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Programming by demonstration (PbD) is a promising method for robots to learn from direct, non-expert human
interaction. This approach enables the interactive transfer of human skills to the robot. As the non-expert user is at
the center of PbD, the efficacy of the learned skill is largely dependent on the demonstrations provided. Although
PbD methods have been extensively developed and validated in the field of robotics, there has been inadequate
confirmation of their effectiveness from the perspective of human teachability. To address this gap, we propose to
experimentally investigate the impact of communicating robot learning process on the efficacy of the transferred
skills. This paper outlines the preliminary steps in designing experiments to identify human-related performance
shaping factors in PbD. The purpose of this article is to establish the foundation for an experimental study that
focuses on the human component in PbD algorithms and provides new insights into human factors in PbD design.

Keywords: Programming By Demonstration, Robotics, Human Factors, Human Robot Interaction

1. Introduction

Looking back over the past decade, it is evident

that intelligent robotic systems have the potential

to improve ergonomics on factory floors by assist-

ing humans in the production process. However,

as the industry moves towards mass customiza-

tion, the myriad of skills a robot is expected to

hone will be impractical to pre-program through

traditional methods. To this end, Programming by

demonstration (PbD), where an operator can teach

complex robot tasks through demonstration, has

garnered considerable attention. PbD is based on

the idea that similar to humans who learn by ob-

serving their environment, robots can also learn by

demonstrations as shown in Fig. 1. PbD is aimed

to make cyber-physical systems more accessible

to non-experts as it does not require programming

expertise.

In the field of PbD, researchers primarily focus

on ensuring efficient demonstration acquisition

and generalized execution of skills. While tech-

nological advances have significantly improved

robotic performance, however, the robot’s learned

behavior becomes a black box, making it difficult

for non-expert demonstrators to discern how and

what it has learned during the teaching process.

In this context, researchers propose developing a

more sophisticated model to handle ambiguous
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demonstrations Sena et al. (2019); Sakr et al.

(2022); however, an alternative solution is to take

advantage of the natural adaptability of the human

demonstrator to improve the performance of the

system.

Since the efficacy of the learned policy depends

on the quality of interactions and data provided

by humans Sakr et al. (2022), it is important to

assess how communicating the robot’s learning

to nonexpert teachers can impact their behavior

specifically in terms of their ability to teach and

handle the workload. Therefore, to determine the

impact of communicating the robot’s learning to

non-expert demonstrators, we propose an empir-

ical study that facilitates the formal assessment

of human performance based on robot learning

knowledge, considering state-of-the-art methods.

The study adopted a multifaceted approach, with

the high-level goal of quantifying teaching effi-

cacy across varying levels of knowledge regard-

ing the robot’s mental model and assessing the

demonstrator’s workload, all within the frame-

work of PbD.

PbD provides several communication modali-

ties for transmitting training data from humans

to the robot, including kinesthetic teaching, hap-

tics, speech, and augmented reality Müller et al.

(2021). This study uses a kinesthetic interface for

robot teaching, where a human teacher demon-

strates the task by physically guiding the robot

manipulator. The use of kinesthetic teaching in

PbD offers several advantages, including the elim-

ination of correspondence problems due to direct

guidance, and demonstrations are limited to the

kinematic limit of the robot. Also, there is no need

for extra instrumentation beyond the robot’s sen-

sors and actuators Mahler and Goldberg (2017).

The article is organized into the following sec-

tions: the background and related work of PbD

and human factors are presented in Section II;

Section III discusses the study design, includ-

ing apparatus and experimental setup. Section IV

provides the potential plan for the data analysis.

Finally, Section V concludes the proposal with

future implications.

Observa on Learning Ac on

Environment

Sensors Task Learning Ac on

Environment

Sensors

Fig. 1.: Human and robot task learning cycle.

2. Background and Related Work

Extensive studies have been carried out on robot

learning Jaquier et al. (2020); Duque et al. (2019);

Arduengo et al. (2023); Xiao et al. (2020), with

special emphasis on policy development Kober

and Peters (2008); Mahler and Goldberg (2017);

Jang et al. (2022). To gain an understanding on

the subject of robot learning, we suggest refer-

ring to Knox et al. (2013); Ravichandar et al.

(2020). On the other hand, fewer studies have been

found on human teaching to robots which focus

on human performance. Vollmer and Schilling-

mann (2018) explored teacher’s role in PbD. They

addressed the strengths and drawbacks of each

approach used to study human-teacher behav-

ior in human-robot interaction, including behav-

ioral analysis and physiological measurements.

Sena et al. (2019) introduced a machine learning

model to measure and analyze teaching behavior

in human-robot interaction.

In Knox et al. (2013), the authors compare the

efficacy of human teachers to alternative tech-

niques for providing robots with examples and

feedback in PbD. The study demonstrates that

human teachers are more effective than alternative

approaches, although the authors acknowledge the

limits of using human teachers, such as the possi-

bility of human error and ambiguous demonstra-

tions. Therefore, assessing the human component

for better understanding and applicability of PbD
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within the industry is a feasible solution. In ad-

dition, training human teachers to teach robots

can also create effective demonstrations for the

learners, which can assist in refining the robot

learning model. In this regard, Cederborg et al.

(2015) and Weiss et al. (2009) published their

work focusing on the different aspects of training

human teachers.

Researchers in the HRI domains have long fo-

cused on understanding human physical and cog-

nitive dynamics as they relate to safety and perfor-

mance in a collaborative setting Lorenzini et al.

(2023). In scenarios where humans are assigned

the role of teacher to a cyber-physical student,

the added responsibility of the learner’s perfor-

mance places a greater burden on their shoulders.

Teaching errors arise from unclear input and poor

demonstrations, and other human-teacher dynam-

ics can also influence robot policy development.

Therefore, it is equally important to assess the

dynamics mentioned above in addition to teaching

efficacy based on the robot learning model. Pro-

viding a learning model to teachers can affect their

behavior by changing how they approach teaching

tasks.

Communicating Robot Learning to Humans
in PbD. To improve communication with robots,

it is essential to have a comprehensive under-

standing of their learning process. By communi-

cating how robots interpret human input, demon-

strators can adjust their approach and perform

teaching tasks more effectively. While communi-

cating human intention for improving robot per-

formance has been widely acknowledged Wang

et al. (2018), the human side of the equation, espe-

cially in PbD, requires further attention. A recent

study on the sharing of robot conventions through

shared autonomy highlights the requirement to

provide a robot learning model to humans for pol-

icy development Jonnavittula and Losey (2022).

However, the study does not directly contribute

in this regard. The authors of Kwon et al. (2018)

and Ma et al. (2022) proposed communication

methods that enable learners to inform teachers

what they have learned or are yet to learn, but

these studies do not address the impact of com-

munication on the demonstrator’s performance.

Measuring Human Teaching Role. In the field

of human-robot interaction (HRI), several efforts

Lorenzini et al. (2023) to model and assess hu-

man behavior in collaboration or interaction with

robots. However, in teaching new skills through

PbD, the emphasis is persistently placed on the

robot’s performance.

While numerous works have recognized the

importance of the demonstrator or teacher in the

learning process as an active contributor, yet the

importance of human factors in PbD remains un-

explored. In this context, Sena and Howard (2020)

have highlighted the importance of the human role

in the teaching process and proposed a frame-

work to quantify human behavior; however, their

framework is limited to a set of metrics to as-

sess the effectiveness of teaching behavior and

does not compare with existing human behavior

metrics. Furthermore, the experiments must cover

the broader dynamics of human behavior in the

teaching process. To gain insight into the metrics

and techniques used to evaluate human behavior

with robots, we refer the reader to Vollmer and

Schillingmann (2018). The authors comprehen-

sively review the existing literature and method-

ologies to identify best practices for evaluating

human behavior.

Given the advantages of including the demon-

strator’s role in PbD and communicating robot

learning to humans for effective demonstration,

it is imperative to evaluate the human dynamics

within the framework and obtain a more detailed

understanding of the human teaching and robot

learning process.

3. The User Study

The study intends to adopt a mixed method strat-

egy, combining quantitative and qualitative data

collection techniques as shown in Fig. 2, for hu-

man behavior assessment within the PbD frame-

work. The research design consists of a pre-test

and post-test experimental design. Participants

will carry out predefined tasks (discussed 3.2) on

the experimental setup shown in Fig. 3, while be-

ing monitored for different performance-shaping

factors.
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Fig. 2.: User Study Design

3.1. Experimental Setup

The experimental setup, as shown in Fig. 3 is

based in Irish Manufacturing Research’s pilot fac-

tory line and uses a UR10e manipulator with

a gravity compensation controller and an RGB-

D vision sensor with Aruco markers for object

detection. The software implementation employs

dynamic movement primitives Ude et al. (2014)

combined with behavior trees Iovino et al. (2022).

In addition, an intuitive human-machine inter-

face (HMI) is designed to facilitate data collec-

tion, allowing participants to initiate and terminate

the demonstration. Additionally,a vision sensor

is used to capture human motion during the ex-

periment. For cognitive data collection, a head-

mounted eye tracker with a 100 Hz sampling rate

is used to collect pupil diameter.

3.2. Task Design and Implementation

To evaluate the demonstrator’s performance in

accordance with the robot learning model, two

distinct tasks are designed illustrated in Fig. 4.

Both tasks require the spatio-temporal coordina-

tion of the object’s placement in 3-D space. The

participant is required to demonstrate each task

by picking up the object from a random location,

placing it to the target location in task A, and

sliding the object onto the slider in Task B.

Task A: Object-Targeted Placement- Task A

drives the robot manipulator to pick an object

from its initial position (x1, y1, z1) to a targeted

position (x2, y2, z2). To perform this task, the

participant should control the gripper position (g)

and orientation (qx, qy, qz, qw), as well as the end

effector position (xe, ye, ze) and the joint angles

of the manipulator vector O.
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Camera 1

UR10e Robot

Gripper controller

Robotiq Gripper

Object
Camera 2

Fig. 3.: Experimental set-up of the proposed user-

study. The setup consists of an UR10e robot

equipped with Robotiq-3f gripper. Two cameras,

to track the object in the workspace and to cap-

ture human motion respectively, are used. A cus-

tomised button to control the gripper is used.

Task B: Object Sliding - Similarly, task B

requires the participant to move an object from a

flat surface onto a slider and slide it using the robot

manipulator. The initial position of the object and

the gripper’s position, orientation, and force defi-

nitions are identical to those of task A. However,

the slider’s position and orientation are described

by a 3x3 rotation matrix Rs and a vector Ts.

3.3. Course of the Experiment

The experiments will be executed by following

below procedures in different stages:

A) Preparatory Stage- Prior to starting the

study, participants receive clear instructions in En-

glish and a consent form, as well as a preliminary

survey to gauge their level of interaction with

the robot. In addition, participants are informed

of the data sources that will be recorded during

the execution. To ensure a thorough understanding

of the programming tasks, participants are given

the opportunity to ask questions before execution.

These measures aim to eliminate any sources of

bias or confusion and acquire high-quality data

that can be rigorously and precisely evaluated. We

ensure that the experimental setup, like the basic

device configurations, including the eye tracker

and motion tracking system, complies with ISO

10218 and ISO/TS 15066.

Fig. 4.: Task 1 (upper): The non-expert will have

to pick and place an object from and to a desig-

nated pose. Task 2 (lower): The non-expert user

have to pick an object and place it on the slide. The

user has to deduce the end-pose to successfully

slide the object.

B) Study Execution Participants must per-

form designed tasks under two conditions, namely

Condition-I and Condition II, to study how teach-

ers perceive and comprehend robot learning pro-

cess for the PbD method. The method is among

subjects, where participants are divided to two

groups, the one group receive on critical inputs for

robotic learning perspective and the other group

without training. Each group must perform pro-

gramming tasks under both conditions. In Con-

dition I, participants must perform programming

tasks based on general instructions provided at

the start of the experiment. After, participants in

the other group will receive additional instructions

about the mental model of the robot, including

how it effectively learns and behaves in the future
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based on demonstrations. The approach aims to

evaluate how participants develop mental models

of learning robots and to compare their perfor-

mance.

C) Post-Task Assessment and Feedback
After executing the assigned tasks, the partici-

pants proceed to the post-task evaluation and feed-

back phase for subjective data collection. They are

asked to undertake the NASA Task Load Index

(TLX) questionnaire to assess their mental work-

load during task performance. Additionally, they

are asked to use a 5-point Likert-scale to score

their kinesthetic interaction with the robot. The

information gathered from these evaluations seeks

to provide useful insights into the participants’

perceptions of the task’s difficulty and the robot

interaction’s efficacy.

D) Debriefing Finally, the participants will be

informed of the true objectives of the experiments

and will have the opportunity to express their

concerns.

3.4. Goals and Research Questions

This study aims to assess the efficacy of the PbD

approach from a human perspective, by assess-

ing the teacher’s behavior with the robot’s under-

standing of guided input. The following research

questions will be investigated to achieve our ob-

jectives:

RQ 1: Does teaching a human with basic train-

ing in critical inputs for robotic learning from a

perspective of a cyber physical agent lead to faster

and more accurate demonstrations by the human

and better performance by the robotic arm?

Generally, the standard PbD process involves

two stages: The demonstration phase, where a

human teacher demonstrates a specific task, and

a policy-deriving stage, where the robot learner

learns the policy from the demonstrated exam-

ples toward the intended task outcomesMa et al.

(2022). In the aforementioned stages of PbD, the

human demonstrator may not have full awareness

of how the robot will interpret his input, which can

negatively impact the performance of the teacher

and the learner. This can result in incorrect poli-

cies learned. As mentioned above, the existing

solution focuses on improving the performance of

the learner by filtering the demonstration to re-

move misleading examples to improve the quality

of the learned policy Sakr et al. (2022) Mahler and

Goldberg (2017).

A user study is designed to address this research

question by providing critical inputs for robotic

learning from a cyber-physical agent perspective

to the demonstrator and expecting experimental

groups with robot learning knowledge to show

increased teaching performance through demon-

stration data, including object positions, gripper’s

position and orientation, end effector’s position,

and joint angles of the manipulator.

RQ 2 Can the workload experienced by the op-

erator during an interactive task be significantly

reduced by providing a shared operational picture

for required inputs and feedback between a human

teacher and a cyber physical agent?

When humans are responsible for teaching a

cyber-physical student, the added pressure of en-

suring the student’s performance can be over-

whelming. Our hypothesis is that by communi-

cating robot learning strategies and educating hu-

mans on how changes in a robot’s ”policy” pa-

rameters affect its behavior, we can help teachers

build an accurate mental model of the learner,

reducing the workload of the human demonstrator.

Previous studies have shown that humans who

have a more accurate mental model of a robot

tend to perform better Ma et al. (2022), which is

particularly important when humans are in the role

of a demonstrator. Comparatively, little emphasis

has been given to how well humans perform as

a demonstrator, although the current research has

evaluated different human factors and highlighted

the significant role of humans in HRI domain.

To test this hypothesis, physical and cognitive

data are collected from the user: whole-body mo-

tion capture kinematic data such as joint angles,

limb position, and trajectories, and eye tracking

with a pupilometer. Although the experimental

setup and tasks used in both research questions

are similar, this question requires the use of ad-

ditional subjective and objective tools. Details on

the experimental tools used to collect objective

measures of human dynamics can be found in 3.1.
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4. Conclusion and Future Implications

This ongoing work seeks to understand human

behavior and performance within PbD through

communication of robot learning. The experimen-

tal setup and research objectives proposed in this

paper offer a solid foundation for designing ex-

periments to evaluate human factors within a PbD

framework.

Acknowledging the importance of understand-

ing human roles in teaching robots, this study

has significant implications for future research.

Firstly, this research paves the path for designing

experiments to investigate the impact of commu-

nicating critical inputs related to robots to teach

them effectively. Second, it suggests the devel-

opment of novel PbD approaches that consider

human dynamics. Lastly, it demonstrates the pos-

sibility of enhancing robots’ ability to learn from

non-expert human demonstrators by incorporating

critical inputs, resulting in more intuitive and ef-

fective human-robot collaboration.
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