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The optical properties of photopolymer layers consisting of an acrylamide–based matrix 

and microporous aluminophosphate nanocrystals of AEI- type are investigated. The 

compatibility of the photopolymer doped with the nanoparticles is studied. The surface 

and volume properties of the layers with different levels of doping with microporous 

nanocrystals are characterized. The effective refractive indices and absorption coefficients 

of the doped photopolymer layers are determined and used to calculate the refractive 

index and porosity of pure AEI nanoparticles used as dopants. Volume transmission 

gratings were recorded in the doped photopolymer layers at different spatial frequencies. 

By spatial monitoring of the characteristic Raman peak of the AEI particles across the 

grating vector, the optimal concentrations of the nanocrystals for obtaining highest light 

induced redistribution of nanocrystals are determined. The optical properties of the 

photopolymer layers combined with the redistribution of the AEI nanoparticles during 

holographic recording are the parameters exploited for fabrication of optical sensors. An 

irreversible humidity sensor based on a transmission holographic grating is designed and 

fabricated. The diffraction efficiency of the sensor changes permanently after exposure to 

high humidity. 

 

Keywords: holography, photopolymer, nanoparticles, optical properties, porosity, 

humidity indicator. 

 



 2 

 

Introduction 

Holographic dry photopolymers have received much attention due to their possible 

applications in diffractive optics, information storage and displays, and sensors.1-6 Special 

attention is paid to the optical properties of hybrid organic/inorganic materials which have been 

used in non-conventional applications such as photovoltaic cells and light-emitting devices, and 

biosensors.7-11  

The development of these hybrid organic/inorganic materials was inspired by the phenomenon 

of light induced mass transport in photopolymerizable materials, which leads to improved 

holographic properties. The basic idea behind the concept of the photopolymerizable 

nanocomposites is to introduce nano-dopants with significantly different refractive index from 

that of the host material and to achieve redistribution of the nano- dopants during holographic 

recording.12-17 It has been shown that optimum values of recording intensity and volume fractions 

of incorporated solid nanoparticles such as SiO2
18, TiO2

19 and ZrO2
20, lead to an increase of 

diffraction efficiency of the recorded gratings due to a higher refractive index modulation. 

However, the process of dispersing variable types of nanoparticles in a polymer matrix is 

problematic since poor compatibility between the polymer host and the dopants is observed. 

Besides, the nano- dopants produce optical losses due to increased scattering caused by the 

nanoparticles, and the large difference between their refractive index and that of the 

photopolymer matrix.  

 In addition to metal oxide nanoparticles, the use of colloidal zeolites (microporous crystalline 

materials with size less than 300 nm, uniform pore size and ordered structure) in photopolymer-

water solution yielding good optical quality of the dry layers has been reported.21-23 The refractive 

index of the zeolite particles is close to that of the photopolymer, and the optical losses are quite 

low even in the case of relatively big nanoparticles (diameter of 100-300 nm).23-25 Additional 

advantages of using zeolites as dopants are related to the possibility to control their chemical 

composition, pore shapes and sizes, hydrophilicity, hydrophobicity and overall particle size and 

morphology.26  

Understanding and predicting the influence of porosity and optical properties of microporous 

nanoparticles on the effective optical properties of the photopolymer layers will be beneficial for 
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their applications, in particular in holographic sensor design. Moreover, it will be possible to 

characterize the optical properties of the microporous nanomaterials incorporated in the 

photopolymer layers taking into consideration the strong influence of fill/empty effects of the 

pores. 

The aim of this work is to study the optical properties of photopolymer layers consisting of an 

acrylamide–based matrix and microporous aluminophosphate nanocrystals (AlPO-18, AEI- type 

framework structure).27 Besides, an irreversible humidity indicator based on a transmission 

holographic grating in the photopolymer layers doped with the AlPO-18 nanoparticles is 

demonstrated. A detailed characterization and optimization of the sensor is in progress and will 

be published elsewhere. 

 

Theory 

A simple transmission volume phase hologram can be recorded when the photosensitive 

medium is located in the area of overlap of two coherent beams of light of appropriate 

wavelength (Figure 1A). The spatial frequency of the transmission hologram is determined by the 

angle between the two recording beams and it is given by: 

 

λθ =Λ sin2 ,     (1), 

 

where Λ is the fringe spacing, θ is half of the angle between the two recording beams and λ is the 

wavelength of the recording beams. 

It has been previously shown12-22 that the holographic recording process in nanoparticle doped 

photopolymerisable materials can lead to the redistribution of the nanoparticles and thus to the 

creation of patterns of particle rich and particle depleted areas (Figure 1B).  
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Figure 1. A) Recording of a transmission hologram, B) the spatial redistribution of 

microporous nanoparticles as a result of holographic recording and C) after exposure to an 

analyte.   

 

The diffraction efficiency, η, of such a volume phase hologram is given by (2):28  

 

)
cos

(sin 12

θλ

π
η

dn
= ,    (2), 

 

where n1 – is the refractive index modulation (the difference between  the refractive indices in 

illuminated and non illuminated areas), d is the thickness of the hologram, λ is the wavelength of 

the probe beam that is used to measure the diffraction efficiency, θ is the Bragg angle. 

The modulation of the optical refractive index n1 is caused by: 1) polymerisation of the 

monomer and its conversion into polymer; 2) density variation due to concentration driven 

monomer diffusion from dark to bright fringe areas; 3) density variation due to concentration 

driven diffusion of short polymer chains from bright to dark fringe areas; 4) spatial patterning of 

the nanozeolite particles characterised by significantly different refractive index from that of the 

photopolymer matrix.  

The contribution made by the redistributed nanoparticles to the overall refractive index 

modulation can be estimated by:29 



 5 

)sin()nn(
f

n hostnanodopant

snanodopant
απ

π
−=∆

2
        (3), 

where fnanodopants is the volume fraction of nanoparticles in the nanoparticle-rich region, nnanodopant 

is the refractive index of the nanodopants, nhost is the refractive index of the host organic matrix, 

and α is the fraction of the period with a rich content of nanoparticles. By measuring the 

diffraction efficiency and determining the refractive index modulation amplitude in doped and 

undoped layers one can estimate the volume fraction of redistributed nanoparticles, fnanodopants. 

In order to achieve maximum benefit to the refractive index modulation during holographic 

recording from the presence of the nanoparticles in the layer it is necessary to maxmize 

redistribution of the nanoparticles. Choosing maximum difference between the refractive index of 

the nanoparticles and that of the host photopolymer matrix will also increase their positive effect 

on the final refractive index modulation. At the same time, a careful consideration must be given 

to the increased optical scattering due to the large difference in the refractive indices. Thus in 

determining what the optimum concentration of the nanoparticles is being a balance should be 

sought between the optical losses and the improved refractive index modulation.  

The basic concept behind the design of holograms recorded in microporous nanoparticles 

doped photopolymer layers for application in sensing is that adsorption/absorption of the specific 

analyte will cause the refractive index of the nanoparticles to change. When they are redistributed 

this will lead to a change in the total refractive index modulation and thus the analyte’s presence 

will be observed as a change of the diffraction efficiency of the hologram.  

 

Experimental Section 

A) Preparation of microporous AlPO-18 nanocrystals  

AlPO-18 nanocrystals were prepared according to the following procedure: 31.04 g of 

Aluminum isopropoxide (Aldrich, 98%) was dissolved in 202.08 g of tetraethylammonium 

hydroxide (TEAOH, Aldrich, 35%) and 114.76 g distilled water, followed by vigorous stirring 

until a clear solution was obtained. Then 55.36 g of phosphoric acid (Acros, 85%) was added 

drop wise under continuous stirring. The resulting mixture was stirred for 45 minutes in order to 

ensure a water-clear suspension. The final composition of the suspension was 1 Al2O3 : 3.16 P2O5 

: 3.16 (TEA)2O : 186 H2O. Crystallization of AlPO-18 nanocrystals from this suspension was 
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carried out at 180 °C in a microwave oven for 5 min (Sample 1) and in a conventional oven for 

18 h (Sample 2). After the syntheses, the crystalline suspensions were purified using high-speed 

centrifugation (24,500 rpm for 10 min) in three consecutive steps and re-dispersed in water using 

an ultrasonic bath. The AlPO-18 nanocrystals were finally stored in water with a solid 

concentration of 6 wt. % and pH of 7. 

 Preparation of photopolymer layers doped with AlPO-18 nanocrystals. The photopolymer 

layers consisting of a soft photopolymer matrix and AlPO-18 nanoparticles were prepared 

according to the procedure described below. A photopolymer solution developed at the Centre for 

Industrial and Engineering Optics-Dublin Institute of Technology is used as a matrix.30 It consists 

of 9 ml stock solution of polyvinyl alcohol (PVA, 20 w/w %), 2 ml triethanolamine, 0.6 g 

acrylamide, 0.2 g N,N-methylene bisacrylamide, and 4 ml Erythrosin B dye of 1.1 mM dye stock 

solution.   

 The aqueous suspensions of AlPO-18 nanoparticles were sonicated for 20 minutes prior 

mixing with the photopolymer solution in order to ensure disintegration of any possible 

agglomerates. The AlPO-18 nanocrystals in water suspension were added to the photopolymer 

with the following concentrations 0, 2.5, 5, and 10 wt. %. Detailed information on the mixing 

procedure can be found elsewhere.22,23 The photopolymer/ AlPO-18 suspension (0.5 ml) was 

deposited on glass plates (26 x 38 mm2) followed by drying for 24 h in a dark room at ambient 

conditions (T = 21 ± 3 oC and relative humidity, RH = 40 - 60 %) on an optical table.  

B) Characterization of the nanocomposite layers  

  Volume characterisation of suspensions and layers. Dynamic light scattering (DLS) 

measurements using a Malvern Zetasizer Nano ZS were carried out on pure AlPO-18 suspensions 

and on photopolymer doped with AlPO-18 nanocrystals to determine the mean diameter of the 

nanoparticles and to monitor their stability. DLS measurements of the suspensions were 

performed immediately after mixing the photopolymer with the AlPO-18 suspension, and again, 

after 24 hours in order to check their stability with time. Additionally, the surface charge and 

degree of agglomeration of the AlPO-18 nanoparticles were determined by measuring the zeta 

potential value at a constant concentration (6 wt. %) and pH=7. 

The morphology and size of the nanocrystals were studied by scanning electron microscopy 

(SEM) using a Philips XL 30 microscope. The crystallinity of the freeze-dried AlPO-18 powder 
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was proven by X-ray diffraction (XRD) analysis carried out with a STOE STADI-P X-ray 

diffractometer. The porosity of the AlPO-18 powder was determined by measuring the nitrogen 

sorption isotherms of calcinated sample (390 °C for 12 h) with a Micromeritics ASAP 2010 

surface area analyzer. 

Transmittance (T, accuracy 0.1 %) and reflectance (R, 0.5 %) spectra of the photopolymer 

layers doped with AlPO-18 nanoparticles were recorded using a high precision UV-VIS-NIR 

spectrophotometer, CARY 5E VARIAN.  

The Raman measurements on the photopolymer layers doped with AlPO-18 nanocrystals were 

performed using a Horiba Jobin Yvon confocal Raman spectrometer with a confocal pinhole 

diameter of 100 µm and an excitation line of 532 nm (the magnification of the microscope 

objective was 100X). The confocal Raman spectroscopy was used to study the distribution of the 

particles through the thickness of the photopolymer layers. 

 Characterization of layers’ surface. The photopolymer layers doped with different 

concentrations of AlPO-18 nanocrystals were exposed simultaneously to UV and visible light 

(LV202 Megaelectronics) with an intensity of 2.5 mW/cm2 for 30 min to achieve complete 

photopolymerisation. 

 The surfaces of the layers were studied using a White Light Interferometric (WLI) surface 

profiler, MicroXAM S/N 8038, with vertical and lateral resolution of 1 nm and 1 µm, 

respectively. 

 Confocal Raman spectroscopy was used to study the particle distribution in direction parallel 

to the wave vector of recorded transmission grating.  

 Holographic recording in photopolymer layers doped with AlPO-18 nanocrystals. 

Holographic transmission gratings of spatial frequency  of 500 and 2000 l·mm-1 were recorded by 

exposure of the layers to two mutually coherent s-polarized beams of wavelength 532 nm, and 

total exposure energy of 600 mJcm-2. The grating growth was monitored in real time by probing 

it with an unexpanded He-Ne laser beam of wavelength 633 nm incident at the Bragg angle. The 

sample was held on a rotation stage, allowing the angular selectivity of the grating to be 

measured, following recording, by varying the incident angle of the probe beam. The angular 

selectivity curve was used to determine the effective thickness of the grating. This parameter and 

the maximum diffraction efficiency, η (here defined by the ratio of the intensity of the first 
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diffraction order and the incident intensity of the probe beam) were used to calculate the 

refractive index modulation amplitude, n1, using Kogelnik’s coupled wave theory:28: 

d
n

π

ηθλ )arcsin()cos(
1 =             (4), 

 

where λ and θ are the reconstructing beam wavelength and incident angle, respectively and d is 

the thickness of the photosensitive layer.  

Testing of volume transmission gratings of layers for humidity sensing. A controlled 

environment chamber with an Electro-Tech Systems model 503-20 humidity system was used to 

characterize the volume transmission holograms. The initial diffraction efficiency was measured 

when the layers were exposed to 15 % relative humidity (RH). Then the layers were placed in an 

oven at 120 oC for 15 minutes to expel the water from inside the pores of the AlPO-18 

nanocrystals. The layers were then immediately placed inside the humidity chamber, where RH 

was raised to 60 %, and the diffraction efficiency was monitored until no further change was 

observed. Finally, the RH was returned to 15 % and the change in diffraction efficiency was 

monitored over time. 

 

Results and Discussion 

Volume characterization of suspensions and layers. The particle size distribution (PSD) of the 

AlPO-18 nanocrystals as-prepared and after storing at ambient conditions for one month, was 

investigated by DLS. The average size of crystals was about 190 - 210 nm for both samples (see 

Figure 2A). The initial and final data points for both DLS curves were almost the same. Thus, it 

could be concluded that the AlPO-18 nanocrystals synthesized under microwave and 

conventional heating have similar crystal sizes. The widths of the PSD curves were similar thus 

proving the relative stability of the particles at a given concentration in water dispersant. In 

addition, the stability of the AlPO-18 nanoparticles in the water suspension (solid concentration 

of 6 wt. % and pH = 7) was determined by zeta potential measurements. The zeta potential value 

for the AlPO-18 nanocrystals in the water is above -40 mV, which explains their long-term 
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stability in the colloidal form (Table 1).31 No sedimentation in the crystalline suspensions was 

observed after a month at ambient conditions. 

The crystalline nature of the microporous AlPO-18 nanoparticles was proven by the XRD 

patterns shown in Figure 2B. The XRD patterns exhibit the typical Bragg reflections for AEI-

type crystalline structure. The intensity and line widths of the peaks are identical for both the as 

prepared and calcined (see experimental section) samples, thus revealing that the AlPO-18 

nanocrystals do not change their crystallinity and size during the post-synthesis treatment. No 

difference was observed between the XRD patterns of samples 1 and 2 thus confirming their high 

degree of crystallinity.  

 

  

 

 

 

Figure 2. (A)  Dynamic Light Scattering curves of AlPO-18 nanocrystals from sample 1 (full 

circle) and sample 2 (open circle). (B) X-ray diffraction patterns of AlPO-18 nanocrystals from 

sample 1 (a) as-prepared and (b) calcined (390 °C for 12 h). The XRD patterns of sample 2 are 

identical and not shown here. 
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The morphological features of the AlPO-18 nanoparticles were examined by scanning electron 

microscopy. All AlPO-18 nanocrystals have elongated elliptical shape, which is different from 

the micron sized crystals with typical tetragonal shape (Figure 3). As can be seen, the synthesis of 

AlPO-18 from highly supersaturated suspensions with excess of organic template (TEAOH) in 

both microwave and conventional ovens results in the formation of highly stable and 

homogeneous nanoparticles. The size of the AlPO-18 nanocrystals determined from the SEM 

pictures is approximately that obtained from the DLS data, i.e. ranging from 180 to 220 nm. The 

particle sizes of AlPO-18 were also evaluated by measuring the dimensions of numerous crystals 

in three directions on the SEM pictures. Nanocrystals have flat elliptical shape with major and 

minor diameters of (237 ± 26) nm and (172 ± 35) nm, respectively. The thickness of the crystals 

estimated from the SEM picture shown in Figure 3b is about 30 nm  

 

 

 

Figure 3. SEM images of AlPO-18 nanocrystals from (a) sample 1 and (b) sample 2.  

Scale bar, M = 2 µm.  

 

The general characteristics of the AlPO-18 nanocrystals are summarized in Table 1. As expected 

the Al/P ratio is almost 1, so that an “electrically” neutral framework structure is formed.  
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Figure 4. Nitrogen adsorption/desorption isotherms of AlPO-18 nanocrystals from (a) sample 1 

and (b) sample 2.   

 

The porosity of the AlPO-18 nanocrystals from samples 1 and 2 has been determined by N2 

sorption measurements (Figure 4). The nitrogen adsorption-desorption curves show the typical 

type IV isotherm with a type H1-H3 hybrid loop in accordance with IUPAC classification (Figure 

4).32 Both isotherms exhibit a rapid increase in nitrogen uptake at low relative pressure (P/Po < 

0.1), which corresponds to the filling of the micropores (3.8 Å size of) with nitrogen. A plateau 

with an abrupt inclination step at high relative pressure (P/Po > 0.8) was observed, which is 

associated with multilayer adsorption in the textural mesopores of the nanosized material. Both 

samples have the same initial N2 uptake, thus suggesting a similar micropore volume (0.21 

cm3/g) and crystal size (190 nm) (see Table 1). The total specific pore volume is 0.70 cm3/g, 

which is due to the small crystal size of the nanoparticles. Both samples have high surface area (> 

500 cm2/g), which can be explained by their high degree of crystallinity.  

 AlPO-18 suspensions (samples 1 or 2) in photopolymer with concentrations of 2.5, 5, and 10 

wt. % were compared with the pure photopolymer. The compatibility of the AlPO-18 

nanocrystals with the photopolymer solutions was measured by collecting the DLS curves of the 

as-prepared mixtures and after 24 h aging at ambient conditions. It is observed that the size of the 
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particles does not change, and the PSD curves have the same maximum. No aggregation of the 

AlPO-18 nanoparticles is observed even after 24 h. 

 The solutions of photopolymer doped with the AlPO-18 nanocrystals (0, 2.5, 5, and 10 wt. %) 

were deposited on high refractive index glass substrates and after drying at ambient conditions 

were subjected to volume optical characterization. Primarily, the volume characterization of the 

layers was performed by Raman spectroscopy. The nominal depth resolution of the Raman 

spectrometer is determined by the focal depth of the focused laser beam, which is influenced by 

the refraction of laser beam at air/layer interface. The depth resolution in our case was 

determined by measuring the intensity of the Raman peak due to the Si band at 522 cm-1 while an 

Si surface was translated through the focus point along the beam propagation axis (direction 

normal to the surface).33 Figure 5 presents the intensity of the Si peak at 522 cm-1 as a function of 

the distance from the silicon surface for two samples, i.e. pure Si-surface and Si-surface covered 

with a photopolymer layer with a thickness of 70 µm. Thus for the first case the negative and 

positive distance values on x-axis correspond to the distance from the Si-surface in air and in 

silicon, respectively. When Si surface was covered with the photopolymer layer, the negative and 

positive values of x-axis correspond to the depth in the photopolymer layer and in the silicon 

wafer, respectively. It is seen that the Raman signal drops off quickly when the Si surface is out 

of focus. From the full-width-half-maximum (HWHM) of the curves shown in Figure 5, the 

nominal depth resolution was determined. The depth resolution measured in air is 3 µm and in 

the photopolymer is 8 µm.  
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Figure 5. Raman intensity of Si peak at 522 cm-1 for a pure silicon surface (filled circles) and a 

silicon surface covered with a photopolymer layer with a thickness of 70 µm (open circles) as a 

function of the distance from the Si-interface for a confocal pinhole with a diameter of 100 µm. 
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Figure 6. A) Raman spectra of photopolymer layer (thickness 36 µm), doped with 10 wt. % 

AlPO-18) collected at different penetration depths indicated next to each curve in microns (‘0’ is 

the film’s surface). The peaks at 421 cm-1 and 1450 cm-1 are assigned to AlPO-18 nanocrystals 

and PVA, respectively. B) Distribution of AlPO-18 nanocrystals versus depth. The vertical lines 

indicate the thickness values measured by WLI profilometry. 

 

 The Raman spectra of the photopolymer layers doped with AlPO-18 nanocrystals were 

collected by focusing the laser beam inside the sample at different distances from the surface in 

steps of 1.5 µm (Figure 6A). Since the PVA concentration was constant throughout the layer 

thickness, the spectra were normalized with respect to the PVA peak at 1450 cm-1. Then the 

intensity of the characteristic peak of AlPO-18 at 421 cm-1 was plotted against depth in the layer 

(Figure 6B). The depth in the layer was calculated as the distance from the surface multiplied by 

the refractive index of the layer (n = 1.5). As can be seen, there is a very good agreement between 

the calculated penetration depth and the measured thickness of the layers (see Figure 6). From the 

Raman depth measurements one can conclude that the AlPO-18 nanocrystals are homogenously 

distributed throughout the thickness of the layers. If one assumes that the intensity of the signal at 

421cm-1 is directly proportional to the concentration of the AlPO-18 nanoparticles, then the 

standard deviation of the concentration throughout the layer can be calculated The standard 

deviations of particles concentrations from the average value of 10 wt. % across the layers with 

thicknesses of 21, 26 and 36 µm are 0.6, 0.5 and 0.4 wt. % respectively. This data shows that the 

AlPO-18 nanoparticles are homogeneously distributed across the layers independently of their 

thickness, which can be explained by the high compatibility and stability of the photopolymer 

solutions doped with the microporous nanoparticles.  

The volume refractive indices of the photopolymer layers with and without AlPO-18 

nanoparticles were determined by measuring the transmittance and reflectance spectra using a 

high precision UV-VIS-NIR spectrophotometer (Figure 7). The simultaneous determination of 

the refractive index (n) and the extinction coefficient (k) of the layers was performed by 

minimization of the goal function consisting of discrepancies between the measured and 

calculated spectra by a Nelder-Mead simplex method for each wavelength λ in the spectral range 

400-800 nm.23,34 Figure 7 represents the dispersion curves of refractive index of photopolymer 
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layers doped with AlPO-18 nanocrystals with concentrations of 5 and 10 wt.% in comparison 

with undoped layers. As can be seen from the Figure 7, the increase of AlPO-18 concentration in 

the layers results in a decrease in refractive index. The refractive indices of the layers doped with 

0, 5 and 10 wt. % AlPO-18 nanocrystals at 532 nm are 1.506, 1.490 and 1.476 (± 0.005), 

respectively. Considering that the refractive index of AlPO-18 particles is lower than for the 

photopolymer, a decrease in n of the doped photopolymer layers can be expected (see Figure 7).  

 

 

 

Figure 7. Dispersion curves of refractive index for photopolymer layers doped with AlPO-18 

nanocrystals. Error: ±0.005 

 

As shown above, the bulk properties of the layers depend on the interactions between the two 

components, i.e. the photopolymer and microporous AlPO-18 nanocrystals. Therefore, the 

possibility of filling the micropores of the AlPO-18 (3.8 Å) with guest molecules was 

investigated. The porosity of the AlPO-18 nanoparticles incorporated in the photopolymer layers 

was calculated according to the methods described 23 and compared with the experimental N2-

sorption data (see Table 1). In order to determine the porosity of the nanoparticles, the refractive 

index of the AlPO-18 is required. For calculation of the refractive index of microporous materials 
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the Bruggeman effective media approximation (EMA) is used. The idea of EMA is to regard the 

nanocomposite as a medium with effective refractive index that depends on the refractive index 

and volume fractions of the two phases presented, i.e. the photopolymer matrix and 

aluminophosphate nanoparticles. Since the refractive indices of the undoped photopolymer (i.e 

the matrix) and doped photopolymer (i.e the nanocomposite) are already determined (Figure 7) 

we are able to calculate the refractive index and volume fraction of the dopant using the recently 

developed optical method 23. The dispersion curve for AlPO-18 calculated by this method is 

presented in Figure 8. For comparison the dispersion curves for pure Al2O3 and P2O5 are given as 

well.35,36 The effective refractive index of a mixture from Al2O3 and P2O5 in the ratio 1 : 1 is 

included also because the Al/P ratio in the AlPO-18 nanocrystals is about 1 as determined by X-

ray fluorescence chemical analyses (Table 1). The refractive index and density of the mixture 

(Al2O3 : P2O5) was calculated by Bruggeman EMA using the refractive indices of Al2O3 and 

P2O5, and volume fractions calculated using oxide densities values of 4 g/cm3 37 and 2.4 g/cm3 37 

for Al2O3 and P2O5, respectively. Further if one assumes that the AlPO-18 nanocrystals consist of 

two phases – air and mixture Al2O3 : P2O5 one can calculate the volume fraction of the two 

phases using the Bruggeman effective media approximation. Using this approach, it was 

determined that the AlPO-18 nanoparticles consist of 71 % oxides (Al2O3 : P2O5) mixture and 29 

% voids. Based on the density values of Al2O3 and P2O5 and their volume fractions, the density 

of a mixture of Al2O3  : P2O5 is estimated. Considering both that the calculated density of mixture 

is 3 g/cm3 and the free volume of AlPO-18 is 29 % from the total volume of the nanoparticle 

fraction, the density of AlPO-18 particles was determined to be 2.42 g/cm3. Finally, having in 

mind that the densities of AlPO-18 and for the mixture (Al2O3 : P2O5) are 2.42 g/cm3 and 3.00 

g/cm3, respectively it was predicted that 1g of each substance, either the AlPO-18 or the bulk 

Al2O3 : P2O5 mixture occupied 0.41 cm3 and 0.33 cm3. Therefore the difference between these 

two values is used to calculate the pore volume of AlPO-18, which is 0.08 cm3/g. 

Having in mind the difference between the specific pore volume calculated from the 

refractive index modelling, 0.08 cm3/g, and that obtained from the N2-sorption measurements, 

0.7cm3/g, we conclude that AlPO-18 pores do not remain empty after the particles are 

incorporated in the photopolymer. Since the size of the pores is relatively small (3.8 Å) and none 

of the organic components of the photopolymer are small enough to penetrate the openings, we 

can assume that the openings are filled with the water used as a solvent for the photopolymer. 
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This assumption is also consistent with the fact that the AlPO-18 particles are extremely 

hydrophilic.38  

 

 

 

Figure 8. Dispersion curves of refractive index for (a) Al2O3, (b) mixture of Al2O3: P2O5 = 1:1 
(c) P2O5, and (d) AlPO-18 
 

 The optical properties of the pure photopolymer layers and those doped with AlPO-18 

nanoparticles were further characterized, by measuring their absorption. The absorption 

coefficients of the layers with different thicknesses are determined by UV-Vis spectroscopy using 

the Beer-Lambert law. The absorption coefficients for undoped and doped with 10 wt. % AlPO-

18 nanoparticles layers are 79 ± 3 cm-1 and 84 ± 3 cm-1 at wavelength of 532 nm. The similar 

values indicate insignificant optical losses due to the incorporation of AlPO-18 nanoparticles into 

the photopolymer. The good optical quality of the layers was confirmed by diffuse reflectance 

measurements showing that even for heavily doped photopolymer (10 wt. % AlPO-18) the 

scattered intensity is less than 1 %.  
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 Surface characterization of photopolymer layers doped with AlPO-18 nanocrystals. In 

addition to the bulk characterization of the photopolymer layers doped with AlPO-18 crystals, the 

surface properties were studied using a White Light Interferometric Surface profiler. Figure 9 

presents the surface of photopolymer layers with different concentrations of AlPO-18 particles.  

 

Figure 9. Surface profiles of photopolymer layers doped with (a) 0, (b) 2.5, (c) 3.5, (d) 5 and (e) 

10 wt. % AlPO-18 nanoparticles measured using a White Light Interferometric Surface profiler.  

 

As can be seen the surface roughness of the initially flat undoped layer increases with the 

increasing concentration of the AlPO-18 nanoparticles. The change of the surface roughness is 

due to the formation of aggregates from the AlPO-18 nanocrystals predominantly situated on the 

top of the layers. The roughness of the layers increases from 0.8 nm to 3.0 nm to 32 nm to 37 nm 

for undoped, 2.5 wt. %, 5 wt. % and 10 wt. % doped layers, respectively. Due to the low optical 

contrast between the AlPO-18 nanoparticles and the photopolymer, the losses due to the 

scattering do not exceed 1 %. 

Holographic recording in photopolymer layers doped with AlPO-18nanocrsytals. The 

holographic properties of undoped photopolymer layers and layers containing AlPO-18 
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nanoparticles were investigated for two spatial frequencies (500 and 2000 lmm-1) using a constant 

recording intensity of 5 mWcm-2 for an exposure time of 120 s (exposure energy 600 mJ/cm2) 

(Figure 10). The concentration of AlPO-18 nanoparticles ranged from 0 wt. % to 10 wt. %. 

 

Figure 10. Holographic properties of photopolymer layers doped with AlPO-18 nanoparticles at 

spatial frequencies of 500 and 2000 l/mm (exposure of 600 mJ/cm2). 

 
As can be seen from Figure10, all photopolymer layers used in recording at 2000 l/mm spatial 

frequency show consistently higher refractive modulation then the layers recorded at 500 l/mm 

spatial frequency. Such dependence can be explained in the undoped layers because with the 

decrease in the grating period the distance traveled by the photopolymer components in order to 

achieve their redistribution decreases, which is resulting in greater refractive index modulation. 

One should also note that increased concentration of nanoparticles does not result in an increased 

refractive index modulation. Possible reasons for this are the absence of redistribution of 

nanoparticles or a very small amount of nanoparticles are redistributed or the difference between 

the nanoparticles refractive index and the photopolymer matrix is not enough to increase the  

refractive index modulation. From Figures 7 and 8 one can estimate the refractive index of 

nanoparticles filled with H2O to be 1.414 at 633 nm, and the refractive index of the undoped 

photopolymer matrix at this wavelength is 1.499, i.e. a difference of 0.085 is measured. The next 
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step was to see if there is a redistribution of the nanoparticles as a result of the holographic 

recording in the layers.  

Confocal Raman spectroscopy was used to study the light induced redistribution of AlPO-18 

nanoparticles during the holographic recording. The spectra of pure photopolymer, pure AlPO-18 

and photopolymer doped with 10 wt. % AlPO-18 nanoparticles are shown in Figure 11. Well 

resolved peaks at 421 cm-1 originating from T-O-T vibrations of the AEI framework type 

structure can be seen in both pure AlPO-18 and photopolymer doped with AlPO-18 nanocrystals 

(Figure 11).  

 

Figure 11. Raman spectra of (a) acrylamide-based photopolymer; (b) acrylamide-based 

photopolymer doped with AlPO-18 nanoparticles (10 wt. %) and (c) pure AlPO-18  

 

The intensity of the Raman peak at 421 cm-1 depends on the concentration of AlPO-18 in the 

layers. To study the light induced redistribution of AlPO-18 nanoparticle, transmission gratings 

with a spatial frequency of 200 l/mm (period of 5 µm) were recorded in the layers with 1, 2.5 and 

7.5 wt. % AlPO-18 at recording intensities of 1, 5 and 10 mW/cm2. The Raman peak intensity at 

421 cm-1 was monitored in the direction of the grating vector in steps of 1 µm and compared with 

the distribution of the Raman peak intensity of AlPO-18 outside the grating (Figure 12).  
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Figure 12. Raman peak intensity (421 cm-1) corresponding to AlPO-18 for photopolymer layers 

doped with 2.5 wt. % nanocrystals: (a, b) outside the grating and (c, d) inside the grating (in 

direction parallel to the grating vector) recorded with a period of  5 µm with intensity of 10 

mWcm-2. The dotted line presents a sine function with a period of 5 µm  

 

 

As can be seen from Figure 12, the variation of the intensity of the Raman peak at 421 cm-1 

outside the grating is random. In the direction of the grating vector, a spatially periodic 

distribution of the intensity of the Raman signal is observed with a period of 5 µm, which is in a 

good agreement with the known period of the grating. The greatest variation in the intensity of 

the Raman peak was observed in the gratings recorded with intensity of 10 mW/cm2 in layers 
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doped with 2.5 wt% AlPO-18 nanoparticles. If one assumes that the Raman peak intensity is 

linearly proportional to the concentration of the nanoparticles, then the redistributed fraction of 

the nanoparticles is 31 % from the total volume. Using equation (3) the refractive index 

modulation contribution from the redistribution of the nanoparticles can be calculated.  

Since the density of the water filled nanoparticles is 2.42g/cm3, and knowing the weight of the 

nanoparticles present in a single nanocomposite layer, one can calculate that the volume fraction 

of the nanoparticles in the layer is 0.75 %, thus the volume fraction of the redistributed 

nanoparticles is calculated to be 2.3x10-3. The difference between the refractive index of the host 

photopolymer and water filled nanoparticles is estimated to be 0.085. Thus the expected 

refractive index modulation contributed by the redistributed nanoparticles is calculated to be 

1.3x10-4. This result explains why there was no improvement of the refractive index modulation 

through holographic recording in the layers doped with AlPO-18 in comparison to the undoped 

layers. The picture will change if by some means the water in the pores of the nanoparticles is 

expelled. The difference in the refractive index between the host polymer matrix (1.499) and the 

refractive index of the empty nanoparticles (1.239) is approximately three times greater, about 

0.26. In the following experiment this effect is demonstrated to be useful for the design of 

irreversible humidity sensors. It is shown that the diffraction efficiency of initially baked layers 

(with empty pores) undergoes irreversible change when the sensor is exposed to high humidity 

(and the microporous nanoparticles absorb water). 

Volume transmission gratings for humidity sensing. Volume transmission gratings 

recorded in photopolymer and in photopolymer doped with 2.5 wt. %, of AlPO-18 nanoparticles 

were tested as irreversible humidity holographic sensors. Irreversible response of the holograms 

in a humidity controlled environment by monitoring the evolution of the diffraction efficiency is 

measured. Initially, after recording, the layers were exposed to high temperature, 120 ºC, in order 

to expel the water from the nanoparticles’ pores. Then the diffraction efficiency of the layers was 

measured at a relative humidity (RH) of 15 %. Further, the layers were exposed to high humidity 

of 60 %. The evolution of the diffraction efficiency was monitored after the humidity in the 

chamber was restored to the initial value of 15 % (Figure 13).  The diffraction efficiency of the 

undoped layer reaches its initial value (Figure13b), while the diffraction efficiency in the doped 

layers never returns to the initial value (Figure 13a). If one repeats the calculations in section 4.3, 

this time for the empty pores of AlPO-18, one can estimate that the refractive index contribution 
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of the redistributed nanoparticles is 3.9x10-4. Since the initial diffraction efficiency (after baking) 

of the doped layer was 70 %, the corresponding refractive index modulation at the start of the 

experiment using equation 4 can be estimated. After exposure to high humidity this refractive 

index modulation will decrease by 2.6x10-4 (the difference between the contribution of the 

redistributed nanoparticles with empty and the full pores with water). Thus the final diffraction 

efficiency of the hologram was estimated to be 63.4 %. The measured diffraction efficiency is 64 

%, which is in a very good agreement with the value determined from the theoretical model. 

Although this is a relatively small irreversible change in the diffraction efficiency of the 

hologram, it is achieved by adding a modest volume of AlPO-18 nanoparticles (less than 1%). 

Therefore we believe that these results reveal the potential of the proposed approach for future 

design of holographic sensors. 

 

 

Figure 13. Diffraction efficiency evolution over time (from RH 60 % to 15 %), a) photopolymer 

doped with AlPO-18 2.5 wt.% b) undoped photopolymer, bold circles denote initial diffraction 

efficiency values, measured before exposure to high humidity (15 % RH). In the case of 

photopolymer, it takes around 1 hour to reach the initial value of diffraction efficiency (measured 

at 15 % RH). With the addition of AlPO-18 nanoparticles, a plateau is observed with a value 

below the initial diffraction efficiency, thus indicating an irreversible sensing properties.  



 24

Conclusions 

The changes in volume and surface properties of the photopolymer layers doped with 

microporous aluminophosphate nanoparticles (AlPO-18) are investigated. Volume transmission 

gratings at different spatial frequencies were recorded, and show that a light induced 

redistribution of the particles occurs during the holographic recording. Optimal conditions for 

this effect include a concentration of the AlPO-18 nanocrystals of 2.5 wt. % and a recording 

intensity of 10 mWcm-2.  

The optical properties of the photopolymer layers combined with the capability of light-

induced redistribution of the AlPO-18 nanoparticles during the holographic recording are very 

important parameters, which are explored for fabrication of holographic humidity indicator. The 

addition of AlPO-18 to the layer introduced an irreversible change in the diffraction efficiency of 

the holographic gratings in the layers under exposure to high humidity. This would be important 

for situations where regardless of current (potentially lower) humidity levels, the possible higher 

levels of humidity were earlier prevalent could be estimated.  
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Table 1 Properties of nanosized AlPO-18 samples. 

 

Samples Al/P ratio 

Surface 

area 

(cm2/g) 

Pore 

volume 

(cm3/g) 

Micropore 

volume 

(cm3/g) 

Zeta 

potential
a 

(mV) 

Crystal size  

range (nm) 

Sample 1 1.02 580 0.71 0.21 cm3/g -47 150-220 

Sample 2 1.03 512 0.72 0.20 cm3/g -41 180-250 
aMeasurements are performed in water solution with a constant concentration of 6 wt.% at pH=7 

and 25 °C.  
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