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An Approach to Unification using a Linear Systems
Model for the Propagation of Broad-Band Signals

Jonathan M Blackledge, Fellow, IET, Fellow, IoP, Fellow, IMA

Abstract— We review the inhomogeneous scalar Helmholtz
equation in three-dimensions and the scattering of scalar wave-
fields from a scatterer of compact support. An asymptotic solu-
tion is then considered representing the effect of the frequency
approaching zero when a ‘wavefield’ reduces to a ‘field’. The
characteristics of ultra-low frequency Helmholtz scattering are
then considered and the physical significance discussed of a model
that is based on the scattering of Helmholtz wavefields over a
broad frequency spectrum. This is equivalent to using a linear
systems approach for modelling the propagation, interaction and
detection of broad-band signals and provides an approach to
the classification of a field from a wavefield that is intrinsically
causal and thus, consistent with the basic principle of information
theory. The approach leads to the proposal that all fields are
derived from wavefields interacting over a broad frequency
spectrum and that there are two principal field types: (i) fields
generated by low frequency scattering - a ‘gravitational field’;
(ii) fields generated by high frequency eigenfield tendency - an
‘electric field’.

Index Terms— Helmholtz equation, asymptotic solutions, scat-
tering theory, gravitational fields, electric fields

I. I NTRODUCTION

T HE ideas presented in this paper are a first attempt to
develop a universal physical model in which ‘fields’ and

‘particles’ do not exist along with such concepts as ‘charge’.
All that is considered is a universe consisting of scalar
wavefields whose governing equation is the (inhomogeneous)
Helmholtz equation over a broad frequency spectrum with a
bandwidth that is determined by the Planck length

` =

√
~G

c3
0

∼ 1.16× 10−35metres

where~ is Dirac’s constant (Planck’s constant divided by2π),
G is the gravitational constant andc0 is the speed of light.
The frequency associated with the Planck length isc0/` ∼
2.59× 1043Hz.

The rationale for a Planck bandwidth is as follows: Consider
the hypothetical case where the de Broglie wavelengthλ as-
sociated with a non-relativistic particle with constant velocity
v << c0 is continually decreased. The rest massm of the
particle will then increase according tom = 2π~/(vλ). As the
mass increases, its Newtonian gravitational field will increase
as will the escape velocityve =

√
2Gm/r =

√
4π~G/(vλr)
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where r is the distance required to escape the gravitational
field. Suppose that the wavelength becomes so small that the
escape velocity is equal to the speed of light (i.e. the particle
becomes a micro black hole), thenλr = 4π~G/(vc2

0). We
define the Planck length for the limiting case whenr →
4πλ and v → c0, i.e. the length associated with the case
when the velocity of a particle approaches the speed of light
and the distance required to escape the gravitational field
approaches the de Broglie wavelength of the particle. The
Planck frequency sets a upper limit on the band width of a
universal spectrum since, beyond this frequency, any particle
(and the de Broglie wavefield associated with it) will not
be detectable. The breadth of the spectrum is taken to be a
consequence of the ‘big-bang’ (i.e. a broad frequency spectrum
is the product of a short impulse).

Although the approach considered in this paper has some
philosophical similarities to string theory, which is increas-
ingly being challenged by a number of authors (e.g. [1], [2]),
it is different in its ‘scale’. If string theory is concerned
with the interpretation of physics through wavefields with a
wavelength of the order of̀, then, in this paper, we consider
wavefields interacting (scattering) at all scales greater than the
Planck length (i.e. over all frequencies less than the Planck
frequency). In a sense, we consider the universe itself to be
a single ‘string’ composed of a broad spectrum of (scalar)
wavefields. This is a ‘waves within waves’ approach and can
thus be interpreted in terms of a universal fractal model [3],
not in terms of the ‘shape of the universe’ but in terms of
the wavefields from which it is taken to be composed. In
this paper, we adopt a formal scattering theory approach for
a scalar Helmholtz wavefield and derive both standard and
some non-standard results which are considered in terms of
two fundamental experimental observations, the Poisson spot
and the Einstein ring.

II. F IELD EQUATIONS

The field equations for electromagnetic and gravitational
fields (i.e. Maxwell’s equations [4] and Einstein’s equations
[5], respectively) appear to have only one thing in com-
mon: they both predict wave behaviour (the wavefields being
composed of very different ‘fields’ with different properties),
namely, electromagnetic waves and gravity waves respectively
where, in the latter case, no direct experimental observations
have been made, to date. In quantum mechanics, the quan-
tum fields that are modelled through equations such as the
Schr̈odinger [6], Dirac [7], [8], [9], Klein-Gordon (e.g. [10],
[11]) and Rarita-Schwinger [12] equations, are not fields in
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the sense of an electric (vector) field or a gravitational (tensor
- a curved vector space) field but wavefields of different
types, i.e. scalar (Klein-Gordon and Schrödinger equations for
the relativistic and non-relativistic case, respectively), scalar-
spinor (Dirac equations), vector (Proca equations [13], [14])
and vector-spinor (Rarita-Schwinger equations) fields. The
theoretical origin of these wavefields is a direct result of the
fundamental postulates of quantum mechanics, namely, that
energyE = ~ω and momentump = ~k for a wavefield with
(angular frequency)ω and wavenumber| k |= 2π/λ. Relating
energy and momentum (particulate concepts associated with
Newtonian mechanics) to frequency and wavelength respec-
tively immediately raises the issue of particle verses wave. It
also brings into focus the question of whether a field or a
wavefield is more fundamental as discussed in this paper.

Apart from the Schr̈odinger equation, all of the equations
listed above describe relativistic quantum fields. They are all
‘products’ of the fact that, given the postulates of quantum
mechanics, Einstein’s special theory of relativity allows for
the existence of scalar, scalar-spinor, vector, vector-spinor
and tensor fields. In each case, the field, as characterised
by a given operator, is taken to describe a ‘particle’ (a
localised entity) that is classified in terms of a Boson or
Fermion which have integer or half-integer spin (the intrinsic
angular momentum) respectively. This is compounded in the
following table (wherem denotes the rest mass):

Equation name Field Type Spin s~ Example
Klein-Gordon Scalar s = 0 Higgs boson
Dirac Scalar s = 1/2 leptons:

Spinor electrons,
muons

Proca-Maxwell Vector s = 1 m = 0:
photons
gluons;
m 6= 0:
mesons

Rarita-Schwinger Vector s = 3/2 None
Spinor discovered

Gravitation Tensor s = 2 gravitons

Note that, like the graviton, the Higgs boson is a hypothetical
particle that is taken to explain the origins of massm which
has, to date, not been verified experimentally. The terms
‘Boson’ and ‘Fermion’ relate to the fact that the statistical
behaviour of integer spin particles can be classified in terms
of Bose-Einstein statistics and half-integer spin particles, in
terms of Fermi-Dirac statistics.

Vector bosons are considered to mediate three of the
four fundamental interactions in ‘particle’ physics, i.e.
electromagnetic, weak and strong interactions, and tensor
bosons (gravitons) are assumed to mediate the gravitational
force as summarised in the following table:

Force Range Transmitted by Bosons
Gravitational Long Graviton,m = 0, s = 2
Electromagnetic Intermediate Photon,m = 0, s = 1
Weak Short W±, Z0, m 6= 0, s = 1
Strong Short gluons,m = 0, s = 1

Of the four fundamental forces in nature, gravity was
the first to be ‘invented’ but, to this day, remains the most
elusive. With just criticism over his universal theory of gravity
and, in particular, the principle of instantaneous action at
a distance, upon which the theory is based, Isaac Newton
rightly stated that ‘... I have told you how it works, not why’.
Here, we consider a causal approach to explaining the ‘why’.

III. F IELDS, WAVEFIELDS AND THE PROCA EQUATIONS

In electromagnetism and general relativity, the field equa-
tions are considered to be fundamental, the wave properties
of these fields being a consequence of decoupling (under
certain conditions) the field equations. In other words, the
wave properties of these fields are, in a sense, a by-product
of writing a set of coupled equations in terms of a single or
set of equations of the same (wave) type. What if a wave
equation was to determine the form of the field equations and
thus the characteristics of the field(s)? The first to consider
such an approach was the Romanian born Alexandru Proca
who derived the Proca or Proca-Maxwell equations.

For a three-dimensional spacer = x̂x+ ŷy + ẑz, with time
denoted byt and with the Laplacian operator defined as

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
,

it is well known that Maxwell’s equations (specifically, the
microscopic equations for point ‘charges’) can be decoupled
to produce the inhomogeneous wave equations (e.g. [9], [15],
[16]) (

∇2 − 1
c2
0

∂2

∂t2

)
φ(r, t) = − ρ

ε0

and (
∇2 − 1

c2
0

∂2

∂t2

)
A(r, t) = −µ0j

for the magnetic vector potentialA and the electric scalar
potential φ where ρ is the charge density,j is the current
density andε0 and µ0 are the permittivity and permeability
of free space, respectively. This requires use of the gauge
transforms

A→ A +∇X and φ → φ− ∂X

∂t

where the gauge functionX is taken to satisfy the homoge-
neous wave equation(

∇2 − 1
c2
0

∂2

∂t2

)
X = 0.

The solutions at(r0, t0) for the ‘retarded potentials’φ andA
are then given by

φ(r0, t0) =
1

4πε0

∫
ρ(r, τ)
| r− r0 |

d3r, τ = t0− | r− r0 | /c0
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and

A(r0, t0) =
µ0

4π

∫
j(r, τ)
| r− r0 |

d3r

which show that a change inρ and j affectsφ and A | r −
r0 | /c0 seconds later. The change propagates away from the
sourcesρ and j at a velocityc0 which is the theoretical basis
for the propagation of electromagnetic waves.

In quantum mechanics, energyE and momentump are
replaced by the wave operators

−i~
∂

∂t
and i~∇

respectively. Thus, the non-relativistic ‘free energy’ (no poten-
tial energy component) equation

E =
p2

2m

yields Schr̈odinger’s equation [17]

i~
∂

∂t
U = − ~2

2m
∇2U

for a unit amplitude plane wave of the form

U(r, t) = exp[i(k · r− ωt)].

In the relativistic case when

E = ±
√

p2c2
0 + m2c4

0 or E2 = p2c2
0 + m2c4

0

we obtain the (homogeneous) Klein-Gordon equation [9](
∇2 − 1

c2
0

∂2

∂t2

)
U − κ2U = 0

whereκ = mc0/~. This equation is taken to describe massive
scalar Bosons (spin 0 particles) such as the Higgs boson.
In contrast, the classical wave equation is taken to describe
massless scalar (for the electric field potential) or vector (for
the magnetic vector potential) Bosons, i.e. the photon.

Given that Maxwell’s equations can be decoupled to pro-
duce inhomogeneous wave equations forφ and A, Proca’s
idea was to modify Maxwell’s equations in order to produce
inhomogeneous Klein-Gordon equations forφ andA given by(

∇2 − 1
c2
0

∂2

∂t2

)
φ(r, t)− κ2φ = − ρ

ε0

and (
∇2 − 1

c2
0

∂2

∂t2

)
A(r, t)− κ2A = −µ0j

respectively. The modifications required to do this yield the
Proca equations given by

∇ ·E =
ρ

ε0
− κ2φ, ∇ ·B = 0

∇×E = −∂B
∂t

, ∇×B = µ0j + ε0µ0
∂E
∂t

+ κ2A

where

B = ∇×A, and E = −∇φ− ∂A
∂t

.

Note that the Klein-Gordon equations forφ andA imply that
φ andA and thusE andB are effected by mass.

The Proca equations are relativistic field equations that
describe massive electromagnetic fields or massive photons
(spin 1 vector bosons). They form the foundations for the
electro-weak theory (the unification of electromagnetism with
the ‘weak’ force) where it is assumed that the electromagnetic
fields of the early universe had significantly greater (rela-
tivistic) energies than now, i.e. the electromagnetic and the
weak force are manifestation of the same force at relativistic
energies. Vector Bosons (W± and Z0 bosons) are taken to
be mediators of the weak interaction. However, the Proca
equations, as a description for massive photons, have a number
of other implications. These include variations in light speed,
the possibility of charged black holes, the existence of mag-
netic monopoles and superluminal (faster than light) particles
(Tachyons) with an imaginary mass that can be described by
a Proca field with a negative square mass [18], [19] and [20].

The principle associated with deriving the Proca equations
can be applied to other field equations such as the Einstein
equations for a gravitational field. The Proca-Einstein equa-
tions have been used as a basis for modelling the interaction of
gravitational fields with dark matter, for example [21]. In string
theory, there is tentative evidence that non-Riemannian models
such as the Einstein-Proca-Wyle equations may account for
dark matter [22]. However, in the context of this paper,
the Proca equations are an example of the modification and
extension of a set of field equations in order that a given
wave equation is satisfied. Thus, in the derivation of the Proca
equations, the wavefieldU is the governing function and not
the fieldsE and B. In other words, the Proca equations are
based on ‘tailoring’ a field to ‘fit’ a wavefield. This leads
us to consider an approach in which unification is attempted,
not in terms of a unified field theory but in terms of a unified
wavefield theory where a wavefieldU is not just the governing
function but the governing principle.

If a unified field theory (unifying gravity and electromag-
netism, for example) were available, then, by induction, we
might expect that the unifying field equations yield a unifying
wave equation. Since a unified field theory is not currently
available, our approach is to attempt to construct a unified
wavefield theory in which a field is the product of certain
characteristics of a wavefield. Thus, the basic idea is to
develop a universal physical model that is based on a wavefield
equation alone and attempt to explain the characteristics of
a field from the wavefield. In this paper, we adopt the
(inhomogeneous) Helmholtz equation and study some of its
properties over a broad frequency band including the case
when the wavelength approaches infinity. We show how this
approach can, for example, be used to explain phenomena such
as the ‘diffraction’ of light by a field that we interpret to be a
gravitational field.

IV. T HE INHOMOGENEOUSHELMHOLTZ EQUATION

The three-dimensional inhomogeneous scalar Helmholtz
equation can be derived from the (inhomogeneous) time de-
pendent wave equation(

∇2 − 1
c2

∂2

∂t2

)
U(r, t) = 0
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by letting
1
c2

=
1
c2
0

(1 + γ)

whereγ(r) is a dimensionless quantity (the scattering func-
tion) and U is a time-dependent scalar wavefield (which is
also taken to be dimensionless). We make no demands on the
physical nature ofU or γ.

With
U(r, t) = u(r, ω) exp(iωt)

for constantω (the angular frequency), or with

U(r, t) =
1
2π

∞∫
−∞

u(r, ω) exp(iωt)dω

for variable ω, we obtain the inhomogeneous Helmholtz
equation in the form

(∇2 + k2)u(r, k) = −k2γ(r)u(r, k)

wherek (= 2π/λ) is given by

k =
ω

c0
.

We consider a scattering functionγ which is of compact
support, i.e.

γ(r) ∃ ∀ r ∈ V

where V is an arbitrary volume. In electromagnetism, for
example, the Helmholtz equation can be derived by decoupling
Maxwell’s (macroscopic) equations whereu describes the
scalar electric field and the scattering function is given byγ =
εr − 1 whereεr ≥ 1 is the isotropic relative permittivity, the
relative permeability being taken to be 1 and the conductivity
being taken to be zero [23].

V. GREEN’ S FUNCTION SOLUTION FOR AN INCIDENT

PLANE WAVE

Using Green’s theorem, the general solution to the inho-
mogeneous Helmholtz equation at a pointr0 is given by [9],
[23],

u(r0, k) =
∮
S

(g∇u− u∇g) · n̂d2r + k2

∫
V

gγud3r

whereg is the ‘outgoing free space’ Green’s function given
by [23], [24]

g(r | r0, k) =
exp(ik | r− r0 |)

4π | r− r0 |
which is a solution to the equation

(∇2 + k2)g(r | r0, k) = −δ3(r− r0)

whereδ3 denotes the three-dimensional delta function. Here,
S denotes the (closed) surface of the scattering functionγ with
volume V and n̂ is a unit vector that is perpendicular to an
element of the surfaced2r. Note that

g(r | r0, k) =
1

4π | r− r0 |
, k → 0

and thus,

∇2

(
1

4π | r− r0 |

)
= −δ3(r− r0).

To compute the surface integral, a condition for the behav-
iour of u on the surfaceS of γ must be chosen. We consider
the case where a simple plane wave of unit amplitude given
by

ui(r, k) = exp(ikn̂i · r)

and satisfying the homogeneous Helmholtz equation

(∇2 + k2)ui(r, k) = 0

is incident on the surface of the scatterer. In this case,

u(r, k) = ui(r, k), ∀r ∈ S

and we therefore obtain

u(r0, k) =
∮
S

(g∇ui − ui∇g) · n̂d2rk2

∫
V

gγud3r = ui + us

where
us = k2

∫
V

gγud3r.

The functionus is the scattered wavefield which we shall write
in the form

us(r, k) = k2g(r, k)⊗3 γ(r)u(r, k), r =| r |

where⊗3 denotes the three-dimensional convolution integral.

VI. EVALUATION OF THE SCATTERED FIELD

To evaluate the scattered field (i.e. to computeus), we must
defineu inside the volume integral. Unlike the surface integral,
a boundary condition will not help here because it is not
sufficient to specify the behaviour ofu at a boundary. In this
case, the behaviour ofu throughoutV needs to be known. This
requires a model to be chosen foru insideV that is compatible
with a particular physical problem. The simplest model for the
internal field is based on assuming thatu ∼ ui∀r ∈ V . The
scattered field is then given by

us(r0, k) = k2g(r, k)⊗3 γ(r)ui(r, k).

This assumption - known as the Born approximation - provides
an approximate solution for the scattered field which is valid
if

k2‖g(r, k)⊗3 γ(r)‖ << 1.

This result can be considered to be a first approximation to
the (Born) series solution given by

us(r, k) = ui(r, k) + k2g(r, k)⊗3 γ(r)ui(r, k)

+k4g(r, k)⊗3 γ(r)[g(r)⊗3 γ(r)ui(r, k)] + ...

which is valid under the condition

k2‖g(r, k)⊗3 γ(r)‖ < 1.

Each term in this series expresses the effects due to single,
double and triple etc. scattering events. Because this series
scales ask2, k4, k6, ..., for a fixedk << 1 (long wavelength
wavefields), the Born approximation becomes an exact solu-
tion.
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VII. L OW FREQUENCYHELMHOLTZ SCATTERING

If a Helmholtz wavefield oscillates at lower and lower
frequencies, then we can consider an asymptotic solution of
the form

us(r0, k) =
k2

4π

∫
V

γ(r)
| r− r0 |

ui(r, k)d3r, k → 0.

This is a consequence of the fact that the higher order terms
in the Born series can be ignored leaving just the first term as
k → 0 and because

exp(ik | r− r0 |)
4π | r− r0 |

=
1

4π | r− r0 |
, k → 0

giving an exact solution to the problem.
If the incident field is a unit plane wave, then

u(r0, k) = 1 + us(r0, k)

where

us(r0, k) =
k2

4π

∫
V

γ(r)
| r− r0 |

d3r, k → 0

which we write in the form

us(r, k) =
k2

4πr
⊗3 γ(r), k → 0.

Here, the wavelength of the incident plane wavefield is as-
sumed to be significantly larger than the spatial extentV of
the scatterer. For a given scattering functionγ(r) the wavefield
is a ‘weak field’ because of the low values ofk required to
produce this (asymptotic) result. But this result is the general
solution to Poisson’s equation

∇2us(r, k) = −k2γ(r)

since, using the result

∇2

(
1

4πr

)
= −δ3

we have

∇2u = ∇2us = k2∇2

(
1

4πr
⊗3 γ

)

= k2γ ⊗3 ∇2

(
1

4πr

)
= −k2γ ⊗3 δ3 = −k2γ.

By consideringus to be a potential, we can write

∇ ·Us(r, k) = k2γ(r), Us(r, k) = −∇us(r, k).

Integrating over the volume of the scattererV , we obtain∫
V

∇ ·Us(r, k)d3r = k2

∫
V

γ(r)d3r

and using the divergence theorem we can write∮
S

Us(r, k) · n̂d2r = k2Γ, Γ =
∫
V

γ(r)d3r.

If we now consider a scatterer that is a sphere, then the field
U will have radial symmetry, i.e.Us = n̂Us. In this case, the
surface integral becomes4πr2Us and we obtain

Us =
k2Γ
4πr2

, k → 0.

Hence, in the limit ask → 0, Helmholtz scattering provides an
exact solution for a weak field whose gradient (for the radially
symmetric case) is characterized by a1/r2 scaling law.

VIII. D IFFRACTION

For k → 0, us(r, k), which we now denote byu0
s(r, k0), is

the solution to

∇2u0
s(r, k0) = −k2

0γ(r)

where k0 denotes a value fork, k → 0. Consider a Born
scattered Helmholtz wavefieldus(r, k) for k >> 1 given by

us(r, k) = k2g(r, k)⊗3 γ(r)ui(r, k).

We can then write

us(r, k) = −k2

k2
0

g(r, k)⊗3 ui(r, k)[∇2u0
s(r, k0)]

from which we can derive an expression for the far field
scattering amplitude generated by the fieldU0

s given by

us(r, k) = −k2

k2
0

g(r, k)⊗3 ui(r, k)[∇ ·U0
s(r, k0)]

=
exp(ikr0)

4πr0
A(n̂0, n̂i),

r

r0
<< 1

where, withui(r, k) = exp(ikn̂i · r), n̂0 = r0/ | r0 | and

U0
s = n̂U0

s = n̂
k2
0Γ

4πr2
,

A(n̂0, n̂i) = −k2Γ
4π

∫
V

exp[−ik(n̂0 − n̂i) · r]∇ ·
(

n̂
r2

)
d3r.

Hence, the wavefieldus(r, k) (for k >> 1) generated by a
scatterer that is simultaneously generating a scattered wave-
field u0

s(r, k0) is, in the far field (under the Born approxi-
mation) determined by the Fourier transform of the scattering
function (assuming radial symmetry)f(r) = ∇ · (n̂r−2). In
other words, the weak field generated by very low frequency
scattering will diffract a high frequency Helmholtz wavefield,
the diffraction pattern (i.e. the far field scattering pattern) being
determined byf(r).

A. Diffraction by an Infinitely Thin Scatterer

Consider the case where an incident plane wavefield is
travelling in thez-direction, i.e.ui = exp(ikz) and is incident
on an infinitely thin scatterer defined by the functionγ(r) =
γ(x, y)δ(z). The scattered wavefield is then given by

us(x, y, z, k)

= k2 exp(ik
√

x2 + y2 + z2)

4π
√

x2 + y2 + z2
⊗3 γ(x, y)δ(z) exp(ikz)
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= k2 exp(ik
√

x2 + y2 + z2

4π
√

x2 + y2 + z2
⊗2 γ(x, y), γ ∃ ∀(x, y) ∈ S

where⊗2 denotes the two-dimensional convolution integral
over areaS. Writing out this result in the form

us(x0, y0, z0, k)

= k2

∫ ∫
exp[ik

√
(x− x0)2 + (y − y0)2 + z2

0 ]
4π
√

(x− x0)2 + (y − y0)2 + z2
0

γ(x, y)dxdy,

it is clear that if the scattered wavefield is now measured in the
far field, i.e. for the case whenx/z0 << 1 and y/z0 << 1,
then

z0

(
1 +

(x− x0)2

z2
0

+
(y − y0)2

z2
0

) 1
2

' z0 −
xx0

z0
− yy0

z0
+

x2
0

2z0
+

y2
0

2z0

and thus,

us(x0, y0, z0, k) =
exp(ikz0)

4πz0
exp

(
ik

x2
0 + y2

0

2z0

)
A(u, v)

where
A(u, v) = k2γ̃(u, v) = k2F2[γ(x, y)]

= k2

∫ ∫
exp(−iux) exp(−ivy)γ(x, y)dxdy

with spatial frequenciesu andv being defined by

u =
kx0

z0
=

2πx0

λz0

and

v =
ky0

z0
=

2πy0

λz0
.

Here,F2 denotes the two-dimensional Fourier transform, the
result being the standard expression for a diffraction pattern
in the far field or Fraunhofer zone [23].

B. Diffraction by an Infinitely Thin Field

In the previous section, we derived the far field diffraction
pattern for an infinitely thin scatterer. However, suppose this
scatterer also radiates a field generated by low frequency
Helmholtz scattering from the same scattering function. What
is the contribution of this field to the diffraction of the same
incident plane wave within and beyond the extent of the
scatterer1? In this case, the scattered wavefield is given by
(under the Born approximation)

us = −k2

k2
0

g ⊗3 ui∇2u0
s, u0

s =
k2
0

4πr
⊗3 γ.

For an infinitely thin scatterer given byγ(x, y)δ(z),

u0
s(x, y, z, k0) =

k2
0

4π
√

x2 + y2 + z2
⊗2 γ(x, y)

1Note that the scattered wavefieldu0
s is taken to exist within and beyond

the finite spatial extent of the scattererγ(r), r ∈ V , i.e. u0
s is not of compact

support since it is given by the convolution of a function of compact support
with r−1.

so that in the(x, y) plane located atz = 0,

u0
s(x, y, k0) =

k2
0

4π
√

x2 + y2
⊗2 γ(x, y).

For an incident plane waveui = exp(ikz), the scattered
wavefieldus is thus, given by

us(x, y, z, k) = −k2g(r, k)⊗3 exp(ikz)...(
∂2

∂x2
+

∂2

∂y2

)(
1

4π
√

x2 + y2
⊗2 γ(x, y)

)
.

Repeating the calculation given in the previous section (for
z → 0), the diffracted wavefield now becomes

us(x0, y0, z0, k) =
exp(ikz0)

4πz0
exp

(
ik

x2
0 + y2

0

2z0

)
A(u, v)

where

A(u, v) = −2zk2F2

[(
∂2

∂x2
+

∂2

∂y2

)
1

4π
√

x2 + y2
⊗2 γ(x, y)

]
.

Note that although the scatterer is taken to be ‘infinitely thin’
becauseγ(r) = γ(x, y)δ(z), we still consider the physical
thickness of the scatterer to be finite2, i.e. z 6= 0. Now, for an
arbitrary functionf ⇐⇒ f̃ , where⇐⇒ denotes the transform
from real space to Fourier space [23],(

∂2

∂x2
+

∂2

∂y2

)
f ⇐⇒ −(u2 + v2)f̃ ,

1√
x2 + y2

⇐⇒ 2π√
u2 + v2

,

and we obtain

A(u, v) = zk2
√

u2 + v2γ̃(u, v).

Figure 1 shows numerical simulations of the diffraction
patterns compounded in the (intensity) functions

| γ̃(u, v) |2 and u2 + v2 | γ̃(u, v) |2

using a two-dimensional Fast Fourier Transform for the case
when the scattering function is given by the rotationally
symmetric functions (forr =

√
x2 + y2)

γ(r) = exp(−r2/σ2)

(a unit amplitude Gaussian function3 with standard deviation
σ) and (a unit amplitude disc function)

γ(r) =

{
1, r ≤ a;
0, otherwise.

The analytical solutions, for the intensity

I1 =| us |2

generated by diffraction from the scattererγ and

I2 =| us |2

2z should be taken to be a positive real ‘infinitesimal’ for all realk.
3Taken by default, to be of finite extent.
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Fig. 1. Numerical simulation of the intensity patterns for an Gaussian
function (top) and disc function (bottom) associated with the diffraction of
a wavefield by an infinitely thin scattererγ(x, y) (left - plotted using a
logarithmic scale) and the field∇2u0

s generated by the same scatterer.

generated by the field∇2u0
s are given by:

I1(r0, λ) =
π4σ2

z2
0λ4

exp
[
−
(

2π2σ2r2
0

λ2z2
0

)]
and

I2(r0, λ) = z2 4π6σ2r2
0

z4
0λ6

exp
[
−
(

2π2σ2r2
0

λ2z2
0

)]
for a Gaussian diffractor and, for a disc diffractor, withξ =
2πar0
λz0

,

I1(r0, λ) =
4π4a4

z2
0λ4

(
J1(ξ)

ξ

)2

and

I2(r0, λ) = z2 16π6a4r2
0

z4
0λ6

(
J1(ξ)

ξ

)2

.

Note that the Gaussian ring has a maximum whenr0 =
z0λ/(

√
2πσ) and that, in the latter case, the diffraction pattern

is determined by the ‘jinc’ functionJ1(ξ)/ξ whose first
minimum occurs whenξ = 3.83, i.e. when

rmin = 1.22
λz0

a

which is a classical result in (Fourier) optics - an Airy pattern
[23]. Observe that the magnitude of the intensity patterns
generated by the field∇2u0

s is significantly less than the
scattererγ, e.g. in the case of a Gaussian function

I2

I1
=

4z2π2r2
0

z2
0λ2

and only if r0/λ ∼ z/z0 will the magnitude become of the
same order. Also observe that the intensity generated by the

scattererγ scales asλ−4 whereas the intensity generated by
the field∇2u0

s scales asλ−6. However, the most significant
result is that diffraction for a scattering function produces a
pattern whose intensity peaks at the centre of the image plane
(a standard result in Fourier optics) but that diffraction from a
low frequency scattered field produces a pattern characterised
by a ring. The multiplicity of rings in either case is determined
by whether or not the scattering function is discontinuous.

IX. T HE POISSONSPOT AND THE EINSTEIN RING

Consider the images given in Figure 2 which show an
example of a Poisson (or Arago) spot [25] and an Einstein
ring [26]. The Poisson spot (named after Simeon Poisson who
investigated the phenomenon in 1818) represents a landmark
in the history of science in terms of validating whether or
not light was a particle or a wave. The Poisson spot is a
bright compact feature (a spot) that appears at the centre of the
shadow of a circular opaque object. In Figure 2, the Poisson
spot is the result of laser light diffracting from the edge of
a ball-bearing. In a theoretical model of this effect, the ball-
bearing can be replaced by an infinitely thin disc. However,
because this disc is opaque, the scattering function must be
defined by

γ(r) =

{
0, r ≤ a;
1, otherwise.

and the Fourier transform (assuming an incident plane wave
exp(ikz) that is of infinite extent over the(x, y) plane) must
be taken from−∞ to −a and froma to∞. This is equivalent
to computing the two-dimensional Fourier transform over all
space and subtracting the Fourier transform overr ≤ a. Since

∞∫
−∞

∞∫
−∞

exp(−iux) exp(−ivy)dxdy = 4π2δ(u)δ(v)

the diffracted intensity for an opaque object is

I1(r0, λ) = δ2(r0) +
π4a4

z2
0λ4

(
2J1(ξ)

ξ

)2

.

The fact that the Poisson spot occurs within the geometrical
shadow of an opaque object, is evidence that a particle and/or
a geometrical theory of optics is invalid and that light must
therefore be a wavefield. This deduction occurred some forty
years before Faraday and Maxwell concluded that light was
indeed a wave but one composed of electric and magnetic
fields - a direct consequence of the fact that the field equations
derived by Maxwell for an electric and magnetic field can be
decoupled to yield a wave equation.

A. Gravitational Diffraction

The Einstein ring shown in Figure 2 is an effect that is
conventionally explained in terms of the bending of light
through the curvature of space (and time) by a mass. This is a
consequence of the field equations for a gravitational field (the
Einstein equations [5]). In order to obtain an Einstein ring, the
magnitude of the gravitational field must be relatively high
such as that generated by a spiral galaxy. Further, in order
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to generate a near perfect (complete) ring, the entire galaxy
must be well aligned with regard to an observer in the ‘object
plane’. The bending of light by a gravitational field has an
analogy with the geometrical interpretation of light interacting
with a lens. At the edge of a lens, the light beam is ‘bent’
(discontinuously) by the change in refractive index from air
to glass and from glass to air - the extreme edge of a lens acts
like a prism. Like an optical lens, gravitational ‘lensing’ will
produce distortions of the object plane when alignment of the
‘earth-lens-object’ is imperfect.

If we interpret an Einstein ring in terms of the results given
in Section VIII(B), then the ring is not due to light being bent
(continuously) by the curvature of a space-time continuum but
the result of the diffraction of a plane wave (i.e. light) by the
field ∇2u0

s which is taken to be in the plane of the galaxy
and to extend beyond it. This requires the magnitude of the
scattering function to be very large in order to compensate for
z → 0. If we model a (spiral) galaxy in terms of a Gaussian
function, then the ring associated with the diffraction pattern
given in Figure 1 is, in this sense, a simulation of the Einstein
ring given in Figure 2. The use of a Gaussian function to model
the macroscopic gravitational field generated by a spiral galaxy
is intuitive as the edges of a galaxy will not be discontinuous
(especially on the scale of the wavelength of light!). However,
in the case of a black hole, the event horizon defines an
edge. In such a case, we might expect gravitational diffraction
to produce a number of concentric rings similar to those
associated with a Poisson spot, the black hole being modelled
in terms of an opaque disc. Multiple ring patterns associated
with a black hole are a prediction of the conventional bending
of light by space-time curvature. The idea is that, close to the
event horizon, the gravitational field is so intense that light
can be curved right around the black hole by 180 degrees or
more to produce a ring associated with the light generated
by an object that exists in alignment with, and behind, the
image plane [26]. These multiple Einstein ring predictions are
based on arguments analogous to geometric optics whereas the
multiple rings considered here are analogous to Fourier optics.
In this sense, we are interpreting a gravitational field to be
generated by the scattering of a long wavelength Helmholtz
wavefield, i.e. the fieldU0

s defines a ‘gravitational field’.

B. Colour Analysis

Another feature of Einstein rings (complete or otherwise)
is that, unless the source-galaxy system has been substantially
red shifted (when both the galaxy and the ring appear red,
e.g. [27]), the colour of the rings is blue (as in the example
given in Figure 2) even, as in some cases that have been
reported, when the galaxy itself is red [28]. If we accept
an Einstein ring to be a gravitational diffraction phenomena,
then the intensity of the diffracted light scales asλ−6 which
explains the colour of the rings (blue light having the shortest
wavelength in the visible spectrum). This is analogous to
the explanation of why the Earth’s atmosphere is blue in
colour. Under the Rayleigh scattering condition in which the
wavelength is significantly larger than the physical size of
the scatterer (when the Born approximation is valid), the

Fig. 2. Diffraction pattern from the incidence of laser light with a ball-
bearing illustrating the Poisson spot (left) and an example of an Einstein ring
generated by a spiral galaxy (central feature) observed with the Hubble Space
Telescope (right).

scattering amplitude becomes independent of the scattering
angle and the intensity of the scattered field is proportional
to λ−4. Thus, the sky is blue, because sunlight is scattered
by the electrons of air molecules in the terrestrial atmosphere
generating blue light preferentially around in all directions.
Further, as the Sun approaches the horizon, we have to look
more and more diagonally through the Earth’s atmosphere.
Our line of sight through the atmosphere is then longer and
most of the blue light is scattered out before it reaches us,
especially as the Sun gets very near the horizon. Relatively
more red light reaches us, accounting for the reddish colour
of sunsets. In other words, theλ−4 dependence of the scattered
intensity implies that the atmosphere scatters green, blue and
violet light photons more effectively than yellow, orange,
and red photons. As the Sun approaches the horizon, the
path of light through the atmosphere increases, so more of
the short-wavelength photons get scattered away leaving the
longer-wavelength photons and the Sun look progressively
redder. Rayleigh scattering in the atmosphere also explains
why the sun is yellow at mid-day. This is because the energy
spectrum (i.e. Planck’s radiation law [?]) for the Sun peaks
at the point when the wavelength is that of green light (i.e.
∼ 4.7 × 10−7metres). Since the atmosphere filters out blue
light and since blue and yellow light combine to give green
light, the Sun appears yellow.

Note that theλ−6 scaling dependency associated with
gravitational diffraction provides a method of validating or
otherwise the theoretical model presented in this paper. We
require a scenario in which the same Einstein ring is recorded
simultaneously over a broad frequency spectrum (e.g. using
radio, infrared, visible and ultraviolet imaging) in such a
way that the intensities of each image (relative to a known
source that can be used for calibration) can be compared on
a quantitative basis.

The theoretical ideas established so far and some of the
implications that have been discussed are without reference
to any physical significance of the scattering function. In
the following sections we examine the characteristics of this
scattering function by revisiting two wave equations in quan-
tum mechanics, namely the Schrödinger equation (for the
non-relativistic case) and the Klein-Gordon equation (for the
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relativistic case).

X. SCHRÖDINGER SCATTERING

If we consider the diffraction of light by a material object,
then physically, the scattering functionγ(r) must describe
some appropriate property of matter (the material properties)
that is consistent with electromagnetic theory. On the macro-
scopic scale (i.e. many orders of wavelength) the relative
permittivity, permeability and conductivity are the basis for
defining Maxwell’s macroscopic equations [?]. These material
properties vary considerably from one application to the next.
They may be isotropic or non-isotropic functions of space,
time varying and field varying (non-linear optics), for example.

In electromagnetism, the use of the scalar Helmholtz equa-
tion to develop the results given so far, is compatible only with
the case when the relative permeability is 1, the conductivity
is zero and when the material is isotropic (i.e. the relative
permittivity is a scalar function of space). However, in terms
of a universal wavefield theory, matter is ultimately composed
of matter waves which conform to matter wave equations such
as the Schr̈odinger equation.

The fundamental postulates of quantum mechanics are that
E = ~ω andp = ~k. Given that

E =
p2

2m

then
1
c2

=
k2

ω2
=

p2

E2
=

2m

E

and the wave equation(
∇2 − 1

c2

∂2

∂t2

)
U(r, t) = 0,

1
c2

=
1
c2
0

(1 + γ)

can be written in terms of the Helmholtz equation

(∇2 + k2)u(r, k) = −k2γu(r, k), γ =
2mc2

0

E
− 1.

Note that for a potential energy functionEp when

E =
p2

2m
+ Ep,

the scattering function is given by

γ =
2mc2

0(E − Ep)
E2

− 1.

In either case, we note that Schrödinger’s equation is obtained
when the angular frequencies definingk andE are the same.
Thus, the scattering function associated with the Helmholtz
equation given above is, in this sense, a generalization of
Schr̈odinger’s equation where the wavefieldU(r, t) can os-
cillate at any frequencyω less than, or significantly less than
the frequency,ω1 say, associated with a matter wave of energy
E = ~ω1. Schr̈odinger’s equation is therefore taken to be a
‘product’ of the limiting case:ω → ω1

4.
Defining the scattering function in this way, we note that

U0
s =

k2
0Γ

4πr2

4An entirely phenomenological argument (like Schrödinger’s equation
itself!).

where, for constantE andm,

Γ = Mm

and

M =
V

m

(
2mc2

0

E
− 1
)

, V =
∫
V

d3r.

Suppose that a massm′, placed in the vicinity of the fieldU0
s ,

experiences a forceF that is proportional toUm′ so that

F = v2Um′

wherev2 is a constant of proportionality. Then

F = v2k2
0

Γm′

4πr2
= G

mm′

r2
, G =

Mv2k2
0

4π

and v has the dimensions of velocity (i.e.length.second−1).
We can then derive an expression for the wavelength of the
field U0

s in terms of the gravitational constantG, i.e.

λ0 =
2π

k0
=

c0

ν

whereν is the frequency given by

ν = r
c0

v2

√
Gm

πV
, r =

√
E

2mc2
0 − E

.

Note that for the frequency (and wavelength) to be a real
positive quantity, we require that

2mc2
0 > E

so that
2mc2

0

E
− 1 > 0 =⇒ γ > 0.

Also note that becausev has dimensions of velocity, the ‘force
field has an associated ‘speed’.

The inhomogeneous Helmholtz equation(
∇2 +

ω2

c2
0

)
u = −ω2

c2
0

γu

where
γ = 2mc2

0(E − Ep)/E2 − 1

is the Schr̈odinger equation in ‘disguise’ in the sense that if
ω → ω1 whereE = ~ω1, then

(∇2 + k2
1)u = γ1u

where

k2
1 =

ω2
1

c2
0

=
2mE

~2
and γ1 =

2mEp

~2
.

Given that Proca’s equations can be decoupled to produce
inhomogeneous Klein-Gordon equations forφ andA, we can
adopt the same procedure to obtain the following inhomoge-
neous wave equations for the non-relativistic case, i.e.(

∇2 − 1
c2
0

∂2

∂t2

)
φ(r, t)− γ

1
c2
0

∂2φ

∂t2
= − ρ

ε0

and (
∇2 − 1

c2
0

∂2

∂t2

)
A(r, t)− γ

1
c2
0

∂2A
∂t2

= −µ0j,
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Maxwell’s equations being modified to the form

∇ ·E =
ρ

ε0
− γ

1
c2
0

∂2φ

∂t2
, ∇ ·B = 0

∇×E = −∂B
∂t

, ∇×B = µ0j + ε0µ0
∂E
∂t

+ γ
1
c2
0

∂2A
∂t2

.

The fieldsφ0
s andA0

s (the equivalent ofU0
s ) are given by

φ0
s =

k2
0Γ

4πr2
+

P

4πε0r2

and

A0
s = n̂0

k2
0Γ

4πr2
+

µ0J
4πr2

, n̂0 = A0
s/ | A0

s |

where, for time-independent functionsρ andJ,

P =
∫
V

ρ(r)d3r and J =
∫
V

j(r)d3r.

Note that for the limiting case whenω → ω1 we obtain
modified Schr̈odinger equations forφ andA given by

(∇2 + k2
1)φ = γ1φ−

ρ

ε0

and
(∇2 + k2

1)A = γ1A− µ0j.

In the context of the results above, we might interpret the
field U0

s in terms of a low frequency electric scalar potential (in
a charge free environment withρ = 0). In this sense, we could
interpret the fieldU0

s as an ultra low frequency electromagnetic
field in terms of an answer to the question: how long does
a radio wave have to be before it becomes something else?
However, in the universal wave model considered here, fields
such asφ andA are subservient to the wavefield characterised
by a governing wave equation in a similar sense to the rationale
associated with the derivation of the Proca equations. Thus,
the issue as to whetherUs is interpreted in terms of an
electromagnetic, gravitational or quantum field is redundant, at
least in the conventional sense. Rather, we consider all fields
such asφ to be a characteristic of wavefields interacting over
a broad frequency range. In this sense, the use of a scalar
wavefield U in quantum mechanical equations such as the
Schr̈odinger and Klein-Gordon equations is also being used
in the interpretation of electromagnetism and gravitation. Field
equations such as Maxwell’s and Einstein equation’s must be
re-interpreted and derived from a universal wavefield approach
alone, along with the physical interpretation of an electric and
gravitational field.

XI. K LEIN-GORDON SCATTERING

For the relativistic case

E2 = p2c2
0 + m2c4

0

and
1
c2

=
k2

ω2
=

p2

E2
=

1
c2
0

− m2c2
0

E2
.

The wave equation(
∇2 − 1

c2

∂2

∂t2

)
U(r, t) = 0

can thus be written in terms of the Helmholtz equation as

(∇2 + k2)u(r, k) = −k2γu(r, k)

whereγ is the ‘Klein-Gordon scattering function’ given by

γ = −m2c4
0

E2

The fieldU0
s is then given by

U0
s = − k2

0Γ
4πr2

where (for constantE andm)

Γ = Mm2, M =
c4
0V

E2
.

We note that in this case,U0
s is proportional to the square

of the mass and is of negative polarity compared to the non-
relativistic case, i.e. it will generate a repulsive force on a
particle of massm′ given by

F = −G
m2m′

r2
.

XII. I NTERMEDIATE SCATTERING

Since (for positive energies)

E =
√

p2c2
0 + m2c4

0 '
p2

2m
+ mc2

0,
p2

m2c2
0

<< 1

we recover Schr̈odinger’s equation

i~
∂U

∂t
= − ~2

2m
∇2U + mc2

0U

which now includes the rest mass energy termmc2
0U . In order

to consider the intermediate scattering problem (intermediate
between Schr̈odinger and Klein-Gordon scattering) we need
to derive a wave equation that unifies both the Schrödinger
and Klein-Gordon equations. One approach to this is through
the introduction of a fractional time derivative∂q/∂tq, 1 <
q < 2 where q = 1 provides Schr̈odinger’s equation and
q = 2 yields the Klein-Gordon equation. A fractional partial
differential equation that achieves this unification is (derived
through induction)(

∇2 − 1
cq

∂q

∂tq

)
U = KnU

where (c having fractional dimensionL2/qs−1)

1
cq

=
(

2m

i~

)2−q 1

c
2(q−1)
0

and

Kn =

{
22−qκ2, n = 1;
a2−q(q − 1)κ2(q−1), n = 2.

The function Kn provides unification for the Schrödinger
equation with(n = 1) and without(n = 2) the rest mass
term, the constanta, with fractional dimensionL2(q−2)/(2−q),
being required to yield dimensional compatibility. With

1
cq

=
1
cq
0

(1 + γ)
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we can then write(
∇2 − 1

cq
0

∂q

∂tq

)
U = γ

1
cq
0

∂qU

∂tq
+ KnU

where

γ =
(

2mc0

i~

)2−q

− 1 = (−2iκ)2−q − 1.

Defining a fractional differential in terms of the Fourier
transform, i.e.

∂q

∂tq
U(r, t) ⇐⇒ (iω)qu(r, ω),

we have (
∇2 + Ω2

)
u = −Ω2γu + Knu

where

Ω2 = − (iω)q

cq
0

, Ω = ±i
(iω)q/2

c
q/2
0

.

The Born scattered field is then given by

us = Ω2g(r, ω)⊗3 γui − g(r, ω)⊗3 Knui

where

g(r, ω) =
exp(iΩr)

4πr
.

The time dependent Green’s function can be evaluated using
the series expression for the complex exponential term by term
as follows (takingΩ = −i(iω/c0)q/2 to give consistency with
the ‘outgoing free space’ Green’s function in the case when
q = 2):

G(r, t) =
1
2π

∞∫
−∞

dω exp(iωt)
exp[(iω/c0)q/2r]

4πr

=
1

4πr

1
2π

∞∫
−∞

dω exp(iωt)[1 + (iω/c0)q/2r

+
1
2!

(iω/c0)qr2 + ...] =
δ(t)
4πr

+
1
4π

c
−q/2
0

∂q/2

∂tq/2
δ(t)

+
1
4π

∞∑
n=1

1
(n + 1)!

rnc
−(n+1)q/2
0

∂(n+1)q/2

∂t(n+1)q/2
δ(t).

Inverse Fourier transforming and using the convolution theo-
rem, the time-dependent scattered field is given by

Us = − 1
cq
0

∂q

∂tq
G(r, t)⊗3 ⊗tγUi −G(r, t)⊗3 ⊗tKnUi

where ⊗t denotes the convolution integral overt and Us

and Ui are the time-dependent scattered and incident fields
respectively (i.e. the inverse Fourier transforms ofus andui,
respectively5). We note that forr → 0,

Us = − 1
4πr

⊗3 γ
1
cq
0

∂qUi

∂tq
− 1

4πr
⊗3 KnUi

5For notational convenience, we have usedUs to represent the time-
dependent wavefieldUs(r, t) which should not be confused with the use
of Us(r, k), k → 0 in Section VII orU0

s as used in Section VIII.

− 1

4πc
3q/2
0

∂3q/2

∂t3q/2

∫
V

γ(r)Ui(r, t)d3r

− 1

4πc
q/2
0

∂q/2

∂tq/2

∫
V

Kn(r)Ui(r, t)d3r

and that in the ultra-low frequency range (i.e. in the limit as
ω0 → 0),

u0
s =

Ω2
0

4πr
⊗3 γ − 1

4πr
⊗3 Kn.

In this case, the fieldU0
s is given by (for constantγ andκ)

U0
s =

V

4πr2
(Ω2

0γ −Kn)

which is zero whenΩ2
0γ = Kn or when

k0 =
(−2)(q−2)/qκ(q−2)/qK

1/q
n(

1− (i/2)2−q

κ2−q

) 1
q

.

XIII. I NTERPRETATION

If we define a gravitational field (for a spherically
symmetric scatterer) to be given by the fieldU0

s then the
interpretation of what gravity is must change. According to
the universal scalar wavefield model considered in this paper,
a gravitational field is due to the scattering (by a material
object composed of a spectrum of matter waves) of very low
frequency scalar Helmholtz wavefields. Thus, if two bodies
are in proximity, then each body will scatterer low frequency
waves and each will interact with the scattered wavefield
generated by the other, both experiencing an attractive (in
the non-relativistic case) gravitational force given byv2m′U0

s

where m′ is the mass of the other body. In this sense, we
define gravity as follows:

Two bodies are attracted to each other because each
‘detects’ the ‘gravity waves’ scattered by the other in the
non-relativistic case.

However, the term ‘gravity waves’ used here is not the
same as that used in general relativity. The term relates to
the low frequency components of a scalar wave spectrum
and must be interpreted within the context of the limiting
conditionk → 0.

The model provides results that are compatible with observ-
able characteristics of a gravitational field: (i) a gravitational
field is a weak field; (ii) a gravitational field is characterized
by an inverse square law; (iii) a gravitational field deflects
light; (iv) gravity is an attractive only force. However, in this
model, the ‘deflection’ of light is not taken to be due to the
bending of light as it travels through a curved space-time
manifold (Einstein’s model) but through the diffraction of light
(and other electromagnetic radiation) by a gravitational field. It
should be noted that, according to this model, gravity waves
(as understood in terms of Einstein’s equations) can not be
measured. The attempt to detect Einstein gravity waves (i.e. the
gravity waves predicted by general reativity) is the equivalent
of constructing a weighing machine to weigh itself! Rather,
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we are ‘detecting’ gravity waves all the time, the effect of this
‘detection’ manifesting itself in terms of the ‘force of gravity’
we are all accustomed to.

The attractive only condition is valid for the non-relativistic
case (i.e. for the Schrödinger scattering function). In the
relativistic case, although the gravitational fieldU0

s is still
weak, it depends on the square of the mass and generates
a repulsive force. Note that in the case of the Schrödinger
scattering function with potential energyEp, then

γ > 0 =⇒ 2mc2
0(E − Ep)

E2
− 1 > 0

However, for any material characterised by a case whenEp >
E, the scattering function is negative and the gravitational field
defined byU0

s will yield a repulsive force.

XIV. PRINCIPLE OFEIGENFIELD TENDENCY: QUANTUM

MECHANICS REVISITED

Given the approach considered in this paper, an eigenfield
tendency principle is required in order to explain the properties
of matter as described by Schrödinger’s equation (in the non-
relativistic case) as originally conceived by Schrödinger [6].
For different potential energy functionsEp(r), it is well known
that this equation describes eigenfield systems that can be used
to model the properties of matter through the principles of
quantum mechanics (in the full context of the subject). The
original reason for deriving the Schrödinger scattering function
was so that the asymptotic behaviour of a scattered Helmholtz
wavefield (i.e. whenω → 0) could be examined. However,
the consequence of this is that the Helmholtz equation is the
governing wave equation only over a limited frequency band
and that as the frequency of a wavefield increases (i.e. as
ω → ω1) the Helmholtz equation reduces to the Schrödinger
equation. If we consider the Schrödinger equation to represent
eigenfields (at least in terms of its description of matter waves),
then we can argue that at the higher end of the our universal
spectrum, wavefields tend to behave more and more like
eigenfields. Matter is thus taken to be composed of eigenfield
systems at higher and higher frequencies; first the atom, then
the nucleus, then the constituents of the nucleus (the quarks)
and so on. Equations such as Schrödinger’s equation and
Dirac’s equation are both descriptions for eigenfield systems
at different energies (non-relativistic and relativistic energies
respectively).

In the context of matter being an eigenfield described by
solutions to Schr̈odinger’s equation, consider the case of a
free electron and a free proton and the formation of hydrogen
gas. In conventional (particle) terms, an electron and a proton
have the same charge but of opposite polarity. This attracts
the particles to form a neutral hydrogen atom, an effect which
requires the introduction of a field, namely, an electric field.
In terms of a wavefield theory, both the electron and proton
are waves. In an ionised state, the electron is a free wave and
the proton (relative to the electron) is a potential which is
itself an eigenfield system (consisting of a higher frequency
spectrum - the ‘nuclear spectrum’). The free wavefield requires
greater energy to exist in a free state and hence, based on
the principle of least energy, will ‘attempt to exist’ as an

eigenfield. This ‘eigenfield’ may have a number of eigenstates,
each with a specific energy level. The difference in energy
between the free energy state and the available eigenstate(s)
provides a residual energy, i.e. a free energy wavefield with
frequencyE/~. Once formed, the eigenfield will not share its
eigenstate(s) as this will require greater energy and hence,
if another electron comes in to the vicinity of the neutral
hydrogen atom, it will appear to undergo a repulsive force. On
the other hand, since the combined eigenfields associated with
two hydrogen atoms requires lower energy than two separate
eigenfields (i.e. two hydrogen atoms) then the result is the
diatomic Hydrogen moleculeH2 - the result of a covalent
bond. In this sense, an electric field is not the product of a
charge, rather it is that entity associated with the propensity
for a free wavefield to become an eigen wavefield. A magnetic
field is then a measure of the rate of change over which this
propensity is satisfied, i.e. IfU(r, t) exists such that∫ ∫

| U(r, t) |2 d3rdt

is a minimum, then

Electric FieldE
Free Wavefield → Eigen Wavefield

Magnetic field ∂E
∂t

Note that the transition described by Free Wavefield→ Eigen
Wavefild may have both magnitude and direction since a
free wavefield will attempt to find the shortest possible path
in a three-dimensional space in order to become an eigen
wavefield. An electric field will therefore appear to be a vector
field. Further, if the transition has no directional preference,
then an electric field will appear to have a Coulomb field
strength characterised by an inverse square law.

The principle of eigenfield tendency is just the principle
of least energy as applied to a universal wavefield model of
the type attempted in this paper. It is, however, a principle
which allows us to explain an electric field without having to
refer to the concept of a field being ‘radiated’ by a charge!
For example, ‘electron cloud’ repulsion theory (Valence Shell
Electron Pair Repulsion) is used to predict shapes and bond
angles of simple molecules in which the ‘electron cloud’ may
be a single, double or triple bond, or a lone pair of electrons - a
non-bonding pair of electrons. The ‘electron clouds’ are taken
to be negatively charged since the electrons are negatively
charged, so electron clouds repel one another and try to get as
far away from each other as possible. Instead of considering
the electron cloud to consist of negatively charged electrons,
we consider the cloud to be a eigenfield which arranges itself
in such a way that it can exist in a minimum energy state, a
state that affects the geometry of the molecule. In a simple
hydrogen atom, for example, the eigenfield will be distributed
symmetrically because, in a three-dimensional space, spherical
symmetry represents the most energy efficient configuration
which is equivalent to the electron wavefield ‘experiencing’ a
Coulomb potential.

The eigenfunctions that are the solutions to the Schrödinger
equation for different materials will not necessarily be com-
plete eigenfunctions. In some cases, solutions only allow for
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the existence of quasi-eigenfunctions. In conventional atomic
physics, quasi-eigenfunctions are incomplete standing waves
more commonly referred to a delocalised electrons. These are
electrons that exist in the ‘lattice’ of a material but are free to
move and provides a material with the property we refer to as
conductivity. This includes materials such as various metals
and chemicals (e.g. Benzene which is composed of a ring
of delocalised electrons). The principle difference between an
eigenfield and a quasi-eigenfield, is that a quasi-eigenfield has
an energy spectrum, albeit a narrow one.

The Schr̈odinger scattering function for matter waves is

γ =
2mc2

0(E − Ep)
E2

− 1.

In a macroscopic sense,Ep is the total potential energy
associated with all the nuclei from which a material of compact
support is composed andE is the total energy associated
with the electrons. In the case of elements such as gold,
the arrangement of electrons around the nucleus is such that
a single electron occupies the outermost shell and is an
example of a quasi-eigenfield, i.e. a relatively free wavefield
(a free electron) that is only loosely bound to the host atom.
Successive energy levels are contained in a small energy range
dE and are so close that, in effect, a continuous energy
spectrum is formed. Each energy level in this spectrum can
accommodate a left-travelling and right-travelling wave (‘spin-
up’ and ‘spin-down’ electrons - Pauli’s principle) and these
free electrons will distribute themselves throughout the energy
band from 0 to some valueE. Irrespective of any particular
system, the number of possible modes of oscillation per unit
volumedn in a frequency rangeν to ν + dν for waves with
a propagation velocity ofc is given by

dn =
4πν2dν

c3
.

With E = p2/(2m) = ~ω andp = ~ω/c = E/c, then

dp =
~dω

c
and dE =

p

m
dp = ~dω.

The number of states per unit volume in the energy interval
dE is therefore

dn(E) =
(2m3)

1
2 E

1
2

2π2~3
dE

and thus, the total number of electrons per unit volume in the
energy spectrum(0, E) is6

n(E) = 2
(2m3)

1
2

2π2~3

E∫
0

E
1
2 dE = 2

(2m3)
1
2

3π2~3
E

3
2 .

Here m is taken to be the mass of an electron. Note that if
the material is in a ‘ground state’ then the available electrons
will occupy the lowest possible energy level. Further, if the
total number of electrons per unit volume is less than the total
number of energy levels available in a band (the bandwidth of
the material), then the electrons can occupy all energy states
up to a maximum energyEmax - the Fermi Energy. In this

6The factor of 2 is because of Pauli’s principle.

sense, the Fermi energy defines the (energy) bandwidth of a
(conductive) material composed of a quasi-eigenfield.

With an atomic number of 79, gold is the heaviest of the
most conductive elements in the periodic table, i.e. the product
of the conductivity with the atomic number (∼ 3.57×107cmΩ)
for gold is larger than any other element. If it were possible
to reduce the total energy associated with the total quasi-
eigenfield of gold such thatE < Ep, then the result would
be a scattering function that is negative. This requires the
Fermi energy of gold to be reduced, the most influential
factors being temperature and volume. Clearly, if the number
of electrons per unit volumen is reduced then so is the
Fermi energy. In terms of a physical material,n is determined
by the number of atoms defining the physical extent of the
material. This suggests an experimental investigation of the
cryogenic properties of M-state (mono-atomic) gold. M-state
gold is a white powder and is an example of a nano-material
where each of the nano-metre size grains are clusters of a
few hundred atoms. Like other M-state materials, the surface
area is huge compared to the metallic (macro-crystalline) form.
Thus, with the volume of each grain being small enough and
the temperature of the material being low enough, it may
be possibly to reduce the Fermi energy to an extent where
E < Ep for the material as a whole.

XV. D ISCUSSION

The results developed in this paper encapsulate a phenom-
enology where the Helmholtz equation is, in effect, being
used in an attempt to develop a unified scalar wavefield
theory where the wavefieldu(r, ω) is taken to exist over
a broad range of frequencies limited only by the Planck
frequency. At very high frequencies,u is taken to describe
matter waves which are characterised by relativistic (Klein-
Gordon and Dirac equations) and non-relativistic energies
(Schr̈odinger equation) associated with nuclear and atomic
physics respectively. At intermediate frequencies,u is taken to
describe waves in the ‘electromagnetic spectrum’ and at low
frequencies,u is taken to describe waves in the ‘gravity wave
spectrum’.

The structure of matter, the characteristics of light and
other electromagnetic radiation and the properties of gravity
become phenomenologically related via Helmholtz scattering
over different frequency bands. Low frequency waves (gravity
generating waves) are scattered by high frequency waves
(matter waves) to produce a gravitational field; intermediate
frequency waves (electromagnetic spectrum) are scattered by
high frequency waves (e.g. a lens) but can also be scattered by
the field generated from the scattering of low frequency waves
to produce gravitational diffraction. In this sense, ‘physics’
becomes the study of waves interacting with waves at vastly
different frequencies, the breadth of the spectrum ‘reflecting’
the instantaneous birth of the universe - the ‘big-bang’ - since
it requires (noting that the Fourier transform of aδ-function
is a constant over all frequency space) a short impulse to
generate a broad frequency spectrum. However, in attempting
to derive a ‘wavefield theory of everything’ we must re-
interpret the nature of an electric field using the principle
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of eigenfield tendency. Thus, instead of contemplating an
electron in terms of a particle with a negative charge that
‘radiates’ an electric field and is attracted to particles with a
positive charge (which also ‘radiate’ an electric field), we can
visualise an electron in terms of a wave which is ‘attracted’
by the ‘requirement’ (through the minimum energy principle)
of becoming an eigenfunction (a standing wave with lower
energy than a free wave) whose properties are determined
by the potential energy associated with the atomic nucleus
which is itself, a higher (nuclear) frequency eigenfield system
(quarks).

The form of the wave equation(
∇2 − 1

c2

∂2

∂t2

)
U(r, t) = 0

dictates thatc must be of finite value. If a wavefield (whatever
the wavefield may be) was to convey information from one
point in space to another instantaneously, then the second
term of the above equation would be zero; the ‘wave equa-
tion’ would be reduced to ‘Laplace’s equation’∇2u = 0.
Einstein’s principal postulate is that the upper limit at which
any wavefield can propagate is the speed of lightc0 in a perfect
vacuum and thusc ≤ c0. In a more general perspective, the
rationale associated with the fact thatc must have a finite
upper bound is that the influence of any physical wavefield
on any measurable entity can only occur in a finite period
of time and that there can be no such thing as instantaneous
‘action at a distance’, i.e. as Issac Newton put it:That one
body may act upon another at a distance through a vacuum,
without the mediation of anything else, by and through which
their action and force may be conveyed from one to the other,
is to me so great an absurdity, that I believe no man who
has in philosophical matters a competent faculty of thinking,
can ever fall into it.Taking Newton’s own term,mediation
requires the propagation (of information), but propagation at
infinite speeds is not propagation and thus, we postulate that
instantaneous fields are not possible, i.e. the speed at which a
wavefield propagates must be finite for a wavefield to exist. In
this context, the results developed for this paper highlight the
idea that the ‘physics’ of a wavefield is more fundamental than
the ‘physics’ of a field. This principle should be considered in
light of the fact that the one property common to the principal
field equation of physics (e.g. Einstein’s equations, Maxwell’s
equations, Proca’s equations), is that they all describe wave
phenomena - at least in an ‘indirect’ sense. In the case of
Proca’s equations, the field equations are derived with the
singular aim of ensuring that they can be decoupled to yield
the inhomogeneous Klein-Gordon (wave) equation.

The underlying philosophy associated with the approach
considered, is based on a ‘waves within waves’ model, i.e.
to quote an old Chinese proverb‘In every way, one can see
the shape of the sea’. This is a universal self-affine or fractal
model in which the ‘fractal field’ is a scalar wavefield, a
symbolic representation of the idea being given in Figure 3.
As the frequency increases, a wavefield tends to become an
eigenfield. This principle is required to explain the structure
of matter and much of the discussion given in Section XIII
is quantum mechanics revisited without the need to define an

Fig. 3. Example of fractal waves by the Japanese artist K Hokusai from the
1800s illustrating waves of different scale in both amplitude and wavelength.

electric field in terms of a charge. If we consider the structure
of matter at the atomic, nuclear and sub-nuclear scales (indeed
at all scales down to the scale of the Planck length) to be
determined by eigenfields, then the question remains as to
why eigenfield systems should ‘kick-in’ at the atomic scale? If
the principle of eigenfield tendency applies at all frequencies
then why do we not observe equivalent naturally occurring
eigenfield systems in the electromagnetic spectrum? Perhaps
we do under special circumstances, e.g. ball-lightning.

The approach to unification considered in this paper has
yielded a number of questionable and speculative results. The
only experimental evidence offered in confirmation to our
model for a gravitational field is a possible explanation as
to why the Einstein rings associated with near field galaxies
observed by the Hubble Space Telescope are blue. However,
it should be noted that this ‘evidence’ is most typical of Carl
Popper’s principle that all observation statements are ‘theory
laden’ and that other explanations may be possible that are
more appropriate in terms of established physical models.

In general relativity, the curvature of space-time bends light
by the same amount irrespective of the frequency - there
is no dispersion relation. Theλ−6 scaling law associated
with gravitational diffraction may be validated (or otherwise)
from appropriate simultaneous observations of the same Ein-
stein ring (complete or otherwise) at different wavelengths.
Other consequences such as a gravitational field generating
a repulsive force that is proportional to the mass squared in
the relativistic case remain of theoretical consequence only.
However, it is noted that inflation theory (the expansion of the
early universe) requires gravity to be a repulsive force.

The model considered in this paper leads to the proposition
that a gravity field is regenerative and exists through the
continuous scattering of existing low frequency Helmholtz
wavefields. This proposition may provide an answer to the
following question: If nothing can escape the event horizon
of a black hole because nothing can propagate faster than
light then how does gravity get out of a black hole? The
conventional answer to this question is that the field around
a black hole is ‘frozen’ into the surrounding space-time prior
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to the collapse of the parent star behind the event horizon and
remains in that state ever after. This implies that there is no
need for continual regeneration of the external field by causal
agents. In other words, the explanation defies causality. In the
model presented here, the gravitational field generated by a
black hole or any other body is the result of a causal effect - the
scattering of low frequency scalar waves. In this sense, a black
hole is just a stronger scatterer than other cosmological bodies
and a gravitational field ‘gets out of a black hole’ because it
was never ‘in the black hole’ to start with.

Propagative or wave theories of gravity have been proposed
for many years. In 1805, Laplace proposed that gravity is a
propagative effect and considered a correction to Newton’s
law to take into account the observation that gravity has
no detectable aberration or propagation delay for its action.
Laplace’s ideas were advanced further by Weber, Riemann,
Gauss and Maxwell in the Nineteenth Century using a variety
of ‘corrective terms’. In 1898, Gerber, developed a propagative
theory that took into account the perihelion advance of mer-
cury and in 1906 Poincaré showed that the Lorentz transform
cancels out gravitational aberration. After the success of gen-
eral relativity (1916) for explaining gravity in terms of a geo-
metric effect, propagation theories were discarded. However,
more recently, attempts at explaining gravity in terms of causal
effects through a ‘propagative’ force have been revisited [29]
as debate over the basic Einsteinian postulates7 has intensified.
Moreover, from Laplace to the present, propagation theories
of gravity consider an object to be ‘radiating’ a field (in a
passive sense). If general relativity considers gravity to be the
result of an object warping space-time, then the proposition
reported in this paper is that gravity is the result of an object
scattering (long wavelength) waves that already exist as part of
the low frequency component of a universal spectrum which
is, itself, the by-product of the ‘big-bang’. The compatibility
of this approach with general relativity might be realised if
the wavefield as taken to warp space-time so that space-time
is the medium of propagation.

Any propagation theory of gravity must address some basic
known observations: (i) Gravity has no detectable aberration
or propagation delay for its action leading to effects predicted
by general relativity such agravitomagnetism; (ii) the finite
propagation of light causes radiation pressure for which gravity
has no counterpart pressure. These results represent the most
vital evidence with regard to gravity being a geometric and
not a propagative effect. For example, in an eclipse of the
Sun, the gravitational pull on the earth by this 3-body (Sun-
Moon-Earth) configuration increases. By comparing the delay
in time it takes to observe the visible maximum eclipse on
Earth (which can be calculated from knowledge of the distance
of the Moon from the Earth) with the equivalent gravitational
maximum, then if gravity is a propagating force, it appears to
propagates at least 20 times faster than light! [30] Irrespective
of whether this value is valid or not, a fundamental issue
remains, which is compounded in the question: what is the
speed of gravity? If we consider gravity to be a propagation

7The invariance of the propagation of light in a vacuum for any observer
which amounts to a presumed absence of any preferred reference frame.

and/or a low frequency scattering effect, then in order to
account for the lack of propagation delay, it must be assumed
that the speed of gravity is greater than the speed of light. This
is contrary to the Einsteinian postulates if these postulates
are taken to apply to all wavefields irrespective of their
wavelength. The model presented here assumes that the speed
of gravity is the same as the speed of lightc0. However, the
asymptotic resultk → 0 used to define a gravitational field
yields, what will appears to be, an instantaneous effect from a
wavefield that is taken to propagate at the speed of light. The
wavelength is so long compared to the distances associated
with a Sun-Moon-Earth system, for example, that the speed
of gravity will appear to be significantly faster than the speed
of light (i.e. U0

s is observed to be an instantaneous field).

XVI. F INAL COMMENTS

In terms of the fractal wavefield model considered here, the
gravitational force is a consequence of very long wavelength
waves and is therefore a long range force. Electromagnetism is
a consequence of intermediate wavelength waves which exist
as both free wavefields and eigen wavefields at the atomic
scale, the transition from one to the other creating an ‘electric
field’. The strong force is a consequence of a nuclear eigen
wavefield where the values ofE = ~ω and p = ~k are
in the relativistic energy limit. The weak force (associated
with radioactive decay, for example) is explained in terms of
the transformation of a nuclear eigen wavefield to a more
stable form allowing for the emission of a free wavefield
(quantum ’tunneling effect’ when the potential barrier is low).
For example, Rutherford scattering (the scattering of alpha
particles from gold nuclei which historically provided the
basic model for the atom) is an example of a free (nuclear)
wavefield, interacting with a stable eigenfield system which
consequently appears to exert a repulsive Coulomb force. At
this frequency range the governing equation is Schrödinger’s
equation which has a far field scattering amplitude determined
by the three-dimensional Fourier transform of a Coulomb
potential. Thus, as a function of the scattering angleθ

A(θ) =
2π

k sin
(

θ
2

) ∞∫
0

sin
[
2kr sin

(
θ

2

)]
γ(r)rdr

and for the screened Coulomb potential8

γ(r) =
exp(−ar)

r
, a > 0

we obtain (fora → 0)

A(θ) =
π

k2 sin2
(

θ
2

) (1 +
a2[

2k sin
(

θ
2

)]2
)−1

=
π

k2 sin2
(

θ
2

) .
The intensity (scattering cross-section) is therefore inversely
proportional tosin4(θ/2) which is the basic ‘signature’ of
Rutherford scattering. In terms of neutron scattering, a neutron
is a free nuclear wavefield which, during its life time, is
unable to combine with an existing nuclear eigen wavefield
until it does, in some cases producing unstable nuclear eigen

8Required in order evaluate the integral overr.
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wavefield systems which transform into new stable systems
involving the emission of free wavefields, i.e. nuclear fission.

Note that the principle of eigenfield tendency in which free
wavefields tend to become eigen wavefield in order to achieve
a minimum energy is equivalent to the least action principle.
In field theory - in this case, the wavefieldU(r, t) - the
Lagrangian densityL is a functional that is integrated over
all space-time, i.e.

S[U ] =
∫ ∫

L[U, ∂µU ]d3rdt

where, using ‘relativistic notation’,

∂µ = (∂0;∇), ∂µ = (∂0;−∇),

∂0 =
1
c

∂

∂t
and ∂µ∂µ =

1
c2

∂2

∂t2
−∇2.

The Lagrangian is the spatial integral of the density and
application of the least action principle yields the Euler-
Lagrange equations

δS
δU

= −∂µ

(
∂L

∂(∂µU)

)
+

∂L
∂U

= 0

which are then solved forU .
The wavefield approach adopted in this paper is consistent

with the basic concepts associated with theGrand Unified
Theoriesof C H Tejman [31] and in one sense, we have
attempted to explain the example images given in Figure 2
using a single phenomenological model. Just as Poisson used
a wave model to explain the Poisson spot without reference to
light being an electromagnetic wave (Maxwell’s equations for
an electric and magnetic field which Poisson did not know of
at the time), so we have attempted to explain both a Poisson
spot and an Einstein ring without reference to general relativity
(Einstein’s equation for a gravitational field). The problem then
remains of how to formally ‘recover’ Maxwell’s equations and
Einstein’s equations from a single wave theoretic model.
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