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In recent years a number of red-blood-cell (RBC)models have been proposed using spring networks to represent
the RBCmembrane. Some results predicted by these models agreewell with experimental measurements. How-
ever, the suitability of thesemembranemodels has been questioned. The RBCmembrane, like a continuummem-
brane, ismechanically isotropic throughout its surface, but themechanical properties of a spring network vary on
the network surface and change with deformation. In this work spring-network mechanics are investigated in
large deformation for the first time via an assessment of the effect of network parameters, i.e. network mesh,
spring type and surface constraint. It is found that a spring network is conditionally equivalent to a continuum
membrane. In addition, spring networks are employed for RBC modelling to replicate the optical tweezers test.
It is found that a spring network is sufficient for modelling the RBC membrane but strain-hardening springs
are required. Moreover, the deformation profile of a spring network is presented for the first time via the degree
of shear. It is found that spring-network deformation approaches continuous as the mesh density increases.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Blood is a suspension of cellular elements, including red blood cells
(RBCs), white blood cells and platelets. RBCs dominate in terms of
population with 5 × 106/mm3 and account for 99% of all suspended
elements. A healthy RBC is biconcave in shape with a diameter of
8 μm and a thickness of 2 μm. Structurally, a RBC may be considered
as a liquid-coremembrane-bounded capsule. The liquid, known as cyto-
plasm, is generally considered as an incompressible Newtonian fluid.
The membrane has a dual-layer structure consisting of a plasma mem-
brane and a cytoskeleton. The plasma membrane is a continuous layer
mainly formed by a lipid bilayer while the cytoskeleton is a mesh-like
elastic network. Mechanically, the plasmamembrane is mainly respon-
sible for themembrane surface incompressibility, bending and viscosity
and the cytoskeleton mainly for the in-plane membrane shearing.

Due to the desire to understand microcirculation haemodynamics
and RBC disorders, an increasing interest has been shown in RBC
mechanics. However, an experiment-based study of RBC mechanics is
usually not feasible because of the small RBC dimensions. Thus, numer-
ical modelling emerges as a good alternative. The difficulty with RBC
modelling is the accurate representation of the membrane mechanics.
Currently, most membrane models are either based on continuum
constitutive laws (continuum membrane models) or spring networks
(discrete membrane models). A number of continuum membrane

models have been proposed for the RBC membrane since the 1970s,
e.g. Skalakmembrane [1] and neo-Hookeanmembrane [2]. A continuum
membrane model assumes the homogeneity of mechanical properties
throughout the membrane surface. Due to the well-established theory
of continuum mechanics, continuum RBC models are well developed
for the study of cellmechanics [3–5], haemodynamics [6–8] and RBC dis-
orders [9]. Discrete membrane models became popular in the late 1990s
[10,11] due to their simplicity and similarity to the cytoskeleton. A num-
ber of discrete RBC models yield a good representation of the cell
mechanics [12] and capture the characteristics of the cell's response in
flow [13–16]. However, discrete RBC models have been criticised for
their anisotropic membrane properties [17,18], i.e. spring-network
properties.

The study of spring-network mechanics is well reviewed in a
number of papers. Gelder [19] showed that a spring network cannot
represent a continuummembrane model exactly, but a spring network
can accurately represent an isotropic continuummembrane in small de-
formation if the spring constant is appropriately modified. Hansen et al.
reviewed the mechanics of unstructured spring networks [20] and the
impact of the networks' topology on their mechanical properties [21].
However, both studies were restricted to small deformation and
linear-spring types. Delingette [22] proposed an unusual spring type,
i.e. a bi-quadratic spring which includes tensile and angular stiffness,
for spring-network simulation. This new spring type showed the great
potential of spring networks for accurate 2D membrane and 3D solid
simulations [23]. Omori et al. [18] performed a comparison between
discrete and continuummembrane models both for 2D and 3D applica-
tions. The papermade the important conclusion that a spring network is
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mechanically anisotropic and strain-softening, and thus is not suitable
for modelling strain-hardening material, e.g. the RBC membrane.

The objective of this work is to investigate spring-network mechan-
ics, and in particular the effect of network parameters which is fre-
quently neglected in membrane modelling using spring networks.
Critically, the suitability of a spring network for RBCmodelling is exam-
ined. In Section 2, the effect of the network parameters on the mechan-
ics of planar spring networks is investigated. In this work four spring
element types are employed to construct spring networks: linear,
truss, neo-Hookean (NH) [24] and worm-like-chains (WLC) [11]. In
Section 3, these spring networks are used to construct discrete RBC
models. The models are subsequently employed to replicate the optical
tweezers (OT) test. In this work, membrane fluidity (viscosity) is
ignored as we are interested only in the equilibrium state of deforma-
tion. Also, the continuum constitutive laws for the continuum mem-
brane models are not discussed in detail here; a detailed description
can be found in Barthès-Biesel et al. [25].

2. Spring-network deformation and elasticity

In this section the effect of network parameters, i.e. network
mesh, spring element type and surface constraint, on spring-
network mechanics is investigated. Meanwhile, the network defor-
mation is compared to deformation predicted using continuum-
membrane models, i.e. membrane models created using Hooke's
Law (Hooke's), Mooney–Rivlin (MR) material [25] and Skalak (SK)
Law [1]. First, a planar membrane is discretised to obtain a mesh
representing a spring network with the lines considered the spring
elements and the nodes the hinges. Since the membrane shape has
no influence on the network properties [20], a square-shaped mem-
brane is chosen. Having obtained a spring network, the network-
randomness metric [20] is introduced to measure the deviation of
the network from an isotropic topology. Subsequently, the effect of
the randomness and mesh density on the network elasticity is
discussed. The elasticity of the network with a range of spring-
element types is predicted and compared to some continuum
membrane models. Finally, the effect of surface constraint is also
investigated.

2.1. Construction of a 2D spring network

A square-shaped membrane is discretised using the open-source
mesh generator GMSH (GNU General Public License) to obtain an
unstructured triangle-based mesh. As mentioned above the mesh
represents the spring network with the lines the spring elements and
the nodes the frictionless hinges. The network mesh is characterised
by four topology parameters [20]: the average spring element length L,
the average node junction functionality φ, i.e. the average number of
springs connected to each node, the standard deviation of spring length
σL and the standard deviation of node junction functionality σφ, see
Fig. 1. Spring lengths are non-dimensionalised by dividing by the edge
length of the discretised square. Therefore, the average spring length L
is a measure of mesh density of the network. σL is the standard deviation
of the dimensionless spring length divided by L, so that σL is independent
of the mesh density. σL and σφ together are deemed the network
randomness where σL is the length randomness and σφ is the junction
randomness. When the network randomness is zero, i.e. σL = 0 and
σφ = 0, the network consists of equilateral triangles, i.e. an isotropic
topology. All networks employed in this work use an unstructured
triangle-based mesh with high network randomness unless otherwise
stated. An unstructured mesh is employed in this work for the following
reasons:

1. A triangle-based mesh is the most stable topology for a spring
network.

2. An isotropic mesh is not feasible for curved surfaces.

3. Among the triangle-basedmeshes, an unstructuredmesh is themost
popular in numerical simulations.

4. An unstructured mesh converges towards being isotropic as the
network randomness decreases.

2.2. Computation of spring-network deformation

A spring network deforms upon external loading. This deformation
is modelled by updating the nodes' position with time. The updating
scheme employed is formed using the Taylor series expansion, i.e.

pi t þ Δtð Þ ¼ pi tð Þ þ Δt � pi
0 tð Þ þ Δt2

2
� pi

00 tð Þ þ Δt3

6
� pi

000 tð Þ þ… ð1Þ

where p refers to the position of a node, superscript ′ refers to the deriv-
ative with respect to time t, subscript i refers to principal direction 1 or
2, and Δt is the time-step. Viscous damping has to be introduced in
Eq. (1) or the spring network oscillates continually. Assuming that
each node is associated with a damping which eliminates the node
speed, i.e. pi

0 tð Þ, at each time step and that the high-order differential
terms are neglected, Eq. (1) reduces to

pi t þ Δtð Þ≃pi tð Þ þ Δt2

2
� pi

00 tð Þ ¼ pi tð Þ þ Δt2

2

�
X

Fpi tð Þ
m

¼ pi tð Þ þ
X

Fpi tð Þ � ΔT ð2Þ

where∑F is the total force acting on the node, m is the node mass and
ΔT is a constant formed by combining Δt and m, i.e. ΔT = (Δt2)/(2 m).
This modified equation cannot accurately predict the transient motion
of a node, but is well suited for the calculation of an equilibriumposition
[18] subject to a convergence tolerance, e.g. |∑Fpi(t) × ΔT | b 10−8.

Four spring element types are employed in this work: linear, truss,
NH and WLC representing linearly-elastic springs, linearly-elastic
springs with varying spring constant, strain-softening springs, and
non-linear strain-hardening springs respectively defined as follows:

Flinear ¼ −kdl ð3Þ

Ftruss ¼ − k
lo
dl ð4Þ

L1=1 

             L2=1 

Principal 2 

Principal 1

Fig. 1.A square-shapedmembrane discretisedwith an unstructuredmesh. All the element
lengths are non-dimensionalised by dividing by the edge length; therefore, the square
edges have a dimensionless length of one. The node (white dot) in the centre of the
network has a junction functionality of six as six springs are connected to this node. For
a given network the element connectivity is fixed, i.e. φ and σφ are constant, but L and
σL vary as the network undergoes deformation. Note that in calculating φ, the junction
functionalities of the nodes on the boundary are not considered.

507M. Chen, F.J. Boyle / Materials Science and Engineering C 43 (2014) 506–516

image of Fig.�1


FNH ¼ − λ−1ð Þλ
0:5 þ λ−2:5

λþ λ−3 ð5Þ

FWLC ¼ − kBT
p

1
4 1−xð Þ2 −

1
4
þ x−C

� �
ð6Þ

where F is the force exerted from a spring to the nodes at its ends, k is
the spring constant, l is the instantaneous length of the spring, lo is the
initial length of the spring, λ(= l/lo) is the stretch ratio of the spring,
kB is the Boltzmann constant, T is the temperature, p is the persistent
length of WLC elements and x(= l/lcontour) is the ratio of the instanta-
neous element length to the contour (maximum) length of the WLC.
TheWLC force equation differs from the conventional formas a constant
C is introduced to give the spring an initial length [26]. The C value is
defined as

C ¼ 1
4 1−xoð Þ2 −

1
4
þ xo ð7Þ

where xo(= lo/lcontour = 1/3.17) is the x at initial configuration as the
WLC contour length is defined as 3.17lo. Importantly, the definition of
the contour length manipulates the hardening effect of a WLC element.

A constraint on area dilation is introduced into a spring network via
the dilation energy of each network triangle, i.e.

Fp;i:dilation ¼ ∂Varea

∂i

�����
p

¼ −
∂ KA

2Ao
A−Aoð Þ2

� �
∂i

�����
p

ð8Þ

where F is the force exerted from the dilation resistance onto node
p, Varea is the strain energy stored in a triangle which contains node
p, i represents principal direction 1 or 2, A and Ao are the current and
the initial areas of the triangle respectively, and KA is the dilation mod-
ulus for a local-area-constraint (LAC) which resists the area dilation of
each triangle. A global-area-constraint (GAC), on the other hand, resists
the total surface area change of a spring network. Note that a LAC
ensures a GAC, but a GAC does not ensure a LAC; also a GAC is equivalent
to a LAC in 2D applications of spring networks. In our simulations
KA = 1,000,000, so that a spring network almost conserves the area of
each triangle.

2.3. Computation of spring-network properties

The properties associated with a membrane surface include shear
modulus μ, Young's modulus E, Poisson's ratio ν and area dilation
modulus K. Membrane viscosity is neglected in this work since we are
interested only in the equilibrium state of a spring network.

The derivation of the spring-network properties is briefly explained
here;more details can be found inHansen et al. [20]. Consider the defor-
mation of a triangle-shape membrane modelled using a three-element

spring network as shown in Fig. 2. The triangle strains ε can be obtained
as follows:

l2−l2o
� �

p;q;r
¼ 2εij Lið Þ L j

� �� �
p;q;r

¼ 2ε11 L1ð Þ2 þ 4ε12 L1ð Þ L2ð Þ þ 2ε22 L2ð Þ2
� �

p;q;r
ð9Þ

where l and lo are the deformed and initial lengths of a spring element, L
is the component length of lo in principal direction 1 or 2, and the sub-
scripts of the strains ε refer to the strain direction. Applying the above
relationship to all three spring elements we have

2 L21
� �

p
4 L1L2ð Þp 2 L22

� �
p

2 L21
� �

q
4 L1L2ð Þq 2 L22

� �
q

2 L21
� �

r
4 L1L2ð Þr 2 L22

� �
r

0
BBBB@

1
CCCCA

ε11
ε12
ε22

0
@

1
A ¼

l2−l2o
� �

p

l2−l2o
� �

q

l2−l2o
� �

r

0
BBBB@

1
CCCCA: ð10Þ

Note the square matrix on the left hand side is known from the ini-
tial configuration which means that the triangle strains ε11, ε22 and ε12
are functions of the lengths of the deformed springs. Also, the triangle
principal stretch ratios λ1 and λ2 and the network Poisson's ratio ν are
related to the principal strain components as follows

λ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ε11 þ 1

p
ð11Þ

λ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ε22 þ 1

p
ð12Þ

ν ¼ − ε22
ε11

: ð13Þ

The triangle strain energy density accounts for the strain energies of
all of the springs of the network, i.e.

V ¼ 1
At

Xn Zl
lo

Fspringdl

0
B@

1
CA ð14Þ

where V is the energy density of the spring network, At is the network
area in the initial configuration, and n is the total number of spring
elements. Using the energy density, the shear and dilation moduli of
the spring network are calculated as follows

μ ¼ ∂V
∂β

� 	
α

ð15Þ

K ¼ ∂2V
∂α2

 !
β

ð16Þ

Principal 2

Principal 1

lq

lr

L1,p L1,q

lo,q

L2,p lo,p

lo,r

L2,q

L2,r

L1,r

lp

Fig. 2. Deformation of a triangle consisting of edges p, q and r [20]. The broken and solid lines are the boundaries of the initial and deformed triangles respectively.
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where α is the fractional area dilation and β is the degree of shearing
from a circle to an ellipse, defined as

α ¼ λ1λ2−1 ð17Þ

β ¼ λ1−λ2ð Þ2
2λ1λ2

: ð18Þ

2.4. Elasticity of a spring network

Hansen et al. [20] showed that network randomness measures the
departure of spring-network properties from that of an isotropic net-
work. Also, the network properties vary upon deformation. Therefore,
a discussion of spring-network properties is complex and insufficient
to demonstrate the network mechanics. In this work the spring-
network, i.e. discrete membrane model, mechanics are investigated
through the network elasticity [18], which is measured by the slope of
tension–strain and tension–dilation curves of themembrane under uni-
axial and isotropic loadings respectively. Uniaxial deformation is a com-
bination of shearing and dilation while isotropic deformation is solely
due to dilation, see Fig. 3. In other words, the slope of tension–strain
curve measures a combination of the shear and dilation moduli while
the slope of tension–dilation curve directly measures the dilation mod-
ulus [5]. As a result the network elasticity is adequate to represent the
overall networkmechanics. Also, tension in the tension–strain and ten-
sion–dilation curves is non-dimensionalised by dividing by the initial
shear modulus so that the effect from the initial spring constant and
mesh density is eliminated.

2.4.1. Effect of network randomness on the direction dependence of the
network elasticity

Since the network randomness measures the departure of a
network's properties from that of an isotropic network, the effect of
randomness on the network elasticity is examined. Fig. 4 shows the
theoretical tension–strain relationship of an isotropic linear-spring net-
work for two uniaxial loading scenarios (the derivation of the theoreti-
cal elasticity is given in the Appendix). The results indicate the elasticity
of an isotropic network depends on the direction of loading. Alongwith
the elasticity under uniaxial deformation, the isotropic network shear
modulus is also direction dependent [27] in large deformation.

Fig. 5 shows the predicted tension–strain relationship of two linear-
spring networks under uniaxial loading. Both networks have a
similar network density L≈0:018. The high-randomness network has
σL = 0.15 and σφ = 0.87, while the low-randomness network has
σL = 0.038 and σφ = 0.23. From observation, the curves for the
network with the higher randomness are almost overlapping each
other on the measuring range. Curves for the low-randomness network
deviate slightly up to 100% strain and the direction dependence of the
elasticity is pronounced when the strain is greater than 100%. The

direction dependence of the network elasticity is caused by the unequal
contribution of the spring elements in both principal directions. A high
randomness increases the probability of the equal contribution of the
spring elements in both principal directions and therefore the direction
dependence of network elasticity is greatly reduced. Fig. 4 shows that an
isotropic spring network is mechanically isotropic in small deformation
while Fig. 5 shows that a spring network with high randomness tend to
be mechanically isotropic even in large deformation.

2.4.2. Effect of mesh density on network elasticity
The foregoing simulation results suggest that high network ran-

domness eliminates the direction dependence of the network elas-
ticity. Here the effect of the mesh density on the network elasticity
is examined. Fig. 6 shows the predicted tension–strain relationship
of four linear-spring networks under uniaxial loading. The dimen-
sionless average lengths L of the four networks are 0.0094, 0.0189,
0.0994 and 0.2487. Also, the four networks have similar high ran-
domness, i.e. 0.14 b σL b 0.18, 0.8 b σφ b 1.1. The results show that the
four networks have almost identical network elasticity which indicates
that the network elasticity is independent of the networkmesh density.

2.4.3. Effect of spring element type on network elasticity
Previously, the effect of the network randomness and themesh densi-

ty on the network elasticity was investigated. Here, four spring types are
employed in a network to predict network elasticity under uniaxial and
isotropic loadings. The network has parameters of L ¼ 0:0189, φ ¼ 5:8,
σL = 0.15 and σφ = 0.95. Fig. 7 shows the predicted network
elasticity using the different spring types along with the analytical

(a) (b)

Principal 2 

Principal 1 

Fig. 3. (a) Uniaxial and (b) isotropic deformations of a 2D membrane. The broken and solid lines refer to the initial and deformed geometries respectively.

T1 = 0 

  T2 = 0 

Fig. 4. Theoretical tension–strain relationship of an isotropic linear-spring network with
different loading directions. The loading follows two uniaxial directions as indicated.
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membrane elasticity predicted using continuum-membrane models.
Fig. 7(a) indicates that the WLC network is strain hardening as well as
the SKmembrane. As theWLC spring is strain-hardening, i.e. the spring
constant increases as the strain increases, therefore, the network resis-
tance increases as the strain increases. On the other hand, the NH
network is strain-softening as the spring constant of the elements
decreases as the strain increases. The tension–strain relationships of
the linear-spring and truss networks are similar to the continuum
membrane model based on Hooke's law. The truss network is slightly
stiffer than the linear-spring network because the initial shearmodulus
of the truss network is slightly smaller than that of the linear-spring
network. Fig. 7(b) shows that all spring networks are vulnerable to sur-
face dilation. The results agree with the prediction by Omori et al. [18]
that the surface area of a spring network dilates twice as fast as the di-
lation force in an isotropic loading test, i.e. dS=dT≈2. Therefore, all
spring networks are naturally vulnerable against surface area dilation
regardless of the spring type. The results show the behaviour of spring
constant defines the spring network elasticity in large deformation,

e.g. an increase in the spring constant leads to a hardening-effect of
the spring network and vice versa.

Fig. 8(a) and (b) shows the degree of shear, i.e. β in Eq. (18), of
the spring networks under uniaxial loading. Fig. 8(a) is for the
surface-unconstrained networks with ε1 ≈ 1.02 and (b) is for the
surface-constrained networks with ε1 ≈ 1.08. Fig. 8(c) shows the
fractional area dilation, i.e. α in Eq. (17), under isotropic loading with
dS/S ≈ 0.96. The results first indicate the variation of local network
mechanics which is due to the variation of local network randomness.
Second, the degree of variation differs from one spring network to the
other, e.g. the variation in the NH network is the largest while the varia-
tion in the WLC network is the smallest. Third, and importantly, regard-
less of the local variation, the spring networks deform homogeneously
as the loading is applied which suggests that their deformation is equiv-
alent to that of continuum membrane models. Small deviations are
observable at the boundary edges which are due to the Saint-Venant
principle [18] and vanish as the mesh is fined.

T1 = 0 

  T2 = 0 

Fig. 5. Predicted tension–strain relationship of two linear-spring networks with different
network randomness. The loading follows two uniaxial directions as indicated.

Fig. 6. Predicted tension–strain relationship of four linear-spring networks with different
mesh densities. The loading direction is the same for the four networks, i.e. T2 = 0.

Fig. 7. Predicted tension–strain relationship ofmembranemodels under (a) uniaxial load-
ing and (b) isotropic loading. dS is the change in surface area and S is the initial surface
area of the membrane models. The curves with filled symbols are predicted results for
spring networks with the spring types indicated in the legend; the curves with empty
symbols are the analytical results for continuum membrane models with the continuum
constitutive laws indicated in the legend.
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2.4.4. Effect of surface constraint on network elasticity
The results in Figs. 7 and 8 indicate that the spring networks have

shear moduli comparable to continuum membrane models and that
the springnetworkshave small dilationmoduli. Next, network elasticity
is predicted for the spring networks when a surface constraint is
enforced. Delingette [22] introduced such a constraint via spring angu-
lar stiffness which restricts the rotation of spring elements. For numer-
ical convenience, in this work a LAC is introduced into the spring
networks. The tension–strain relationship of the spring networks with
a LAC under uniaxial loading is predicted. The results are compared to
those of continuum membrane models in Fig. 9. The results indicate

that the elasticity of the spring networks reduces significantly when
the surface constraint is enforced. Also, the WLC-spring network be-
comes comparable to the SKmembrane (C= 5).When the surface con-
straint is not applied, the network deformation orientates spring
elements inline to the tension and creates strains and dilations. When
the constraint is applied, the deformation is resisted by compensating
isotropic tensions on each trianglewhich reduces thenetwork elasticity.
Additionally, the isotropic compensation yields continuity to the spring
networks which leads to a more uniform distribution of network prop-
erties, e.g. the degree of shear in surface-constrained networks is a lot
more uniform than that in the non-constrained spring networks, see

Linear 

Truss 

NH 

WLC 

(a) (b) (c)

Fig. 8. Illustration of (a) the degree of shear of spring networks under uniaxial loadingwith ε1≈ 1.02, (b) the degree of shear of surface-constrained networks under uniaxial loadingwith
ε1 ≈ 1.08 and (c) the fractional area dilation under isotropic loading with dS/S ≈ 0.96.
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Fig. 8(a) and (b). Finally, note that isotropic loading tests are not avail-
able for the spring networks with a LAC, since the LAC dilationmodulus
is so large that the spring networks resist any surface area dilation; thus
the tension for isotropic deformation is infinity.

3. Discrete RBC modelling and deformation

The RBCmembrane is a strain-hardeningmaterial [28]. It has a thick-
ness on the nano-metre scale, three orders smaller than the size of the
cell. Thus, a membrane model is usually assumed to have a negligible
thickness. Here the suitability of a spring network for RBC membrane
modelling is examined. In this work a biconcave solid is first created
and discretised using commercial packages. The discretised surface
mesh forms the network for our models. Four spring types are
employed to construct discrete RBC models using the network. The
models are subsequently used to replicate the OT test. The predicted re-
sults are compared to experimental measurements [4]. In addition, the
effect of the spring-element type and mesh density on RBC modelling
is discussed. Measured RBC membrane properties vary significantly in
a number of experimental measurements. For example, the bending
modulus ranges from 0.2 to 7 × 10−19 Nm and the shear modulus
ranges from1 to 13 μN/m [3]. The commonly accepted values of bending
modulus and shear modulus are 2.5 × 10−19 Nm and 4.8 μN/m respec-
tively. In our simulations the network bending modulus Kbend is set as
2.5 × 10−19 Nm. Also, the spring constant is adjusted so that the
corresponding isotropic spring network yields a shear modulus μo of
4.5 μN/m. However, the shear modulus of the spring-network RBC
membrane is slightly larger than 4.5 μN/m because the 3D network
topology is anisotropic with non-zero network randomness.

3.1. Construction of the 3D RBC model

The shape of an average undeformed RBC surfacemay be represent-
ed by the following equation [29]

x3 ¼ �Do 1−
4 x21 þ x22
� �

D2
o

0
@

1
A

1=2

a0 þ a1
x21 þ x22
D2
o

þ a2
x21 þ x22
� �2

D4
o

0
B@

1
CA ð19Þ

where x is the coordinate value and subscripts 1, 2 and 3 represent the
principal directions. D0 is the initial diameter of the RBC with a value of
7.82 μm, and a0, a1 and a2 are constants with values of 0.0518, 2.026
and −4.491 respectively. This equation is employed in SolidWorks
(SolidWorks Corp. Massachusetts, U.S.) to obtain a 3D solid. The solid
is subsequently discretised using Ansys (ANSYS, Inc., Canonsburg, U.S.)
to obtain a surface network, see Fig. 10. Three surface-network meshes,
with details listed in Table 1, are employed for the construction of RBC
models. Mesh 2 is used for the RBC modelling unless otherwise stated.

3.2. Computation of RBC mechanics

Besides the viscosity, the properties associated with a RBC
are the membrane shear modulus, bending modulus, surface area
incompressibility and volume incompressibility. For numerical conve-
nience, the membrane bending resistance is derived from the instanta-
neous angle between neighbouring triangles with reference to the
spontaneous angle as in Fig. 11 [30], i.e.

Fp1:bend ¼ −KB tan
θ−θo
2

� 	
n123 ð20Þ

Fp4:bend ¼ −KB tan
θ−θo
2

� 	
n234 ð21Þ

Fp2:bend ¼ Fp3:bend ¼ −
Fp1 þ Fp4

2
ð22Þ

where F is the force exerted from the bending resistance onto node p, KB

is the bending stiffness defined as KB ¼ 2=
ffiffiffi
3

p� �
Kbend [11,17], θ and θo

are the instantaneous and spontaneous angles respectively between
two neighbouring triangles, and nijk is the normal vector of the triangle
consisting of nodes pi, pj and pk.

Similar to the surface constraint in a 2D spring network, the surface
area and volume constraints in the RBC model are introduced via the
energy function, i.e.

Fp;i:area ¼ −
∂Vlocal:area þ ∂Vglobal:area

∂i

�����
p

¼ −
∂ KA

2Ao
A−Aoð Þ2 þ Ktotal

A

2Atotal
o

Atotal−Atotal
o

� �2� 	
∂i

�����
p

ð23Þ

Fp;i:volume ¼ −
∂Vglobal:volume

∂i

�����
p

¼ −
∂ Ktotal

V

2Vtotal
o

Vtotal−Vtotal
o

� �2� 	
∂i

�����
p

ð24Þ

Fig. 9. Predicted tension–strain relationship of membrane models under uniaxial loading.
Note the spring networks are area-dilation constrained.

x11

(a)

xx3

xx2

(b)

Fig. 10. A RBC solid model (a) discretised to give a network on the surface (b).

Table 1
RBC network-mesheswith network parameters. Nv is the number of nodes in the network
mesh and Ns the number of spring elements.

Mesh Nv Ns L (μm) φ σL (μm) σφ

1 6467 19,395 0.15 6.00 0.020 0.37
2 1334 3996 0.34 5.99 0.034 0.41
3 235 699 0.81 5.95 0.120 0.55
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where Fp,i,area and Fp,i,volume are the forces on node p in direction i
exerted from the area dilation and volume bulk resistance respectively,
V is strain energy, KA is a LAC dilation modulus with a default value of
100 pN/μm2, KA

total is a GAC dilation modulus with a default value of
5000 pN/μm2, KV

total is the bulk constant with a default value of
5000 pN/μm3, A is the local area of the triangle which includes node
p, Atotal is the total surface area of the RBC model, Vtotal is the volume
of the RBCmodel, and the subscript o means that the value corresponds
to the initial configuration. Physically, surface area conservation of a RBC
consists of a LAC and a GAC. The LAC is due to themovement restriction
of the anchor proteins of the cytoskeleton onto the plasma membrane
and the GAC is due to the incompressibility of the plasma membrane.
Therefore, the dilation modulus for the GAC should be larger than that
of the LAC.

3.3. Optical tweezers test and simulation setup

Micropipette aspiration (MA) and optical tweezers (OT) are both
popular experimental techniques for the experimental measurement
of RBC membrane properties. OT testing has been preferred to MA
since its development because of the high resolution with which the
force can be applied and the displacement measured [31]. In an OT
test of a RBC, a uniaxial load is applied via two silica beads on two oppo-
site ends of the RBC. The axial and the transverse diameterswith respect
to the stretching force are recorded as the output, see Fig. 12. The details
of the OT test setup can be found in Dao et al. [31].

In our simulations different RBC membrane models are constructed
using a network but with four spring types corresponding to a linearly-
elastic (linear and truss networks), a strain-softening (NHnetwork) and

a strain-hardening (WLC network) membrane. The deformation of the
3D RBC model is achieved via the position update of the network
nodes as explained in Section 2.2, i.e. Eq. (2). To replicate the OT test,
two equal forces are applied to opposite ends of the RBC model
representing the pulling forces by the silica beads. As a silica bead [32]
is 2 μm in diameter, the maximum contact area between a bead and a
RBC is about 2.3% of the cell surface area. In our simulations the force
is equally distributed over 2% [32] of the nodes at each end of the RBC.
For example, the uniaxial force is equally distributed on 26 nodes on
each end of the mesh 2 RBC model as the model has 1344 nodes.

3.4. Comparison of the predictions with experimental measurements

Fig. 13 shows the predicted RBC diameters with respect to the
stretching force in the OT test. The spring-element type employed is in-
dicated in the legend. For the axial diameter, the linear and truss-spring
networks have almost identical performance. Also, it is interesting to
see that both models have three linear stretching ranges: 0–20 pN,
20–130 pN and 130–200 pN. Within these ranges, the model diameter
change is nearly linear with the stretching force. The NH-spring net-
work experiences more severe deformation. Again, three linear
stretching ranges are observed: 0–20 pN, 20–110 pN and 110–200 pN.
The WLC model is stiffer than the others and the simulation results
fall along the centre line of the experimental measurements for the
axial diameter. Importantly, the predicted results of the WLC models
with different mesh densities agree well with each other which suggest
that the mesh density has little effect on the membrane elasticity, a
result which agrees with the observations by Fedosov et al. [32]. For
the transverse diameter, the predictions compare adequately with the
experimental measurements, and all the results drop within the
measurement range.

Fig. 14 shows the degree of shear, i.e. β in Eq. (18), on the discrete
membrane surface when the RBC models are subjected to 100 pN
uniaxial loading. The degree of shear varies gradually throughout the
membrane surface as some parts of the membrane are under uniaxial
loading and some under isotropic loading. From observation of
Fig. 14(a)–(d), the distribution of the degree of shear is almost the
same between RBC models and the difference is due to the different
degree of stretch elongations of the models. Although the OT test is a
symmetric experiment, the non-symmetrical degree of shear and
some local defects are observable due to the variation of local network
randomness. From observation of Fig. 14(d)–(f), the symmetric and
local defects of degree of shear both are influenced by themesh density

n123

p1  p

 p

2                   n234

4

θ

p3

Fig. 11. Illustration of the angle between two neighbouring triangles used to calculate
bending resistance.

Dtransverse

Do Daxial

(a)                                  (b)

Fig. 12. Illustration of an OT test and a simulation setup. (a) A RBC in its initial state and
(b) the cell under uniaxial loading. The black dots onboth ends of theRBCmodel represent
the nodes in contact with silica beads. Do is the initial diameter of the RBC, and Dtransverse

and Daxial are the transverse and axial diameters of the deformed RBC respectively.

Fig. 13. Axial (upper data) and transverse (lower data) diameters of a RBC versus
stretching force. The diameters are normalised by dividing by the initial RBC diameter.
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of the network, e.g. a fine-meshnetwork leads to a detailed deformation
profile and vice versa.

4. Discussion

In this work all spring-networks employed have approximate-
evenly distributed spring elements, e.g. spring-element density in
one region is approximate to that of the other regions. However, a
non-zero network randomness implies unevenly distributed spring
elements across network surface which leads to a variation in local net-
workmechanics. Therefore, network annealing [17] is always preferable
before membrane simulation using spring networks.

A membrane model using a spring network has the advantage of a
simplermathematical formulation in comparison to a continuummem-
branemodel. However, the exact properties of a spring network are dif-
ficult to estimate in 3D applications due to the network randomness.
Currently, it is common that the in-plane properties of a spring network,
e.g. shear modulus, are estimated assuming the isotropic topology [32]
and results in the under-prediction of the property. For example,

Fedosov et al. [32] claimed that mesh topology affects the elasticity of
the RBC models and that RBC models with higher randomness tend
to be stiffer than those with lower randomness. On the other hand, a
conflict occurs that a high network-randomness leads to an under-
prediction of network property and a low randomness leads to the
direction dependence of the network elasticity. Therefore, a balance
has to be maintained in numerical simulations.

In this work the primary focus is on the in-plane membrane elastic-
ity and limited attention is given to out-of-plane bending. Currently, the
bending resistance of RBCmembranemodels is commonly derived from
the angle changes between the neighbouring triangle elements, e.g. the
current RBCmodel. The corresponding bendingmodulus is estimated in
the limit of small deformation [17]. Additionally, the estimation as-
sumes the infinitesimal thickness of the RBC membrane which neglects
the energy stored in the area-difference between inner and outer sides
of the cellmembrane and results in the under-estimation of the bending
energy [3,33]. As a result, the shape details of the current membrane
model may be influenced by the large in-plane shearing energy
[11,34], e.g. the wrinkle in the centre of the RBC models in Fig. 14.

Fig. 14. Degree of shear on the membrane surface of RBC models using (a) linear springs, (b) truss springs, (c) NH springs, (d) WLC springs, (e) WLC springs and mesh 1 and (f) WLC
springs and Mesh 3.
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However, the OT results are not affected since the wrinkle details have
little influence on the diameters of the RBCmodels. In brief, the accurate
representation of themembrane details of the current RBCmodel is lim-
ited to moderate deformation.

5. Conclusions

The effects of network parameters on planar-spring-network
mechanics in large deformation are investigated for the first time
in this work. The results indicate that the mechanical behaviour
of spring-network models is conditionally equivalent to that of
continuum-membrane models. In the application of spring networks
for RBC modelling, it is found that the findings for the planar-spring-
networks mechanics are transferable to membrane modelling using
spring networks in 3D.

The elastic behaviour of RBC models using different spring-element
types are compared for the first time in this work. It has been shown
that a discrete RBC model, which uses a spring network to represent
the cell membrane, accurately captures the elastic behaviour of a RBC
in theOT test. Therefore, wemay conclude, contradicting the conclusion
made by Omori et al. [18], that a spring network with a surface
constraint is sufficient for modelling the RBC membrane. Additionally,
an unstructured network with certain randomness is desirable for a
directional independence of network elasticity in large deformation.
Finally, in order to capture the strain-hardening nature of the biological
membrane, hardening spring-element types must be employed. The
employment of linear and softening spring-element types lead to
over-estimation of membrane shear modulus, e.g. [30,35].
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Appendix A

Consider the deformation of an isotropic linear-spring network,
in which the network may be considered as a combination of a large
number of identical equilateral triangles. The network is regular and
the deformation upon external loading is also uniformly distributed.
Therefore, for simplicity, a triangle may be extracted from the network
to represent the network deformation as shown in Fig. 15. The triangle

is formed by three linear-spring elements with initial lengths of L and

shear modulus of
ffiffiffi
3

p
=4

� �
k [36], where k is the spring constant.

The triangle deformation is caused by the tensile forces, i.e. Fx and Fy,
in principal directions. In the vertical deformation, i.e. Fx=0 and Fy≠ 0,
in Fig. 15(a), the length of spring 1 remains constant until spring 1 is
in-line with spring 2. Therefore, the stretch–strain relationship in the
vertical direction is

Fy ¼ k L2−Lð Þ ¼ k λ2−1ð ÞL ð25Þ

where λ2 is the stretch ratio of the spring 2, i.e. λ2= L2/L. Since spring 1
is not stretched, then from Pythagoras' theorem we have

Lx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L21−

L2
2

� 	2
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L21−

λ2

2
L

� 	2
s

¼ L
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4−λ2

2

q
: ð26Þ

Therefore, the dimensionless tension is

Ty

μo
¼ Fy

μoLx
¼ k λ2−1ð ÞL

L
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4−λ2

2

q� 	 ffiffiffi
3

p

4
k

 ! ¼ 8ffiffiffi
3

p λ2−1ffiffiffiffiffiffiffiffiffiffiffiffiffi
4−λ2

2

q : ð27Þ

Also the vertical strain is

ε2 ¼ 1
2

λ2
2−1

� �
: ð28Þ

In the horizontal deformation, i.e. Fx ≠ 0 and Fy = 0, in Fig. 15(b),
spring 1 is stretched due to the horizontal loading and spring 2 is
compressed due to the vertical stretching component of spring 1, i.e.

Fx ¼ 2k L1−Lð Þ cosθ ð29Þ

k L−L2ð Þ ¼ 2k L1−Lð Þ sinθ: ð30Þ

Also from Pythagoras' theorem we have

L2
2L1

¼ sinθ: ð31Þ

Substituting Eqs. (31) into (30) to eliminate L1 gives

k L−L2ð Þ ¼ 2k
L2

2 sinθ
−L

� 	
sinθ ¼ 2k

L2
2
−L sinθ

� 	
: ð32Þ

Rearranging Eq. (32) we get

L2 ¼ L
1
2
þ sinθ

� 	
: ð33Þ

Next, substituting Eqs. (31) and (33) into Eq. (29) to eliminate L1
and L2 gives

Fx ¼ 2kL

1
2
þ sinθ

2 sinθ
−1

0
B@

1
CA cosθ: ð34Þ

(a) (b)

Fy

Fy

Fy

Fy

Fx/2

Fx

Fx/2

L1

Lx L2

L1

L2
θ

Lx

Fig. 15. Illustration of two deformation scenarios of a spring triangle. The vertical deforma-
tion (a) is caused by the vertical loading, i.e. Fx = 0 and Fy ≠ 0, and the horizontal defor-
mation (b) is caused by the horizontal loading, i.e. Fx ≠ 0 and Fy = 0. L1 and L2 are the
instantaneous lengths of springs 1 and 2 respectively, Lx is the horizontal component of
L1 and θ is the instantaneous angle between spring 1 and the horizontal direction.
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Therefore, the dimensionless tension on the triangle is

Tx
μo

¼ Fx
μoL2

¼

2kL

1
2
þ sinθ

2 sinθ
‐1

0
B@

1
CA cosθ
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 !
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1
2
þ sinθ

� 	� 	 ¼ 8ffiffiffi
3

p 1
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0
B@

1
CA cosθ:

ð35Þ

Also the horizontal stretch is

λx ¼ Lxffiffiffi
3

p

2
L
¼

L2
2ffiffiffi

3
p

2
L

 !
tanθð Þ

¼
L

1
2
þ sinθ

� 	
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3

p
L tanθ

¼
1
2
þ sinθffiffiffi
3

p
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Therefore the horizontal strain is

εx ¼ 1
2

λ2
x−1

� �
¼ 1

2

1
2 þ sinθffiffiffi
3

p
tanθ

 !2
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 !
: ð37Þ
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