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Abstract: A compact dual-band annular-slot antenna loaded by a concentric split-ring-slot is presented. A stepped
microstrip feedline enables the control of the coupling and provides good matching. The annular-slot is connected
to the split-ring-slot by a rectangular slot, which increases the surface of the current path, thus notably reducing
the resonant frequency for a given size. The embedded split-ring-slot structure allows many resonant modes to be
realised. By tuning the key parameters, these operating modes and their bandwidths can be controlled. A wide
bandwidth can be realised for either the lower band, upper band or both bands simultaneously, depending on the
application. Measured results show that the bandwidths in the region of 45-15% and 32—-8.4%, can be provided
for the lower and upper bands, respectively. For the case where a wideband response is required for both bands,
it is shown that 26 and 32% can be realised. A 30% miniaturisation is also achieved compared with conventional

annular ring slot antennas.

1 Introduction

Annular-ring patch antennas [1-4] and annular-slot antennas
[5—8] have recently attracted significant interest because of
their appealing features such as relatively wide bandwidth,
low profile, light weight and ease of fabrication. In general,
the bandwidth for single-frequency annular-slot antennas
is about 10% [5, 8]. The introduction of broadbanding
techniques can increase this [9, 10]. However, in the case
of dual-band annular-slot antennas, it is difficult to obtain
large bandwidths for both the lower and upper bands
simultaneously, because the antenna impedance characteristics
are different for each band.

Various techniques have been employed to achieve
broadband, dual-band and multiband operation for slot
antennas. An asymmetric feedline was used to excite multiple
modes on an annular-ring slot, which achieves multiband
operation with a 10% bandwidth for both bands by bending
and adjusting the length of microstrip line [7]. Triplate line-
fed dual-loop slot antennas were introduced for linear and
circular polarisation [11, 12]. In subsequent reported work
[13—-21], annular-slot antennas have been shown to provide

10-20% impedance bandwidth, which is broader than for

classical microstrip patch antennas. However, for the
emerging wireless systems, a broader bandwidth is needed.
These applications include combinations of WWANS,
WLANs and WPANs and with diplexing now contained in
many radio modules, multiband antennas offer a saving of
space. Usually, broad dual-frequency characteristics are hard
to realise in annular-slot antennas because good impedance
matching is very difficult to achieve in multiple bands. In
[22], the input impedance matching was improved and wider
bandwidths obtained by using an added feed network and
multiple fictitious short circuits along the slot, but this adds
complexity.

In this paper, the annular-slot and concentric annular-split-
ring-slots are connected by a rectangular slot, thereby
increasing the surface current path and enabling
miniaturisation of the slot antenna obtained. By adjusting
the parameters of the antenna, such as the width of the slot-
ring, the radius of the inner and outer slot-rings and the
width and length of the microstrip line, dual-frequency
characteristics can be realised with combinations of narrow
and wide bandwidths for one or both bands. One can realise
the normally difficult to achieve wideband characteristics for
both bands, and measured results show greater than 26 and
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32% for the lower and upper bands, respectively. Another
combination is a very wide bandwidth for the first band
(>45%) with 8.4% for the second band. When compactness
is the main requirement, the miniaturised element can
achieve over 15% bandwidth for both bands. This is done by
shortening the length of the microstrip feedline, and good
matching is achieved for the low-frequency fundamental
mode.

2 Configuration and design of
concentric annular-slot antennas

The configuration of the compact slot antenna is illustrated in
Fig. 1. It consists of an annular-slot connected to a concentric
annular-split-ring by a narrow rectangular slot. The slot
antenna is fed by a stepped microstrip line, which provides

>
e _“’1%

c

Figure 1 Configuration of the proposed antenna

a Slot configuration
b Substrate
¢ Stepped feedline

impedance matching. Usually, the resonant frequencies are
mainly determined by the circumference length of the
annular-slot. For the proposed annular-slot antenna, the
first mode is mainly determined by the circumference of
the inner and outer slot-rings, and the second mode is
mainly determined by the outer circumference. The
annular-slot widths and the microstrip feedline parameters
also have a significant effect on performance. An
approximation [23] is given by Ay = 27R, where R is the
radius of annular-slot, A, is slot guided wavelength and
where

6.3(w,/h)e>®
(238.64 + 100w, /4)

8.81(s, +0.95)]. (4

A = A { 1.045 — 0.365Ine, +

To miniaturise the slot antenna, by the addition of a concentric
split-ring-slot, the slot perimeter is also lengthened, thus
significantly reducing the centre frequency. The slot antenna
is tightly coupled to the microstrip line and hence, the
feedline parameters are key factors. To achieve different dual-
band characteristics, it is necessary to tune and optimise the
slot widths w1 and w2, the separation distance L between the
annular-slot and the split-ring-slot, and the width w, and
length Ls of the microstrip line. The effects of these
parameters on the antenna performances are discussed in the
next section.

3  Analysis and study of
the parameters

In this paper, the effects of the proposed slot antenna
parameters are discussed and analysed using CST microwave
studio. In comparison with patch antennas, annular-slot
antennas have relatively wide impedance characteristics.
Usually, for antennas with narrow annular-slots, the
impedance bandwidth is only about 10%, but for wider slots,
greater bandwidths can be obtained, because of the reduced

quality factor [22].

To reduce costs, the substrate was selected as FR4, which
has a relative permittivity of 4.3, loss tangent of 0.02 and a
thickness of 1.52 mm (35 wm metallisation). The ground
plane size was 100 mm x 100 mm. Based on the simulated
results, it was found that the width SW of the rectangular
slot has negligible effects; the other parameters upon which
the antenna performance shows a medium or heavy
dependence are discussed in the following section.

3.1 Dependence on the width of
the split-ring gap GW
Fig. 2 shows the return loss plots for different values of GW

with the outer radius Rout = 29.5 mm, #1 = 7 mm, inner

radius Rin=13.5mm, W2 =5mm, GW =10 mm,
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SW=10mm, Lp=10mm and #s1=3.0mm. Fig. 3
shows that for the lower band, the lower edge frequency
remains constant whereas the upper edge frequency increases
with increase in the line width W#s2; at the same time, the
modes for the upper band separate. Therefore this parameter
can be used to control the lower frequency bandwidth, upper
centre frequency and frequency ratio.

S11(dB)

The length Ls of the microstrip feed line is also an
important parameter that determines the performance of
the slot antenna. Wide dual-band operation can be
achieved for a suitable choice of the length Ls as shown in
Fig. 4. By adjusting the microstrip feedline length Ls, the

. . bandwidth of the upper band can be independently
2 3 4 controlled. There is little effect on the lower band. It is
Frequency(GHz) seen from Fig. 4 that a wide variation in bandwidth is

achieved by a variation of Ls from 7 to 10 mm.

o -
(=)

Figure 2 Comparison of S11 for different split-ring gaps GW

SW =10 mm, Lp =10 mm, #s1=3.0 mm, Ls =9 mm
and W52 =1 mm. As the split-ring gap GW increases, the
annular-slot length is decreased. Consequently, the low-
frequency edge will shift upwards a little with an associated
reduction in bandwidth. There is no effect on the upper &
band. This parameter can therefore be wused to 2
independently control the bandwidth of the lower band. H Ws2=1.0mm

— Ls=10mm

»»»»»» Ls=9mm

230 4 - Ls=8mm

3.2 Dependence on the microstrip o Le=7mm
feedline parameters Ws2 and Ls 1
The feedline arrangement and dimensions have a significant 40
influence on the electromagnetic coupling between the — , . , ,
feedline and the slot. Thus, the slot antenna characteristics 2 3 4 5 6
are heavily dependent on the parameters W2 and Ls. A Frequency(GHz)

parametric study of the line was made and the other
parameters were: outer and inner radii Rout=29.5 mm,

Rin =13.5 mm, W1 =7 mm, W2 =5 mm, GW = 10 mm,

Figure 4 Comparison of S11 with different values of Ls

0
104
)
° Ls=9mm
= —— Ws2=0.8mm
@ b Ws2=1.0mm
- Ws2=1.2mm
204 1 | Ws2=1.4mm
= We2=1.6mm
-30 v T T T T T T T T T T T T T T T T
2 3 4 5 6 2 3 4 5 6
Frequency(GHz) Frequency(GHz)
Figure 3 Comparison of S11 with different values of Ws2 Figure 5 Comparison of S11 for different values of L
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A/m A/m

10.0 10.9
8.01
8.01 20
= 5.54
5.5% 4.58
4.58 3.75
3.75 3.05
3.085 2.45
1.94
s
= 1.14
1.51 0.821
1.14 8.552
09.821 8.323
0.552 0
08.323
%]
a
a/m A/m
10.
106.0 8.
8.01 6.
6.68 2
5.5% 3.
4.58 3.
3.75 24
3.05 1.
2.45 %-
1.94 0.821
1.51 0.552
1.14 0.323
9.821 o
8.552
9.323
%]
b Figure 7 Surface current distribution of Antenna A at lower
Figure 6 Surface current distribution of Antenna B at lower band and high band
band and high band a 1.784 GHz
b 1.855 GHz
3-_3 Dependence on the_ Separation Table 1 Three dual-frequency slot antenna parameters
distance L between the inner and - : Tx TA .
outer annular-slots ype ntenna ntenna ntenna

Parameters

Fig. 5 displays the return loss curves against frequency
for the outer radius Rout=29.5mm, W1 =7 mm, Rout 29.5 29.5 26.0
W2 =5mm, GW = 10 mm, SW = 10 mm, Lp = 10 mm,
Ws1=3.0mm, Ls =9 mm and Ws2 =1 mm. It is seen
that there is a downward shift for the lower band as the w1 7.0 7.0 4.0
separation distance L between the inner and outer
annular-slots decreases. There is also a notable increase in
the bandwidth of the lower band as this parameter SW 10.0 10.0 6.0
decreases. Thus, as the separation distance L becomes

Rin 13.5 135 17.0

w2 5.0 5.0 4.0

small, the first and second resonant modes become very W 10.0 10.0 10.0

close, providing wide bandwidth characteristics for the Ws2 1.0 1.0 0.40

lower operating frequency band with negligible effects on I 9.0 50 11.0

the upper band.
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Table 2 Comparison of measured and simulated results for Antennas A, B and C

Type Antenna A Antenna B Antenna C
Performances
f1, GHz simulated 1.784 and 1.552-2.015 1.165 and 1.068-1.261 1.538 and 1.072-2.005
measured 1.796 and 1.554-2.037 1.200 and 1.108-1.292 1.581 and 1.227-1.935
f2, GHz simulated 5.132 and 4.210-6.055 1.855 and 1.592-2.118 3.108 and 2.976-3.241
measured 5.297 and 4.438-6.156 1.850 and 1.582-2.118 3.016 and 2.890-3.143
BW1, % simulated 26.0% 16.6% 60.1%
measured 26.9% 15.3% 45.0%
BW2, % simulated 36.0% 28.4% 8.5%
measured 32.5% 29.0% 8.4%
f2/f1 simulated 2.87 1.59 2.02
measured 2.95 1.54 1.92
Table 3 Sensitivity of the antenna centre-frequency and bandwidth to geometric parameters
Parameters Lower frequency Upper frequency
Centre frequency Bandwidth Centre frequency Bandwidth
GW none heavy none none
Ws2 light light heavy heavy
Ls light light heavy heavy
L heavy heavy none none
dielectric constant, &, light light

S711(dB)

-20 A = Simulated Results :
J —o— Measured Results —=— Simulated Results
—o— Measured Results
-30 o -30 4
-40 T T T T T T T T 1 40 == T T T T T T T T T 1
1 2 3 4 5 6 7 1.0 1.5 2.0 25 3.0 35
Frequency(GHz) Frequency(GHz)

S11(dB)

-20 4

Figure 8 Comparison of the simulated and measured S11

for Antenna A

Figure 9 Comparison of the simulated and measured S11

for Antenna B
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—— Simulated Results

—o— Measured Results

-30

T T 1
1.0 1.5 2.0

T
25 3.0 3.5 4.0 4.5

Frequency(GHz)

Figure 10 Comparison of the simulated and measured S11
for Antenna C

3.4 Current distribution

The principles of dual-frequency operation can be seen in
the simulated current distribution plots in Figs. 6 and 7.
It is shown in Fig. 64 that the proposed antenna (named
Antenna B, below) is well matched for the low-frequency
mode, when the length of the microstrip line Ls is
selected as 2 mm. There is a strong interaction with
the concentric split-ring and the resonant frequency is
1.165 GHz, which is below the resonant frequency of
the unloaded annular-slot. For this antenna, the current
distribution for the wupper frequency of 1.85GHz
indicates reduced interaction with the concentric slot, and
this mode is closer to the wunloaded annular-slot
resonance. This can be seen in Fig. 64. For a longer
feedline coupling (Antenna A), the lower frequency
mode at 1.78 GHz is dominated by the annular-slot
resonance and the upper band employs split-ring loaded
higher modes. These modes can be seen in Figs. 74 and
7b. Hence, the matching power to the various modes is
controllable by the parameter Ls.

4 Measured results
To show design flexibility of the geometry, three dual-band slot

antennas were fabricated and measured, which are printed on
the FR4 substrate with various parameters as listed in
Table 1. Table 2 summarises the performance of the three
antennas with measured and simulated results. They are listed
as antennas A, B and C. Table 3 illustrates the sensitivity of
centre-frequency and bandwidth of the antenna to geometric
parameters, which is useful as a design guide.

The measured results are in agreement with the simulated
results. Antenna A provides a wide bandwidth for both
bands as follows: as shown in Fig. 8, for Antenna A
(Ls = 9 mm), the bandwidth of the lower frequency is

XoZ Plane Low Band
Antenna A at 1.796GHz
—=—Co_Pol

X_Pol

Antenna B at 1.200GHz
—e—Co_Pol

X_Pol

Y | Antenna C at 1.581GHz
\| ——Co_Pol

X_Pol

YoZ Plane Low Band
Antenna A at 1.796GHz
—=— Co_Pol
X_Pol
Antenna B at 1.200GHz
—+— Co_Paol
*_Pol

\ | Antenna C at 1.581GHz
4 ——Co_Pol
X_Pol

190

Figure 11 Measured radiation patterns for the lower-
frequency band for Antennas A, B and C

a XoZ plane
b YoZ plane

about 26.9% (483 MHz) from 1.554 GHz to 2.037 Hz,
and the bandwidth of the upper frequency is about 32.5%
(1718 MHz) from 4.438 to 6.156 GHz. The frequency
ratio is 2.95:1

The proposed antenna, Antenna B (Ls = 2 mm) provides
maximum compactness and the frequency of the lower band
is much lower; the bandwidth of the lower frequency is about
15.3% (184 MHz) from 1.108 to 1.292 GHz, and the
bandwidth of upper frequency is about 29.0% (536 MHz)
from 1.582 to 2.118 GHz. This is shown in Fig. 9. The
frequency ratio is 1.54:1.

Antenna C (Ls = 11 mm) is shown to provide a very wide
bandwidth for the first band. It presents wide impedance
characteristics with a bandwidth of 45.0% for the lower
band. Measurements shown in Fig. 10 indicate that this
band covers 1.227-1.935 GHz whereas the upper band
covers 2.890—-3.143 GHz (45 and 8.4%, respectively).
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Antenna A at 5.297GHz

a0 High Band

’ —=— Co_Pol at XoZ Plane

120 _—— 60 oo X_Pol at XoZ Plane
—=— Co_Pol at YoZ Plane

X_Pol at YoZ Plane

Antenna B at 1.850GHz

0 High Band

—=— Co_Pol at XoZ Plane
X_Pol at XoZ Plane

——Co_Pol at YoZ Plane

------ X_Pol at YoZ Plane

b
Antenna C at 3.016GHz
0 High Band
; —s— Co_Polar at XoZ Plane

30 _— | e 30 | e X_Polar at XoZ Plane

1 . —— Co_Polar at YoZ Plane
104 Y e Sy e X_Polar at YoZ Plane
20 30/ )80

Figure 12 Measured radiation patterns for the high-
frequency band for

a Antenna A
b Antenna B
¢ Antenna C

7 1
] s
A
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] —»— Antenna A T@ | 1y
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| 7
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1
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Frequency(GHz)

Figure 13 Measured peak gains for Antennas A, B and C

Figs. 114 and 114 show the measured radiation patterns at
the lower centre-frequency for Antennas A, B and C,
respectively. It is seen that the radiation patterns of the
three antennas depend on the operating mode. In Figs. 11a
and 117, the patterns for all antennas in the lower band are
bidirectional, with good cross-polarisation properties.
Figs. 12a—12¢ show the measured radiation patterns at the
high band for Antennas A, B and C, respectively. The
pattern for Antenna B (Fig. 124) illustrates a broadside
pattern with the cross-polarisation level better than 10 dB
for the high band. However, it is observed from Fig. 124
that Antenna A exhibits a higher order mode pattern with
very poor cross-polarisation. The pattern for Antenna C
also exhibits poor cross-polarisation as shown in Fig. 12c.
These patterns can be suitable for indoor wireless
communications and ad Aoc networks [24, 25] where cross-
polar performance is not a requirement and where channels
are dominated by rich Rayleigh fading. Fig. 13 shows the
measured peak gains for the low- and high-frequency
bands for Antennas A, B and C.

5 Conclusions

A dual-frequency planar annular-slot antenna is realised
providing wide bandwidth characteristics. Very wide
bandwidths are achieved for one or both bands by
controlling the modes of operation. Frequency ratios in the
region of 1.5 to 3.0 are possible. Compared with the
conventional annular-slot antenna, the centre frequency for
the proposed slot antenna is reduced by about 30% when
the split-ring-slot is strongly coupled. By adjusting the
various geometric parameters, the frequency ratio and the
bandwidth of each band can be easily controlled.
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