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Abstract

Let Rbe a valuation domain. We say that a torsion-fRe@odule isminimalif it is isomorphic to
all its submodules of finite index. Here, the usual concept of finite index for groups is replaced by the
more appropriate (for module theory) definition: a submodtldd the modules is said to be of finite
index inG if the quotientG/H is a finitely presented torsion module. We investigate minimality in
various settings and showter alia that over a maximal valuation domain, all torsion-free modules
are minimal. Constructions of non-minimal modules are given by utilizing realization theorems of
May and the authors. We also show that direct sums of minimal modules may fail to be minimal.
© 2004 Elsevier B.V. All rights reserved.

MSC:13G05; 13A15; 13A17

0. Introduction

The motivation for the present investigation of modules over valuation domains with
certain special properties comes, via Abelian group theory, from topology. Recall that a
topological spac¥ is said to beH-connected if and only if every proper local homeomor-
phism¢ from a spaceX — Y is a (global) homeomorphism. If the spates assumed to
be a compact manifold, théfis simply connected provided it has dimensions 1 and 2. For
dimensions>4, this is known not to be so. In dimension 3, however, one encounters the
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so-called Poincaré Conjecture sincerarconnected three-manifold is a homology sphere.

In an attempt to circumvent this difficulty, the notion of Bitonnected space was con-
sidered: this is a connected first countable Hausdorff sigaaich has the property that
given any connected coveringy: X — Y, X is homeomorphic t& via somehomeomor-
phism. IfY is anh-connected manifold then its fundamental graypY ) has the property:

if ¢ : H— m(Y)is a monomorphism anfl; : H?| < oo, thenH? ~m;(Y) via some
isomorphism. Thus, a (not necessarily Abelian) group, which has the property that is iso-
morphic to all its normal subgroups of finite index, is calledreagroup (See[13] and
references therein for further details.) Interestingly, in the category of Abelian groups, the
same class of groups arose from considerations of a certain type of ‘quasi-minimality’ aris-
ing naturally in point-set topology. Recall thaféfis a category with an equivalence relation

on the objects 0%, and= is the quasi-order induced from a given propertyby setting

A =< Bif Ais equivalent to some subobject®having the property?, then an objed¥ is
minimal with respect te< if X < M impliesXis equivalent taVM. When® is the category

of Abelian groups with isomorphism of groups as the equivalenceZiglthe property

of being of finite index, themc-groupsare precisely the minimal objects. These groups
have been investigated by Oh6gain and Goldsmiff7 jhl] where they have been termed
minimal

Since every proper quotient of the ring of integers is finite, the notion of an Abelian group
G having a subgroup dfl of finite index is both straightforward and natural: the quotient
group G/H is finite. However, for modules over an arbitrary riRythis concept is no
longer so natural and one needs to find a meaningful extension of the notion if it is to play
any significant role.

In the present paper, we focus on torsion-free modules over a valuation dBmain
the first section, we introduce the notion of a submodiilef G being of ‘finite index’ if
the quotientG/H is finitely presented and torsiofwith this new understanding of finite
index, we say that a torsion-fré&moduleG is minimalif it is isomorphic to each of its
submodules of finite index. Our principal result in that section is that every torsion-free
module over a maximal valuation is minimal. We find classes of torsionRrgedules,
which are always minimal, for instance, free modules or modules with basic rank 1.

The second section is devoted to the construction of non-minimal, indecomposable
torsion-free modules of finite rank over largely general valuation domains. We utilize the
so-called realization theorems of May and the autfi¢y8]. On the other hand, we show
that over special valuation domains (first constructed by NafE®3), every torsion-free
module is minimal.

In the final section, we consider the problem of whether direct sums and summands of
minimal modules remain minimal. Although we obtain some positive results, direct sums
of minimal R-modules may fail to be minimal wheRis not almost maximal.

1. Preliminaries and first results
Our notation is standard and any undefined terms may be found in th¢4&its

Throughout the sequeR will denote a valuation domain arg@its field of quotients; the
maximal ideal ofR shall always be denoted . Since in the present paper there is no
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danger of confusion, when we say tlRiis a discrete valuation domain we automatically
mean thaR has rank 1, i.eR is Noetherian.

Let M andH be torsion-freeR-modules, withH < M. Inspired by the corresponding
definition in the Abelian groups case, and with a little abuse of language, we s&y/laat
finite index in Mif M/ H is afinitely presented torsion-Riodule, i.eM/H =&} _; R/riR,
for suitable 0 r; € R. An R-moduleM is said to baninimalif M is isomorphic to all of
its submodules of finite index.

Throughout the paper we shall deal with torsion-free modules. ThuR-randule is
automatically assumed to be torsion-free and reduced, if not otherwise specified.

It is useful to recall that, over a valuation domé&nfinitely generated submodules of
finitely presentedk-modules are finitely presented as well. Indeed; ik < F/K, where
F is free of finite rank, an&k andG/K are finitely generated, the&ais a finitely generated
submodule of the free modufe whenceG is free, sincdRis a valuation domain. Therefore,
G/K is finitely presented.

It is convenient to summarize some properties of this new notion of finite index; many
standard ideas remain valid, one exception being thatsfof finite index inC andB is a
submodule ofC containingA, thenB is not necessarily of finite index i@. For instance,
take any valuation domaiR with non-finitely generated maximal idel Pick 0# ¢ € P.

We haverR < P < R, and, by definitiontR has finite index irR, while P is not of finite
index inR. In fact, R/ P is not finitely presented sind@is not finitely generated.

Proposition 1.1. Let A < B < C be Rmodules

(i) If A has finite index in Cthen A has finite index in B if and only K/ A is finitely
generated
(ii) If A has finite index in B and B has finite index int@en A has finite index in.C

Proof. If A has finite index inB, then it is immediate thaB/A is finitely generated.

Conversely supposi/ A is finitely generated. TheB/A is also finitely presented, being

contained in the finitely presented moddl@A. We conclude thah is of finite index inB.
To establish (ii) note that we have an exact sequence

0—- B/A—C/A— C/B— 0,

where B/A and C/B are finitely presented. We have to show tldiatA is also finitely
presented. The above sequence showsdliat is finitely generated; writ€ /A = F/K,
whereF is free of finite rank. TherB/A = H/K for a suitable submoduld of F, and
C/B=F/H. SinceC/B is finitely presented, we derive thét is finitely generated, in
view of Proposition 2.1, page 152 (] (an immediate application of Schanuel’'s lemma).
SinceR s a valuation domain, finitely generated submodules of free modules are free; so
H is free. Again by Proposition 2.1 ¢5], from H/K finitely presented we ge finitely
generated. We conclude thaf A = F/K is finitely presented, as desired]

Remark 1. One maywonderwhy we did not give amore obvious definition for a submodule
H to be finite index inM, viz. requiring thatM /H be a finite direct sum of cyclic torsion
modules. We avoided this definition mainly because in such a case noReveuld be a
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minimal module (unlesR is a discrete valuation domain). In fact, wheneRegontains a
non-finitely generated ide&l we haveR /I cyclic andR%1.

Proposition 1.2. Let H be a submodule of finite index of a torsion-freenBdule M Let
x1, ..., X, be elements of M such thét/ H =57;_; R(x;+H),whereAnn(x; + H)=r;R #
R, for suitabler; € R. ThenX = (x1, ..., x,,) is a free pure submodule of,dnd{x1, ..., x,}
is a basis of XMoreover Y = @’_; R(r;x;) coincides withX N H. In particular, Y is a
pure submodule of H

Proof. Notethat Anrix; + H)=r; R # Rimpliesthatx; ¢ H foralli <n;sety,=r;x; € H.

Firstly, we verify that =(x1, ..., x,)=Rx1®- - -®Rx,. Infact, assume for a contradiction
thatd ! ; a;x; =0, for suitabley; € R notall zero. One of the non-zero coefficients, 8ay
divides all thea;, 1<i <n. Then, sinceM is torsion-free, possibly dividing the preceding
equality bya ;, we may assume that = 1. Reducing modulél we getx; + H € (x; + H :

i # j), which is impossible. As a consequence, we also have(y1, ..., y,) = Ry &
.- ® Ry,.

Our next step is to prove that is a pure submodule dfl. Assume that € M is
such that 0# 7z =) 7_; bix;; we have to show that divides all the coefficient®;.
Suppose not: leb; be a coefficient which divides all the, 1<i <n; thent is a proper
multiple of b;. SinceM is torsion-free, dividing the preceding equality by, we may
reduce to the case whén =1 andr € P. Recallnowthat + H =)/ ; ¢;(x; + H), for
suitablec; € R, whencer(z+ H) =Y " jtci(xi+H)=Y "_1bi(x; + H). It follows that
(1—tcj)(x; + H) e (x; + H :i # j), acontradiction, sincee P, whence 1-tc; isa
unit of R,

It remains to prove that = X N H, so thatX pure inM impliesY pure inH, since all the
modules are torsion-free. Pick an arbitrarg X N H; we haveh =)""_, d; x;, for suitable
d; € R.Then) ! ,di(x; + H) = 0, and thereford; € r; R, for all i <n. It follows that
h=3Y""_,(d;i/ri)y: € Y. Sincehwas arbitrary, we conclude th&tN H C Y. The opposite
inclusion is trivial. [

The proof of the following lemma may be found in the book by Fuchs and Salce
[5,Theorem XI1.2.3]

Lemma 1.3. Let F be a free Rnodule of finite rankwhich is a pure submodule of a finite
direct sum W of uniserial fhodulesThen F is a direct summand of. W

The preceding Proposition 1.2 and Lemma 1.3 allow us to find some interesting classes
of modules, which are automatically minimal.

Proposition 1.4. Let M be a torsion-free Rnodule
(i) If M = PM,then M is minimalln particular, divisible modules are minimal

(i) If Mis free then M is minimal
(ii) If l'is a fractional ideal of Rthen | is minimal
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Proof. (i) We will show that in this case a submodule of finite indexMbfnecessarily
coincides withM. ThereforeM is trivially minimal. In the notation of Proposition 1.2, let
us assume for a contradiction thdt= (x1, ..., x,) + H, whereM /H = @}_; R(x; + H)
and 0# R(x; + H)=R/r; R, for all i <n. In view of Proposition 1.2, the submodule
X = @}_; Rx; is free and pure iM. In particular,x; ¢ PM for all i. But this is contrary
to the assumptioM = P M.

(i) In the same notation, leM = X + H, whereM is free. ThenX is a free pure
submodule oM. SinceX has finite rank, it is contained in a finite rank direct summand
N of M. Therefore, by Lemma 1.X is a direct summand dfl, whenceX is also a direct
summand oM, sayM = X & M1. LetY = X N H. By Proposition 1.2y =@!_; R(rix;)
is free. We have

Mi=M/X=X+H)/X~H/(XNH)=H/Y.

SinceM1 is free, we getd ~Y & M. We conclude thatl ~ M sinceX ~Y.
(i) Since Ris a valuation domain, then eithkis principal, and so is free, dr= P1I. In
either case the desired result follows from the previous sections of the proposifibn.

Recall that a torsion-freB-moduleM is said to beseparableif every finite subset of
M is contained in a direct summand of M, whereW is a finite direct sum of uniserial
R-modules (se@]).

Theorem 1.5. Let H be a submodule of finite index of a torsion-freenBdule M If H is
separablethen H is isomorphic to Mn particular, M is separabletoo.

Proof. We follow the notation of Proposition 1.2. Writd = X + H andY = X N H. Since
H is separable, antl =~ X is free of finite rank, thelY is contained in a finite direct sum
of uniserial module®V, which is a direct summand &f. By the preceding lemmg,is a
direct summand A, and therefore dfl. Write H =Y @& H1 and observe that N H; =0,
sinceM = X + H. It follows readily thatM = X & Hj. We conclude thatl is isomorphic
toH, as desired. [

Corollary 1.6. Let R be a maximal valuation domaifrhen every torsion-free-Riodule is
minimal

Proof. Recall that uniserial modules over maximal valuation domains are pure-injective
(see Theorem XIII.4.6 of5]). Moreover, a torsion-free module over a valuation domain

is separable if and only if every rank-one pure submodule is a direct summand—see e.g.
Property (C), p. 551 of5]. It follows immediately that every torsion-frée-module is
separable. [J

Corollary 1.7. If M is a torsion-free separable minimalRodule then a direct summand
of M is again minimal

Proof. Suppose thaM = A @ B and thatH is a submodule oA of finite index. Then
H & B is clearly of finite index inMl and hence is isomorphic td. In particular,H & B



100 B. Goldsmith, P. Zanardo / Journal of Pure and Applied Algebra 199 (2004) 95-109

is separable, which in turn implié$is separable since over valuation domains, summands
of separable modules are again separable (see Property (D), p. $5). df now fol-

lows directly from the theorem above thdtis isomorphic toA and so the latter is again
minimal. [

For the general notion dfasic submodulef anR-moduleM we refer tg[4,5]. We recall
that, wherM is torsion-free, a basic submodBef M is any submodule which is maximal
with respect to the properties:

(1) Bis adirect sum of uniserial modules;
(2) Bis a pure submodule &fl.

In the torsion-free setting, basic submodules always exist and are unique, up to isomor-
phism. Thebasic rankof M is defined to be the rank of its basic submodules; it plays a role
somewhat analogous to that played by ph@nk of a torsion-free Abelian group.

In this context, we have a result analogous to Ohégain’s resulfi{$Pehat a torsion-free
Abelian group withp-rank at most 1 for all primegis minimal.

We shall need a preliminary lemma, apparently not yet openly stated in the literature.

Lemma 1.8. If B is a basic submodule of the torsion-freer®dule module MthenM =
B+ PM.

Proof. Pick an arbitraryc € M, x ¢ B. SinceB is pure inM, we haveRx N B =0. Then
Rx @ B is not pure inM, by the defining properties of basic submodules. Now® B not
pure amounts to the existenceykE M and: € P such thaty € Rx & B\P(Rx & B).
Letty =rx + b, wherer € R andb € B. Thenr ¢ P; otherwiseb € PB, sinceB is
pure, whencey € P(Rx & B), contrary to our assumption. It follows thats a unit, so
thatx = r~(—b + ty) € B + PM. Sincex was arbitrary, we get the desired conclusion
M=B+PM. O

Letus now examine the case wHeis a discrete valuation domain of rank 1 (equivalently,
a local principal ideal domain), with maximal ideal=n R, andM is a reduced torsion-free
R-module. In that case any basic submodgile M is free, sinceM is reduced and the only
uniserialR-modules are eithd® or Q. Moreover, from Lemma 1.8 we g&f/B =n(M/B),
which implies thatM /B is divisible. It then follows immediately that the basic rank\bf
coincides with theR /z R-dimension ofM /=M (which is equal to dimiB /= B)). Therefore,
whenRis a discrete valuation domain, we have properties mirroring those satisfied by basic
subgroups of Abelian groups.

Theorem 1.9. Let M be a torsion-free Rnodule with basic rank. Then M is minimal

Proof. Suppose that there exists a proper submotutef M such thatM/H is finitely
presented. Then, by Proposition 1.2, we may wife= X + H, whereX is free and
pure inM. SinceM has basic rank 1, it follows that necessaMlys a basic submodule of
M, whenceXis cyclic, sayX =Rx. Let Ann(x + H) =t R. We want to show that, necessarily,
H =tM, whenceM = H follows at once.
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We readily see thatM C H, sincetM =t(Rx + H) andrx € H.

We want to verify the opposite inclusidii C M. First we show thalf € P M. Indeed,
sinceRxis basic inM, by the preceding lemma we ha¥e= Rx + P M. Now assume, for
a contradiction, that there exigiss H\ P M. We may write

h=ax +qm

for suitablez € R, q € P,m € M. Thenais a unit, sincéx ¢ P M. Moreoverm =bx + I/,
whereb € R, i’ € H. It follows that(a + ¢gb)x € H, which is impossible since + ¢b
is a unit andx ¢ H . We may now verify thatd C rM. Take anyh € H. Since the basic
submodule oM is free of rank 1, the purificatioth),. of hin M is also free. Accordingly,
there existg € R such thati € ¢M\g P M. Therefore, we may write

h=qg(x+h"), ceR, K eH.

Sinceh” € PM andh ¢ g PM, we get that is a unit. Therycx € H impliesgx € H,
whenceg € ¢R. It follows thath € tM, as desired. [J

2. Non-minimal modules

The purpose of the present section is to show how to construct non-minimal indecom-
posable modules of finite rank over largely general valuation domains. However, we will
see that the important class of Nagata valuation domains constitutes a noticeable exception.

We begin with a pair of lemmas valid for commutative domains.

Lemma 2.1. Let A be a commutative ringt1, ..., N pairwise distinct maximal ideals
of A, and M an Amodule such thddi; M # M for all i <k. Then there exists € M such

Proof. Sincet; 2(N;.; M; forany j <k, we getM =Ni; M + (N);.; M) M, whence, in
particular,‘ijz(ﬂi#j 9t;) M. Itfollows that for everyj <k there exists ; € (ﬂi#j ;)
M\9; M. Itis now clear that the element=z1 + - - - + z fulfills our requirements. [

The following lemma and its proof are inspired by Arn¢ld Theorem 5.9(a), p. 52]

Lemma 2.2. Let R be a commutative domain and let A be a commutative torsion-free
R-algebra with9t a maximal ideal of Alf M is a torsion-free Rmodule such that(1)
Endr(M) = A and(2) M/t M is a finitely generated fhodule for some € R NI, then

MMM # M.

Proof. Assume for a contradiction th8&M = M. If N = M/tM, we have)iN = N, as
well. SinceN is a finitely generated-module, a classical result shows tiiat+ y) N =0,
for somey € i (see e.g. Theorem 76 {B]). It follows that(1 4+ y)M C tM. SinceM is
a torsion-freeR-module, we infer thatl + y) /¢ is a well-defined endomorphism bf, so
that 1+ y € tA C 9t and hence we get the desired contradictionMi. [
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Theorem 2.3. Let R be a valuation domain and A a freeaRjebra of rank: > 2 containing
only finitely many maximal ideat¥t,, ..., 9, k > 1. Suppose that there exists a torsion-
free finite rank Rmodule M satisfying the following conditian&) End g (M) = A and(2)
there exists € P suchthatM /rM andA/t A are isomorphic as RnodulesThenif z € M

is such that: ¢ |; <, 9% M, the moduleN = Rz + M is non-minimal Moreover if A is

an integral domainthen both M and N are indecomposable

Proof. Itisclearthatt c 9;, foreveryi <k.Also, observe thatthe existencezig ensured
by Lemmas2.1and 2.2; inde®d;, M < M, foreveryi <k,sinceM/tM ~A/tA=(R/tR)"
is a finitely generate®-module.

Let us first show that Ang(z + M) = ¢ R, so thattM has finite index inN. Suppose
not and assume that € tM with /s € P. It follows thatz € (¢/s)yM C PM C
M; M—contradiction.

We now verify thatN is non-minimal by proving thav2M ~tM. Assume, for a con-
tradiction, that there exists € Endg (M) = A such thatf (M) = N. Now f ¢ 9t; for all
i <k, sincez € f(M)\U; <, M M. Thereforefis a unit ofAandM = N. It follows that

M/tM = N/tM ~Rz/(tM N Rz)

is a cyclicR-module. We have reached the desired contradiction, sihaef ~ A/t A =~
(R/tR)" is a direct sum ofi > 2 cyclic modules.

Finally, assume thak is an integral domain. TheM is trivially indecomposable. How-
ever,N is also indecomposable. Suppose N — N is an idempotent in Eng(N). Then
the compositionz : M — N can be regarded as an endomorphisnMofsayf. Thus,
f2 =1tf in Endg(M) = A, whence eitherf = 0 or f = t1,. In the first case we get
f(N) =0, whencer = 0, sinceN is torsion-free. Iff =t14, then for anyu € N we get
tu= f(u) =tn(u). By torsion-freeness, we infer thais the identity orlN. Thus, Eng (N)
contains only trivial idempotents amdlis indecomposable. []

Before proving our next theorem, let us make some remarks. Assume that the field of
guotientsQ of R is not algebraically closed. Then there exists a non-trivial finite field
extensionL. = Q[x] of Q, where we may clearly assume thas integral oveiR. Consider
the integral closur® of Rin L; by classical results on integral closures (for instance, see
[3]), we know thatD has only finitely many maximal ideals. Singes integral overR,
we haveD 2 R[x]; equality does not hold in general. Howev&fx] has only finitely
many maximal ideals, sind2is integral overR[x] and the ‘lying over’ property holds (see
Theorem 44 0f8]).

In the remainder of this section we shall denote ®yR and A the completions as
R-modules ofQ, R andA, respectively.

Theorem 2.4. Let R be a valuation domain such that Q is not algebraically closed and
[O : Q]>6.Then there exist non-minimal indecomposable torsion-fregdules of finite
rank.

Proof. SinceQ is not algebraically closed there exists, as noted above, a non-trivial finite-
dimensional extensioh = Q[x] of Q such thatR[x] contains only finitely many maximal
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ideals. Setd = R[x], and leth = [L : Q]>2. ThenA =R ® Rx & ...Rx"1is a free
R-module.
Our goal is to construct arR-moduleM satisfying conditions (1) and (2) of Theorem 2.3.
In this situation we are in a position to apply the techniquepand[9]. Note that in
[9] it was observed that it is enough to assqr@e Q1> 6. We follow the notation of those
papers. By Theorem 1 §] (see also Lemma 1 ¢8]), for a suitable choice af, 6 R\R,
the torsion-fredR-module

= (Als + Ao+ AS), C A

is such that Eng(M) = A (here the symbo] ),. denotes the purification iA).

Fix t € P; to complete the proof we have to show théf:M ~ A/t A. Consider firstly
anyz =b1ls + boo+ b3d € A1y + Ao+ Ao, whereb; € A. For everyr € P, there exists
ay,d, € Rsuchthat.—a, € rR andd — d, € rR. If we set/, = b1 + boa, + bad, € A,
it follows that

= MlaerANM=rM.

Now an arbitrary element &l may be written in the forma/r, with z=5b114 +bo0.+ b3 €
Al + Ao+ Ad, whereb; € A andr € P are suitably chosen. In a similar way as above,
we write ,; = b1 + boay; + bady,, € A. Thenz — J,,14 € rtA, and from this relation we
first getd,;/rls € A, whencey,, = 4,+/r € A. Therefore, we also see that

2/r = p,,1amodtANM =t M.

Sincez/r € M was arbitrary, we conclude that the meép: A — M/tM defined by
d(w) = pu(la +1M), for u € A, is an epimorphism. Recall thatis the field of fractions of
A Thenifuly € tM C tA, we getu/t € AN L = A, whenceu € tA. Thus, we see that
tAis the kernel ofp, so thatM /¢t M and A/t A are isomorphic ad-modules, and therefore
isomorphic afR-modules, as well. [

The fact that the non-minimal modules furnished by the above theorem are indecom-
posable is particularly interesting in the light of the forthcoming Theorem 3.5. In fact, in
that result we will produce easy examples of non-minimal decomposable modules of rank
2 over any not almost maximal valuation domain.

Itis worth noting thafQ is not algebraically closed wheis not Henselian; see e [§.2].
Consequently, Theorem 2.4 applies to any non-Henselian valuation d&satisfying the
degree condition.

Our next aim is to show that the preceding results do not hold, in general, if we deal with
Henselian valuation domains. We will provide examples of non-maximal valuation domains,
which are even discrete valuation domains, such that all their torsion-free modules of finite
rank are minimal.

We consider the important class of discrete valuation domains called “Nagata valuation
domains” in[17]. These are discrete valuation ringsf rank one such thdi) : Q] =
wherep > 0 is the characteristic @, k is a positive integer, and, as aboygdenotes the
completion ofQ in the topology of the valuation. These types of discrete valuation domains
were first constructed in Nagata’'s bol0, Example E33, p. 207]They are Henselian,
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since, by constructiorQ is a purely inseparable extensiorn@fSince they are not complete,
they are, of course, not maximal.

However, note that Theorem 2.4 applies to Nagata valuations domains, whenever, in the
above notationpf > 6.

Let R be a Nagata valuation domain such th@t: Q] = 2. Then it was shown ifi7]
(see als¢2] for generalizations) that the finite-rank, torsion-free indecomposable modules,
all have rank< 2 and moreover those of rank 2 are all isomorghi¢, Theorem 8]We are
now in a position to establish the following result.

Proposition 2.5. Let R be a Nagata valuation domain such tl[@t : Q] =2.Then all
torsion-free R-modules of finite rank are minimal

Proof. Recall thaRis a discrete valuation domain and denotert®jits maximal ideal. Let
M be a torsion-fre®-module of finite rank anéil a submodule o of finite index. Recall
that the maximal divisible submodul®of a torsion-fredR-moduleM is a direct summand,
and that the definition readily implies that a submodiilef finite index inM has to contain
D. Now if M = M1 & D, we can writeH = Hy & D, whereH, = My N H C M, so that
M/H =~ M1/H; andM = H if and only if M1 = Hj. In conclusionM is minimal if and only
if M1 is minimal, and therefore in the remainder of the proof we assumétlimteduced.

SinceH is of finite index inM, there exists an integ&such thatt* M < H < M, and so it
follows thatM andH have the same rank. We claim that the basic rank$ ahdH coincide
also. As observed after Lemma 1.8, sid@ndH are reduced, these two basic ranks equal
the dimensions of th& /nR spacesVf/tM andH /nH, respectively. LeT’ = M/H. Since
H has finite index irM, we havel' =" ; Rz;, whereRz; = R /" R, for suitable positive
integers:;. Now consider the submodulg ] ={r € T : nt =0}. Itis clear that theR /7 R-
dimensions off' /=T andT[x] coincide (namely, they are both equal). We may now
reproduce verbatim the proof of Theorem 0.2, p. Blirto obtain the following equality of
R/mR-dimensions:

dim(M /nM) + dim(T[x]) = dim(H /nH) + dim(T /= T)

which, in our case, yields ditM /aM) = dim(H /nH).

Now, as recalled above, Theorem 8 [&f7] shows thatM andH are direct sums of
indecomposable submodules of ragl2. Note that none of these summands is divisible,
sinceM andH are reduced and so we may writt= F & My andH = G & Hi, where
F and G are free modules, antl; and H1 are direct sums of rank-two indecomposable
modules. LetrkF = f,rk G =g, rk M1=2h, rk H1=2k. Then the basic ranks af1 and
Hi areh andk, respectively. The equalities of the ranks and basic ranks yield the equations
f+2h=g+2kandf +h=g+k, fromwhich it follows thatf = g andh = k. Therefore,
we at once gef' =~ G. Moreover M1 and H1 have the same number of indecomposable
rank-two direct summands. Since indecomposable rank-two modules are all isomorphic
[17, Theorem 8]we haveM; =~ H; as well. We conclude thaif ~ H, as desired. (I

Our final results in this section show that over certain discrete valuation domains, the
so-called Baer—Specker modufe= [[, R is not minimal. Note tha?” has infinite rank.
We are presently assuming thHais a discrete valuation domain. SoRfis complete the
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productZ will, of course, be minimal by Corollary 1.6. Clearly then it is necessary to
assume thaR is not complete but there are technical reasons relating to the combinatorial
nature of our proof, which necessitate some cardinality restrictions. So, suppoRéstiaat
discrete valuation domain of cardinalitywith maximal ideapRand that the residue class
field R/pR has cardinalityu. We shall call the following cardinal inequality, the residue
class field cardinality condition:

a0 < ,u“NO.
Notice thatu™® = 2/ and that if < 280 then this condition is always satisfied.

Theorem 2.6. If R is a non-complete discrete valuation domain satisfying the residue class
field cardinality conditionthen? = [ [, R is not minimal

Proof. SinceRis not complete, itis a slender module—see Example XVI 6.18]#-and
so the algebra of endomorphisms#fis, as arR-module, isomorphic tg [, Pyo R; i

particular it has cardinalityi™. Consequently, there are at magsf submodules of?,
which are isomorphic te?.

Now consider the modul?/ p 2 =~ ]'[RO R/pR. This is a vector space over the residue
class fieldR/pR and as such is isomorphic &, R/pR for some cardinak. Since
[Is, R/pRisthe dual space @by, R/pR, its dimensionc is well known to beu™. Fix a
one-dimensional summand, s&)/ pZ = (e) & V, whereVis aR/p R-space of dimension
k. It is well known that the number of direct complements{gris equal to the dimension
ofthe dual space of, i.e., there ara":ul‘NO subspace¥, (o < ) with 2/ p2=(e)® V,.
Let H, be the pre-image o¥, so thatH,/p? = V,. Thus, the family{H, : o < u*} is
a family of ,u“&Osubmodules of? each of which is of finite index ir?. By assumption
u“NO > /80 s0 not all of these submodulés, can be isomorphic t&?. HenceZ is not
minimal as required. [J

Corollary 2.7. If R is a discrete valuation domain of non-measurable cardinaliand R
is not completgthen the producf[; R is not minimal

Proof. Since/is notmeasurable, the prodjdt R is again reflexivgs, Corollary XVI,6.14]
and so we can conclude that the cardinality of the endomorphism algebra of the product
[1, R is * = 2*. But now the number of submodules of finite index[ify, R will be

,u“;' > 22 < )% and the result follows as abovel]

3. Direct summands and direct sums

We have already noted in Corollary 1.7 that a direct summand of a separable minimal
module is again minimal.

It is worth noting and easily seen that a direct summand of a non-minimal module may
be minimal. Just take any valuation dom&admitting a non-minimaR-moduleM;. If F
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is a freeR-module of finite rank, thed = M1 & F is not minimal (see the proof of the
next proposition). Of course, the direct summanaf M is a minimal module.

Proposition 3.1. Let the Rmodule M be of the formd = G & F, where F is free of finite
rank. Then M minimal implies that G is minimal

Proof. Suppose for a contradiction thiltis minimal andG is not minimal. Then there is

a submodulé of finite index inG which is not isomorphic t@. However, the submodule

H @ F is of finite index inM. Then one hagl & F=~M =G & F and this implies that

H = G sinceF is finitely generated, and finitely generated modules over a valuation domain
have the substitution, and hence the cancellation, propertyFs€erollary V.8.3). [

We will soon see that the converse of the preceding proposition fails wheReverot
almost maximal.
In the case of a Henselian domain we can say somewhat more.

Proposition 3.2. Let R be a Henselian valuation domain and let M be a minimai&iule
of finite rank Then the indecomposable direct summands of M are minimal

Proof. Recall that Vamo$§16] proved that indecomposable torsion-free modules of finite
rank over a Henselian valuation domain have local endomorphism rings. Let udAvtite
My & --- ® My, where theM; are indecomposable. This decomposition is unique, up to
isomorphism, since EndM;) is local for alli <k, and we may apply Azumaya’s Theorem.
Let us now assume, by contradiction, thét (say) is non-minimal. LeH; be a submodule

of finite index of My such thatd122M;. ltisthenclearthatl = H1 ® Mo ® --- ® My isa
submodule oM of finite index. ThenM =~ H. SinceM5, ..., My have local endomorphism
rings, by iterated use of the substitution property (5¢er [1] Chapter 8) we geM; =~ H1.

We have thus reached the desired contradictidn.

In the general situation, one can derive a closure property under the operation of direct
sums for the class of minimal modules provided one is willing to impose some restrictions.

Theorem 3.3.If M = F @ X, where F is a finite rank free fodule and X is a minimal
R-module WithExt]k(X, F) torsionfree, then M is minimal

Proof. Suppose that is of finite index inM. Then sincé- is free of finite rank, the quotient
(H + F)/H is afinitely generated submodule &/ H and so by Proposition 1.H is of
finite index inH + F. It follows from the usual Noether isomorphism ti#an F is of finite
index inF, and hence we havE~ (H N F).

Since(H + F)/H isfinitely generated antf / H is finitely presented torsiodf /(H+ F)
is finitely presented and S@d{ + F)/F is of finite index inM/F. But M/F =~ X and so
(H + F)/F =X sinceX is minimal. Thus,H/(H N F)=~X. Moreover,M/H is finitely
presented, so there is an elememrt R such that M < H. ThusyM + (HNF) =r(F ®
X)+(HNF)=rX®HNF).Butnow(HNF)<XrH+ (HNF)<rX® HNF)
and sorH + (H N F) splits over(H N F). It follows from Lemma 1.5.6 ir[5] that this is
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equivalent to the extension& (HNF) - H — H/(H N F) — 0 being in the kernel
of the mapping induced on E%((H/(H N F), HN F) by multiplication by the scalar, i.e.

it is a torsion element of the module of extensions and this latter isE]ms} (X, F) since
H/(HNF)=X andF = (H N F). However, by assumption, E%((X, F) is torsion-free
and so the extension® (HNF) - H — H/(H N F) — 0 must be the null element,
i.e.HspltsasH =(HNF)® Y, whereY~H/(H N F)=~X. It follows that H ~M
and thusM is minimal as required. [J

Since Ex}e X, F)~]] Ext}e (X, R) whenF is free offinite rank, we can easily deduce:

Corollary 3.4. If M = F @ X, where F is free of finite rank and X is minimal with
Exth(X, R) = 0,then M is again minimal

Remark 2. Inthe previous theorem and corollary, the critical steps were to showthatt
and(H + F)/F were of finite index in the minimal modulgsandM / F, respectively. For
an arbitrary valuation domain, both of these facts follow i§ free of finite rank. We shall
see shortly that for discrete valuation domains, the restrictionRtw free of finite rank
can be relaxed to obtain a significant generalization.

Our next result shows a crucial fact that in general the direct sum of minimal modules
may fail to be minimal. As a by-product, we will see that one cannot drop the condition
relating to the vanishing of Ext in the above results. Even in the simplest possible case
whereF is free of rank 1, the direct sum of a minimal module &ked not be minimal; in
fact, this phenomenon always occurs wiis not an almost maximal valuation domain.

For the convenience of the reader, we recall some notions and results that are explained
in full detail in [15,14], or, more briefly, in5].

LetJ be an ideal of the valuation domélt Let us assume tha/J is not complete in
the topology of its ideals. Then, necessadlys av-ideal, that is/ = (1, rR. Thus the
setofideals#={rR/J : r ¢ J} forms a basis of neighborhoods of 0 for the ideal topology
of R/J. SinceR/J is not complete, there exists a Cauchy net, with respeét, twith no
limitin R/J. We may assume it to have the fofm. + J : r ¢ J}, where all thes, are units
of R.

For J an ideal ofR, we denote by/ 1 its inverse, namely 1= (R : J)={a € O :
aJ <R}. We have/ 1 = (r—1: r ¢ J). Note that, if] is a non-zera-ideal, then/ 1is a
non-principal fractional ideal, which is, by Proposition 1.4 (iii), a minirRainodule.

We also recall thaR is not almost exactly maximal if there exists a non-zero idesaich
thatR/J is not complete.

Theorem 3.5. Let R be a valuation domaimwhich is not almost maximarhen the direct
sums of minimal Rnodules may not be minim&pecificallyif the non-zero ideal J is such
that R/J is not completethen the RmoduleR & J~1 is not minimal

Proof. Let us first note that, sincgis a non-zera-ideal, then/ 1 is a fractional ideal,
whence, in particulat ~* is minimal. SinceR/J is not complete, we may choose a family
of units{u, : r ¢ J} of Rin the way described above. Consider the vector sgaced Oy,
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wherex, y are indeterminates. By the result§1%], the following submodule oD x & Qy
is indecomposable of rank 2:

H=(x,z =r_1(x+ury) rélJ);

moreoverRxis a basic submodule &f. Now choose € J and note that thB-moduleM =
Rt~ Yx@J 1y clearly containgi and is isomorphic t& @ J ~*. SinceH is indecomposable,
itis notisomorphic tdvl. To complete the proof, it remains to show thihas finite index in
M. We will show thatM =R ~*x+H andM/H =~ R/t R. Taker 1y € J~1y wherer isany
element oR not inJ. By direct computation we see thaty = u~1(—(t/r)t tx + z,) €
Rt~x + H (note that /r € P). This suffices to show thatt € Rr—1x 4 H. Sincex € H,
it is clear that Aniir—1x + H) D tR. Assume now thair—1x € H for a suitablez € R.
SinceRxis pure inH, we havex ¢ P H, and therefore € ta—1H impliesta—! ¢ P, so that
at~1 € R anda € rR. Thus it follows that Aniir —x + H) 2 ¢ R, whence equality holds,
and we get the desired conclusiori]

The requirement in the preceding theorem that the valuation doRi&@nnot almost
maximal is necessary. Ris a discrete valuation domain and thus is automatically almost
maximal, we can derive a far-reaching generalization of Theorem 3.3 and Corollary 3.4
above.

Theorem 3.6. Let R be a discrete valuation domain and let G and X be minirrralddules
such thatExt}e(X, G) is torsion-freeThenM = G & X is minimal

Proof. SinceRis Noetherian, the notions of finitely presented and finitely generated coin-
cide: a submodule of a finitely generated module over a Noetherian domain is again finitely
generated. Now suppose thatis of finite index inM = G & X. ThenM/H is finitely
presented an@H +G)/H < M/H is also finitely presented. Since HNG =~ (H+G)/H,

we conclude thaH N G is of finite index inG. FurthermoreM /(H + G), as the quotient

of two finitely presented modules is again finitely presented, aridisé G)/ G is of finite

index in M/G. Thus, we have shown th& N G and(H + G)/G are of finite index in

the minimal modules&; andM /G, respectively. As noted in the remark after Corollary 3.4,
this is sufficient to obtain the desired result by simply repeating the proof of Theorem 3.3,
replacingF by the minimal modulés. [

Corollary 3.7. Let R be a discrete valuation domainda@ a minimal R-moduléf F is a
free Rmodule of arbitrary rankthenM = G @ F is minimal

Proof. SinceF is free, Exi,Le(F, G) =0, and hence is trivially torsion-free.[]

In special circumstances, the preceding results enable one to characterize summands of
minimal groups.

Corollary 3.8. Let R be a discrete valuation domain and let M be amBdule of the form
M = G & F,where F is free of finite rank’hen M is minimal if and only if G is minimal
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Proof. One implication follows from the corollary above. The converse follows from
Proposition 3.1. [J
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