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Abstract 

The recent surge in graphene research, since its liquid phase monolayer isolation and 

characterization in 2004, has led to advancements which are accelerating the exploration of 

alternative 2D materials such as molybdenum disulphide (MoS2), whose unique physico-

chemical properties can be exploited in applications ranging from cutting edge electronic 

devices to nanomedicine. However, to assess any potential impact on human health and the 

environment, the need to understand the bio-interaction of MoS2 at a cellular and sub-

cellular level is critical. Notably, it is important to assess such potential impacts of materials 

which are produced by large scale production techniques, rather than research grade 

materials. 

The aim of this study was to explore cytotoxicity, cellular uptake and inflammatory 

responses in established cell-lines that mimic different potential exposure routes 

(inhalation, A549; ingestion, AGS; monocyte, THP-1) following incubation with MoS2 flakes 

of varying sizes (50 nm, 117 nm and 177 nm), produced by liquid phase exfoliation. Using 

high content screening (HCS) and live/dead assays, it was established that 1 µg/ml (for the 

three different MoS2 sizes) did not induce toxic effects on any of the cell-lines. Confocal 

microscopy images revealed a normal cellular morphology in all cases. Transmission 

electron microscopy (TEM) confirmed the uptake of all MoS2 nanomaterials in all the cell-

lines, the MoS2 ultimately locating in single membrane vesicles. At such sub-lethal doses, 

inflammatory responses are observed, however, associated, at least partially, with the 

presence of lipopolysaccharide endotoxin in nanomaterial suspensions and surfactant 

samples. Therefore, the inflammatory response of the cells to the MoS2 or endotoxin 

contamination was interrogated using a 10-plex ELISA which illustrates cytokine production. 

The experiments carried out using wild-type and endotoxin hyporesponsive bone marrow 

derived dendritic cells confirmed that the inflammatory responses result from a 

combination of endotoxin contamination, the MoS2 nanomaterials themselves, and the 

stabilizing surfactant.   

Keywords: MoS2, 2D nanomaterials, cytotoxicity, uptake, endotoxin, inflammatory response 

 



Introduction 

Over the past few decades, an increasing amount of research has been devoted to 

the field of nanotechnology, resulting in an ever increasing range of engineered 

nanoparticulate materials in both the research and consumer arenas. However, although 

exciting technological developments and nanomedical applications are emerging, it has 

become important to consider any potentially detrimental impacts of these materials on 

human health and the environment, giving rise to the field of nanotoxicology.  

Nanomaterial classification is based on the number of dimensions that are not 

confined to the nanoscale range, generating four main categories; zero-dimensional (0D), 

one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) nanostructures (1). 

Nano-crystalline material is an example of a 3D nanostructure, which has been well 

characterised and studied, due to effective production of large scale quality crystals (2,3). 

Research in 2D materials, previously largely restricted to epitaxially grown semiconductor 

(multiple) quantum well structures, has exploded more recently since the demonstration of 

facile, large scale production of exfoliated graphene samples (3,4). Graphene has been 

extensively characterized due to its enhanced properties for applications such as 

semiconductors, bio-sensors and transparent electrodes for use in flexible devices, although 

the presence of a “zero band gap” has limited its applications for purposes of 

optoelectronics (5). Liquid based monolayer isolation and characterisation of graphene was 

reported in 2004, leading to the development of a wide spectrum of techniques for the 

synthesis, detection, characterisation and manipulation of 2D nanomaterials (6). The 

identification of these techniques has indeed allowed the acceleration of research on 2D 

materials other than graphene, such as boron nitrite (BN) and molybdenum disulphide 

(MoS2), which was not possible prior to these new advancements. 

MoS2 is a 2D nanomaterial that is produced in plate-like particles formed by layers of 

chemically bonded atoms, which are stacked and held together by van der Waals 

interactions in the form of nanoplates or nanobelts (7). MoS2 has a low friction coefficient 

(0.003), allowing its use as a common lubricant, but it has shown great potential also as a 

transition metal dichalogenides (TMDs) due to its enhanced indirect band gap of 1.9 eV 

when scaled down from bulk composites (8). It has been demonstrated that the “Coleman 



method” of exfoliation (4) can also be applied to MoS2, yielding high quality dispersed 

sheets and allowing potentially scalable techniques to manufacture bulk quantities of MoS2 

nanosheets of controllable size (9,10) with potential applications in high performance 

electronics, semiconductors, light emitting and bio-sensor devices, and nanomedicine (11–

13). 

The foreseeable flexible transparent displays, enhanced energy storage systems or 

nanomedical applications can be made possible with large scale synthesis of 2D 

nanomaterials. However, before translation into industrial or biomedical arenas, the 

question of MoS2 cytotoxicity, uptake and inflammatory response should be addressed to 

understand the potential health impacts following exposure during material synthesis, 

device manufacturing, consumer or patient exposure. For biomedical applications , the use 

of nanomaterials can increase drug delivery, reduce systemic affects and potentially cause 

confined detrimental effects to abnormal and/or cancerous cells using a targeted nano-

therapy (14). Internalisation of nanomaterials can improve drug delivery while improving 

efficiency, as higher concentrations are delivered within each cell while healthy and/or 

neighbouring cells are protected. Therefore, extensive evaluation of 2D nanomaterial bio-

safety should be completed before translation into newly engineered technologically 

relevant devices and prior to commencement of clinical trials for drug delivery or gene 

silencing applications using MoS2 nanomaterials (15,16). Unlike those 2D materials used for 

biomedical applications which are sterile and free of any contaminants, those produced on a 

large scale production for industrial applications are not produced to the same rigorous 

standards of purity.   

Nanomaterial characterisation is therefore essential to predict and allow accurate 

determination of what cells are interacting with, where toxicity is originating, and the 

stability of newly synthesized nanomaterials. Nanoparticle size and surface charge play an 

important role when interacting with proteins present in biological fluids. Proteins and/or 

contaminants will actively bind to the nanomaterial surface potentially misdirecting the cells 

from identifying the nanomaterial, altering size and/or surface charge (17). A nanoparticle 

along with a protein corona can help by evading an immune response, improving the 

therapeutic efficacy of drugs or preventing nanomaterials reaching its final destination if the 

structure exceeds the size of biological barriers (18). Organs such as the liver and the spleen 



are major contributors for the removal and secretion of nanomaterials following inhalation, 

oral ingestion or intravenous injection. Therefore determining an accurate nanomaterial size 

before exposure is essential to understand if nanomaterials with be rapidly exceeded (<5m), 

retained in specific organs or evenly distributed throughout the body (19). It has been 

shown that particles of larger sizes are most likely to be deposited in the upper airways 

while smaller sizes of nanomaterials can be transported to the alveolar region, increase 

toxicity and travel to secondary organs causing systemic effects (20,21). After inhalation and 

deposition in the lungs, this causes an influx of inflammatory cells as a protective 

mechanism in the presence of foreign material within the respiratory system. Infiltration of 

alveolar macrophages function by engulfing foreign materials and releasing inflammatory 

cytokines (22). Actively beating cilia along with mucus present in the lungs allows the 

upward movement of material which can be later swallowed. Gastrointestinal absorption is 

not the most common form of exposure, but given the increasing use of nanomaterial in 

sunscreens, cosmetics and food additives, there is increased risk to transfer nanomaterial 

residues by hand-to-mouth action (23,24).  

Adverse effects to the respiratory tract, such as chronic inflammation and pulmonary 

fibrosis, are associated with exposure to many other ultra-fine nanomaterials produced by 

industry or present in air pollution. It is well known that such factors as nanomaterial size 

along with surface charge (25), aggregation and/or agglomeration play a crucial role in 

influencing immune response after human exposure. There has been an extensive amount 

of research carried out on the toxicity of 2D graphene and its derivatives, such as graphene 

oxide (GO) (26,27), amine-GO (28), carboxylated-GO (29) and graphene nanoribbons (30); in 

all cases the toxicity is dependent on the surface chemistry of the graphene (31).  However, 

the toxicity and bio-interaction of MoS2 are largely underexplored. Studies to date indicate 

that MoS2 is less toxic than graphene and its analogues (32), but that the toxicity of MoS2 

increases with increasing degree of exfoliation (33). Therefore, with the increasing use and 

applications of MoS2 nanomaterials at the present time, the potential health implications 

and basis of any toxicity should be investigated in depth prior to mass production. 

Depending on their application or environmental discharge route, nanomaterials can come 

into contact with the human body by inhalation, dermal contact, orally with subsequent 

absorption in the gastrointestinal tract or parenterally (34). If MoS2 nanomaterials are to be 



used for biomedical applications and drug delivery, confirming cellular uptake of nanosheets 

of varying sizes will play a crucial role in demonstrating whether effective drug delivery can 

be achieved, and if certain nanosheet sizes would influence the process. MoS2 produced for 

enhanced electronic devices will involve potential exposure routes of nanomaterials at the 

manufacturing stage, consumer use or the end of their lifecycle after disposal (35). In this 

study, an extensive investigation of the cellular uptake, cytotoxicity and inflammatory 

response of various sizes of industrial grade MoS2 which are produced in a similar fashion to 

large scale production was undertaken.  To establish the mechanisms of cellular interactions 

and to assess any potential health impacts, three possible exposure routes (inhalation, 

ingestion and intravenous injection) were investigated in the physiologically relevant 

representative cell lines. A549, AGS and THP-1 were used as the three representative cell 

lines to mimic the possible exposure routes and for consistency with other studies with 

nanomaterials (36). 

MoS2 sheets fabricated for the purpose of this study are industrial grade and 

produced in a non-sterile fashion, similar to 2D material synthesis when used in applications 

for electronic devices. In this “bucket style” chemistry manufacturing of nanomaterials , 

contamination is inevitable and must be investigated to determine what effect it has on 

nanomaterial characteristics and what toxicity occurs following cellular exposure. 

Endotoxin, or more commonly known as lipopolysaccharide (LPS) is a large contributor to 

contamination of nanomaterials and when present can act as a stimulator of the 

inflammatory system (37,38). Nanoflakes produced for this study are different to the 

standard nanomaterials used for environmental nanosafety assessments (39). Nanomaterial 

samples of different sizes, originating from different batches and synthesised by varying 

individuals in this form demonstrates that material prepared in a commercial and large scale 

industrial setup will not produce endotoxin free MoS2 samples. Therefore, the work 

illustrated within this paper demonstrates the toxicity observed after the realistic exposure 

to nanomaterials in the manufacturing environment of MoS2. Endotoxin screening is crucial 

to accurately understand whether cellular responses are from nanomaterials or 

nanomaterial-endotoxin coated materials.  

 



 

 

Materials and methods 

2D MoS2 Production 

Full characterisation of MoS2 nanosheets fabricated by the same method has 

previously been published by some of the co-authors (4,10,40). MoS2 flake production is 

briefly outlined below.  

Molybdenum disulphide powder (Sigma Aldrich, Ireland) was sonicated in aqueous 

surfactant solution (sodium cholate (SC), 6 g/l) for 1 h. The resultant dispersion was 

centrifuged at 5 krpm for 90 min to remove any impurities in the starting powder. The 

supernatant was discarded, while the sediment was re-dispersed in fresh aqueous SC 

solution (0.5 g/l) and sonicated for 6 h to produce a stock dispersion. The stock dispersion is 

quite polydisperse, and therefore to achieve a well-defined nanosheet size distribution, the 

sample was subjected to liquid cascade centrifugation (LCC).  

LCC is a series of progressively increasing centrifugation speeds which produces 

narrowly distributed nanosheet sizes in solution. To produce varying nanosheet sizes in 

solution, the stock dispersion was initially centrifuged at 1 krpm for 90 min to remove any 

unexfoliated material. The sediment was discarded while the supernatant was collected and 

centrifuged at a higher speed (1.5 krpm for 90 min). After centrifugation at 1.5 krpm, the 

sediment was collected and redispersed in fresh aqueous SC (0.5 g/l), which represents the 

first nanosheet size selection. The supernatant was subjected to the next highest speed, 2.5 

krpm for 90 min. Similarly the sediment was collected and redispersed in aqueous SC while 

the supernatant was centrifuged at a higher speed. This process was repeated for 2.5 krpm, 

3.5 krpm, 5 krpm and 10 krpm. The respective sediments for a given speed were analysed 

using UV- vis spectroscopy and electron microscopy to determine the nanosheet 

concentration and mean lateral size (9). LCC maximises the nanosheet concentration of the 

nanosheets in solution in addition to producing a range of narrow nanosheet size 

distributions ranging from 50 nm to 177nm mean flake length. 



 

 

TEM Material Characterization  

Bright-field transmission electron microscopy imagine was performed using a JEOL 

2100 operated at 200 kV. Holey carbon grids (400 mesh) were purchased from Agar 

Scientific and prepared by diluting dispersion to a low concentration and drop-casting onto 

a grid placed on a filter membrane to wick away excess solvent. The grids were then baked 

at 120 °C to remove all solvent.  

 

UV-Vis Spectroscopy  

(a) Material Characterization: Optical extinction was measured on a Varian Cary 5000 

in quartz cuvettes with a path length of 0.4 cm for all three sizes. If necessary, the 

dispersions were diluted by pure solvent immediately prior to the measurement to yield 

optical densities below 1.5.  

(b) Material stability in media: Three representative MoS2 sizes were diluted in 

sodium cholate (0.5 mg/ml), phenol free RPMI media supplemented with 10% FBS, 1% 

penicillin-streptomycin and sodium chloride (40 mg/ml) in 96-well plates (Nunc, Fisher 

Scientific, Ireland). Sample absorbance was measured at time 0, 24, 48, 72 and 96 h using 

Spectramax M3 plate reader (Molecular Devices, USA).   

  

Cell Culture 

Human acute monocytic leukaemia (THP-1) cells were obtained from the American 

Tissue Culture Collection (ATCC). THP-1 cells were cultured in Roswell Park Memorial 

Institute (RPMI) medium (Gibco, Bio-sciences Ltd, Ireland) supplemented with 10% Foetal 

Bovine Serum (FBS) (Sigma Aldrich, Ireland) and 1% penicillin-streptomycin (Sigma Aldrich, 

Ireland) in a humidified atmosphere at 37 °C and 5% CO2. THP-1 cells were differentiated 

into macrophage-like cells by incubating them with 200 nM phorbol 12-myristate 13-acetate 



(PMA). THP-1 cells were removed from cell culture flasks, collected in a 15 ml tube (Fisher 

Scientific, Ireland) and centrifuged at 4,000 rpm for 5 min. Cells were counted using an 

automated Countess cell counter (Fisher Scientific, Ireland) and seeded at a density of 1 x 

105 cells/ml (5 x 104 cells/well; 500 µl/well) in a 6-well (TEM), 24-well (along with glass 

coverslips for cell staining and laser scanning confocal microscopy) or 96-well (Live/Dead 

and high content screening) plate (Nunc, Fisher Scientific, Ireland) along with a stock 

solution of 60 ng/ml of PMA (30 ng/ well; 500 µl/well) for 72 h at 37 °C and 5% CO2. Media 

and PMA were removed after 72 h and cells were washed with pre-warmed phosphate 

buffer saline (PBS) (Fisher Scientific, Ireland). MoS2 nanomaterial solutions were diluted in 

supplemented culture media and added to macrophage-like THP-1 cells (500 µl/well). 

Human lung adenocarcinoma (A549) and human gastric adenocarcinoma (AGS) cells 

were obtained from ATCC. A549 and AGS cells were cultured in Ham’s F-12 Kaighns 

Modified Medium (F-12K) supplemented with 10% FBS (Sigma Aldrich, Ireland) and 1% 

penicillin-streptomycin (Sigma Aldrich, Ireland) in a humidified atmosphere at 37 °C and 5% 

CO2. Cells were incubated for 24 h to allow cell attachment to Nunc culture flasks (Nunc, 

Fischer Scientific, Ireland) or until 60 – 80% confluency was achieved before splitting again. 

Medium was removed from cell culture flasks, cells were washed with pre-warmed PBS and 

detached using 2 ml TrypLE (Gibco, Bio-sciences Ltd, Ireland) in a T75 cm2 culture flask for 5 

– 8 min at 37 °C. TrypLE was neutralized with 6 ml supplemented culture media and 

collected in a 15 ml tube (Fisher Scientific, Ireland) and centrifuged at 4 krpm for 5 min. Cells 

were counted using an automated countess cell counter (Fisher Scientific, Ireland) and 

seeded at a density of 1 x 105 cells/ml (5 x 104 cells/well; 500µl/well) in a 6-well (TEM), 24-

well (along with glass coverslips for cell staining and laser scanning confocal microscopy) or 

96-well (Live/Dead and high content screening) plate (Nunc, Fisher Scientific, Ireland) plate. 

Cells were grown for 24 h to allow cell attachment before exposure to nanomaterials diluted 

in the appropriate media.   

 

High content screening (HCS) 

Cells were seeded in 96-well Nunc plates, incubated for 24 h at 37 °C, 5% CO2 and 

exposed to linearly increasing concentrations of MoS2 nanomaterials. Cells exposed to 



medium, nocodazole and SC surfactant were also included as controls. Cells were then 

washed with pre-warmed PBS to remove dead and dying cells and fixed for 15 min at room 

temperature using a 4% PFA solution. Fixative solution was removed by two wash steps 

using 200 µl/well of pre-warmed PBS. Cellular nuclei were stained for 10 min at ambient 

temperature using diluted (1-in-5000) nuclear stain Hoechst (Hoechst 33342, Thermo 

Fisher) and incubated in the dark. Staining solution was removed and cells were washed 

twice with 200 µl/well of pre-warmed PBS. Cells were imaged by high content screening 

using the GE blue INcell 100 system. Nuclei were visualized using the blue channel of λexc = 

405 nm for the Hoechst nuclear dye. Ten fields per well were acquired using a 10x objective 

lens and simultaneously counted for each well. Dose-response graphs are fitted using the 

untreated (NT) as the 100% normalized cell population. 

 

Live/Dead Viability Assay 

THP-1, A549 and AGS cells were seeded in 96-well Nunc treated plates and exposed 

for 24, 48 and 72 h at 37 °C, 5% CO2 to increasing concentrations of MoS2 nanomaterial (0.5, 

2, 10 µg/ml). Cells exposed to medium, nocodazole, methanol and SC surfactant were also 

included as controls. LIVE/DEAD® Viability/Cytotoxicity Kit for Mammalian Cells (Thermo 

Fisher, L3224) was used. Following exposure to the MoS2 nanomaterials, the cells were 

rinsed with pre-warmed sterile PBS. The cells were then incubated with the Live/Dead 

solution containing Calcein AM and Ethidium homodimer-1 for 45 minutes as per the 

manufacturer’s guidelines. The plates were then imaged using a confocal microscope (Zeiss 

LSM 510, 20× objective lens, λexc = 488 nm for calcein AM and λexc = 561 nm for Ethidium 

homodimer-1).  

 

Cell staining and laser scanning confocal microscopy (LSCM) 

MoS2 was diluted accordingly in the appropriate media for each cell and exposed to 

cells for 4 or 24 h incubation time points. Following exposure in 24-well plates, medium was 

removed and cells were washed with 500 µl pre-warmed PBS. Cells were fixed using a 4% 

solution of paraformaldehyde (PFA (Sigma Aldrich, Ireland); 500 µl/well) and incubated at 



room temperature for 15 min. Triton X, at a concentration of 0.03%, was used for cell 

permeabilization for 3 min at room temperature with subsequent PBS washes. Cells were 

stained for 2 h at room temperature with Hoechst (Invitrogen, Oregon, USA), rhodamine 

phalloidin (Invitrogen, Oregon, USA) and anti-α tubulin Alexa 488 (Invitrogen, Oregon, USA) 

diluted accordingly to the manufactures instructions. Coverslips containing adherent and 

stained cells were removed and mounted on glass slides using fluorescence mounting 

medium (Dako Diagnostics Ireland Ltd.) and allowed to dry in the dark overnight. Cell nuclei 

(blue), F-actin filaments (red) and tubulin structures (green) were visualized using ZEISS 510 

Meta confocal microscope (Carl Zeiss, Germany). 

 

TEM Cellular Imaging  

Samples for transmission electron microscopy were first fixed in 2.5% glutaraldehyde 

in 0.1M Sørensen’s phosphate buffer for a minimum of 2 h at room temperature and post 

fixed in 1% osmium tetroxide in Sørensen’s phosphate buffer for 1 h at room temperature. 

Subsequently, the specimens were dehydrated in a graded ethanol series (30%, 50%, 70%, 

90% and 100%). When dehydration was complete, samples were transferred from 100% 

ethanol to a mixture of 1 part of ethanol and 1 part of epoxy resin for 1 h. To complete the 

resin infiltration, the samples were placed in 100% resin at + 37 °C for 2 h. Finally, samples 

were embedded in resin, placed at + 60 °C for 24 h to complete polymerisation. For 

orientation purposes, 500 nm sections were cut from each sample, stained with toluidine 

blue, and examined by light microscopy (Leica DMLB, Leica Microsystems, Germany). From 

these survey sections, areas of interest were identified and ultrathin (80 nm) sections were 

cut using a Leica EM UC6 ultramicrotome (Leica Microsystems, Wetzlar, Germany). These 

sections were collected on 200 mesh thin bar copper grids, stained with uranyl acetate for 

20 min, lead citrate for 5 min and examined by transmission electron microscopy (Tecnai G2 

12 BioTWINusing an accelerating voltage of 120kV). 

 

Endotoxin Detection by endpoint chromogenic LAL assay 



Pierce® LAL Chromogenic Endotoxin Quantitation kit (Thermo Scientific) was used to 

determine endotoxin levels found in MoS2 samples (1 µg/ml). The endotoxin calibration 

curve was prepared using reconstituted stock solution of LPS from Escherichia coli (E.coli). 

Dilutions were performed as indicated in the protocol provided by the manufacturer. 

Briefly, dilutions of standards, nanoparticle stock solutions and solvents were prepared in 

endotoxin free water supplied by manufacturers. All samples were tested in duplicate. 

Nanoparticle stock solutions and solvents were incubated with and without the presence of 

LAL chromogenic substrate to determine any inference in the assay due to MoS2 

nanomaterials, which was subtracted from the average absorbance for each sample to 

accurately determine the LPS contamination. Absorbance was measured at 405 nm to 

quantify the presence of endotoxin. 

 

Cytokine Detection using multiplex assay  

 Following 24 h exposure of differentiated THP-1, AGS and A549 cells to three sizes 

(50 nm, 117 nm and 177 nm) of MoS2 at varying concentrations, the supernatants were 

removed and stored at -80°C until further analysis. Supernatants were defrosted and diluted 

with assay diluent as per the manufacturer’s instructions. A panel of human pro-

inflammatory cytokines were evaluated using V-Plex Pro-inflammatory Panel 1 (human) Kit 

(catalogue no. K15049D) and the protocol was carried out as per supplier’s instructions.  

 

 

Measurement of Dendritic Cell Activation 

Age-matched, 6-8 weeks endotoxin hyporesponsive C3H/HeJ or  wild-type 

C3H/HeN were bred in the Trinity Biomedical Sciences Institute (TBSI) Bioresources Unit, 

Trinity College Dublin (TCD). Animals were maintained according to the regulations of the 

European Union and the Irish Department of Health. All animal studies were approved by 

the TCD Animal Research Ethics Committee (Reference Number 091210).  

Murine bone marrow-derived dendritic cells (BMDC) were generated as described 

previously (41). Briefly, bone marrow cells were isolated from tibias and femurs of mice. 

Cells were grown in RPMI 1640 medium (Biosera, Boussens, France) supplemented with 8 % 



ultra-low endotoxin heat-inactivated FBS (Biosera), 2 mM L-glutamine (Gibco, Dun 

Laoghaire, Ireland), 50 U/mL penicillin (Gibco), 50 µg/mL streptomycin (Gibco) and 20 ng/mL 

of granulocyte–macrophage colony-stimulating factor (GM-CSF) derived from the J588 

myeloma cell line. On day 10 the loosely adherent cells were harvested and plated at a 

density 0.625 x 106 cells/mL and stimulated with MoS2 particles as indicated in figure 

legends. Supernatants were collected and analysed for cytokine secretion and cells 

harvested for flow cytometry analysis. 

 

Isolation and culture of murine bone marrow-derived dendritic cells  

As previously mentioned and described (41). 

 

Cell Viability and cytokine levels of BMDC’s 

For the analysis of cellular viability, cells were incubated with LIVE/DEAD® fixable 

Aqua Dead Cell Stain (Invitrogen, Dun Laoghaire, Ireland). Samples were acquired on BD 

FACSCanto II (BD Biosciences, USA) and the data analysed using FlowJo software (Tree Star 

Inc., Ashland, OR, USA). The concentration of the cytokine IL-6 was measured by ELISA using 

antibodies obtained from Biolegend (San Diego, CA, USA) according to the manufacturer’s 

instructions.  

 

Results 

High Content Screening 

HCS is an automated high throughput microscopy technique allowing for rapid 

imaging and subsequent analysis of large sample sets, permitting rapid toxicity assessments 

to be evaluated for nanomaterial exposure. Nuclear regions of cells were stained using 

Hoechst dye, allowing cell viability and toxic nanomaterial concentrations to be determined 

for each cell line. A range of concentrations (0, 0.5, 1, 2, 5 and 10 μg/ml) were tested for all 

three samples on all three cell lines (Figure 1). High content analysis (HCA) showed a minor 

changes in the number of viable A549 cells after interaction with five concentrations of 

nanomaterial of each size for 24 h. AGS cells were susceptible to toxicity after exposure to 

the highest concentration for 24 h, cell viability decreasing to <50%. THP-1 cells appear the 

most susceptible to toxicity of the MoS2 material, exhibiting an increased cell death with 



increasing concentration after 24 h exposure. Levels of cell number in THP-1 cells show large 

variability, beyond the standard deviation level. Nuclear morphology in differentiated THP-1 cells 

can vary from single (circular) to multi-lobed (irregular shaped), as can be seen from images in other 

studies (8–10), which can lead to an inaccurate cell count based on a nuclear stain. Therefore, when 

cell number was obtained following analysis of the THP-1 data, software misinterpretation is most 

likely the cause of fluctuation in these cell numbers.  AGS cells were most susceptible to 117 nm 

MoS2 at 10 μg/ml, while THP-1 show the highest toxicity towards the smallest MoS2 sheets 

(50 nm).  

 

Figure 1 Cell viability as determined by high content screening. Particle concentrations (0.5, 1, 2, 5 and 10 µg/ml) were 

added to a) A549 cells, b) AGS cells and c) THP-1 cells for 24 h. Figure a-c: green – 50 nm, blue – 117 nm and red 177 nm. 

Figure d: grey – A549, black – AGS and blue – THP-1. Control samples as illustrated in figure d: NT – negative treatment, 

Noc – Nocodazole and SC- Sodium Cholate. 

 

Live/Dead Cell Viability Assay 

The Live/Dead assay enables the assessment of nanomaterial toxicity by examining 

cells by confocal microscopy after incubation with varying concentrations of nanomaterials 
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and subsequent incubation with fluorescent markers discriminating between live and dead 

cells. Untreated (viable) cells absorb the calcein AM dye to fluoresce green when excited 

and examined under a microscope. Cells treated with 70% methanol prior to staining show 

no viable cells, all cells fluorescing red after interaction with the ethidium homodimer-1 dye. 

Although the A549 and AGS cell images are acquired at a higher cell density, it is notable 

that the MoS2 nanomaterials at the elevated concentration (10 µg/ml) elicit minor amounts 

of cytotoxicity (Figure 2). In contrast, THP-1 cells show increased cytotoxicity when exposed 

to MoS2 nanomaterials at a concentration of 10 g/ml, resulting in increased cell death 

compared to the untreated control. The equivalent amount of SC surfactant present in 10 

μg/ml of MoS2 was also tested and toxicity was observed when SC is free in solution. 

Although, it should be noted that the effective concentration and molecular organisation of 

SC free in solution and organised on a nanosheet surface is very different, and a direct 

comparison is not possible. While only the effects of the highest concentration (10 μg/ml) 

are presented for each nanomaterial size in Figure 2, a range of concentrations was tested 

with all cell lines (Supplemental 4(a) – (d)) over three time-points (24, 48 and 72 h), 

confirming 1 μg/ml is a sub-lethal and non-toxic concentration over a 24 h time period.   

 

Figure 2 Live/Dead cell viability images of untreated A549, AGS and THP-1 cells and following 24 h exposure to 10 µg/ml of 

three sizes of MoS2 nanomaterial (50 nm, 117 nm and 177 nm). Images were acquired on a Zeiss LSM 5 10 confocal 



microscope under low magnification (x20 objective lens). Green – live cells and red – dead/dying cells. Control samples as 

indicated by N/T – negative treatment and P/T – positive treatment. (Scale bar 50 μm). 

 

Laser Scanning Confocal Microscopy (LSCM) 

In order to explore the cell morphology in greater detail confocal microscopy was 

carried out. It allows for the visualisation and characterisation of cells with increased optical 

resolution compared to conventional light microscopy. Using cytoskeletal stains for F-actin 

(rhodamine phalloidin: red), tubulin (anti-α tubulin alexa 488: green) and a nuclear stain 

(Hoechst: blue), intracellular structures were imaged and analysed to identify any cellular 

and/or morphological changes between treated and untreated cells. Cell adhesion 

characteristics, cytoskeletal and nuclear morphologies were explored using LSCM of cells 

exposed to a concentration of 1 µg/ml. Cells were inspected for characteristics such as loss 

in membrane integrity, cell lysis, shrinkage of cytoplasmic regions or cell fragmentation, as 

an indication of necrosis and/or apoptosis.  

In the case of A549 and AGS cells, there were no signs of necrosis, apoptosis or acute 

toxicity, as evidenced by the absence of cytoplasmic swelling or membrane blebbing, 

following a 24 h exposure (Figure 3). Resting THP-1 cells were spherical in shape, with round 

intact nuclear regions and actin arrangements on the periphery of the cells. Following 

exposure to MoS2, pseudopodial extensions with actin and tubulin rearrangement can be 

observed in differentiated THP-1 cells after a 4 h incubation (Supplemental Figure 4) and an 

increased number of interacting THP-1 cells after a 24 h incubation.  Cells were also exposed 

to the equivalent amount of SC surfactant in 1 μg/ml of MoS2, to confirm that no toxicity, 

necrosis and/or apoptosis has been caused by this surfactant.  

 



 

Figure 3 Confocal microscopic images of untreated THP-1, AGS and A549 cells and following 24 h exposure to 1 µg/ml of 

three different MoS2 nanomaterial sizes (50 nm, 117 nm and 177 nm). Images were acquired on a Zeiss LSM 5 10 confocal 

microscope under oil immersion (63x magnification). Red – F-actin, green – α-tubulin and blue –nucleus. N/T – negative 

treatment control, P/T – positive treatment, SC – sodium cholate (scale bars: 20µm). 

 

Transmission Electron Microscopy (TEM) 

Transmission electron microscopy was used to explore nanomaterial uptake within 

the cells. To observe possible MoS2 uptake with minimal toxic effects the cells were treated 

with 1 μg/ml of MoS2 over a 24 h time period (which was established as a sub-lethal 

concentration using HCS and Live/Dead analysis). A549, AGS and differentiated THP-1 cells 

were exposed to a concentration of 1 µg/ml of MoS2, diluted in the appropriate medium and 

exposed for 4 and 24 h. Representative cellular images in Figure 4, following 24 h incubation 

with MoS2 nanomaterials, confirms uptake of all three sizes of MoS2 in all three cell lines. 

The internalisation of MoS2 material of each of the three sizes can be seen, as indicated by 

the red arrows in the figure. Internalisation of material was also observed at an earlier 

exposure time-point of 4 h (data not shown). In all cases, the nanomaterials appear to be 

located in single membrane vesicles within the cell, consistent with endosomal or lysosomal 

cell trafficking (42). There are no signs of any sub-cellular damage or toxicity.  

 



 

Figure 4 Electron microscopy images of three different cell lines (THP-1 macrophage-like cells, AGS gastric cells and A549 

lung cells) following 24 h exposure to 1 µg/ml of three different sizes of MoS2 (50 nm, 117 nm and 177nm). Nanomaterial 

uptake is observed in all three cells lines and is indicated by the red arrows, where the nanomaterials are located in single 

membrane vesicles.  

 

Endotoxin Detection 

The presence of endotoxin contaminates adsorbed onto nanomaterial surfaces can 

modify the immune and cellular responses following cellular interaction with foreign bodies 

(43). To accurately understand the toxic response of cells to MoS2 nanomaterials, the 

presence of endotoxin must be established. Endotoxin contamination was detected in all 

three MoS2 nanomaterials used, levels in all cases exceeding the lower limit of detection of 

the kit used (0 - 1 EU/ml). MoS2 suspensions at the same concentration were incubated with 

and without the presence of substrate as supplied my manufacturers to determine any 

optical interference caused by nanomaterial’s with the assay. Interference is detected 

following the production of a chromogenic yellow colour in the absence of substrate. 

Notably, no interference was detected when MoS2 suspensions were incubated with the 

assay. Sodium cholate (SC) surfactant also tested positively for the presence of endotoxin 

(Figure 5a). The assay confirms that endotoxin contamination originates from both 

nanomaterials and surfactants. Looking at Figure 5b, it can be seen that, as nanomaterial 



surface area increases, the endotoxin content per surface area, for a fixed exposure 

concentration of 1 g/mL, decreases (44,45). Therefore, a relationship between the quantity 

of endotoxin detected and the available nanomaterial surface edge is indicated, suggesting 

that the edge states are the primary binding sites for endotoxins.   

 

 

Figure 5 Endotoxin detection of nanomaterial samples. a) Illustrates the extrapolated value of endotoxin present in all 

samples. Figure 5b demonstrates the relationship between increasing nanomaterial surface edge and increasing endotoxin 

presence on the surface.    

 

Multiplex assessment of cytokine secretion  

Assessment of cytokine secretion by cells following exposure to a non-toxic 

nanomaterial concentration provides an indication of immune cell activation. A panel of ten 

cytokines were analysed on diluted supernatants of cells exposed to MoS2 nanomaterial 

using an MSD 10-spot ELISA assay. Standards could be measured and calculated accurately, 

although some supernatant samples were above or below the limits of detection. 

Macrophage-like THP-1 cells showed an enhanced cytokine production after exposure to 

nanomaterials when compared to the A549 and AGS cell lines. Activated THP-1 cells showed 

a concentration and size dependent response for IL-6, IL-10, IL-13, TNF-α and IL-1β secretion 

after exposure to MoS2 (Figure 6). A correlation between cytokine levels produced and 

available nanomaterial surface area (including increased endotoxins present) could be 

observed clearly with THP-1 cells. 



 

Figure 6 IL-6, IL-10, IL-13, TNF-α and IL-1β cytokine responses of THP-1 cells as determined by MSD multi-plex 10-spot pro-

inflammatory ELISA kit. Cytokine response shown is recorded from supernatants of THP-1 cells following 24 h exposure to 1 

μg/ml of MoS2 nanomaterial (50 nm, 117 nm and 177 nm). Green – 50 nm, blue – 117 nm, red – 177 nm, grey – controls 

(N/T – Not treated, SC – Sodium Cholate, P/T – positive treated). 

 

BMDC viability as determined by flow cytometry 

Depending on the integrity of the plasma membrane, the Aqua Dead cell stain 

functions by interacting with free amines on the cell surface or in the interior of the cell.  

BMDC’s viability was evaluated to confirm 1 μg/ml is a sub-lethal and non-toxic 

concentration prior to investigating IL-6 cytokine responses from wild-type and TLR4 

defective BMDC’s are primary cells which may be more susceptible to damage from foreign 

material than the immortalized cell lines already tested.  Cell viability was analysed 

following exposure to 1 μg/ml of MoS2 for 24 h. No cell death was evident following 

exposure to three sizes of MoS2 (Figure 7). Exposure to SC solution (60 μg/ml) resulted in a 

minor decrease in cell viability, indicating cell membranes were damaged in a small 

proportion of the population.                                    



 

Figure 7 Cell viability of BMDC’s as determined by LIVE/DEAD fixable aqua dead cell stain and analysed using flow 

cytometry. Viability illustrated is BMDC’s following 24 h exposure to 1 μg/ml of MoS2 nanomaterial (50 nm, 117 nm and 

177 nm). Controls as illustrated are N/T – negative treatment, SC – sodium cholate, Alum – 500 mg/ml, LPS – 

Lipopolysaccharide and CpG – 4 µg/ml. 

 

BMDCs cytokine response 

In wild type (C3H/HeN) dendritic cells, LPS triggers activation via TLR4 signalling 

leading to secretion of cytokines including IL-6. Cell derived from C3H/HeJ mice are 

hyporesponsive to LPS and here are used to provide an indication of LPS contamination in 

MoS2 nanomaterials. The IL-6 cytokine results obtained from BMDC’s further confirm the 

findings from the LAL chromogenic assay, verifying cellular responses are a result of 

interaction with LPS contamination, nanomaterial suspensions and stabilising surfactant. 

Looking at Figure 8, all MoS2 sizes showed trivial IL-6 production following exposure to 1 

μg/ml of MoS2 in HeN cells, demonstrating a minor inflammatory reaction occurs in BMDC’s 

following exposure to a sub-lethal concentration of MoS2. Thus, at a concentration of 1 

µg/ml, TLR4 active HeN cells recognise MoS2 nanosheets as a foreign substance and initiate 

IL-6 cytokine production as an immune response. Up until this, it could not be confirmed 

whether toxicity, cellular responses or inflammation were due to nanomaterials, stabilizing 

surfactant or endotoxin bound to the nanomaterial surface.  Therefore, to determine if cell 

responses are solely because of contaminating endotoxin, HeJ LPS hyporesponsive BMDC’s 

were exposed to the same concentration of MoS2 for 24 h. Figure 8 illustrates that LPS 

loaded MoS2 nanomaterials promote higher levels of cytokine secretion while little or no 

cytokine is produced by LPS hyporesponsive C3H/HeJ cells. Consequently, this reveals 



toxicity and cellular responses are not solely associated to MoS2 nanoflakes but also with 

contaminating LPS on the surface attached during nanomaterial production.  

 

 

Figure 8 IL-6 concentrations  in supernatants from  (C3H/HeN) and LPS hyporesponsive C3H/HeJ BMDC’s  collected 

following a 24 h exposure to 1 μg/ml of MoS2 nanomaterial (50 nm, 117 nm and 177 nm). 

 

Discussion  

Of the sparse cytotoxicity data published for MoS2 nanosheets, toxicity has been 

measured using techniques such as 3-(4, 5-Dimethylthiazol-2-Yl)-2, 5-Diphenyltetrazolium 

Bromide (MTT) as a method to determine the metabolic activity of viable cells. However, it 

should be noted that MTT data on the cytotoxic effects triggered by exposure to 

nanomaterials lack reproducibility, due to the interference of nanomaterials with 

colorimetric assays (46). Therefore, we opted for a more extensive and elaborate toxicity 

screening assessment to accurately confirm and identity sub-lethal concentrations for the 

cell lines being tested. HCS and Live/Dead are high throughput techniques that allow images 

to be acquired and analysed to give a fast output of viable cell number.  

A549 cells are human alveolar basal epithelial cells which function as permeable 

membranes to allow passive diffusion of metabolites through cellular tight junctions. High 

unsaturated fatty acid content is observed in the surfactant of alveolar basal epithelial cells 

which may aid in a protective barrier allowing A549 cells to be the most resistant to cellular 

damage as observed with HCS and Live/Dead (47). AGS are gastric cells that function as a 

protective barrier and aid in the digestion of ingested proteins and fats. These cells are 

robust against the interaction with many molecules and microbes, explaining why a 



decrease in cell number was only observed in AGS cells after incubation with the highest 

MoS2 concentration (10 µg/ml). Monocytes are white blood cells that migrate and 

differentiate into macrophages in tissue due to stimulation of the immune system. 

Macrophages function by recognising antigens on foreign substances and cellular debris to 

engulfing material and subsequently produce anti-inflammatory cytokines (48). Due to the 

function of differentiated THP-1 cells, increased toxicity encountered may be due to 

phagocytosis of nanosheets with the smallest MoS2 material causing the highest amount of 

cell damage. Nuclear morphology in differentiated THP-1 cells can vary in shape and size, 

which may contribute to the variability in cell responses following analysis of cells stained 

with a nuclear stain for HCS. Live/Dead experimentation act as a further confirmation test 

showing 1 μg/ml is sub-lethal and non-toxic to all cells lines following 24 h exposure. A 

nanomaterial size-dependent reaction is observed with AGS and THP-1 cells showing the 

higher bio-incompatibility with MoS2 sheets of 117 nm in size in AGS cells, while the 50 nm 

MoS2 shows the highest toxicity in THP-1 cells. Therefore, no well-defined correlation of 

cellular response with physicochemical properties of the nanomaterials was apparent after 

incubation of three nanomaterial sizes in three cells lines, which leads to the question of 

whether foreign or non-nanomaterial substances are causing the varying cellular response.    

Following incubation with 1 µg/ml, the cellular morphology and interaction with 

MoS2 was visualised using LSCM and florescent probes. Cellular morphology will change 

under environmental stress, which may cause loss in membrane integrity or membrane 

blebbing. Therefore, LSCM provides a first indication of whether necrosis and/or apoptosis 

is induced following exposure to sub-lethal concentrations of MoS2 (49,50). Nuclear 

morphology appears normal in all cell lines tested following 4 and 24 h incubation with 1 

µg/ml of MoS2. F-actin and α-tubulin filaments are found in the cytoplasmic region of cells. 

Actin plays a crucial role in maintaining cell shape/adhesion and damage in their structure 

can prevent cell function immensely. During mitosis and cell division, there is an active 

rearrangement of tubulin structures to aid in appropriate transport and distribution of DNA. 

Staining for F-actin and α-tubulin allows the visualisation of cytoskeletal rearrangements 

due to exposure to nanomaterials. A549 and AGS cells treated with nanomaterials show no 

change in cellular morphology, on comparison to untreated cells. Resting macrophages are 

circular in shape, as shown in Figure 3, with actin (red) visualized at the peripheral of the 



cell. Core to macrophage function, pseudopodial extensions are noticeably present after 

exposure to all sizes of MoS2 with actin and tubulin (green) rearrangement prominent. 

Images acquired through LSCM further illustrate the clarification as to why we have a cell 

type-dependent toxicity.  

TEM was used for the visualisation of cells after 24 h incubation with nanomaterial 

to investigate the uptake and possible cellular responses after interaction with MoS2 

nanosheets. Here we show, for the first time, internalisation of MoS2 of three sizes was 

observed in all three cell lines, as models for three different exposure routes. Due to the 

cellular function of macrophages, it was expected that THP-1 cells would show the highest 

rate of internalisation, although no differences could be observed between the cell lines 

tested. Notably, however, true in vivo exposure scenarios should consider the role of local 

macrophages which would potentially prevent the exposure of non-phagocytic cells. 

Previously published data would suggest nanomaterial of 50 nm would have the greatest 

affect although no differences could be observed in this study between different cell lines or 

nanomaterial sizes (51). 

Endotoxin contamination of nanomaterials can occur at synthesis, handling or 

fabrication processing steps with increased adsorption of pollutants and organic material 

with increasing surface area present on nanomaterial surface. Therefore, it is of great 

importance when assessing the toxicity of nanoparticles to distinguish between toxicity 

from MoS2 nanoparticles or endotoxin present on the surface (37). The main contaminant 

contributing to high levels of endotoxin comes from the cell wall of gram negative bacteria 

such as Escherichia coli (E.coli) and is commonly known as LPS. LPS contains a lipid A 

component which is responsible for increased inflammatory cytokine secretion by 

macrophages and dendritic cells after the binding of LPS to the toll-like receptor 4 (TLR4) 

and MD2 complexes on cell surfaces (38). Mainly, the lipid A moiety component is a 

stimulator of the inflammatory immune system causing chronic inflammation or sepsis in 

autoimmune suppressed individuals and therefore controlling and/or eradicating 

contamination is vital to preventing infections in this scenario (52).  

Endotoxin presence was detected in large quantities in all three sizes of MoS2 

material used throughout this study. These results further illustrate the realistic levels of 



endotoxin present on 2D MoS2 sheets manufactured in large scale production. The 

relationship between size and the potential surface area for binding with foreign substances 

is evident in Figure 5a showing increasing endotoxin presence with decreasing nanomaterial 

size. MoS2 sheets with an LPS corona bound to the nanomaterial surface, denotes a cellular 

response is most likely from the LPS coating or the stabilising surfactant. LPS can bind to 

MoS2 sheets in a multi-directional format aiding in a multitude of nanoparticle sizes differing 

from each other consequentially altering the cellular response (37,43). Estimated sizes of 

each nanomaterial are from the same stock samples analysed for endotoxin detection.  

One method of removing the endotoxin from nanomaterial suspensions is to heat 

suspensions to very high temperatures for extended periods of time, although this method 

cannot be used for 2D nanomaterials, as it will alter nanosheet structures, causing  

destabilisation and produce material characteristics different to the original (53). Anti-

biotics such as polymyxin b sulfate cannot be used for endotoxin removal, as altering the 

salt concentration for samples stored in sodium cholate causes destabilisation and 

flocculation of MoS2 sheets. Therefore, when it is crucial to have endotoxin free samples, as 

those used for in-vivo applications such as contrast imaging agents or drug delivery, 

endotoxin free reagents must be used from the outset, extra care being taken during 

synthesis. New emerging therapies of using polymer coated MoS2 sheets as administered 

gene therapies for silencing up-regulated genes have shown little toxicity at high 

concentrations, although the importance for endotoxin free samples is evident for these 

forms of applications (15). For the purpose of MoS2 used in electronic devices, the need for 

endotoxin free samples may not be so critical, as samples will not be used in-vivo and the 

method for large scale production cannot eliminate the endotoxin during mass production. 

The cellular transport and final destination of MoS2 nanosheets and/or by-products 

will differ in pathway activation and cytokine production. Due to the limitations of using a 

multi-test ELISA plate, a selection of cytokines were above or below the limits of detection, 

explaining why different cytokines are displayed for each cell line. A panel of cytokines 

produced by A549 and AGS cells as illustrated in Supplemental Figure 5(a-c) demonstrate 

trivial production when compared to untreated control samples. This further confirms the 

robustness and stealth of each cell line when compared to THP-1 cells as demonstrated in 

Live/Dead and HCS results. TNF-α is produced by a multitude of cells, but predominantly 



macrophages, building the first line of defence against foreign substances while 

upregulating cytokines and prostaglandins (54). Interestingly, Figure 6 demonstrates a size-

dependent reaction in macrophages following exposure to 1 μg/ml of MoS2, the smallest 

size stimulating the highest cytokine response. This size-dependent reaction may be 

attributed to the increased endotoxin on the surface of nanomaterials as nanomaterial size 

decreases as seen in Figure 5b, and, as a consequence, altering the nanomaterial size can 

affect the cellular reaction (55).  

Even though the samples tested throughout this study mimic the realistic exposure 

in the manufacturing environment, the clarification that cytokine responses are from LPS or 

the nanomaterial itself need to be investigated. Therefore, wild-type and TLR4  

hyporesponsive  BMDC’s cells can aid in distinguishing if the cytokine response is from the 

LPS contamination. Cell viability was tested to confirm 1 μg/ml is a sub-lethal and non-toxic 

concentration to primary BMDC’s. Little or/no cell death was observed as seen in Figure 7. 

SC stabilising surfactant did cause a minor decrease in cell number although the sample 

contains SC free in solution. SC binds to the surface of MoS2 aiding in nanosheet stabilisation 

and reducing the available amount of active binding sites. Polymyxin B sulfate has been 

used in previous studies for the effective removal of endotoxin within nanomaterial samples 

although this method cannot be applied to our material due to nanosheets destabilisation. 

Wild-type BMDC’s show a low level of IL-6 production when exposed to three sizes of MoS2 

nanomaterial following a 24 h incubation. When the TLR4 defective HeJ cells are exposed to 

the same samples, there is a decrease and/or abrogation in IL-6 secretion from all sizes 

tested (Figure 8). This reveals the LPS content is a major contributor to a proportion of the 

cytotoxicity and cytokine inflammatory responses following incubation with MoS2 

nanomaterial. Therefore, this illustrates the importance of understanding the precise bio-

interaction of cells with nanomaterials, surfactants or contaminants.   

 

Conclusion 

The uptake, cytotoxicity and inflammatory response of three representative cell line 

mimicking possible exposure routes (inhalation, A549; ingestion, AGS; monocyte, THP-1) to 

MoS2 flakes of three sizes was explored here. Sub-lethal concentrations were determined 



using HCS and a live/dead assay which indicated a non-toxic concentration of ≤1 μg/ml. TEM 

confirmed the uptake of all MoS2 nanomaterials in all three cell lines after 24 h up to a dose 

of 1 μg/ml. The nanomaterials were ultimately located in single membrane bound vesicles.  

Confocal microscopy showed no signs of necrosis and/or apoptosis at this exposure. 

Endotoxin presence was evaluated to understand the cellular response more precisely, 

results showed as nanomaterial size decreases, the available surface edge increases and 

ultimately so does the quantity of LPS present. A relationship between the quantity of 

endotoxin detected and the available nanomaterial surface edge was revealed.   

Inflammatory cytokines measured using a 10-spot ELISA proved that cells interact with MoS2 

in a nanoparticle size and cell dependent manner. IL-6 cytokine production in HeJ and HeN 

BMDC’s confirmed that the detected cellular responses can be induced by LPS 

contamination, MoS2 sheets, stabilizing surfactant and possibly other yet unknown 

contaminants. Therefore, this comprehensive study provides a better understanding to the 

bio-interaction of MoS2 material which is produced in the manufacturing environment in 

non-sterile conditions, with results confirming MoS2 nanoflakes of three sizes at a 

concentration of 1 μg/ml are non-toxic in three cell lines even in the presence of LPS 

contamination.     
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Supplemental Information 



 

Supplemental 1: Material characterization of MoS2 material: (a) UV-vis spectra of 50 nm (blue), 117 nm (red) and 177 nm 

(black) nanomaterial. Supplemental figure 1(b) – (d) Transmission electron microscopy images of MoS2 flakes stabilised in 

water by sodium cholate. TEM images acquired by JEOL 2100 operated at 200kV.   

 

 

Supplemental 2: Representative UV-Vis spectra of MoS2 material of three sizes following dispersion in surfactant, 

supplemented cell culture medium and high salt content. Supplemental figure 2(a) dispersion in sodium cholate, 2(b) 

dispersion in supplemented RPMI, 2(c) 104 nm MoS2 incubated in SC (black) and RPMI (red) for 24 h, 2(d) 104 nm MoS2 

dispersion in SC and recorded following 0, 48, 72 and 96 h incubation, 2(e) 104 nm MoS2 dispersed in supplemented RPMI 



and recorded following 0, 48, 72 and 96 h incubation, 2(f) 104 nm MoS2 dispersion in sodium chloride (NaCl 40 mg/ml) to 

induce aggregation and measured following 24 h incubation.    

 

 

 

Supplemental 3a: Live/Dead viability images of untreated A549 cells following 24, 48 and 72 h exposure to 0.5, 2 and 10 

µg/ml of three sizes of MoS2 nanomaterials (50 nm, 117 nm and 177 nm). Images were acquired on a Zeiss LSM 5 10 

confocal microscope under low magnification (x20 objective lens). Green – live cells and red – dead/dying cells. Control 

samples as indicated N/T – negative control and P/T – positive control.  

 

 

 



 

 

 

 

Supplemental 3b: Live/Dead viability images of untreated AGS cells following 24, 48 and 72 h exposure to 0.5, 2 and 10 

µg/ml of three sizes of MoS2 nanomaterials (50 nm, 117 nm and 177 nm). Images were acquired on a Zeiss LSM 5 10 

confocal microscope under low magnification (x20 objective lens). Green – live cells and red – dead/dying cells. Control 

samples as indicated N/T – negative control and P/T – positive control.  

 

 

 



 

 

 

 

Supplemental 3c: Live/Dead viability images of untreated THP-1 cells following 24, 48 and 72 h exposure to 0.5, 2 and 10 

µg/ml of three sizes of MoS2 nanomaterials (50 nm, 117 nm and 177 nm). Images were acquired on a Zeiss LSM 5 10 

confocal microscope under low magnification (x20 objective lens). Green – live cells and red – dead/dying cells. Control 

samples as indicated N/T – negative control and P/T – positive control.  

 

 

 

Size Concentration (µg/ml) Time  A549 AGS THP-1 



N/T 100.00 100.00 100.00 

P/T 0.00 0.00 2.41 

50 nm 

0.5 

24h 98.59 99.73 92.29 

48h 96.92 98.78 96.29 

72h 99.52 99.54 96.04 

2 

24h 99.67 99.78 87.44 

48h 96.77 99.37 99.99 

72h 99.37 99.60 77.35 

10 

24h 99.84 95.76 64.60 

48h 99.62 95.89 35.28 

72h 96.90 93.40 14.11 

            

Size Concentration (µg/ml) Time  A549 AGS THP-1 

N/T 100.00 100.00 100.00 

P/T 0.00 0.00 2.41 

117 nm 

0.5 

24h 99.02 99.85 97.06 

48h 99.75 100.01 92.42 

72h 98.31 99.48 98.44 

2 

24h 98.35 99.54 95.76 

48h 100.11 99.74 96.01 

72h 99.72 99.58 100.61 

10 

24h 99.79 97.45 92.92 

48h 98.11 92.95 95.03 

72h 99.03 97.63 88.43 

            

Size Concentration (µg/ml) Time  A549 AGS THP-1 

N/T 100.00 100.00 100.00 

P/T 0.00 0.00 2.41 

177 nm 

0.5 

24h 99.51 99.81 89.28 

48h 98.03 99.57 101.21 

72h 98.12 99.92 70.08 

2 

24h 99.84 99.89 97.83 

48h 99.41 99.63 102.09 

72h 98.49 99.91 90.56 

10 

24h 96.83 99.11 94.33 

48h 98.30 99.77 99.57 

72h 98.78 99.49 75.50 
 

 

Supplemental 3d: Live/Dead viability table  of untreated A549, AGS and THP-1 cells following exposure to 24, 48 and 72 h 

exposure to 0.5, 2 and 10 µg/ml of three sizes of MoS2 nanomaterials (50 nm, 117 nm and 177 nm). Control samples as 

indicated N/T – negative control and P/T – positive control. Cell viability percentage has been normalized to negative 

controls for each cell line. Cell viability as quantified by Image J.  

 



 

Supplemental 4: Confocal microscopic images of untreated THP-1, AGS and A549 cells and following 4 h exposure to 1 

µg/ml of three different MoS2 nanomaterial sizes (50 nm, 117 nm and 177 nm). Images were acquired on a Zeiss LSM 5 10 

confocal microscope under oil immersion (63x magnification). Red – F-actin, green – α-tubulin and blue –nucleus. N/T – 

negative treatment control, P/T – positive treatment, SC – sodium cholate (scale bars: 20µm). 

 

 

Supplemental 5A: IL-4, IL-6, IL-8, IL-13, TNF-α and IL-1β cytokine responses of A549 cells as determined by MSD multi-plex 

10-spot inflammatory ELISA kit. Cytokine response shown is recorded from supernatants of A549 cells following 24 h 

exposure to 1 μg/ml of MoS2 nanomaterial (50 nm, 117 nm and 177 nm). Green – 50 nm, blue – 117 nm, red – 177 nm, 

grey – controls (N/T – not treated, SC – sodium cholate, P/T – positive treatment).   

 



 

Supplemental 5B: IL-4 and IL-8 cytokine responses of AGS cells as determined by MSD multi-plex 10-spot inflammatory 

ELISA kit. Cytokine response shown is recorded from supernatants of AGS cells following 24 h exposure to 1 μg/ml of MoS2 

nanomaterial (50 nm, 117 nm and 177 nm). Green – 50 nm, blue – 117 nm, red – 177 nm, grey – controls (N/T – not 

treated, SC – sodium cholate, P/T – positive treatment).   

 

 

Supplemental 5C: TNF-α and IL-6 cytokine responses of THP-1 and A549 cells as determined by MSD multi-plex 10-spot 

inflammatory ELISA kit. Cytokine response shown is recorded from supernatants of cells following 24 h exposure to a range 

of concentrations (1, 2 and 5 μg/ml) of MoS2 nanomaterial (50 nm, 117 nm and 177 nm). A-B: THP-1 cell response, C-D: 

A549 cell response. Green – 50 nm, blue – 117 nm, red – 177 nm, grey – controls (N/T – Not treated, SC – Sodium Cholate, 

P/T – positive treatment).   
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