-I1 stent with 4.260 rad/mm and finally the Bx 

stent with 5.009 radmm indicating that implantation of this stent leads to the 

greatest alteration to the WSS direction. The log-log histograms show that all stents 

have a small amount of area (approximately 0.03%) in the 100-200 radlmm 

histogram range and the GR-I1 and Bx have very small amounts of area 

(approximately 0.001%) in the 200-300 radrnm range. Figure 6-29 shows that the 

regions of highest WSSAG are immediately proximal and distal to the stent struts 

that traverse the flow with the PS and GR-I1 stents. This is caused by the flow 

separation and recirculation in these regions evident from the directions of the WSS 

vectors shown in Figure 6-30. The WSS vectors in Figure 6-30 also suggest highly 

disturbed flow around the S-connectors of the Bx stent which is consistent with 

previous work [26]. This flow disturbance has created large WSSAG values in this 

region which contribute to ths  stent having the largest mean value. 



The GR-I1 has the highest standard deviation and lowest kurtosis indicating a 

lot of areas where the WSSAG values are high; these are notable near all the GR-I1 

struts in Figure 6-29. Large areas of low WSSAG are evident in between the struts of 

the PS stent with values peaking near the small portions of the struts that traverse the 

flow. These small areas with very high WSSAG values shown in Figure 6-30 lead to 

the very high kurtosis value for the PS stent. The standard deviation and kurtosis for 

the Bx stent are both roughly in between the other two quantifllng the very high 

localised WSSAG values around the S-connectors and also the high WSSAG values 

over the entire stented region as shown in Figure 6-29. Comparing the stents gives 

PS to Bx (d = 0.338), PS to GR-I1 (d = 0.213) and GR-II to Bx (d = 0.082). This puts 

the stents in order from best to worst as PS, GR-I1 and Bx. 

To the author's knowledge no upper threshold has ever been defined in the 

literahue for the WSSAG, such that an artery with WSSAG values above this 

threshold can be considered to be at an elevated risk for IH. Indeed, the author 

considers this to be the first time ths  variable has been predicted in a model of a 

stented artery. The results show that the performance of the stents with regard to th s  

variable can easily be evaluated using the analysis technique employed in this work 
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Figure 6-23: Distribution of the WSSAG for the PS stent. The bars represent 

the amount of normalised area with WSSAG values bounded by the tick marks 

on the abscissa. Bin widths are distributed logarithmically. 

Figure 6-24: Distribution of the WSSAG for the PS stent on a log-log plot 

provided to display all of the arterial area analysd. 



Figure 625: Distribution of the WSSAG for the GR-II stenti The bars represent 

the amount of normalised area with WSSAG values bounded by the tick marks 

on the abscissa. Bin widths are distributed logarithmically. 

Figure 6-26: Distribution of the WSSAG for the GR-I1 stent on a log-log plot 

provided to display all of the arterial area analysed, 



Figure 6-27: Distribution of the WSSAG for the Bx stent. The bars represent 

the amount of normalised area with WSSAG values bounded by the tick marks 

on the abscissa. Bin widths are distributed logarithmically. 

Figure 6-28: Distribution of the WSSAG for the Bx stent on a log-log plot 

provided to display all of the arterial area analysed. 



- .. 
Stent Mean Lraddmm] Standard Il&daa KWosh 

[LlWmn] 
PS- 2,405 9,176 aa.sls 

GR-11 4-mI loc& 27.853 
BX 5.009 8.199 52r332 - 

Table 6-7: The statistical measures of the WSSAG for the PS, GR-I1 and Bx 

GR-II 

I 

I '  
WSSAG [radmm]: 0.5 2.0 5.0 10.0 

Figure 6-29: Contour plots of WSSAG for the PS, GR-II and Bx stents. 
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Figure 6-30: Detailed contonr plot of the WSSAG in the near-strut regions of 

thc BS, GR-II and Ex stcnb with thc \VSS vc&ors overlaid. 



6.4.4 Oscillatory SIzeur I d e x  

The distribution of the OSI is presented for the PS, GR-I1 and Bx stents in Figure 

6-31, Figure 6-33 and Figure 6-35 respectively using semi-log plots to ensure that 

the trend of the data is identifiable and in Figure 6-32, Figure 6-34 and Figure 6-36 

respectively on log-log plots to ensure that all of the analysed area is visible on the 

plot. Statistical measures are provided in Table 6-8. Figure 6-37 shows a contour plot 

of OSI for the entire stented region of the PS, Bx and GR-I1 stents, while Figure 6-3 8 

shows line contour plots of the higher OSI values with overlaid time-averaged and 

instantaneous WSS direction arrows in the near-strut regions of all three stents. 

Implantation of the Bx stent creates the greatest transient variation in the 

WSS Qrection as the mean of the OSI is 30% and 54% higher than that for the GR-II 

and PS stents respectively. Since the range of the OSI is from 0 to 1, the mean values 

of OSI in the arteries for the three stents are relatively very low and as such, the 

differences in the distributions may be viewed as insignificant. However, the OSI 

quantifies transient directional changes in flow direction which may only be 

significant for M in specific small areas of the artery which could amplify the 

significance ofthese sinall differences. The log-log plots show small areas in the 0.4 

- 0.5 range of OSI for the PS stent and small areas in the 0.5 - 0.6 range for the GR-I1 

and Bx stents. This indicates regions where there are highly transient directional 

changes in the WSS vector. Figure 6-38 graphically shows how these high values 

arise in the near-strut regions of the stents as the instantaneous WSS direction 

continually changes over the cardiac cycle. However, since the inlet flow is 

unidirectional, most of the stented artery has low values (<0.05) of OSI as shown in 

Figure 6-37. 



Comparatively the PS stent has the lowest standard deviation with the highest 

kurtosis indicating that for the majority of the artery the WSSAG values are close to 

the mean value with localised high spots near the traversing struts. Compared to the 

PS stent larger amounts of area exist around the GR-I1 stent wires with high OSI 

values indicated by the much lower kurtosis and higher standard deviation values. 

However, the Bx stent has the highest standard deviation and lowest kurtosis of the 

three stents indicating larger areas where the WSSAG values deviate from the mean 

compared to the other stents. These higher values are visible near the S-connectors 

and in large portions of the inter-strut regions, particularly in the proximal part of the 

stent. Comparing the stents gives PS to Bx (d = 0.620), PS to GR-I1 (d = 0.315) and 

GR-I1 to Bx (d = 0.380). This puts the stents in order fiom best to worst as PS, GR-I1 

and Bx. 

Although this variable has been predicted before in s t e e d  arteries [5,99], no 

threshold has ever been suggested such that an artery with OSI values above this 

threshold can be considered to be at an elevated risk for M. However, as with the 

WSSAG, the results show that the performance of the stents with regard to the OSI 

can again be evaluated using the analysis technique employed in this work. 
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Figure 6-31: Distribution of the OSI for the PS stent. The bars represent the 

amount of normalised area with OSI values bounded by the tick marks on the 

abscissa. Bin widths are distributed logarithmically. 

Figure 6-32: Additional log-log plot of the distribution of the OSI for the PS 

stent provided to display all of the arterial area analysed. 



Figure 6-33: Distribution of the OSI for the GR-I1 ~tent ,  The bars represent the 

amount of normalised area with OSI values bounded by the tick marks on the 

abscissa. Bin widths are distributed Iogarithmically. 

Figure 6-34: Additional log-log plot of the distribution of the OSI for the GR-11 

stent provided to display all of the arterial area analysed 



Figure 6-35: Distribution of the OSI for the Bx stent. The bars represent the 

amount of normalised area with OSI values bounded by the tick marks on the 

abscissa. Bin widths are distributed logarithmically. 

Figure 6-36: Additional log-log plot of the distribution of the OSI for the Bx 

stent provided to display all of the arterial area analysed. 



Stent Mean Standard Deviation Kurtosis 
PS 0.028 0.012 94.604 

I 
-- - 

Bx 0.043 0.032 3 1.938 I 
Table 6-8: The statistical measures of the OSI for the PS, GR-I1 and Bx stents. 
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Figure 6-37: Contour plots of the OSI for the PS, GR-I1 and Bx stents. 



Results 
- 

A 

Time-averaged WSS Instantaneous WSS Vecto 
Vector Direction Directions at 0.1 Second 1 

Figure 6-38: Line contour plots of the OSI in the near-strut region for the PS, 

GR-I1 and Bx stents. The plots are overlaid by arrows representing the time 

averaged FYSS direction (Black) and the iastrantanetitis wSS direction (Red) at 

0.1 s intervals over the cardiac cycle. 



6.5 Analysis of Results 

The results have favoured the PS as the implanted stent which creates the least 

alteration to the WSS in the artery. The WSSG and WSSAG variables rank the PS 

stent the best. The OSI also favours the PS stent; however the magnitudes of the 

mean OSI values are quite small for the stents. Nevertheless, the histograms and 

contour plots do show that the GR-I1 and Bx stents create higher magnitudes of OSI 

around the stent struts compared to the PS stent. The WSS, WSSAG and OSI 

variables rank the GR-I1 ahead of the Bx stent, with the only exception to the trend 

being the WSSG where the GR-I1 ranks the lowest. Overall, the methodology 

indicates the stents perform haemodynamically in the order of PS, GR-I1 and finally 

Bx. 

Using the threshold method, the WSS variable identifies the PS as the best 

stent, followed by the GR-I1 and the Bx stents whereas the WSSG variable yields 

inconclusive results using the 200 N/m3 threshold value. In this case, the threshold 

method has managed to distingush between the stents using one variable, but does 

not rank them in agreement with the proposed methodology. Also, the threshold 

method does not quantify the complex haemodynamic disturbances that are 

identified in these results. Furthermore, the threshold method has been proven 

inadequate to Qstinguish between stents in previous studies [4,26,61-631, where the 

proposed method may have proved more successful. 

Examples of how this method of analysis improves upon the threshold 

method can be found in each of the WSS-based variables. Figure 6-17 shows that the 

WSS varies quickly from low values at the stent struts to higher values on the 

prolapsing tissue with the PS and GR-I1 stents. The WSS is also shown to be quite 



low due to the disturbed haemodynamics around the S-connector of the Bx stent. 

These effects are captured qualitatively by the distribution plots and also 

quantitatively by the statistical measures. Figure 6-22 shows the complex WSS 

distribution around the struts for all three stents leading to the creation of localised 

hgh values of WSSG. The statistical measures and distribution plots show that the 

GR-I1 creates large areas of hgh WSSG whereas the other two stents create smaller 

local regions of high WSSG. T h s  analysis of WSS and WSSG is far more detailed 

and beneficial towards the improvement of future stent design than simply 

measuring the area above or below a certain threshold Figure 6-30 shows how the 

WSS vectors quickly change direction due to the uneven prolapse near the Bx stent 

struts, leading to high WSSAG in this area High WSSAG are also visible proximal 

and distal to the traversing struts of the PS and GR-I1 stents which may well lead to 

increased IH. Figure 6-38 shows regions of high OSI in the near-strut regions for the 

three stents as the WSS direction changes with time. This could also have an 

undesirable effect on ECs and lead to IH, and as such is also an important 

consideration for stent design. These haemodynamic eff&s are not identified by the 

use of the threshold method and such features could easily have been overlooked in 

the aforementioned previous studies. 

6.6 Summary 

This chapter contains the main body of results from this work. Firstly, the results of 

the mesh convergence study are presented where it is shown that refinements to the 

mesh do not lead to any significant changes in results. The timestep for the analyses 

is then chosen based on the results of the tilnestep convergence study. The results 

fiom the numerical predictions of the haemodynamics are then presented for an 

artery implanted separately with a PS, GR-I1 and Bx stent. The results are presented 
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in a variable-by-vmiable format with each miable amlysed using a proposed 

technique utilising distribution graphs and statislid ~~. Were possible, this 

analysis technique is cumpared to a threshold analysis technique found &oughout 

the literature. The results are finally malysed together in the last section with some 

key p o h  highlighted pertaining to the merits of the proposed method of amlysis, 



7.1 Discussion 

In this work, a new methodology is proposed to fully elucidate the disturbance to 

arterial WSS induced by stent deployment. Four variables are employed in the 

methodology, each of which highlights a different type of alteration to the arterial 

WSS which could lead to M development. The proposed method of analysing the 

WSS-based variables provides a clear qualitative and quantitative assessment of each 

variable distribution making it possible to accurately assess the haemodynamic 

impact of an implanted stent. 

Three stents are analysed and their clinical perfbrmance is available from the 

results of several clinical trials which are summarised in Table 7-1. The most 

commonly used method of comparison of BMS in vivo performance is angiographic 

restenosis rates, defined as percentage of patients with >SO% renarrowing of the 

target vessel at follow up. The PS and GR-I1 stents were directly compared in a trial 

consisting of 755 patients with de novo lesions [67]. Restenosis rates were found to 

be statistically significant (p<0.001) between the two stents with values of 47.3% 

and 20.6% for the GR-I1 and PS stents respectively. A possible factor in the poor 

GR-I1 result is the "clamshell" deployment which is likely to cause more arterial 

damage than for the slotted-tube type stents such as the PS. "Infrequent optimal GR- 

I1 size selection" was also noted in the study which would likely contribute to poor 



stent performance. The PS stent has also been involved in the stent equivalency trials 

ASCENT [2] and NIRVANA [3] and had restenosis rates of 22.1% and 22.4% 

respectively. There were similar criteria for inclusion in these three trials such as 

native vessel diameter of greater than 3 mm, de novo lesions, and similar study end 

points. The Bx stent had a restenosis rate of 31.4% in the ISAR-STEREO-I1 [93] 

which had patients with de novo and restenotic lesions, but similar vessel &meter 

and trial end points. The Bx stent also had a restenosis rate of 23.4% in the control 

arm of the RAVAL DES trial [I141 where inclusion criteria were a de novo lesion 

with native vessel diameter between 2.5 and 3.5 mm. These different restenosis rates 

between ISAR-STEW-I1 and RAVAL for the Bx highlight the fact that results from 

different clinical trials cannot be used to drectly compare stents. 

Trial (year) Trial Design No. of Follow up Restenosis 
Pat.ients (tncmths) Rate (sh) 

Lanskey et al. [67] (2000) GR-II vs PS 755 12 47.3 vs 20.6 
NIRVANA 1-31 (200 1) NIR vs PS 849 9 19.3 vs 22.4 
ASCENT [2] (2001) ML vs PS 529 9 16.0 vs 22.1 
RAVEL DES [I141 (2002) SES vs Bx 283 6 0.0 vs 23.4 
ISAR-STER" 11 -43 .3~@3 

_ I ] (  1 MLvsBx 611 6 17.9 vs 3 1.4 
PS - Palmaz Schatz (Cordis, Jobson and Johnson, NJ, USA), NIR - NIR stent (Boston Scientific, 

I MA, USA), klL - Mdtilink (Guidant, CA, USA), SES - Sirolimus-eluting stent. 1 
Table 7-1: Angiographic restenosis rates for the PS, GR-I1 and Bx stents from 

five clinical trials. 

The CFD results rank the stents (best to worst) for WSS as follows: GR-11, 

PS, Bx (Cohen's d: -0.01, -0.613), for WSSG: PS, Bx, GR-I1 (d: 0.159, 0.764), for 

WSSAG: PS GR-I1 Bx (d: 0.213, 0.082), and for OSI: PS, GR-11, Bx (d: 0.315, 

0.380). The Bx stent had the worst haemodynamic impact on the artery even though 

it is a second generation BMS. Also from the CFD results, the GR-I1 stent performed 

worse than the PS stent haemodynamically. The GR-II stent also performed worse 

than the PS stent in the clinical trial [67]. However, it would have to be concluded 
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that other influential factors were also to blame for the stents poor clinical 

performance as it had such a severe restenosis rate. 

Limitations of the methodology employed in this work include the 

assumptions of fully-developed laminar flow, a rigid stent and arteriaI wall, and the 

omission of a stenotic plaque. Whilst the depth of tissue prolapse is based on FEA 

data [97], the shape of the protruding tissue is a further limitation as it is idealised 

and based entirely on the geometry of the stent. Curvature and taper of the artery 

have also been omitted in the analysis for simplicity. The outlet boundary condition 

of a fixed static pressure is a limitation creating a non-physiological transient 

pressure in the CFD model. However, this outlet boundary condition is the standard 

practice for modelling of pulsatile flow in arteries [4,5, 7,33, 59,62, 63, 991. With 

this boundary condition, the CFD software calculates the necessary inlet pressure to 

drive the flow. The velocity which is specified at the inlet should therefore maintain 

reasonable physiological accuracy in the computational domain. 

This work demonstrates the advantages of a new method developed to MIy 

elucidate the alterations to the arterial WSS following coronary stent implantation 

The previously used threshold method overlooks some of the important 

haemodynamic features identified by the method of analysis proposed in this thesis. 

The detailed alterations to the WSS identified in Chapter 6 demonstrate that the 

threshold method is insuEcient to filly elucidate the alterations to the WSS in a 

stented artery. The aim of this work is to develop a novel methodology to .assess the 

haemodynamic impact of coronary stent implantation by elucidating the stent- 

induced alterations to the WSS. The multivariable approach coupled with the 

histograms and statistical measures employed in the proposed methodology have 
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been shown to elucidate the altered WSS in the stented artery to a high level of 

detail, thus allowing the stents to be assessed accordingly based on their 

haemodynamic impact on the artery. As such, this method of sknt assessment should 

assist in stent design in the future and is applicable to bare metal, drug-eluting and 

any future stents that alter the WSS in the artery after implantation. 

7.2 Future Work and Recommendations 

This thesis sets out a concise methodology to evaluate the alterations to WSS created 

by an implanted stent. Ths  methodology can be improved however by incorporating 

additional facets to investigate other important features in the environment of the 

stented artery. 

An FEA ofthe stent deployment can provide valuable information about the 

related stresses induced in the artery wall [4, 651. The analysis should also produce 

an accurate geometric model of the deformed artery wall and stent which could be 

used to generate the computational domain for the CFD analysis. The geometry of 

the stented artery may also be generated on a patient-specific basis using combined 

angiographic and intravascular-ultrasound techniques [I331 or high resolution 

computerised tomography scans [lo]. Combining these models with the stent 

assessment technique presented in this work may be very useful to pre clinically 

assess the haemodynamic impact of a particular stent for a specific patient or lesion. 

It would also be useful to use these models to assess stents that have been directly 

compared in animal models or clinical trials to relate the stent's haelnodynamic 

performance to its clinical performance. 

In the past decade DESs have become popular h interventiond cardiology as 

a result of lower restenosis rates compared to BMSs. The first DESs had permanent 
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synthetic polymer coating materials which gradually released the drug into the 

artery. Recently these permanent polymers have been replaced by biocompatible 

polymers to reduce thrombus formation. Currently, research is focused on 

bioabsorbable polymers and stents. Modelling of drug diffusion and stent absorption 

would therefore be useful additions to help explain the performance of these future 

stents. However, combining these additional modelling techniques with the 

haemodynamics modelling is not trivial. In this work, haemodynamics are evaluated 

immedrately after stent implantation. Subsequent to this instant in time, thrombus 

forms and El develops over a period of weeks to months changing the geometry of 

the stented artery and thus, the haemodynamics. This creates challenges for 

modelling of haemodynamics coincidentally with drug release and stent absorption 

which occur over these "week to month" timescales. 

The task of ranking a dent based on the results predicted in this work is not 

trivial. Considerable effort has gone into reducing the results sufficiently to easily 

identify the best stent with regard to each variable. Even so, it is difficult to say 

which of the four WSS-based variables is the most iinportant with regard to IH and 

so each is assigned equal significance. While there is a sizeable amount of research 

on the arterial effect of low WSS, much less is known about the effects of WSSG, 

WSSAG and OSI in the stented artery making it difficult to assign the appropriate 

significance to each. This problem is exacerbated as results from FEA, and models 

of drug elution and stent absorption are added to the CFD results. This large volume 

of results data is appropriate to reflect the huge and complex cascade of events 

triggered by actual stent implantation in vivo. However, the main challenge for the 

future of modelling this complex environment is the management and interpretation 

of all this predicted data. Experimentation is needed to identify the predicted 



variables that are the most responsible for adverse effects in the stented artery. Stents 

or stent features could then be ranked accordmgly fiom prediction of these variables 

by the computational model. 
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ANSYS CFX Software Theon-v ./ 

A. 1 Introduction 

CFD is a computer-based tool which is now regarded as the "third technique for the 

solution of fluid-flow problems, complementing, but not replacing, the well- 

established approaches of theory and experiment. It is a relatively new branch of 

fluid mechanics and finds its niche in predicting fluid flows that are difficult or 

impossible to malyse using theory and are complex, time consuming, or expensive 

to measure experimentally. 

ANSYS CFX 12.0 is the commercial CFD software employed in this work. 

The software uses a vertex-centred finite volume scheme with implicit time stepping 

to solve the governing equations of fluid dynamics and hence predict the flow-field 

variables. In any CFD analysis, the first step is to create the desired geometry of the 

flow domain to be modelled; this forms the computational domain. In ANSYS CFX 

12.0 the computational domain is then discretised into an unstructured computational 

mesh comprised of tetrahedral, hexahedral and/or wedge elements. Boundary 

conditions are then imposed on all external bounding surfaces of the domain. A 

discretised form of the governing equations of fluid dynamics is then solved subject 

to these boundary conditions using an implicit time-stepping technique. 
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A.2 Mesh Generation 

ANSYS CFX 12.0 uses a vertex-centred finite volume method. With the finite 

volume method, the computational domain is hvided into a set of much smaller non- 

overlapping sub-domains called elements which constitute the mesh. Meshes may be 

structured which have an ordered design or unstructured which have a random or 

chaotic design. In this work, unstructured meshes are generated in ANSYS 

Workbench 12.0 using the advancing fiont method. With this method, elements are 

progressively added to the domain starting fiom the boundaries. Ths  results in the 

propagation of several fronts into the domain which form a boundary between 

meshed and unrneshed regions. The mesh generation is complete when these 

advancing fronts meet at a point somewhere near the centre of the domain. Nodes are 

located at the vertices of the unstructured elements and all flow-field variables are 

stored at these nodes. This mesh is used to solve the governing flow equations which 

are given in the next section. 

A.3 Governing Flow Equations 

The governing equations of fluid mechanics which are solved in this work are the 

continuity and three momentum equations given in equations (A-1) and (A-2) to 

(A-4) respectively. The equations are in partial differential form and are written in a 

3D Cartesian coordinate system as 
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where p is the fluid density, P is the static pressure, 7 is the velocity vector with 

components u, v and w in the Cartesian x, y and z directions respectively, and rj is 

the viscous stress acting in the j direction on a face normal to the i direction. These 

equations are referred to as the hydrodynamic equations and can be integrated over a 

control volume such as the one shown in Figure A-1 below. 

Small Surface Area, ds 
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Figure A-1: Control volume V bounded by control surface s. Flow quantities 

can be integrated ox7er a control aolsme by summatim ox7er all the smaE! 

volumes dV. The flux of quantities across the control surface s can be integrated 

by summation over all the small surface areas ds. 

Gauss' divergence theorem is applied to convert some volume integrals to surface 

integrals and is written for the velocity as 

where dV is an infinitesimally small volume integrated over the entire control 

volume V, and i is the outward normal vector of the infinitesimally small surface 

element ds integrated over the control surface s as shown in Figure A-1. The 
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resulting continuity equation in integral form is 

the x momentum equation is 

the y momenfium equation is 

and the z momentum equation is 

where T,j and are unit vectors in the Cartesian x, y and z directions respectively. 

The terms differentiated with respect to t are the transient terms and represent the 

rate of change of mass and momentum inside the control volume with respect to 

time. The terms on the left which are integrated with respect to s are the advection 

terms and represent the net transfer of mass and momentum across the surface of the 

control volume. The terms on the right hand side of the momentum equations are the 

pressure and diffusion terms whch represent the stresses acting on the surface of the 

control volume. The first step in solving these equations numerically is to 

approximate the terms in the equations using discrete functions. The discrete 

hc t ions  used are dependent on the numerical method employed and also the level 

of accuracy required. As outlined below, the finite volume method is used in this 

work and the discrete functions are second order accurate in both space and time. 
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A.4 Finite Volume Method 

Analytical solutions to the governing equations of fluid mechanics exist for only the 

simplest of flows under ideal conditions. To obtain solutions for real flows a 

numerical approach must be adopted whereby the governing flow equations are 

replaced by algebraic approximations which may be solved using a numerical 

method. With the finite volume method, discrete forms of the governing equations 

are solved over finite control volumes in the domain. These control volumes are 

generated from the unstructured mesh as described in the next section. 

A. 4.1 Generation c lf Finite Conlrol Volzrmes 

The numerical scheme employed in ANSYS Workbench 12.0, involves generating 

finite control volumes from the mesh, a 2D example of which is shown in Figure A- 

Figure 

Finite Control 
Volume Surface 

Node 

Finite Control 

'&' x*'a!&zc 

Typical 2D mesh elements. The control volume is constructed 

around each mesh node using the median-dual discretisation scheme. 

In the figure above, each node is surrounded by a set of surfaces which comprise the 

control volume. The control volume is constructed around each mesh node using the 

median-dual discretisation scheme. The boundary of the control volume is defined 
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by lines joining the centres of the element edges with the element centroids 

surrounding the node, as shown in Figure A-2. 

A.4.2 The Ddscretised Eq~ufion~r 

The governing equations in integral form are applied to each finite control volume 

such that the relevant quantity (mass or momentum) is conserved in a discrete sense 

for each. Considering an isolated 2D mesh element for simplicity, such as the one 

shown in Figure A-3, the surface fluxes of the continuous equations must be 

discretely represented at the three integration points to complete the conversion of 

the continuous equations into their discrete forms. 

/ Node 

Point 

Figure A-3: An isolated triangular 2D mesh element with nodes (nl, n2 and n3) 

and integration points (ipl, ip2 and ip3) shown. 

The integration points, ipn, are located at the centre of each boundary segment 

surrounding the control volume as shown in Figure A-3. Using a second-order- 

accurate backward Euler scheme in time the discrete form of the integral equations 

for a node are written implicitly as the continuity equation 
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(A- 1 0) 

the x momentum equation 

(A- 1 1) 

the y momentum equation 

and the z momentum equation 

(A- 13) 

where the summation is over all the ip integration points of the finite control volume, 

l,, 1, and 1, are the components of the surface area normal vector in the Cartesian x, y 

and z directions respectively, At is the timestep, the superscript " refers to the 

solution from the last timestep, and " refers to the solution fiom the timestep before 

that. 

The viscous stress terms on the right hand side of the discretised momentum 

equations (A. 1 1) to (A. 13) are calculated as follows 



(A- 14) 

where the variables are as before. 

For compressible flow, the continuity and momentum equations must be 

augmented by the energy equation and also an equation of state in order to close the 

set. However, for the incompressible flow in this work the density p is specified, 

reducing the unknowns to four dependant variables P, y v, and w contained within 

four equations. Hence, the set of equations is closed and the solver can calculate P, u, 

v and w values for each mesh node. 

A. 4.3 Methods of Interpolation 

The majority of the terms in Equations (A.10) to (A.13) are evaluated at the 

integration points. Therefore the variation of the variable within the element must be 

calculated via interpolation. The handling of this interpolation is dependant on the 

term involved. The pressure and diffision terns on the right hand side of momentum 

Equations (A. 1 1) to (A. 13) require tri-linear interpolation of pressure and velocity 

using finite element shape functions, the details of which can be found elsewhere 

[loo]. The advection term on the left hand side of the momentum equations in 

general form is 

(A- 1 5 )  
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where 4 is the transported variable. The value of 0 at an integration point is related to 

the nodal values of 4 using 

0iP = 0, + ~ ' 4  -' (A- 1 6) 

where 4, is the variable value at the upwind node, if is the directional vector from 

the upwind node to the integration point, ?I$ is calculated from the adjacent nodal 

gradients and P is a blend factor specified from between 0 and 1. 

A.5 Solution Strategy 

A. 5.1 Steaby-State Analysis 

S t h n g  with user-specified initial conditions, the discretised equations above are 

solved implicitly at each timestep subject to the applied boundary conditions. The 

solution is marched through time until the transience of the variables in the domain 

reduces to near-zero values. This implicit time-marching approach is widely used in 

modern CFD and usually provides good numerical sbbility and faster convergence 

to the steady-state solution than explicit approaches. For steady-state problems the 

timestep behaves like an 'acceleration parameter', to guide the approximate solutions 

in a physically based manner to a steady-state solution. The discretised governing 

equations are advanced in time using a timestep that is calculated automatically from 

a prescribed stability criterion [lo 11. 

A. 5.2 Trufis'ient Amly.s'is 

In a transient simulation, the total time for the simulation is divided into timesteps 

equal to 
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where T is the time duration and p is the number of timesteps. The governing 

equations are then solved at each timestep to produce the transient flow-field 

variables. 

A.5.3 The CoupIed System of Equations 

Segregated solvers employ a solution strategy where the momentum equations are 

first solved using a guessed value for pressure, and then a pressure-correction 

equation is obtained. A corrected value for pressure is then calculated which is 

subsequently used to solve the momentum equations again, with this cycle repeated 

until convergence is achieved. This approach typically results in a large number of 

iterations due to its "guess-and-correct" nature. ANSYS CFX 12.0 on the other hand 

uses a coupled solver which solves the hydrodynamic equations for P, u, v and w as 

a single system. In solving these equations, the first of two numerically intensive 

steps is to linearise the equation set into matrix form for each node i written as 

(A- 1 8) 

where t j  is the solution matrix, b is the right hand side of known values at the node i 

from the previous timesteps, a is the matrix of equation coefficients (also hown) 

and the summation is over the n neighbouring nodes to the node i. For the 3D mass- 

momentum equation set, the left hand side terms of this equation for each 

neighbouring node are a 4x4 matrix and a 4x1 vector expressed as 
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and 

i 
itk = (A- IYJ 8, 8 , .  a ,  a,, 

awu awv aww ~ W P  

and the right hand side contains known values from previous timesteps at the node 

itself and is written 

The advantages of a coupled pressure-velocity approach are robustness, efficiency 

and simplicity. The principle drawback is the high storage space needed for all of the 

coefficients. 

In the second numerically intensive solution step, ANSYS CFX 12.0 uses a 

multigrid-accelerated incomplete lower-upper factorisation technique for solving the 

discrete system of linearised equations. In a steady-state simulation the linearised 

equations are solved only once at each timestep. For a transient analysis this step is 

performed multiple times at each timestep as the exact solution of the equations is 

approached during the course of several iterations. The linearised system of discrete 

equations described above can be written in the general matrix form 
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where A is the coefficient matrix, 4 the solution vector and b is the right hand side. 

The above equation can be solved iteratively by starting with an approximate 

solution @n that is to be improved by a correction 4' to yield a better solution, 4d1, 

$"+I =$n +$' 

where vis the solution of 

A$'=rn 

with r", the residual vector, obtained from 

rn = b-A@" (A-25) 

The raw residuals are then normalized for the purpose of solution monitoring. For 

each solution variable, 4, the normalized residual is given in general by 

where 1-4 is the raw residual control volume imbalance, a is representative of the 

control volume coefficient, and A4 is a representative value of the variable in the 

domain. Solution convergence must be achieved for a steady-state and for each 

timestep of the transient simulation. The residual is a measure of the local imbalance 

of each conservative control volume equation and is the most important measure of 

solution convergence as it relates directly to whether the equations have been solved 

A.6 Summary 

This appendix outlines the theory behind the operation of ANSYS CFX 12.0 

software. Firstly, a description of how the geometry of the flow domain is discretised 
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into an umtnstmd mesh is provided. The general form ofthe governing equations 

af fluid dynamics are then given, fdlowed by a swnmary of how these equations are 

converted into integral equations for use i~ this n d d  netbod. The equations 

must then be replaced by algebraic approximations in the discretisation procedure. 

These d i s c ~ e d  equations are then applied to finite control volumes in the 

discretised flow domain. The equations are then solved using a vertex-centred f i n k  

volume scheme with implicit ;.time stepping tu obtain the variables P, u, v and w. 
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ANSYS CPX Software 
VrnJiflaf ion 

B. 1 Introduction 

This appendix contains analysis of the unconfined laminar incompressible flow over 

a sharp flat plate. Such a flow will have a viscous effect near the plate surface and 

will display inviscid characteristics far from the plate. There are currently three 

techniques in place to study such unconfined flows: (1) numerical solutions (CFD), 

(2) experimentation and (3) boundary layer theory. The purpose of this appendix is 

to compare boundary layer theory to CFD results obtained from the ANSYS CFX 

12.0 software in order to validate the functionality and accuracy of the software. 

B.2 Boundary Layer Theory 

Consider the flat plate shown in the Figure B-1 where the flowing fluid approaches 

the plate with constant axial velocity U. Fluid particles that make contact with the 

plate will stick to it, which reduces their velocity to zero. This effect, known as the 

"no-slip" condition, leads to the development of a boundary layer close to the plate 

as the stationary particles retard their neighbours above. Inside the boundary layer 

the fluid velocity gradually increases from zero at the plate surface to 99% of the 

free-stream velocity at some vertical distance fiom the plate. This vertical distance is 

called the boundary layer thickness 6. In general the boundary layer begins as 
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laminar at the leading edge of the plate. An indication as to the laminar or turbulent 

nature of the flow is provided by the ratio of inertial to viscous forces in the fluid 

called the Reynolds number which is given by 

where p is the fluid density, p. is the fluid dynamic viscosity and x is the axial 

distance along the plate, with x = 0 at the leading edge. As Re, increases linearly 

with x, disturbances in the flow begin to grow and the laminar boundary layer 

eventually becomes turbulent. For smooth polished plates the transition may be 

delayed until Re, = 3,000,000. However, for typical commercial surfaces a more 

realistic value for transition is Re, w 500,000. 

Figure &I: Schematic diagram of the iamiuai= boundary iayer with high 

Reynolds number (Re, >> 1) flow over a flat plate. 

Certain approximations can be made for flow inside a boundary layer, which 

reduce the governing equations of fluid dynamics to what are known as the boundary 

layer equations. To derive the boundary layer equations, consider 2D steady 

incompressible flow in the x-direction as in the Figure B-1 above. The complete 

equations of motion consist of the continuity and x and y momentum equations 
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where P is pressure, x and y are spatial coordinates in the plate surface axial and 

vertical directions respectively as shown in Figure B-1, and u and v are the x and y 

components of the fluid velocity vector respectively. Ludwig Prandtl developed 

boundary layer theury in 1904 to mathematically describe the thin region of fluid 

near solid boundaries where viscous forces are dominant [96]. Prandtl deduced that 

the shear layer must be very thin (6 << L) if the Reynolds number is large (Re, >> 1) 

where L is the axial length of the plate. An integral analysis of the boundary layer 

reveals that a large Reynolds number creates the following strong inequalities: 

Using these inequalities, Prandtl reduced the governing equations above to two 

boundary-layer equations written 

where v is the fluid kinematic viscosity. One implication of these equations is that 

the vertical pressure gradient is negligible, i.e. 

The axial pressure gwhent in the boundary layer is therefore equal to the axial 
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pressure gradient in the inviscid free stream which can be calculated from Bernoulli's 

equation in differential form as 

dP dP dU 
= -pup 

ax-dx dx (B-4) 

Assuming that the free-stream velocity and hence the pressure is constant over the 

flat plate, the boundary layer equations can be solved exactly for the u and v velocity 

components in a laminar flow. These boundary layer equations were first solved 

numerically by H. Blasius, a student of Prandtl, in 1908 [8]. Blasius showed that the 

non-dimensional axial velocity u* is a function f of a singie composite dimensionless 

variable q written 

u*=-=f' (4 u 

where the dash denotes differentiation and 

Following substitution of Equation (B-5) into the boundary layer Equations (B-3) 

and much manipulation the two boundary layer equations can be reduced to a single 

third-order nonlinear ordinary differential equation for f written 

which can be solved by a numerical integration technique. Subsequently from the 

continuity equation the non-dimensional vertical velocity v* is obtained as follows 

The Blasius solution for u* and v* is shown in Table B-1 below. From fluid particle 
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analysis theory (Chapter 3) the 2D viscous stress exerted on the flat plate at any 

point reduces to a vector with shear and normal components in the x and y directions 

respectively written 

where all of the derivatives are calculated at the surface. However, on the surface of 

au av 
the flat plate the no slip condition implies that - =- = 0 and thus, from the ax ax 

aY 
c~ctinuity ~ q n t i o n  = 0 , it f o I l o ~ 2 ~  that = 0. Hence, in Ulis location 

dv 

the viscous stress vector only has a shear stress component which is called the WSS 

and is written 

du 
where - is the axial velocity gradient in the vertical direction at the surface of the 

d.,. 

flat plate. The WSS can therefore be calculated from the Blasius solution as 

or can also be expressed in terms of the non-hmensiond skin friction coefficient 

(B- 1 2) 

The boundaq layer thickness for laminar flow can also be calculated from the 

Blasius solution where u* = 0.99 and is 
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where the terms are as before. This boundary layer theory will be used to assess the 

accuracy of the CFD results. The methodology of the CFD analysis is contained in 

the following section. 

0.1 0.0017 0.0332 0.0000 2.0 0.6500 0.6298 0.0008 
0.2 0.0066 0.0664 0.0000 2.2 0.7812 0.6813 0.0010 
0.3 0.0149 0.0996 0.0000 2.4 0.9223 0.7290 0.001 1 
0.4 0.0266 0.1328 0.0000 2.6 1.0725 0.7725 0.0013 
0.5 0.04J 5 0.1659 0.0001 2.8 , .23 0 0.8i15 0.0Ui4 
0.6 0.0597 0.1989 0.0001 3.0 I .3968 0.8460 0.0016 
0.8 0.1061 0.2647 0.0001 3.5 1.5377 0.9130 0.0019 
1.0 0.1656 0.3298 0.0002 4.0 2.3057 0.9555 0.0021 
1 ? 0.2380 n ?n*o 

I., . J :I-% A c. ?#"? r < %. l.l-, 4 C -t. -1 
m r m n r  - .- -. j- . e=,i., . 1 G.9795 . g.ofi22 . 

1.4 0.3230 0.4563 0.0004 5.0 3.2833 0.9915 0.0023 

Table El: Blasius solution for the non-dimensional axial u* and vertical v" 

velocity components for a laminar boundary layer with high Reynolds number 

(Re, >> 1) flow over a flat plate. 

B.3 Numerical Simulation of Flat Plate Boundary Layer Flow 

The first step in the 2D simulation of laminar flow over a flat plate is to generate the 

computational domain. The computational domain is created by first generating a 3D 

solid model; t h s  is necessary as the software requires 3D volumes to execute the 

finite volume technique. This geometry is then discretised into elements to form the 

computational domain. The governing equations of fluid dynamics are then solved 

subject to applied boundary conditions to produce the relevant flow-field variables. 

The dimensions of the computational domain are 1.100 m by 1.5 8 1 m by 0.000 1 m 

in the axial, vertical and traverse Qrections respectively. These dimensions are 

chosen to facilitate simulation of a 1 in long flat plate preceded by a 0.1 in long free- 
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slip region, a domain height 1000 times the height of the boundary layer at the end of 

the plate, 6,=, , and a domain thickness comparable with the smallest element edge 

length in the mesh. The domain is then discretised into a me-element-thick mesh of 

unstructured wedge and hexahedral elements. To establish mesh independence four 

ineshes are created in total which are numbered one to four and consecutively 

increase in element density. For each mesh, the boundary layer region 0 < x l L , 

0 5 y 1 a,=, is meshed with equally spaced hexahedral elements and the inviscid 

region is meshed with unstructured wedge elements. The element vertical edge 

length in the boundary layer region is specified as a fraction of the boundary layer 

thickness at the end of the plate, 6,, . A simulation is performed with each mesh 

and results are considered mesh converged when the percentage difference y, in the 

RMS of the variables between successive mesh densities is less than 1% along a 

sample line. The calculation for \y,is 

where N is the number of data points on the sample line to which @ values have 

been interpolated from the mesh m, in a similar fashion to the methodology set out in 

Section 5.4. The mesh details are given in Table B-2 and the final mesh used for 

simulation of laminar flow over a flat plate is shown in Figure B-2. 
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Mesh Number Element Edge ZRl~gth in Number of Number of 
Bouridary Layei- Region Elements Nodes 

(mm) 
1 0.6324 2924 4,834 
2 0.4743 4,649 8,3 3 4 
3 0.3 I62 4,360 1 1,820 

convergence study for the simulation of a laminar boundary layer with high 

Reynolds number (Re, >> 1) flow over a flat plate. 

Figure B-2: Mesh 4 for the simulation of a laminar boundary layer with high 

Keynolds number (Hex >> 1) flow over a Bat plate. 'l'his mesh consists of 8,619 

wedge and hexahedral elements, 

B. 3.2 Boundary CIonditions 

As shown in Figure B-3, inlet, outlet, opening, symmetry, free-slip and no-slip wall 

boundary conditions are applied on the external boundaries sf the computational 

domain to simulate laminar flow over a flat plate. A constant axial velocity of 0.3333 

rnls is applied at the inlet corresponding to a Reynolds number of 100,000 at the end 

of the plate, i.e. ReA = 100,000. The static pressure at the outlet is set equal to the 

reference pressure of I Atm. The streamwise pressure gradient is set to zero at the 
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top of the domain (opening type boundary condition) to model inviscid flow 

conhtions. Symmetry boundary conditions are placed on the two largest faces and 

the no-slip boundary condition is applied at the surface representing the flat plate. A 

0.1 in free-slip region is placed before the beginning of the flat plate to reduce 

possible error fiom the inlet boundary condition. 

Symmetry 

h 

I Inlet 

Figure B-3: A schematic diagram of the computational domain and applied 

boundary eonditiens for the simul&.ior. ~f laminar flow over a flat plate. 

B. 3.3 CFD Analysz,~ 

Free-Slip Wall Flat Plate (No-Slip WdI) 

% 

\ 

Steady-state CFD simulations are conducted to simulate incompressible steady 

laminar flow over a flat plate for each mesh. The properties of the fluid in the 

domain are approximately those of human blood with a constant density of 

Outlet 
b 

1050 kg / m3 and a dynamic viscosity of 0.0035 kg/ m+s .  The continuity and 

momentum equations are solved by the commercial software package ANSYS CFX 

12.0 in a Cartesian coordinate system using a vertex-centred finite volume scheme 
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with implicit time stepping. At each tilnestep the convergence criterion employed is 

a 10~reduction in the maximum residuals of the discretised equations. 

B. 3.4 Post-Processing 

Four sample lines are created in the flow field, one at the surface of the flat plate 

running the axial distance of the plate (1 m) to monitor the WSS. The other three 

sample lines are vertical lines positioned at axial locations of 0.25 m, 0.50 m and 

0.75 m along the plate. These lines are the theoretical boundary layer thickness 6 in 

height at each axial location. Due to the structured mesh topology in the boundary 

layer, variable values can be taken at the evenly spaced boundaries between the 

elements. 

B. 4 Results 

The results of the mesh convergence study are given in Table B-3. Overall, the 

results are very well converged between meshes 3 and 4, with all variables 

converged to within 1%. The change in skin frtction coefficient values shows the 

most uniform decrease with increasing mesh density. 

Non-dimensional axial (u*) and vertical (v*) velocity profiles are compared 

to the Blasius solution for the three axial locations (0.25 m, 0.50 m, 0.75 m) in 

Figures B-4, B-5, B-7, B-8, B-10, and B-1 1. Meshes 3 and 4 compare very well with 

the Blasius solution for all axial locations. There is slight disagreement with the top 

of the u* velocity profile and the Blasius curve for all locations. This is due to a 1- 

2% velocity overshoot at the top of the boundary layer as the displaced fluid is 

forced to accelerate. T h s  result is consistent with previously published work [14]. 

The velocity vectors are plotted to a height 6 at each axial sampling location for 
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visualisation of the growth of the boundary layer thickness in the axial direction and 

are shown in Figures B-6, B-9 and B-12. The skin friction coefficient shown in 

Figure B-13 displays good agreement between the mesh converged results and the 

theoretical solution for the majority of the plate. However, there is some inaccuracy 

at the leading edge of the plate; present even for the densest mesh (mesh 4). It may 

be possible to improve upon these results by compacting the elements in the axial 

direction wound the l e d n g  edge of the plate; a meshing strategy previously used by 

Hirsch [44]. On the basis of these results, the validation of the CFD software is 

complete. The software has been proven to produce accurate results for 

incompressible laminar flow over a flat plate. 

% Change % Change 
% Change Between Between Meshes Between Meshes 

~ e s h e i  1 and 2 2 and 3 3 and4 
u* at 0.25 m -0.72 -1.35 0.16 

I 0.5 Log Cr 0.10 0.04 0.02 
Table B-3: Variation of the non-dimensional axial (u*) and vertical (v*) velocity 

profiles, and skin friction coeff~cient (Cf) between the four meshes which 

consecutively increase in element density. 



ANSYS CFX Software Validation 

Figure B-4: Non-dimensional axial velocity profiles from the mesh convergence 

study. The predicted profiles are from axially one-quarter way along the plate 

(x = 0.25~1) and are compared to the exact Blasius solution. 

Figure B-5: Non-dimensional vertical velocity profiles from the mesh 

convergence study. The predicted profiles are from axially one-quarter way 

along the plate (x = 0.25m) and are  compared to the exact Blasius solution. 
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Theoretical 6 = 0.00791 m 

x Tml 

Figure B-6: Velocity vectors near the plate for the finest mesh (8,619 elements). 

The vectors are  plotted a t  an axial distance of 0.25 m along the plate and to a 

height 6 of 0.00791 m vertically. 

Figure B-7: Non-dimensional axial velocity profiles from the mesh convergence 

study. The predicted profiles are  from axially halfway along the plate (x = 0.5 

m) and are compared to the exact Blasius solution. 
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Figure B-8: Non-dimensional vertical velocity profiles from the mesh 

convergence study. The predicted profiles are from axially halfway along the 

plate (x = 0.5 m) and are compared to the exact Blasius solution. 

Figure B-9: Velocity vectors near the plate for the finest mesh (8,619 elements). 

The vectors are plotted at  an axial distance of 0.50 rn along the plate and to a 

height 6 of 0.03 118 m vertically. 
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Figure B-10: Non-dimensional axial velocity profiles from the mesh 

convergence study. The predicted profiles are from axially three-quarter way 

along the plate (x = 0.75 m) and are compared to the exact Blasills solution. 

Figure B-11: Non-dimensional vertical velocity profiles from the mesh 

convergence study. The predicted profiles are from axially three-quarter way 

along the plate (x = 0.75 m) and are compared to the exact Blasius solution. 
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1 Theoretical 6 = 0.01369 m 

Figure B12: Velocity vectors near the plate for the finest mesh (8,619 elements). 

The vectors are plotted at an axial distance of 0.75 m along the plate and to a 

height 6 of 0.01369 m vertically. 

Figure B-13: Variation of the skin friction coefficient with the Reynolds number 

along the flat plate. The predicted values are compared to the exact Blasius 

solution, 
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The purpose of this appendix is to validate the ANSYS C E X  12.0 software. This has 

been achieved though the snccessful prediction sf the Iaminm Bow over a flat plate. 

The results clearly show that the software can accurately predict the exact theo~tical 

solution. The mesh convergence study also gives a good indication of the lever of 

computational expense necessary to predict the viscous WSS at the artery wall for 

these flow conditions. 



Calculation of the WSS-Based Variables 

APPENDIX 'U 

C. 1 Introduction 

The mathematical description and relevance of the WSS-based variables employed 

in this work are presented in Chapter 4. This appendix describes the numerical 

methodology used to calculate these WSS-based variables at the nodes on d l  

surfaces representing the arterial tissue. Test cases are devised and sample 

calculations provided to demonstrate how the variables are computed. Theoretical 

solutions are calculated where possible and compared to the computed solutions for 

validation. 

C.2 Wall Shear Stress 

The WSS is a vector calculated by ANSYS CFX 12.0 on all bounding walls of the 

computational domain where the no-slip condition is imposed. All of the WSS-based 

variables use the components of the WSS vector; hence this is the first variable to be 

calculated. This section contains a description of the numerical methodology 

employed to calculate the WSS, followed by a demonstration of the calculation at 

sample nodes for two Qfferent test cases. Finally, to supplement the WSS validation 

from Appendix B, the theoretical solution is also calculated at these sample nodes 

and compared to the predicted values. 
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C: 2.1 Numerical MefJ2~1dology 

The three Cartesian components of the WSS vector are z,,, z,,, and z,,, in the x, y 

and z directions respectively. These components are calculated directly by ANSYS 

CFX 12.0 as follows 

where 

- - 4 - 
1 =l,i+lyj+l,k (C-2) 

and l,, 1, and h are the Cartesian components of the surface nonnal vector in the x, y 

and z directions respectively, and the viscous stress tensor ?G for an incompressible 

Newtonian fluid is 

To demonstrate the calculation, consider the 2D element face inclined at an angle 8 

to the horizontal x-axis and with a surface normal vector 1 shown in Figure C-1. 

The components of the WSS vector are calculated by summing the stresses in each 

direction on an area ratio basis as 

where A is the surface area of the element face, A, and A, are the projected areas of 

the element Lxe in the coor&tl.dk respctiveiy, and z.. is the ?1 
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component of the viscous stress tensor acting on the i faee in the j direction. For the 

element in Figure C-1, the area ratios can be replaced by the Cartesian components 

of the surface normal vector through the relations 

Figure C-1: Schematic diagram of a 2D element face inclined at an angle 8 to 

the horizontal with a surface normal vector i and an area A. The element face 

has projected areas Ax and A, in the Cartesian K and y directions respectively. 

It is common in CFD to compute element face areas from the cross product of 

coordinate vectors on the face of the element to create an area vector. The area ratios 

above can therefore be positive or negative depending on the orientation of th e face. 

The relations above can be extended to three dimensions to show that 

Hence, the three components of the WSS vector are calculated as 
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and the magnitude of the WSS is calculated as 

For a transient simulation, the magnitude of the WSS is calculated at each timestep 

and then the time-averaged WSS is calculated by numerical integration of the 

magnitudes over the duration of the transient cycle using the trapezoidal rule written 

where T is the period of the transient cycle and p is the number of timesteps. The 

above methodology is demonstrated in the next section at a sample node on the flat 

plate test case. 

C.2.2 Flat Plale Test Clase 

The results from the steady-state analysis of laminar flow over a flat plate presented 

in Appendix B are used here to demonstrate the WSS calculation. The results are 

taken from a sample node of Mesh 4, approximately halfway along the plate at an 

axial distance of 0.5079 m from the leading edge as shown in Figure C-2. 
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Figure C-2: The loeation of the sample node taken from Mesh 4 of the flat plate 

test case which is described in Appendix B. The WSS values are plotted at the 

nodes. 

Variable values from the node located at this point are taken directly from the CFX 

solution and are as follows: 

Putting the appropriate values into Equation 3-5 above yields 

rw,x = (1) [(0.0035)(0.0000 + 49.973511 = 0.1 749 N/m2 
.rz, = (1)[(2)(0.0035~0.0086)] = 0.0001 N/m2 

WSS = do. 1 74g2 + 0.0001~ = 0.1749 ~/m' 

The result for the WSS components obtained fioin substituting the velocity gradients 

and normal vector components into Equation (C-5) are quite similar to the results 

obtained from the software as expected. The slight diEerence exists because the 
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velocity gradients at the wall in the results file (given above) are copied from the 

adjacent interior node and therefore cannot be relied upon to give the exact stress 

computed at the wall by the solver. However, the sample calculation is close enough 

to the software output to prove that this is the method of calculation for the WSS. 

A transient simulation is also conducted on the flat plate test case to 

demonstrate and validate the time-averaging calculation. Instead of having a constant 

inlet velocity of 0.3333 d s ,  the transient simulation has a time-dependent inlet 

velocity of 

The magnitude of the velocity is represented by a sinusoidal wave with a period of 

0.8 seconds and amplitude of 0.0033 d s .  Over the period of the transient cycle the 

magnitude of this inlet velocity will only change by 1% of the steady-state inlet 

velocity which is 0.3333 d s .  If the time-averaging methodology and calculation is 

accurate then there should be very little discrepancy between the time-averaged and 

steady-state variables. The simulation is run for ten cycles of 0.8 seconds with a 

timestep of 0.1 seconds and the variables are integrated over the final cycle. The 

time-averaged WSS is calculated from the transient results for the flat plate test case 

as 

which matches the steady-state result extremely well indicating that the time- 

averaging procedure is performed correctly. 
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CJ. 2.3 inclined Flat Plufe Test C,blse 

To demonstrate the WSS calculation fwther, a second steady-state test case is 

conducted using an inclined flat plate. The WSS vector should have two Cartesian 

components qV,, and r , ,  acting on the sluface of the plate. The geoindry is the 

exact same as the previous flat plate test case except that now the plate is inclined 

upwards at an angle of 30" to the horizontal. The meshing parameters are the same as 

those used to create Mesh 4 in the previous test case. The results from the simulation 

are used to demonstrate the WSS calculation at a sample node approximately 

halfway along the plate at an axial distance of 0.5 rn from the leading edge as shown 

in Figure C-3, 

kalmlated N&I Vahes of WSS m/rn2] 1 

Figure C-3: The location of the sample node on the second test case which is the 

flat plate inclined upwards at an angle of 30" to the horizontal. WSS values are 

plotted at the nodes. 

Variable values from the node located at this point are taken directly from the CFX 

solution and are as follows: 
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du du av dv 
- =-21.8676 s-l, -= 37.8624 s-', - = -12.6302 s", - = 21.8684 S-' 
& ay ax ay 

Putting the appropriate values into Equation (C-5) above yields 

Tw,x = (-0.5)[(2)(0.0035)(-21.8676)]+ (0.866)[(0.0035)(-12.6302 +37.8624)] 
= 0.1530 N/m2 

%-Y = (4.5)[(3.0035)(37.8624 i- (-12.6302))j-t [Ci.S66)[{2 jilfi.0035)(2 1.8684jj 
= 0.0884 N/m2 

WSS = 40.1 5302 + 0.0884~ = 0.1767 N/m2 

The WSS components from the sample calculation are again slightly different to 

those outputted fiom the software. This is again due to the velocity gradients being 

slightly different to those used in the actual computation. 

C.2.4 Validation 

The accuracy of the software has been validated through comparison of the 

coinputed steady-state WSS results to those froin the exact Blasius solution in 

Appendix B. This section contains a more detailed analysis of the theoretical and 

predicted values of WSS at the sample nodes for both test cases. The WSS from the 

Blasius solution for laminar flow over a flat plate is 

where x is the axial distance along the plate, p is the fluid density and U is the fiee- 

stream velocity. Equation (C-8) is equally applicable to both the horizontal and 

inclined flat plate test cases as the effect of gravity is neglected in both cases. For the 

horizontal flat plate test case the results fiom the Blasius solution and the software 
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are 

respectively, and for the inclined flat plate test case are 

WSSPr,, = 40.1 530' + 0.0884' = 0.1767 ~/m' 

respectively. In both cases the software has computed a WSS result approximately 

2% greater than the Blasius solution. This is attributable to the assumption of free- 

stream velocity at the top of the boundary Iayer with the Bfasius solution. In reality 

there is usually velocity overshoot at the top of the boundary layer due to the 

displacement of fluid. As shown from the results of several simulations in Figure C- 

4, the overshoot ranges from between 1 - 5% depending on the Reynolds number, 

which is consistent with previous work 1441. 
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Figure C-4: Plot of the non-dimensional axial velocity (u*) versus height above 

the plate (y) for several simulations of laminar flow over a flat plate with 

different Reynolds numbers (ReL). Mesh 4 from Appendix B is used in all cases. 

In both flat plate test cases the Reynolds number (RR) is 100000 and the velocity 

overshoot is approximately 2%. This would cause slightly larger velocity gradients 

in the boundary layer than those predicted from the Blasius solution. Thls overshoot 

is the most likely cause of the overestimated WSS because from the results of 

Appendix B the variables are mesh converged to within a small fraction of a percent 

(0.02%) which does not suggest a significant discretisation error. In any case, the 

present section supports the validation from Appendix B that the software can 

calculate the WSS with a reasonably good degree of accuracy. 

C 2.5 Script 

The following is the Python script for calculating the time-averaged WSS 
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itliport TecUtil 
import TecVals 
from numpy import* 
deE TF-T sSO: 

dt = 5.0125 
TecUtil.DataSetAddVar("Time-Averaged Wall Shear StressW,None) 
novarl = TecUtil.DataSetGetNun~Vars() 
info = TecLJtil.ZoneGetInfo(1) 
node = range (1, info[O]+l) 
nutnzones = TecUtil.DataSetGetNumZones() 
zones = range(2,numzones) 
WSSvarnum = TecUtil.VarGetNumByName("Wall Shear Stress [Pa]") 
lTTVe.----- - / r  \ 
vv o o G L ~ L y d x  - \L]] 
for i in node: 

WSSTl = TecUtil.DataVdueGetByZoneVar(1, WSSvarnum, i) 
WSSTn = TecUtil.DataValueGetByZoneVar(numzones, WSSvarnum, i) 
for j in zones: 

WS STj = TecUtil.DataValueGetl3 yZoneVar0, WSSvarnurn, i) 
WSSen~parr. extend([WSSTj]) 

WSSTjsurn = sum(WSSemparr) 
WSSTrap = (WSSTI + WSSTn)*(dt/2) + WSSTjsum*dt 
TAWS$ = (1!0.8)*WS$Tr~p 

TecUtil.DataValueSetByZoneVar(l,novarl,i.TAWSS) 
WSSemparr = (U) 

C. 3 Wall Shear Stress Gradient 

This section contains the methodology employed to calculate the WSSG, which is 

the spatial gradient of the WSS vector. Sample calcuIations are performed on both 

the horizontal and inclined flat plate test cases that were used in the previous section. 

Finally, a validation of the calculation is conducted through coinparison with 

theoretical results obtained fiorn the Blasius solution. 

C. 3. I Numerical Metlzodology 

At any point, the spatial gradient of a scalar is a vector pointing in the direction of 

the greatest change of the scalar, with a magnitude equal to the greatest change of the 

scalar. However, the spatial gradient of a vector results in a nine component tensor, 

representing the rate of change of each of the three components of the vector in each 

of the three orthogonal coordmate hrections. In a Cartesian coorhnate system, the 

WSSG is obtained by calculating the spatial gradient of the WSS vector as follows 
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In order to compute this tensor at any node on a computational mesh, the 

components of the WSS vector T,,~, z,, and z, are considered one at a time. 

Letting @represent any of the WSS vector components, then the change of that 

component A@ and the change in the Cartesian coordinates Ax, Ay and Az between 

the node of interest and any neighbour node are input to the general equation 

(C- 10) 

A similar equation is constructed for each neighbouring node to the node of interest. 

These equations are then combined into a matrix to compute the gradient of the WSS 

vector component. For example, a node surrounded by four neighbouring nodes 

numbered from one to four would have the following matrix equation for the 

solution of and m w y i  : 
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at,, Ax, -Ay, 
aV dz 

which can be written as 

A.x=B (C-1 1) 

The solution vector x can now be found by multiplying both sides of Equation 

(C-11) by the inverse of matrix A. This is achieved using least squares regression 

with singular value decomposition (SW). The first step is to decompose the matrix 

A into 

A = U - S . V ~  

wliere &e tintiices ';l' ar~d V are cjfihugutd such 

uT.u=vT.v=l (C-13) 

and s is a matrix with diagonal elements only. The inverse of A can then be 

expressed as 

A-' = v . [ ~ / s ] . u ~  

So, tne solution vector x is obtained as foilows 

(C- 14) 
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In practice, for this application there will usually be three unknowns which are the 

three Cartesian components of the spatial derivative. However, there may be less, 

equal or more equations than unknowns depending on the number of neighbouring 

nodes. This calculation is conducted using Tecplot which uses a cluster of 

neighbouring nodes in the calculation. All nodes connected to the node of interest as 

well as all the nodes connected to these connected nodes are included in the 

calculation. The colnponents of matrix A and matrix B in Equation (C-11) are 

assigned weighting factors based on their proximity to the node of interest. This 

method is known as moving least squares regression. The SVD procedure above is 

robust in that it will invert the matrix A as much as it can be inverted and give the 

best possible answer for the gradient that the data can produce. This procedure is 

performed for z,, z,,, and z,,, to calculate the nine tensor components of Equation 

(C-9) 

In order to obtain the relevant components of the WSSG which act on the 

ECs, the tensor in Equation (C-9) must be transformed from a global Cartesian 

coordinate system to a local coordinate system at each node. The local coordinate 

system is defined as m - the WSS direction, 1 - the swface normal direction, and n - 

tangential to the surface and normal to m. Directional vectors are defined as follows 

The , tensor with respect to the Cartesian xyz coordinate system can be 
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transformed to the local mnl coordinate system by a standard component wise tensor 

transformation written in suffix notation as 

where sl, s2 and s3 denote the m, n and 1 directions respectively, and XI, x;! and x3 

denote the x, y and z directions respectively. The left hand side of Equation (C-17) 

represents the gradients in the mnl coordinate system whilst the right hand side 

represents the xyz coordinate system multiplied by two directional cosines. In the 

suffix notation above the letters i and j are both fixed at 1 to create the first of the 

nine tensor components in the mnl coordinate system. Letters k and 1 are then 

separately replaced by 1, 2 and 3 consecutively to form a total of nine different 

combinations from the right hand side of Equation (C- 17) which are summed to form 

the equation for the first of the nine transformed tensor components. Letters i and j 

are then replaced by 1 and 2 respectively and the process repeated to form the second 

transformed tensor component and so on. The terms a;k and ajl represent the cosines 

of the angles between the two directions in question. These cosines can be found 

from the vectors that point in these directions. The cosine of the angle between any 

two vectors 5i and 6 can be calculated as 

(C- 18) 

The resultant tensor for the local coordinate system is written 
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\am a a t )  

The choice of mnl coordinate system describes the ai, tensor in terms of surface 

normal and tangential direction. Only the tangential mmponents of the tensor have 

aggravating effects on the EC. Specifically, 

The diagonal components /am and &,,,, /&I generate intracellular tension 

which causes widening and shnking of the intrac~llular gaps. The off-diagonal 

components &,,,/an and &,," /&n cause relative movement of adjacent cells. Lei 

et al, [68] suggested those creating intracellular tension are the most important with 

regard to IH. With this in inind, a scalar combination of these normal coinponents is 

calculated as the WSSG, i.e. 

In the following section, the horizontal and inclined flat plate test cases are used 

again to demonstrate the steady-state calculation of this variable. Transient results 

are also obtained for the horizontal flat plate test case to demonstrate the WSSG 

time-averaging procedure. 
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C,'.3.2 Flut Plate Test Ch.~e 

The flat plate test case fiom the previous section is now used to provide the simplest 

demonstration of the methodology above. The methodology from the previous 

section is implemented using Tecplot software. Nodal values are output froin the 

software at the same location on the flat plate as before (axial distance of 0.5079 m 

fiom the leading edge) and also from the two closest neighbour nodes to this point 

on the surface of the plate which are shown in Figure C-5. All the relevant variables 

output from Tecplot are shown in Table C- 1. 

Node AxialDistance L . ~  kSh h.,/a, ,,,, ~~~3~ 

[ml ~~~2~ 4 @Vim3] w/rn3] 
Left 0.4921 0.1723 1 -0.1716 -0.1776 0.1776 

Sample 0.5079 0.1750 I -0.1695 -0.1695 0.1695 
Right 0.5238 0.1777 I -0.1620 -0.1620 0.1620 

Table C-1: Values of the relevant variables taken directly from Tecplot at the 

sample node shown in Figure C-5 and its two neighbour nodes for the 

horizontal flat plate test case. 
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Figure C-5: The location of the sample node taken from Mesh 4 of the flat plate 

test case which is described in Appendix B. The WSSG values are plotted at the 

nodes. 

For the purposes of this sample calculation, only the two closest neighbowing nodes 

are considered which demonstrates the calculation to a reasonable degree of 

accuracy without excessive data manipulation. Using Equation (C-10) with the 

information in Table C-1 above, the matrix equation for the gradient of z,, is 

for the centre node using data from its two closest neighbours (LeR and Right). 

Applying SVD to solve for the gradients returns 
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The same method is used to calculate the gradient of zw, in all directions which 

equal zero in this test case. The mnl coordinate system is then defined as 

In order to change the WSSG from Cartesian xyz components into local mnl 

components, the cosines of the nine angles between the components of the Cartesian 

coordinate system and the components of the local coordinate system must be found. 

In this case only three of the cosines at the node of interest are important and are 

calculated as 

The WSSG components can now be calculated in the local coordinate system. The 

only non-zero component is &,,,/dm and is calculated as 
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=(1)(1)(-0.1667)+0+ ...... 0=-0.1667 ~ / m "  

Finally, the WSSG is calculated as a scalar combination of the two most important 

components 

There is approximately a 1.7% difference between the result above and the result 

outputted by the software. The difference arises as rhe calculation above only 

considers the closest two nodes and assigns them equal weight in the calculation 

whereas the actual calculation uses a cluster with a proximity-related weighting 

function as discussed earlier. 

The time-averaged WSSG is calculated from the transient results for the 

sample node on the flat plate test case as 

which is very close to the steady-state result outputted by the software and given in 

Table C-1, indicating that the timeaveraging technique is again accurate and 

calculated correctly. 

C. 3.3 Inclined Fhr Plate Test Case 

The inclined flat plate test case is now utilised to demonstrate the WSSG calculation 
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when there are WSS vector components acting in two directions. The node of 

interest and two neighbour nodes are shown in Figure C-6 and the relevant data is 

provided in Table C-2. Again only the two closest neighburing nodes will be used 

in the sample calculation. Using the data in Table C-2, the matrix equation for the 

calculation of the gradient of t,,, at the centre node is 

and solving this equation returns 

Similarly, the matrix equation for the gradient oft,, is 

and solving this equation returns the values 

For the purpose of demonstration these me again approximate answers, as only the 

two closest neighbouring nodes are considered. 
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Figure C-6: The location of the sample node on the inclined flat plate test case. 

WSSG values are plotted at the nodes. 

Axial I 
Distance 

Node x rm] w C ~  [ml 'E, ~;acd] % . v . w d  & .& 
Left 0.4195 0.2422 0.4844 0.1555 0.0898 0.866 0.5 

Sample 

, / "",.is &-a r'h T / ",,. /& 
Node ,- ~ m " 1  f ~ 1 q ~ 3 .  W S S G J ? T / ~ ~ ]  
Left -0.1370 -0.0791 -0.0791 -0.0457 -@.'I 827 0.1827 

Sample 

Right -0.1255 -0.0724 -0.0724 -0.0418 -0.1573 0.1673 1 
Table C-2: Values of the relevant variables taken directly from Tecplot at the 

sample node shown in Figure C-6 and its two neighbour nodes for the inclined 

flat plate test m e .  

The vectors defining the local coordinate system at the node of interest are 
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The non-zero directional cosines at this location are 

a, =0.866, a,, =0.5, a, =I, a, =-0.5, a,, =0.866 

The WSSG component atw,, /h is then calculated as 

and the WSSG magnitude is calculated as 

WSSG = im = ,/- = 01782 N/rn3 

There is approximately a 2.1% difference between the result above and the result 

outputted by the safhvare. The difference again arises as the calculation above only 

considers the closest two neighbour nodes as discussed earlier 

(23.4 Validation 

The formula for theoretical WSS calculated fiom the Blasius solution earlier in 

Equation (C-8) can be differentiated with respect to the axial distance along the plate 

x to give an expression for the 1D gradient of the WSS on the flat plate written 

WSSG,,, = I(--0.5)(0.332)(p): 3 (,)~(U)T I 
where the symbols are the same as before. For the horizontal flat plate test case, the 

theoretical and predicted values are 
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and for the inclined plate test case 

WSSG,,, = 4-0.1745~ + 0.0000' = 0.1745 ~ / m '  

The percentage difference in both cases is less than 1%. These results prove that the 

methodology functions correctly and calculates the WSSG to a high degree of 

accuracy for these test cases. 

The following is the Tecplot script used to calculate the instantaneous WSSG at each 

timestep. 

$! ALTERDATA EQUATION = '( ml ) = ( WallShearX)' 
$!ALTERDATA EQUATION = ' {m2 )  = {WallShearY)' 
$1 -ALTERDATA EQUATION = 'Im3) = {WallShearZ)' 
$! ALTERDATA EQUATION = ' 111 ) = (X Grid K Unit Normal)' 
%!ALTERDATA EQUATION= '{I21 = {Y Gsid K Unit Normal)' 
$!ALTERDATA EQUATION = ' { 13) = {Z Grid K Unit Normal)' 
$!ALTERDATA EQUATION='(nl) = {m2)*{13) - {l2)*{m3f ' 
$!ALTERDATA EQUATION = I f & )  = {rn3)*{ll) - {rn1).*{13) ' 
$!ALTERDATA EQUATION = 'fn3) = {ml) * {I21 - {11)*(m2)' 
$! ACTERDATA EQUATION = '{mx) = {mI 1 / sclrt( {ml ) **2 + (n12)*'2 -!- f m3 )**2 )' 
$!ALTERDATA EQUATION = '{my) = {m2) / sqrt( (ml}**2 + (m2}**2 + {m3 )**2 )' 
$ !ALTERDATA EQUATION = '(mz) = { m3) / sqrt! {ml)**2 + (m2)**2 + { m3) **2 )' 
$!ALTERDATA EQUATION = '(nx) = {nl 1 / sqrt( {nl)**2 + {n2)**2 -t- In3 j**2 )' 
$ !ALTERDATA EQUATION = '(ny) = {n2) / sqrt( {nl}**2 + (n2)**2 + (n3 )**2 )' 
$!ALTERDATA EQUATION ='(nz) = (n3) / qrt( {nl)**2 + {n2)**2 + {n3)**2 )' 
$!ALTERDATA EQUATION = '{lx) = (111 I sqrt( {11)**2 + (12)**2 + {13)**2) ' 
$!ALTERDATA EQUATION = '{ly) = (12) 1 sqrt( (11)**2 t {Ef **2 t {L3 f **2 ) ' 
$ ! ALTERDATA EQUATION = '[I081 = {13) / sqrt( (11 J **2 + {l2j **2 + 113) **2 ) ' 
$!ALTERDATA EQUATION='{MMf = (mxj*{mx)*(XX) + {mx)*(my)*(XY) + 

tmx)*{mz)*txz> + {my5*tmx)*tYx) + tmy)*{my)*{fl) + 
{my)* lmz)* {YZ) + {mz)* {mx)* (ZX) + (mz)* {my)*{ZY) + 
{mz}* {mz)*(ZZ)' 
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$!ALTERDATA EQUATION= '(NN) = { t~ )* (nx j* fXX)  + {nx)*{iy)*{XY) + 
{ ~ ~ ) * f n z j * ( X Z j  + (nyf*(11~j*fYXf + {nyj*(ny)*fYY) + 
{ny ] "{mf * {YZ) + (nz)* {IIX}*(ZXJ + {m) *{ny) *{ZY) + 
{ n ~ j * { n ~ ) * { z z j '  

$fALTERDATA EQUATION = '(LLJ = {lx)*(lx) *fXX) + (lx)*(lyJ *{XI') + (1x1 *[lOS]*{XZ)+ 
(lyj +(Ix) *{YX) + (ly) '(Iyj*fYY) + {ly) *[lOS]*{YZ] + 
[108]*(lx)*{ZX) + [108]*(ly)*fZYj + [108]*[108]*{ZZ)' 

$!!LTERDATA EQUATION = '(Wall Shear Stress [Pa]) = sqrt(t,fYJlShearX) **2 + 
{WallShearY)**2 + {WallShearZ)**2)' 

$!ALTERDATA EQUATION = 'f Wall Shear Stress Gradient pdm] j = sqrt( {MM}**2 + 
{NN)**2 )' 

The time-averaged WSSG is then calculated with the foilowing Python script 

import TecUtil 
import TecVals 
from numpy import* 
def TP-TAWSSW): 

dt = 0.0125 
TecUtil.DataSetAddVar("Time-Averaged Wall Shear Stress GradientU,None) 
novar2 = TecUtil.DataSetGetNumtiars() 
info = TecUtfi.ZoneGetInfo(1) 
node = range (I, i&[O]+l) 
numzones = TecUtil.DataSetGetNumZones() 
zor?es = rangc(2,numzones) 
WSSGvarnum = TecUtil.VarGetNumByName("Wall Shear Stress Gradient palm]") 
WSSGempam = ([I) 
for i in node: 

WSSGT1 = TecUtil.DaiaValueGeiByZoneVar( 1, WSSGvarnum, i) 
WSSGTn = TecUtil.DataValueGetByZoneVar(nu~ones WSSGvarnum, i) 
for j in zones: 

WSSGTj = TecUtil.DataValueG&yZaneVar(j, WSSGvarnum, i) 
WSSGemparr.extend([WSSGTj]) 

WSSGTjsum = sum(WSSGemparr) 
WSSGTrap = (WSSGTI + WSSGTn)*(dt/2) + WSSGTjsum*dt 
WSSAGTrap = (WSSAGTI + WSSAGTn)*(dt/2) + WSSAGTjsum'dt 
TAWSSG = (l/O.S)*WSSGTrap 
TecUtil.DataValueSetByZoneVar(I ,novaL?,i,TAWSSG) 
WSSGemparr = i[]) 

C. 4 Wall Shear Stress Angle Gradient 

The purpose of the WSSAG variable is to quantifjr the change in WSS direction 

between neighbowing nodes. As explained in the following section, two variables 

previously employed in this role [48, 701 have been limited due to the methodology 

behind their calculation. An improved numerical methodology is presented here for 

the calculation of the WSSAG that overcomes these limitations. A sample 

calculation is conducted on a bended duct test case and the variable values are 
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validated through some simple geometric calculations. 

C 4.1 Numerical Methodology 

Hyun et al. [48] suggested the wall shear stress angle deviation (WSSAD) to 

quantify the change in WSS direction between neighbouring nodes. The WSSAD is 

calculated as the mean angle between the WSS vector at the node of interest and 

the WSS vectors at the surrounding nodes ?,, written 

(cos- [ p)) ~.l*l~nl i 

WSSAD = 

where n is the number of surrounding nodes. The limitation of thls variable is that 

the magnitude of the WSSAD converges towards zero as the mesh spacing becomes 

smaller. This mesh-dependent behaviour of the WSS AD suggests that this variable 

should only be used to compare models with very similar mesh spacing. 

Subsequently, Longest and Kleinstreuer [70] suggested the WSSAG as a mesh- 

independent parameter. The first step in calculating the WSSAG for the node of 

interest is to compute a scalar field of relative WSS angle deviations for each 

surrounding node as 

where the terms are as before. The WSSAG is then calculated at the node of interest 

as 

This definition of the WSSAG eliminates the mesh dependence that exists with the 
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WSSAD through the use of the gradient operator. However, the use of the inverse 

cosine function is a limitation of the methodology of Longest and Kleinstreuer 

because no account is made for the clockwise or anticlockwise nature of the angle 4. 

To demonstrate this limitation, consider the set of three adjacent nodes shown in 

Figure C-7. The WSS vectors to the left and right of the central node are 20" 

anticlockwise and clockwise to the central WSS vector respectively. It is intuitive 

that the WSSAG at the central node should be 20°/m based on this information. 

6 = 20 0 20 

Figure C-7: Set of three adjacent nodes with WSS vectors. The inverse cosine 

function returns the absolute value of the smallest angle between the vectors. 

Using the inverse cus function to compute the angular difference the matrix equation 

for the WSSAG at the central node of Figure C-7 is 

and solving this equation yields = 0 and 3 - 0 which is incorrect and A- 
highlights the limitation of this methodology. The immediately apparent solution to 

this problem is to use the absolute value of the distances between the nodes, so the 

above equation would be 
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which would yield the correct result. However, this approach fails however when 

there are positive and negative values in the same right hand side of the matrix 

equation. For example if the nodes of Figure C-7 were positioned such that the 

matrix equation was 

simply taking the absolute values for all the distances on the right hand side of the 

equation would not return the correct result. The left hand side of the equation must 

take the clockwise or anticlockwise nature of the angle into account to get the correct 

result for the WSSAG components and a$&. An improved definition for the 

WSSAG is presented in this work to address this limitation The clockwise or 

anticlockwise nature of the angle between the central WSS vector and its neighbour 

vectors is determined and included in the calculation. In this calculation the relative 

WSS angle deviation for each surrounding node is calculated as 
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where To is the time-averaged WSS vector at the node of interest and ?, the time- 

averaged WSS vectors at the surrounding nodes, and the indicator function I is 

defined as 

where 7 is the surface normal vector. If I is positive the WSS vector at the neighbour 

node is an anticlockwise angle from the vector at the node of interest, and if I is 

negative the angle is clockwise. This computed angular Qtfesence is then assigned to 

each neighbour node. The next step is to compute the distances between the node of 

interest and the neighbouring nodes. Computing these distances in the Cartesian xyz 

coordinate system would produce three unknowns to be calculated in order to obtain 

the WSSAG vector, namely yh, yay and . However, if these distances are 

computed in the local inn1 coordinate system, the problem reduces to two unknowns, 

'Yh and since only the tangential components are important for EC 

alignment. Hence, the coordinates of the nodes are transformed from the Cartesian 

xyz coordinate system to a local mnl coordinate system as shown in Figure C-8, by a 

standard vector component transformation detailed below. 

Figure C-$(a): RrSS vwior described in a Carteshn coordinate system and (b) 

WSS vector described in a local coordinate system. 
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The Cartesian coordinates at each nodal location are defined by the vector 

- - 
S : = ~ i + ~ j + Z l ;  

and the local coordinates defined by the vector 

are related to by 

where @, ij and i are unit vectors in the m, n and 1 directions respectively and the 

directional cosines between the axes a .  calculated as before. The local coordinate 

system shown in the figure above can now be used to find the distance in the m 

coordinate direction between two adjacent nodes. The same is m e  of the n and 1 

directions. With the local coordinate system set up, SVD is employed as before to 

find the components of the WSSAG vector. When the correct angle is assigned to all 

neighbowing nodes the WSSAG vector is calculated for the node of interest as 

% -  3- 3- WSSAG =-p+-q+-r 
dm an a1 

Since only the tangential components are important for EC alignment the magnitude 

of the WSSAG is then calculated as 

Since the WSSAG is calculated from the time-averaged WSS vectors there are no 

finther time-averaging calculations required. The WSSAG calculation is performed 
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in Tecplot with user implemented python scripts. The scripts are necessary as the 

above calculation must be performed on a node-by-node basis, a task impossible 

inside the normal graphical user interfkce of Tecplot. 

C 4.2 Bended Duct Test Cuse 

A model of flow through a rectangular duct that bends clockwise through 90" is 

created as a test case for the WSSAG variable and is shown in Figure C-9. This 

model is discretised with five evenly spaced layers of 2D extruded elements across 

the 1 mm thickness of the duct. The mesh spacing is controlled by fixing the 

maximum element edge length to 0.1 mm everywhere. The mesh consists of 469,794 

nodes and 778,155 elements. A constant velocity of 0.1 m/s is applied at the inlet, a 

static pressure equal to the reference pressure of 1 Atm. is applied at the outlet, and 

the no-slip boundary condition is applied at all other boundaries whch represent the 

walls of the duct. The fluid approximately represents blood as before with a density 

of 1050 kg/m3 and a dynamic viscosity of 0.0035 kg/m.s. 

- 

Plan View 

Elevation View 1 
I f f 

lmm T 

Figure C-9: Schematic of a rectangular duct model which bends clockwise 

through 90'. This model is used for the sample calculation of the WSSAG 

variable. 
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The sample calculation is performed at a node near the inner curve of the bend test 

case which is shown in Figure C-9 and Figure C-10 below. The sample node is 

surrounded by six neighbour nodes and all relevant variable values are presented in 

Table C-3. Initially, an indicator function is calculated for each surrounding node to 

determine the sign of the angular difference. For this test case the surface normal 

vector on the 2D surface analysed is i = 07 + 05 - at all node locations, hence for 

the node (a) below, the indicator knction is calculated as 

The angular difference for node (a) is then calculated as 
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/ ------c-:, 
V~ Angular Differences of the WSS Vector 1 

Figure 42-10: The sample node a t  the inner curve of the bend test case. The 

value of the WSSAG is given at  the sample node which is surrounded by six 

neighbour nodes (circled) where the WSS angular differences are  given. 

The other angular differences are calculated in the same way and are given in Table 

C-3. The mnl coordinate system is now defined at the node of interest as 

Table 

Node x fuu4ii p I i  k ~ m 5  k W d  
Sample -3.7196 3.7196 1.6151 1.3712 0 . ~ 0 ~ ~  

(a) -3.7078 3.8944 1.9370 1.5415 -0.0317 
(b) -3.5679 3.7475 1.3568 1.1053 -0.0203 
(c) -3.5355 3.5355 0.8530 0.7542 0.0209 
(4 -3,7475 3.5679 1.3266 1.1941 0.0290 
(4 -3.8944 3.7018 1 3904 1.6623 0.0174 
(9 -3.8838 3.8838 2.1126 '1.7380 -0.0155 

:-3: Information taken directly from the bena test case at  the sample 

node and all of its six neighbouring nodes labelled from (a) to (0. 
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Node x [mm] y [mm] m [mm] n [mm] 
Sample -3.7196 3.7 196 -0.4281 5.2429 

(a) -3.7076 3.8944 -0.3060 5.36S4 

(b) -3.5679 3.7475 -0.2944 5.2659 

(4 -3.5355 3.5355 -0.4069 4.9834 

(dl -3.7475 3.5679 -0.5476 5.1452 

(el -3.8944 3.7078 -0.5690 5.3469 

@ -3.8838 3.8838 -0.4470 5.4743 

Ax[mm] Ay[mm] Am[mm] An[mm] 

(a) -0.01 18 -0.1748 -0.1221 -0.1255 
(b> -0.1517 -0.0279 -0.1337 0.0770 
cc) -0.1841 0.1841 -0.0212 0.2595 
!dl 0.0279 0.1527 . . 9..!195 8.0977 
( 4  0.1748 0.01 18 0.1409 -0.1040 

(4 0.1642 -0.1642 0.0189 -0.2314 

Table C-4: Components of the position vectors 2 and and the distances 

between the nodes in the x, y, m and n directions as calculated from the position 

vectors. 

The non-zero cosines between the two axes are 

The Cartesian coordinates at the node of interest and also at each surrounding node 

are then rotated to the local mnl coordinate system. The transformation for the node 

of interest is 
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The components of the coordinate vectors for the surrounding nodes are calculated in 

the same way and presented in Table C-4. The difference between coordinate vector 

components Am between nodes is now the Qstance between the nodes in the m 

direction. Similarly An is the distance between the nodes in the n duection. For the 

node of interest, the spatial gradient of the I d  angular differences results is 

calculated from the equation 

where the solution to this matrix equation is 

and finally the magnitude of the WSSAG is calculated as 

C. 4.3 Validation 

In order to validate the calculation, a value for the WSSAG can be estimated for the 
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sample node. At the inner radius of the bend the WSS vectors must turn through an 

angle of 90" or 1.5708 radians over a distance of 

which would create a WSSAG of 

There is a 2.4% difference between this theoretical value and the calculated value 

above. A similar test can be carried out on sample node adjacent to the outer radius 

where the WSSAG is calculated (results not shown) as 

and the theoretical value is 

giving a 3.2% difference between estimated and predicted results. The difference can 

be attributed to only considering distances and angular changes in a pedect arc 

around the bend in the estimated value. The actual solution uses a cluster of nodes 

from the surrounding node locations which would likely result in the slightly 

different answer. However, this difference is small enough to indicate that the 

WSSAG is being calculated correctly. 
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The following Python script calculates the instantaneous WSSAG 

import TecUtil 
import TecVals 
from numpy import* 
nodeConnectionMap = () 
defaddNodeToNodeCo~ectionMap(node, connectedNodes): 

if node in nodeConnectionMap: 
nodeList = ~~odeCoruiectiotMap[tlode] 

else: 
nodeCoi~~ectio~Wap[~~odej = [I 
nodeList = nodeConnectionMap[node] 

for curNode in comectedNodes: 
if curNode not in nodelist: 

nodelist. append(curNode) 
def createNodeComectionMap(): 

nodeMap = TecUtil.DataNodeGetRef(1) 
results = TwUtil.ZoneGetInfo(1) 
numElements = results[l] 
narmComers = results[Z] 
assert n u m C o r n e r ~ 3  
for element in range( 1. nurnElements+l): 

nodel = TecUtil.DataNodeGetByRef(nodeMap, element, 1) 
node2 = TecUtil.DataNodeGetByRef(nodeMap, element, 2) 
node3 = TecUtil.DataNodeGetByRef~nodeMap, element, 3) 
addNoodeToNodeCo~ectionMap(node7, [nod&, node31) 
addNodeToNodeConnectionMap(node2, [nodel, node31) 
addNodeToNodeConnectionMap(node3, [nodel, node21) 

def TP-&.tComectedNodesO: 
createNodeConnectionMapO 
results = TecUtil.ZoneGetInfo(1) 
nzones = TecUtil.DataSetGetNumZones() 
nodes = range( 1, results[O]+l) 
zones = range(l,2) 
count = 0 
TecUtil.DataSetAddVar("Wal1 Shear Stress Angle GradientN,None) 
novar = TecUtil.DataSetGetNumVars() 
for z in zones: 
for i in nodes: 

connectedNodes = n o d e C o ~ e c t i o ~ a p [ i ]  
b = len(cannectedNodes) 
neighbours = range(0, b) 
X = TecUtil.DataValueGetByZoneVar(z, 1 ,i) 
Y = TecUtil.DataValueGetSyZoneVar(z,2,i) 
Z 1 = TecUtil.DataValueGetByZoneVar(z,3.i) 
WSSX = TecUtil.DataValueGetByZoneVar(z,4,i) 
WSSY = TecUtil.DataValueGetByZoneVar!z,5;i) 
WSSZ = TecUtii.DataValueGetSyZoneVar(z,6,i) 
L l  = TecUtil.DataValueGetByZoneVar(z,7,i) 
L2 = TecUtil.DataValueGetByZoneVar(z,8,i) 
L3 = TecUtil.DataValueGetByZoneVar(z,9,i) 
N1 = WSSY"L3 - L2"WSSZ 
N2 = WSSZ'Ll- WSSX"L3 
N3 = WSSX*L2 - Ll'WSSY 
MX = WSSX/ sqrt( WSSX**2 + WSSY**2 + WSSZ**2) 
MY = WSSY 1 sqrt( WSSX**2 + WSSY**2 + WSSZ**2) 
MZ = WSSZ / sqrt('wssx**2 + WSSY""2 + WSSZ**2) 
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NX = Nl / qrt(  N1**2 + N2**2 + N3**2) 
NY = N2 / sqrt( N1**2 + N2**2 + N3**2) 
NZ = N3 / sqrt( N1**2 + N2**2 + N3**2) 
LX=LI / S ~ I - ~ ( L I * * ~  + ~ 2 * * 2  + ~ 3 * * 2 j  
LY =L2/sqrt(L1**2+ L2**2 + L3**2) 
LZ = L3 / sqrt( L 1**2 + L2**2 + L3 "2) 
COM = MX*X + MY*Y + MZ*Z1 
CON = NX*X + NY*Y + NZ*ZI 
COL = LX*X+ LY*Y + LZ*ZI 
A =  [I 
B = [I 
for j in neighbows: 

x = Tecutil.DataValueGetByZoneVar(z, I,connectdodesfi]) 
y = TecUtil.DataValueGetB yZoneVar(q2~conne&~odesfi]) 
zl = TecUtiI.DataValueGdByZoneVar(z,3,connectflodes[j]) 
ncom = MX*x + MY*y + MZ*zl 
ncon = NX*x + NY*y + NZ*zl 
ncol = LX*x + LY*y + LZ*zl 
nwsx = T8~Util.DataVdueGetByZoneVar(z,4,cono~~odes[j]) 
nwsy = TecUtil.DataVdueGetByZoneVar(z,S,wmect~odes~]) 
nwsz = TecUtil.DataValueGetByZoneVar(~6,~0mectecWodes~]) 
nnx = T~Util.DataValueGetByZoneVar(~7~com&&odes~~) 
nny = TecUtjl.DataValueGetByZoneVar(z,8,~0nnect&odes~]) 
nnz = TecUtil.DataValueGetByZoneV~z,9~~0nnectedNode~~]) 
CA = (WSSY*nwsz-WSSZ*nwsy) 
CB = (WSSZ*nwsx-WSSXxnwsz) 
CC = (WSSX*nwsy-WSSY*nwsx) 
Dot = nnx*CA + nny*CB + nnz*CC 
dm = (ncom-COM) 
dn = (nwn-CON) 
dl = (tmt-COL) 
Angte = 

arccos(~SSX*nwsx+WSSY*nw~y+WSSZ*nwsz)/((qrt(WSSX**2+WSSY**2+WSSZ**2))*(qrt( 
nwsx**2+nwsy**2+nwsz**2))))) 

if Dot > 0: 
Angle = -Angle 

A,append([ dm, I) 
B.append([hglel) 

A = matrix(A) 
€3 = matrix@) 
U, s, V = linaIg.svd(A, 0, 1) 
s 1 = l/s[O] 
s2 = lh[l] 
w = ([[s~,0l,[O,s211) 
W = matrix(W) 
T 1 = sqrt ((W[0,01)**2) 
T2 = sqrt ((WI1,1])**2) 
if T I >  100000000: 

W[O,O] = 0 
if T2 > 100000000: 

W[1,1] = 0 
X = V.T*W*U.T*B 
X = array(X) 
Xl = ~ ~ X c o l l o I ~ ~  
x2 = ((r4 1 I[Ol.)) 
WSSAG= (sqrt(X1**2 + X2**2)) / 1000 
if WSSAG > 300: 

WSSAG = 300 
count = count + 1 

TecUtil.DataValueSetByZoneVar(qnovar,i,WSS AG) 
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The following Python script calculates the time-averaged WSSAG 

import TecUtil 
import TecVa!s 
from numpy import* 
def TP-TAWSSAGO: 

dt = 0.0125 
TecUtil.DataSetAddVar(Wal1 Shear Stress Angle GradientW,None) 
novar3 = TmUtil.DataSetGernmVars() 
info = TecUtil.ZoneGetInfo(1) 
node = range (1, ilifo[O]+ 1) 
numzones = TecUtil.DataSetGetNumZones() 
zones = range(2,numzones) 
WSSAGvarnum = TecUtil.VarGetN~rnByName('~Wd1 Shear Sbess Angle Gradient") 
WSS AGemparr = ([I) 
for i in node: 

WSSAGTI = TecUtil.DataValueGetByZoneVar(l , WSSAGvarnum, i) 
WSSAGTn = TecU~l.DataValueGetSyZone~~ar(nw~~ones, WSSAGvxnum, i) 
for j in zones: 

WSS AGTj = TecUtil.DataValueGetByZoneVar(j, WSS AGvarnum, i) 
WSSAGempm.extend(WSSAGTjJ) 

WSSAGTjsum = sum(WSSAGemparr) 
W-SSAGTrap = (WSSAGT 1 + wSSAGTn)*(&j2) + WSS AGTjsum*dt 
TAWSSAG = (l/O.g)*WSSAGTrap 
TecUtil.DataVdueSetByZoneVar( 1 ,novar3,i7TAWSSAG) 
WSSAGemparr = ([D 

C.5 OsciZIatory Shear Index 

The final WSS-based variable is the OSI. As usual, the following section contains 

the numerical methodology behind the calculation of the variable. This is followed 

by two sample calculations on the flat plate test case. One calculation is perfonned 

for unidirectional flow and the other for fully oscillatory flow. In the absence of any 

theoretical solutions for this variable, the ability to distinguish between these types 

of flow will also serve as a validation for the calculation of the variable. 

C 5.1 Nurnericul Methodology 

Cyclic departure of the WSS vector from its predominant direction indicates flow 

disruption over time and is measured using the OSI calculated as follows 
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The numerator in Equation (C-33) is the magnitude of the summation of the 

components ofthe WSS vector and can be expanded as 

The denominator of Equation (C-33) is the summation of the magnitudes of the WSS 

vectors and can be expanded as 

To find the correct value of the magnitude of the time-averaged WSS vector and the 

time-averaged magnitude of the WSS vectors, Equations (C-34) and ((2-35) must be 

divided by T, the time duration, respectively. Since this operation is performed in the 

numerator and denominator of Equation (C-33) it is excluded from the calculation of 

the OSI. All summations are performed using the trapezoidal method as before. The 

OSI calculation is performed in Tecplot with user implemented python scripts. The 

scripts are necessary in this case to manipulate the large arrays of data involved in 

the calculation. 

C. 5.2 Flat Plat Test Case and J7aIidation 

To demonstrate the calculation, the transient flat plate test case described in Section 

C.2.1 will be examined. The magnitude of the inlet velocity has a small time- 

dependent oscillation and is given by 
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In this case the WSS is completely unidirectional and the summay of WSS values is 

shown in Table C-5. Again, results are taken from the sample node approximately 

halfway along the plate at an axial distance of 0.5079 m from the leading edge as 

shown in Figure C-2. The integral summations are calculated as 

and 

and the OSI is calculated as 

as expected for thjs unidirectional flow 
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Integral 
Summatien 

0.1400 0.1400 J 
Table C-5: The components and magnitudes of the WSS at the sample node on 

the horizontal flat plate test case for unidirectional flow. 

To demonstrate the opposite scenario the same test case and sample node are used 

but this time the inlet velocity is fully oscillatory and is given by 

yda = 0.3333 [sin (7.85398)(t)] m/s 

This represents a sinusoidal wave with a period of 0.8 seconds and amplitude of 

0.3333 d s .  As in the previous case, the simulation is run for ten cycles of 0.8 

seconds with a timestep of 0.1 seconds and the variables are integrated over the final 

cycle. The results for the components and magnitudes of WSS at each tirnestep are 

given in Table C-6 below. The integral summations are calculated as 

and 
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and the OSI is calculated as 

which is as expected for the l l l y  oscillatory WSS produced by the oscillatory inlet 

velocity. 

Integral 
Surn~~~atian 0.0034 0.9323 

Table C-6: The components and magnitudes of the WSS at the sample node on 

the horizontal flat plate test case for fully oscillatory flow. 

C 5.3 Script 

The following Python script calculates the OSI 

import TecUtil 
import TecVals 
&om numpy import* 
def TP-TAWSSO: 

dt = 0.0 125 
TecUtil.DataSetAddVar("0scillato~ Shear IndexW,None) 
novar4 = TecUtil.DataSetGetNumVars() 
info = TecUtil.ZoneGetInfo(1) 
node = range (1, infb[O]f 1) 
rmmzones = TecUtil.DataSetGetNumZone@ 
zones = range(2,numzones) 
WSSvarnum = TecUtil.VarGetNumByName(nWal1 Shear Stress [Pa]") 
WSSXvarnum = TecUtil.VarGetNumByName(" WallShearX") 
WSSYvarnum = TecUtil.VarGetNumByNam~Wal1ShearY") 
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WS SZvanmm = TecUtil. VarGetNumB yNanle(" WallS11earZ") 
WSSemparr = ([I) 
WSSXemparr = ([I) 
WSSYenlparr = ([I) 
WSSZemparr = ([I) 
for i in node: 

WSSTl = TecUtil.DataValueGetByZoneVar(1, WSSvarnum, i) 
WSSTn = TecUtil.DataVdu&teyZoneV~{n~~mznne~ WSSvarnum, i) 
WSSXT 1 = TecUtil.DataValueGetByZoneVar( 1, WSSXvarnum, i) 
WSSXTtl = TecUtil.DataVdueGetB yZo11eVar(numnes WSSXvanium, i) 
WSSYT I = TecUtil.DattaVaIueGetByZaneVar(1, WSSYvarnum, i)  
WSSYTn = TecUtil.DataValueGetByZoneVar(nu~~1~0nes, WSSYvarnum, i) 
WSSZT 1 = TecUtil.DataValueGetByZoneVar( I, tvSSZvarnum, i) 
WSSZTn = TecUtil.DataValueGetByZoneVar(numzones, WSSZvarnum, i) 
for j in zones: 

WSSTj = TecUtil.DataValueGetByZoneVadjl WSSvarnum, i) 
WSSemparr.&end(mSSTTi]) 
WS SXTj = TecUtil.DataValueGetByZoneVar(j, WSSXvarnum, i) 
WSSXemparr. extend([WSSXTj]) 
WSSYTj = TecUtil.DataVdueGetByZoneVdj, WSSYvarnum, i) 
WSSYemparr.extend([WSSYTj]) 
WSSZTj = TecUtiI.DataVdu&etByZoiie\FarQ, WS SZvarnum, i) 
WSSZemparr.extend([WSSZTj]) 

WSSTjsum = sum(WSSemparr) 
W SSXTj sum = sum(W S SXemparr) 
WSSYTjstim = sum(WSSYernpan) 
WSSZTjsum = sum(WSSZemparr) 
WSSTi-ap = (WSSTl + WSSTn)*(dt/2) + WSSTjsu~tl*dt 
WSSXTrap = (WSSXTI + WSSXTn)*(M2) + WSSXTjsum*dt 
WSSYTrap = (WSSYTI + WSSYTn)*(dt/2) + WSSYTjsum*dt 
WSSZTrap = (WSSZTI i wSSZTt~*(dt/2) +- WSSZTjsum*d: 
TAWSS = (1/0.8)*WSSTrap 
MAGTAWSSV = sqrt( (WSSXTrap)**2 + (WSSYTrap)**2 + (WSSZTrap)**2 ) 
OSI = 1-(MAGTAWSSV / WSSTrap) 
WSSemparr = ([I) 
TecUtil.DataValueSetByZoneVar(1 ,novar4,i,OSI) 
WSSXemparr = ([I) 
WSSYemparr = ([I) 
WSSZemparr = ([I) 

The purpose of this appendix is to firstly describe the methodology employed in the 

calculation of the WSS-based variables. Sample calculations are then shown for each 

variable to demonstrate how it is actually computed by ANSYS CFX, Tecplot and/or 

the user implemented codes. Finally, a validation step is performed to ensure that the 

variable values are accurate thus demonstrating that the variables are being 

calculated as expected. 
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