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Abstract

LetRbe a valuation domain. We say that a torsion-freeR-module isminimal if it is isomorphic to
all its submodules of finite index. Here, the usual concept of finite index for groups is replaced by the
more appropriate (for module theory) definition: a submoduleH of the moduleG is said to be of finite
index inG if the quotientG/H is a finitely presented torsion module. We investigate minimality in
various settings and showinter alia that over a maximal valuation domain, all torsion-free modules
are minimal. Constructions of non-minimal modules are given by utilizing realization theorems of
May and the authors. We also show that direct sums of minimal modules may fail to be minimal.
© 2004 Elsevier B.V. All rights reserved.

MSC:13G05; 13A15; 13A17

0. Introduction

The motivation for the present investigation of modules over valuation domains with
certain special properties comes, via Abelian group theory, from topology. Recall that a
topological spaceY is said to beH-connected if and only if every proper local homeomor-
phism� from a spaceX → Y is a (global) homeomorphism. If the spaceY is assumed to
be a compact manifold, thenY is simply connected provided it has dimensions 1 and 2. For
dimensions�4, this is known not to be so. In dimension 3, however, one encounters the
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so-called Poincaré Conjecture since anH -connected three-manifold is a homology sphere.
In an attempt to circumvent this difficulty, the notion of anh-connected space was con-
sidered: this is a connected first countable Hausdorff spaceY, which has the property that
given any connected covering� : X → Y , X is homeomorphic toY via somehomeomor-
phism. IfY is anh-connected manifold then its fundamental group�1(Y ) has the property:
if � : H → �1(Y ) is a monomorphism and|G : H�|<∞, thenH���1(Y ) via some
isomorphism. Thus, a (not necessarily Abelian) group, which has the property that is iso-
morphic to all its normal subgroups of finite index, is called anhc-group. (See[13] and
references therein for further details.) Interestingly, in the category of Abelian groups, the
same class of groups arose from considerations of a certain type of ‘quasi-minimality’ aris-
ing naturally in point-set topology. Recall that ifC is a category with an equivalence relation
on the objects ofC, and� is the quasi-order induced from a given propertyP by setting
A � B if A is equivalent to some subobject ofB having the propertyP, then an objectM is
minimal with respect to� if X � M impliesX is equivalent toM. WhenC is the category
of Abelian groups with isomorphism of groups as the equivalence andP is the property
of being of finite index, thenhc-groupsare precisely the minimal objects. These groups
have been investigated by Óhógáin and Goldsmith in[7,11] where they have been termed
minimal.

Since every proper quotient of the ring of integers is finite, the notion of an Abelian group
G having a subgroup ofH of finite index is both straightforward and natural: the quotient
groupG/H is finite. However, for modules over an arbitrary ringR, this concept is no
longer so natural and one needs to find a meaningful extension of the notion if it is to play
any significant role.

In the present paper, we focus on torsion-free modules over a valuation domainR. In
the first section, we introduce the notion of a submoduleH of G being of ‘finite index’ if
the quotientG/H is finitely presented and torsion. With this new understanding of finite
index, we say that a torsion-freeR-moduleG is minimal if it is isomorphic to each of its
submodules of finite index. Our principal result in that section is that every torsion-free
module over a maximal valuation is minimal. We find classes of torsion-freeR-modules,
which are always minimal, for instance, free modules or modules with basic rank 1.

The second section is devoted to the construction of non-minimal, indecomposable
torsion-free modules of finite rank over largely general valuation domains. We utilize the
so-called realization theorems of May and the authors[6,9]. On the other hand, we show
that over special valuation domains (first constructed by Nagata,[10]), every torsion-free
module is minimal.

In the final section, we consider the problem of whether direct sums and summands of
minimal modules remain minimal. Although we obtain some positive results, direct sums
of minimalR-modules may fail to be minimal whenR is not almost maximal.

1. Preliminaries and first results

Our notation is standard and any undefined terms may be found in the texts[4,5].
Throughout the sequel,Rwill denote a valuation domain andQ its field of quotients; the

maximal ideal ofR shall always be denoted byP. Since in the present paper there is no
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danger of confusion, when we say thatR is a discrete valuation domain we automatically
mean thatRhas rank 1, i.e.R is Noetherian.

Let M andH be torsion-freeR-modules, withH �M. Inspired by the corresponding
definition in the Abelian groups case, and with a little abuse of language, we say thatH has
finite index inMif M/H is afinitely presented torsion R-module, i.e.M/H�

⊕n
i=1R/riR,

for suitable 0�= ri ∈ R. An R-moduleM is said to beminimal if M is isomorphic to all of
its submodules of finite index.

Throughout the paper we shall deal with torsion-free modules. Thus, anR-module is
automatically assumed to be torsion-free and reduced, if not otherwise specified.

It is useful to recall that, over a valuation domainR, finitely generated submodules of
finitely presentedR-modules are finitely presented as well. Indeed, ifG/K <F/K, where
F is free of finite rank, andK andG/K are finitely generated, thenG is a finitely generated
submodule of the free moduleF, whenceG is free, sinceR is a valuation domain. Therefore,
G/K is finitely presented.

It is convenient to summarize some properties of this new notion of finite index; many
standard ideas remain valid, one exception being that ifA is of finite index inC andB is a
submodule ofC containingA, thenB is not necessarily of finite index inC. For instance,
take any valuation domainRwith non-finitely generated maximal idealP. Pick 0 �= t ∈ P .
We havetR <P <R, and, by definition,tR has finite index inR, while P is not of finite
index inR. In fact,R/P is not finitely presented sinceP is not finitely generated.

Proposition 1.1. LetA<B <C be R-modules.

(i) If A has finite index in C, then A has finite index in B if and only ifB/A is finitely
generated.

(ii) If A has finite index in B and B has finite index in C, then A has finite index in C.

Proof. If A has finite index inB, then it is immediate thatB/A is finitely generated.
Conversely supposeB/A is finitely generated. ThenB/A is also finitely presented, being
contained in the finitely presented moduleC/A. We conclude thatA is of finite index inB.

To establish (ii) note that we have an exact sequence

0 → B/A → C/A → C/B → 0,

whereB/A andC/B are finitely presented. We have to show thatC/A is also finitely
presented. The above sequence shows thatC/A is finitely generated; writeC/A = F/K,
whereF is free of finite rank. ThenB/A = H/K for a suitable submoduleH of F, and
C/B�F/H . SinceC/B is finitely presented, we derive thatH is finitely generated, in
view of Proposition 2.1, page 152 of[5] (an immediate application of Schanuel’s lemma).
SinceR is a valuation domain, finitely generated submodules of free modules are free; so
H is free. Again by Proposition 2.1 of[5], from H/K finitely presented we getK finitely
generated. We conclude thatC/A = F/K is finitely presented, as desired.�

Remark 1. One may wonder why we did not give a more obvious definition for a submodule
H to be finite index inM, viz. requiring thatM/H be a finite direct sum of cyclic torsion
modules. We avoided this definition mainly because in such a case not evenRwould be a
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minimal module (unlessR is a discrete valuation domain). In fact, wheneverR contains a
non-finitely generated idealI, we haveR/I cyclic andR�I .

Proposition 1.2. Let H be a submodule of finite index of a torsion-free R-module M. Let
x1, ..., xn be elements ofM such thatM/H=⊕n

i=1R(xi+H),whereAnn(xi+H)=riR �=
R, for suitableri ∈ R.ThenX=〈x1, ..., xn〉 is a free pure submodule of M, and{x1, ..., xn}
is a basis of X. Moreover, Y = ⊕n

i=1R(rixi) coincides withX ∩ H . In particular,Y is a
pure submodule of H.

Proof. Note that Ann(xi+H)=riR �= R implies thatxi /∈H for all i�n; setyi=rixi ∈ H .
Firstly, we verify thatX=〈x1, ..., xn〉=Rx1⊕· · ·⊕Rxn. In fact, assume for a contradiction

that
∑n

i=1 aixi =0, for suitableai ∈ R not all zero. One of the non-zero coefficients, sayaj ,
divides all theai , 1� i�n. Then, sinceM is torsion-free, possibly dividing the preceding
equality byaj , we may assume thataj =1. Reducing moduloHwe getxj +H ∈ 〈xi +H :
i �= j〉, which is impossible. As a consequence, we also haveY = 〈y1, . . . , yn〉 = Ry1 ⊕
· · · ⊕ Ryn.

Our next step is to prove thatX is a pure submodule ofM. Assume thatz ∈ M is
such that 0 �= tz = ∑n

i=1 bixi ; we have to show thatt divides all the coefficientsbi .
Suppose not: letbj be a coefficient which divides all thebi , 1� i�n; then t is a proper
multiple of bj . SinceM is torsion-free, dividing the preceding equality bybj , we may
reduce to the case whenbj = 1 andt ∈ P . Recall now thatz +H = ∑n

i=1 ci(xi +H), for
suitableci ∈ R, whencet (z+H)= ∑n

i=1 tci(xi +H)= ∑n
i=1 bi(xi +H). It follows that

(1 − tcj )(xj + H) ∈ 〈xi + H : i �= j〉, a contradiction, sincet ∈ P , whence 1− tcj is a
unit ofR.

It remains to prove thatY =X ∩H , so thatX pure inM impliesYpure inH, since all the
modules are torsion-free. Pick an arbitraryh ∈ X∩H ; we haveh=∑n

i=1 dixi , for suitable
di ∈ R. Then

∑n
i=1 di(xi + H) = 0, and thereforedi ∈ riR, for all i�n. It follows that

h=∑n
i=1 (di/ri)yi ∈ Y . Sincehwas arbitrary, we conclude thatX∩H ⊆ Y . The opposite

inclusion is trivial. �

The proof of the following lemma may be found in the book by Fuchs and Salce
[5,Theorem XII.2.3].

Lemma 1.3. Let F be a free R-module of finite rank, which is a pure submodule of a finite
direct sumW of uniserial R-modules. Then F is a direct summand of W.

The preceding Proposition 1.2 and Lemma 1.3 allow us to find some interesting classes
of modules, which are automatically minimal.

Proposition 1.4. Let M be a torsion-free R-module.

(i) If M = PM, then M is minimal. In particular, divisible modules are minimal.
(ii) If M is free, then M is minimal.

(iii) If I is a fractional ideal of R, then I is minimal.
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Proof. (i) We will show that in this case a submodule of finite index ofM necessarily
coincides withM. Therefore,M is trivially minimal. In the notation of Proposition 1.2, let
us assume for a contradiction thatM = 〈x1, ..., xn〉 +H , whereM/H = ⊕n

i=1R(xi +H)

and 0 �= R(xi + H)�R/riR, for all i�n. In view of Proposition 1.2, the submodule
X = ⊕n

i=1Rxi is free and pure inM. In particular,xi /∈PM for all i. But this is contrary
to the assumptionM = PM.

(ii) In the same notation, letM = X + H , whereM is free. ThenX is a free pure
submodule ofM. SinceX has finite rank, it is contained in a finite rank direct summand
N of M. Therefore, by Lemma 1.3,X is a direct summand ofN, whenceX is also a direct
summand ofM, sayM =X ⊕M1. LetY =X ∩H . By Proposition 1.2,Y = ⊕n

i=1R(rixi)

is free. We have

M1�M/X = (X + H)/X�H/(X ∩ H) = H/Y.

SinceM1 is free, we getH�Y ⊕ M1. We conclude thatH�M sinceX�Y .
(iii) SinceR is a valuation domain, then eitherI is principal, and so is free, orI =PI . In

either case the desired result follows from the previous sections of the proposition.�

Recall that a torsion-freeR-moduleM is said to beseparableif every finite subset of
M is contained in a direct summandW of M, whereW is a finite direct sum of uniserial
R-modules (see[4]).

Theorem 1.5. Let H be a submodule of finite index of a torsion-free R-module M. If H is
separable, then H is isomorphic to M. In particular, M is separable, too.

Proof. We follow the notation of Proposition 1.2. WriteM =X+H andY =X∩H . Since
H is separable, andY�X is free of finite rank, thenY is contained in a finite direct sum
of uniserial modulesW, which is a direct summand ofH. By the preceding lemma,Y is a
direct summand ofW, and therefore ofH. WriteH =Y ⊕H1 and observe thatX∩H1 = 0,
sinceM =X +H . It follows readily thatM =X ⊕H1. We conclude thatM is isomorphic
toH, as desired. �

Corollary 1.6. Let R be a maximal valuation domain.Then every torsion-free R-module is
minimal.

Proof. Recall that uniserial modules over maximal valuation domains are pure-injective
(see Theorem XIII.4.6 of[5]). Moreover, a torsion-free module over a valuation domain
is separable if and only if every rank-one pure submodule is a direct summand—see e.g.
Property (C), p. 551 of[5]. It follows immediately that every torsion-freeR-module is
separable. �

Corollary 1.7. If M is a torsion-free separable minimal R-module, then a direct summand
of M is again minimal.

Proof. Suppose thatM = A ⊕ B and thatH is a submodule ofA of finite index. Then
H ⊕ B is clearly of finite index inM and hence is isomorphic toM. In particular,H ⊕ B
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is separable, which in turn impliesH is separable since over valuation domains, summands
of separable modules are again separable (see Property (D), p. 551 of[5]). It now fol-
lows directly from the theorem above thatH is isomorphic toA and so the latter is again
minimal. �

For the general notion ofbasic submoduleof anR-moduleM we refer to[4,5]. We recall
that, whenM is torsion-free, a basic submoduleBof M is any submodule which is maximal
with respect to the properties:

(1) B is a direct sum of uniserial modules;
(2) B is a pure submodule ofM.

In the torsion-free setting, basic submodules always exist and are unique, up to isomor-
phism. Thebasic rankof M is defined to be the rank of its basic submodules; it plays a role
somewhat analogous to that played by thep-rank of a torsion-free Abelian group.

In this context, we have a result analogous to Óhógáin’s result (see[11]) that a torsion-free
Abelian group withp-rank at most 1 for all primesp is minimal.

We shall need a preliminary lemma, apparently not yet openly stated in the literature.

Lemma 1.8. If B is a basic submodule of the torsion-free R-module module M, thenM =
B + PM.

Proof. Pick an arbitraryx ∈ M, x /∈B. SinceB is pure inM, we haveRx ∩ B = 0. Then
Rx ⊕B is not pure inM, by the defining properties of basic submodules. NowRx ⊕B not
pure amounts to the existence ofy ∈ M andt ∈ P such thatty ∈ Rx ⊕ B\P(Rx ⊕ B).
Let ty = rx + b, wherer ∈ R andb ∈ B. Thenr /∈P ; otherwiseb ∈ PB, sinceB is
pure, whencety ∈ P(Rx ⊕ B), contrary to our assumption. It follows thatr is a unit, so
thatx = r−1(−b + ty) ∈ B + PM. Sincex was arbitrary, we get the desired conclusion
M = B + PM. �

Let us now examine the case whenRis a discrete valuation domain of rank 1 (equivalently,
a local principal ideal domain), with maximal idealP =�R, andM is a reduced torsion-free
R-module. In that case any basic submoduleBof M is free, sinceM is reduced and the only
uniserialR-modules are eitherRorQ. Moreover, from Lemma 1.8 we getM/B=�(M/B),
which implies thatM/B is divisible. It then follows immediately that the basic rank ofM
coincides with theR/�R-dimension ofM/�M (which is equal to dim(B/�B)). Therefore,
whenR is a discrete valuation domain, we have properties mirroring those satisfied by basic
subgroups of Abelian groups.

Theorem 1.9. Let M be a torsion-free R-module with basic rank1.Then M is minimal.

Proof. Suppose that there exists a proper submoduleH of M such thatM/H is finitely
presented. Then, by Proposition 1.2, we may writeM = X + H , whereX is free and
pure inM. SinceM has basic rank 1, it follows that necessarilyX is a basic submodule of
M, whenceX is cyclic, sayX=Rx. Let Ann(x+H)=tR. We want to show that, necessarily,
H = tM, whenceM�H follows at once.
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We readily see thattM ⊆ H , sincetM = t (Rx + H) andtx ∈ H .
We want to verify the opposite inclusionH ⊆ tM. First we show thatH ⊆ PM. Indeed,

sinceRxis basic inM, by the preceding lemma we haveM =Rx +PM. Now assume, for
a contradiction, that there existsh ∈ H\PM. We may write

h = ax + qm

for suitablea ∈ R, q ∈ P , m ∈ M. Thena is a unit, sinceh /∈PM. Moreoverm= bx +h′,
whereb ∈ R, h′ ∈ H . It follows that(a + qb)x ∈ H , which is impossible sincea + qb

is a unit andx /∈H . We may now verify thatH ⊆ tM. Take anyh ∈ H . Since the basic
submodule ofM is free of rank 1, the purification〈h〉∗ of h in M is also free. Accordingly,
there existsq ∈ R such thath ∈ qM\qPM. Therefore, we may write

h = q(cx + h′′), c ∈ R, h′′ ∈ H.

Sinceh′′ ∈ PM andh /∈ qPM, we get thatc is a unit. Thenqcx ∈ H impliesqx ∈ H ,
whenceq ∈ tR. It follows thath ∈ tM, as desired. �

2. Non-minimal modules

The purpose of the present section is to show how to construct non-minimal indecom-
posable modules of finite rank over largely general valuation domains. However, we will
see that the important class of Nagata valuation domains constitutes a noticeable exception.

We begin with a pair of lemmas valid for commutative domains.

Lemma 2.1. Let A be a commutative ring, M1, ...,Mk pairwise distinct maximal ideals
of A, and M an A-module such thatMiM �= M for all i�k. Then there existsz ∈ M such
that z /∈ ⋃

i�kMiM.

Proof. SinceMj�
⋂

i �=j Mi for anyj�k, we getM =MjM + (
⋂

i �=j Mi )M, whence, in
particular,MjM�(

⋂
i �=j Mi )M. It follows that for everyj�k there existszj ∈ (

⋂
i �=j Mi )

M\MjM. It is now clear that the elementz = z1 + · · · + zk fulfills our requirements. �

The following lemma and its proof are inspired by Arnold[1, Theorem 5.9(a), p. 52].

Lemma 2.2. Let R be a commutative domain and let A be a commutative torsion-free
R-algebra withM a maximal ideal of A. If M is a torsion-free R-module such that: (1)
EndR(M) = A and(2)M/tM is a finitely generated R-module for somet ∈ R ∩M, then
MM �= M.

Proof. Assume for a contradiction thatMM = M. If N = M/tM, we haveMN = N , as
well. SinceN is a finitely generatedA-module, a classical result shows that(1 + y)N = 0,
for somey ∈ M (see e.g. Theorem 76 of[8]). It follows that(1 + y)M ⊆ tM. SinceM is
a torsion-freeR-module, we infer that(1 + y)/t is a well-defined endomorphism ofM, so
that 1+ y ∈ tA ⊆ M and hence we get the desired contradiction 1∈ M. �
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Theorem 2.3. Let R be a valuation domain andA a free R-algebra of rankn�2containing
only finitely many maximal idealsM1, ...,Mk, k�1. Suppose that there exists a torsion-
free finite rank R-module M satisfying the following conditions: (1)EndR(M)=A and(2)
there existst ∈ P such thatM/tM andA/tA are isomorphic as R-modules.Then, if z ∈ M

is such thatz /∈ ⋃
i�kMiM, the moduleN = Rz + tM is non-minimal. Moreover, if A is

an integral domain, then both M and N are indecomposable.

Proof. It is clear thatP ⊂ Mi , for everyi�k. Also, observe that the existence ofzis ensured
by Lemmas 2.1 and 2.2; indeedMiM <M, for everyi�k, sinceM/tM�A/tA�(R/tR)n

is a finitely generatedR-module.
Let us first show that AnnR(z + tM) = tR, so thattM has finite index inN. Suppose

not and assume thatsz ∈ tM with t/s ∈ P . It follows that z ∈ (t/s)M ⊂ PM ⊂
MiM—contradiction.

We now verify thatN is non-minimal by proving thatN�M�tM. Assume, for a con-
tradiction, that there existsf ∈ EndR(M) = A such thatf (M) = N . Now f /∈Mi for all
i�k, sincez ∈ f (M)\⋃i�kMiM. Therefore,f is a unit ofA andM = N . It follows that

M/tM = N/tM�Rz/(tM ∩ Rz)

is a cyclicR-module. We have reached the desired contradiction, sinceM/tM�A/tA�
(R/tR)n is a direct sum ofn�2 cyclic modules.

Finally, assume thatA is an integral domain. ThenM is trivially indecomposable. How-
ever,N is also indecomposable. Suppose� : N → N is an idempotent in EndR(N). Then
the compositiont� : M → N can be regarded as an endomorphism ofM, say f. Thus,
f 2 = tf in EndR(M) = A, whence eitherf = 0 or f = t1A. In the first case we get
f (N) = 0, whence� = 0, sinceN is torsion-free. Iff = t1A, then for anyu ∈ N we get
tu=f (u)= t�(u). By torsion-freeness, we infer that� is the identity onN. Thus, EndR(N)

contains only trivial idempotents andN is indecomposable.�

Before proving our next theorem, let us make some remarks. Assume that the field of
quotientsQ of R is not algebraically closed. Then there exists a non-trivial finite field
extensionL=Q[x] of Q, where we may clearly assume thatx is integral overR. Consider
the integral closureD of R in L; by classical results on integral closures (for instance, see
[3]), we know thatD has only finitely many maximal ideals. Sincex is integral overR,
we haveD ⊇ R[x]; equality does not hold in general. However,R[x] has only finitely
many maximal ideals, sinceD is integral overR[x] and the ‘lying over’ property holds (see
Theorem 44 of[8]).

In the remainder of this section we shall denote byQ̂, R̂ and Â the completions as
R-modules ofQ, RandA, respectively.

Theorem 2.4. Let R be a valuation domain such that Q is not algebraically closed and
[Q̂ : Q]�6.Then there exist non-minimal indecomposable torsion-free R-modules of finite
rank.

Proof. SinceQ is not algebraically closed there exists, as noted above, a non-trivial finite-
dimensional extensionL=Q[x] of Q such thatR[x] contains only finitely many maximal
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ideals. SetA = R[x], and letn = [L : Q]�2. ThenA = R ⊕ Rx ⊕ ...Rxn−1 is a free
R-module.

Our goal is to construct anR-moduleM satisfying conditions (1) and (2) of Theorem 2.3.
In this situation we are in a position to apply the techniques of[6] and[9]. Note that in

[9] it was observed that it is enough to assume[Q̂ : Q]�6. We follow the notation of those
papers. By Theorem 1 of[6] (see also Lemma 1 of[9]), for a suitable choice of�, � ∈ R̂\R,
the torsion-freeR-module

M = 〈A1A + A� + A�〉∗ ⊂ Â

is such that EndR(M) = A (here the symbol〈 〉∗ denotes the purification in̂A).
Fix t ∈ P ; to complete the proof we have to show thatM/tM�A/tA. Consider firstly

anyz= b11A + b2� + b3� ∈ A1A +A� +A�, wherebi ∈ A. For everyr ∈ P , there exists
ar , dr ∈ R such that� − ar ∈ rR̂ and� − dr ∈ rR̂. If we set�r = b1 + b2ar + b3dr ∈ A,
it follows that

z − �r1A ∈ rÂ ∩ M = rM.

Now an arbitrary element ofMmay be written in the formz/r, with z=b11A+b2�+b3� ∈
A1A + A� + A�, wherebi ∈ A andr ∈ P are suitably chosen. In a similar way as above,
we write�rt = b1 + b2art + b3drt ∈ A. Thenz − �rt1A ∈ rtÂ, and from this relation we
first get�rt /r1A ∈ Â, whence�rt = �rt /r ∈ A. Therefore, we also see that

z/r ≡ �rt1AmodtÂ ∩ M = tM.

Sincez/r ∈ M was arbitrary, we conclude that the map� : A → M/tM defined by
�(�)= �(1A + tM), for � ∈ A, is an epimorphism. Recall thatL is the field of fractions of
A. Then if�1A ∈ tM ⊂ tÂ, we get�/t ∈ Â ∩ L = A, whence� ∈ tA. Thus, we see that
tA is the kernel of�, so thatM/tM andA/tA are isomorphic asA-modules, and therefore
isomorphic asR-modules, as well. �

The fact that the non-minimal modules furnished by the above theorem are indecom-
posable is particularly interesting in the light of the forthcoming Theorem 3.5. In fact, in
that result we will produce easy examples of non-minimal decomposable modules of rank
2 over any not almost maximal valuation domain.

It is worth noting thatQ is not algebraically closed whenR is not Henselian; see e.g.[12].
Consequently, Theorem 2.4 applies to any non-Henselian valuation domainRsatisfying the
degree condition.

Our next aim is to show that the preceding results do not hold, in general, if we deal with
Henselian valuation domains. We will provide examples of non-maximal valuation domains,
which are even discrete valuation domains, such that all their torsion-free modules of finite
rank are minimal.

We consider the important class of discrete valuation domains called “Nagata valuation
domains” in[17]. These are discrete valuation ringsRof rank one such that[Q̂ : Q] = pk,
wherep>0 is the characteristic ofQ, k is a positive integer, and, as above,Q̂ denotes the
completion ofQ in the topology of the valuation. These types of discrete valuation domains
were first constructed in Nagata’s book[10, Example E33, p. 207]. They are Henselian,
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since, by construction,̂Q is a purely inseparable extension ofQ. Since they are not complete,
they are, of course, not maximal.

However, note that Theorem 2.4 applies to Nagata valuations domains, whenever, in the
above notation,pk�6.

Let R be a Nagata valuation domain such that[Q̂ : Q] = 2. Then it was shown in[17]
(see also[2] for generalizations) that the finite-rank, torsion-free indecomposable modules,
all have rank�2 and moreover those of rank 2 are all isomorphic[17, Theorem 8]. We are
now in a position to establish the following result.

Proposition 2.5. Let R be a Nagata valuation domain such that[Q̂ : Q] = 2. Then all
torsion-free R-modules of finite rank are minimal.

Proof. Recall thatR is a discrete valuation domain and denote by�R its maximal ideal. Let
M be a torsion-freeR-module of finite rank andH a submodule ofM of finite index. Recall
that the maximal divisible submoduleD of a torsion-freeR-moduleM is a direct summand,
and that the definition readily implies that a submoduleH of finite index inM has to contain
D. Now if M = M1 ⊕ D, we can writeH = H1 ⊕ D, whereH1 = M1 ∩ H ⊆ M1, so that
M/H�M1/H1 andM�H if and only ifM1�H1. In conclusion,M is minimal if and only
if M1 is minimal, and therefore in the remainder of the proof we assume thatM is reduced.

SinceH is of finite index inM, there exists an integerksuch that�kM�H �M, and so it
follows thatM andH have the same rank. We claim that the basic ranks ofM andH coincide
also. As observed after Lemma 1.8, sinceM andH are reduced, these two basic ranks equal
the dimensions of theR/�R spacesM/�M andH/�H , respectively. LetT =M/H . Since
H has finite index inM, we haveT =⊕m

i=1Rzi , whereRzi�R/�niR, for suitable positive
integersni . Now consider the submoduleT [�]={t ∈ T : �t =0}. It is clear that theR/�R-
dimensions ofT/�T andT [�] coincide (namely, they are both equal tom). We may now
reproduce verbatim the proof of Theorem 0.2, p. 3 in[1] to obtain the following equality of
R/�R-dimensions:

dim(M/�M) + dim(T [�]) = dim(H/�H) + dim(T /�T )

which, in our case, yields dim(M/�M) = dim(H/�H).
Now, as recalled above, Theorem 8 of[17] shows thatM andH are direct sums of

indecomposable submodules of rank�2. Note that none of these summands is divisible,
sinceM andH are reduced and so we may writeM = F ⊕ M1 andH = G ⊕ H1, where
F andG are free modules, andM1 andH1 are direct sums of rank-two indecomposable
modules. Let rkF =f , rk G=g, rk M1 =2h, rk H1 =2k. Then the basic ranks ofM1 and
H1 areh andk, respectively. The equalities of the ranks and basic ranks yield the equations
f +2h=g+2k andf +h=g+ k, from which it follows thatf =g andh= k. Therefore,
we at once getF�G. MoreoverM1 andH1 have the same number of indecomposable
rank-two direct summands. Since indecomposable rank-two modules are all isomorphic
[17, Theorem 8], we haveM1�H1 as well. We conclude thatM�H , as desired. �

Our final results in this section show that over certain discrete valuation domains, the
so-called Baer–Specker moduleP = ∏

ℵ0
R is not minimal. Note thatP has infinite rank.

We are presently assuming thatR is a discrete valuation domain. So, ifR is complete the
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productP will, of course, be minimal by Corollary 1.6. Clearly then it is necessary to
assume thatR is not complete but there are technical reasons relating to the combinatorial
nature of our proof, which necessitate some cardinality restrictions. So, suppose thatR is a
discrete valuation domain of cardinality� with maximal idealpRand that the residue class
field R/pR has cardinality�. We shall call the following cardinal inequality, the residue
class field cardinality condition:

�ℵ0 <��ℵ0
.

Notice that��ℵ0 = 2�ℵ0 and that if��2ℵ0 then this condition is always satisfied.

Theorem 2.6. If R is a non-complete discrete valuation domain satisfying the residue class
field cardinality condition, thenP = ∏

ℵ0
R is not minimal.

Proof. SinceR is not complete, it is a slender module—see Example XVI 6.10 in[5]—and
so the algebra of endomorphisms ofP is, as anR-module, isomorphic to

∏
ℵ0

⊕
ℵ0R; in

particular it has cardinality�ℵ0. Consequently, there are at most�ℵ0 submodules ofP,
which are isomorphic toP.

Now consider the moduleP/pP�
∏

ℵ0
R/pR. This is a vector space over the residue

class fieldR/pR and as such is isomorphic to
⊕

� R/pR for some cardinal�. Since∏
ℵ0

R/pR is the dual space of
⊕

ℵ0
R/pR, its dimension� is well known to be�ℵ0. Fix a

one-dimensional summand, say,P/pP=〈e〉⊕V , whereV is aR/pR-space of dimension
�. It is well known that the number of direct complements for〈e〉 is equal to the dimension
of the dual space ofV, i.e., there are��=��ℵ0 subspacesV�(�<��)withP/pP=〈e〉⊕V�.
Let H� be the pre-image ofV� so thatH�/pP = V�. Thus, the family{H� : �<��} is
a family of ��ℵ0 submodules ofP each of which is of finite index inP. By assumption
��ℵ0

> �ℵ0, so not all of these submodulesH� can be isomorphic toP. HenceP is not
minimal as required. �

Corollary 2.7. If R is a discrete valuation domain of non-measurable cardinality� and R
is not complete, then the product

∏
� R is not minimal.

Proof. Since� is not measurable, the product
∏

� R is again reflexive[5, Corollary XVI,6.14]
and so we can conclude that the cardinality of the endomorphism algebra of the product
∏

� R is �� = 2�. But now the number of submodules of finite index in
∏

� R will be

��� �22�
> �� and the result follows as above.�

3. Direct summands and direct sums

We have already noted in Corollary 1.7 that a direct summand of a separable minimal
module is again minimal.

It is worth noting and easily seen that a direct summand of a non-minimal module may
be minimal. Just take any valuation domainRadmitting a non-minimalR-moduleM1. If F
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is a freeR-module of finite rank, thenM = M1 ⊕ F is not minimal (see the proof of the
next proposition). Of course, the direct summandF of M is a minimal module.

Proposition 3.1. Let the R-module M be of the formM = G ⊕ F , where F is free of finite
rank. Then M minimal implies that G is minimal.

Proof. Suppose for a contradiction thatM is minimal andG is not minimal. Then there is
a submoduleH of finite index inGwhich is not isomorphic toG. However, the submodule
H ⊕ F is of finite index inM. Then one hasH ⊕ F�M�G ⊕ F and this implies that
H�G sinceF is finitely generated, and finitely generated modules over a valuation domain
have the substitution, and hence the cancellation, property (see[5, Corollary V.8.3]). �

We will soon see that the converse of the preceding proposition fails wheneverR is not
almost maximal.

In the case of a Henselian domain we can say somewhat more.

Proposition 3.2. Let R be a Henselian valuation domain and let M be aminimal R-module
of finite rank. Then the indecomposable direct summands of M are minimal.

Proof. Recall that Vámos[16] proved that indecomposable torsion-free modules of finite
rank over a Henselian valuation domain have local endomorphism rings. Let us writeM =
M1 ⊕ · · · ⊕ Mk, where theMi are indecomposable. This decomposition is unique, up to
isomorphism, since EndR(Mi) is local for alli�k, and we may apply Azumaya’s Theorem.
Let us now assume, by contradiction, thatM1 (say) is non-minimal. LetH1 be a submodule
of finite index ofM1 such thatH1�M1. It is then clear thatH =H1 ⊕M2 ⊕ · · · ⊕Mk is a
submodule ofM of finite index. ThenM�H . SinceM2, ...,Mk have local endomorphism
rings, by iterated use of the substitution property (see[5] or [1] Chapter 8) we getM1�H1.
We have thus reached the desired contradiction.�

In the general situation, one can derive a closure property under the operation of direct
sums for the class of minimal modules provided one is willing to impose some restrictions.

Theorem 3.3. If M = F ⊕ X, where F is a finite rank free R-module and X is a minimal
R-module withExt1R(X, F ) torsion-free, then M is minimal.

Proof. Suppose thatH is of finite index inM. Then sinceF is free of finite rank, the quotient
(H + F)/H is a finitely generated submodule ofM/H and so by Proposition 1.1,H is of
finite index inH +F . It follows from the usual Noether isomorphism thatH ∩F is of finite
index inF, and hence we haveF�(H ∩ F).

Since(H+F)/H is finitely generated andM/H is finitely presented torsion,M/(H+F)

is finitely presented and so(H + F)/F is of finite index inM/F . But M/F�X and so
(H + F)/F�X sinceX is minimal. Thus,H/(H ∩ F)�X. Moreover,M/H is finitely
presented, so there is an elementr ∈ R such thatrM�H . Thus,rM + (H ∩ F) = r(F ⊕
X) + (H ∩ F) = rX ⊕ (H ∩ F). But now(H ∩ F)�rH + (H ∩ F)�rX ⊕ (H ∩ F)

and sorH + (H ∩ F) splits over(H ∩ F). It follows from Lemma I.5.6 in[5] that this is
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equivalent to the extension 0→ (H ∩ F) → H → H/(H ∩ F) → 0 being in the kernel
of the mapping induced on Ext1

R(H/(H ∩F),H ∩F) by multiplication by the scalarr, i.e.
it is a torsion element of the module of extensions and this latter is justExt1R(X, F ) since
H/(H ∩ F)�X andF�(H ∩ F). However, by assumption, Ext1

R(X, F ) is torsion-free
and so the extension 0→ (H ∩ F) → H → H/(H ∩ F) → 0 must be the null element,
i.e. H splits asH = (H ∩ F) ⊕ Y , whereY�H/(H ∩ F)�X. It follows thatH�M

and thusM is minimal as required. �

Since Ext1R(X, F )�
∏

Ext1R(X,R) whenF is free offinite rank, we can easily deduce:

Corollary 3.4. If M = F ⊕ X, where F is free of finite rank and X is minimal with
Ext1R(X,R) = 0, then M is again minimal.

Remark 2. In the previous theorem and corollary, the critical steps were to show thatH∩F

and(H +F)/F were of finite index in the minimal modulesF andM/F , respectively. For
an arbitrary valuation domain, both of these facts follow ifF is free of finite rank. We shall
see shortly that for discrete valuation domains, the restriction thatF be free of finite rank
can be relaxed to obtain a significant generalization.

Our next result shows a crucial fact that in general the direct sum of minimal modules
may fail to be minimal. As a by-product, we will see that one cannot drop the condition
relating to the vanishing of Ext in the above results. Even in the simplest possible case
whereF is free of rank 1, the direct sum of a minimal module andRneed not be minimal; in
fact, this phenomenon always occurs whenR is not an almost maximal valuation domain.

For the convenience of the reader, we recall some notions and results that are explained
in full detail in [15,14], or, more briefly, in[5].

Let J be an ideal of the valuation domainR. Let us assume thatR/J is not complete in
the topology of its ideals. Then, necessarily,J is av-ideal, that isJ = ⋂

r /∈J rR. Thus the
set of idealsB={rR/J : r /∈ J } forms a basis of neighborhoods of 0 for the ideal topology
of R/J . SinceR/J is not complete, there exists a Cauchy net, with respect toB, with no
limit in R/J . We may assume it to have the form{ur +J : r /∈ J }, where all theur are units
of R.

For J an ideal ofR, we denote byJ−1 its inverse, namelyJ−1 = (R : J ) = {a ∈ Q :
aJ �R}. We haveJ−1 = 〈r−1 : r /∈ J 〉. Note that, ifJ is a non-zerov-ideal, thenJ−1 is a
non-principal fractional ideal, which is, by Proposition 1.4 (iii), a minimalR-module.

We also recall thatR is not almost exactly maximal if there exists a non-zero idealJ such
thatR/J is not complete.

Theorem 3.5. Let R be a valuation domain, which is not almost maximal. Then the direct
sums of minimal R-modules may not be minimal.Specifically, if the non-zero ideal J is such
thatR/J is not complete, then the R-moduleR ⊕ J−1 is not minimal.

Proof. Let us first note that, sinceJ is a non-zerov-ideal, thenJ−1 is a fractional ideal,
whence, in particular,J−1 is minimal. SinceR/J is not complete, we may choose a family
of units{ur : r /∈ J } of R in the way described above. Consider the vector spaceQx ⊕Qy,
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wherex, y are indeterminates. By the results in[15], the following submodule ofQx⊕Qy

is indecomposable of rank 2:

H = 〈x, zr = r−1(x + ury) : r /∈ J 〉;

moreover,Rxis a basic submodule ofH. Now chooset ∈ J and note that theR-moduleM=
Rt−1x⊕J−1y clearly containsH and is isomorphic toR⊕J−1. SinceH is indecomposable,
it is not isomorphic toM. To complete the proof, it remains to show thatH has finite index in
M. We will show thatM=Rt−1x+H andM/H�R/tR. Taker−1y ∈ J−1y, wherer is any
element ofRnot inJ. By direct computation we see thatr−1y = u−1

r (−(t/r)t−1x + zr) ∈
Rt−1x+H (note thatt/r ∈ P ). This suffices to show thatM ⊆ Rt−1x+H . Sincex ∈ H ,
it is clear that Ann(t−1x + H) ⊇ tR. Assume now thatat−1x ∈ H for a suitablea ∈ R.
SinceRxis pure inH, we havex /∈PH , and thereforex ∈ ta−1H impliesta−1 /∈P , so that
at−1 ∈ R anda ∈ tR. Thus it follows that Ann(t−1x + H) ⊇ tR, whence equality holds,
and we get the desired conclusion.�

The requirement in the preceding theorem that the valuation domainR is not almost
maximal is necessary. IfR is a discrete valuation domain and thus is automatically almost
maximal, we can derive a far-reaching generalization of Theorem 3.3 and Corollary 3.4
above.

Theorem 3.6. Let R be a discrete valuation domain and let G and X beminimal R-modules
such thatExt1R(X,G) is torsion-free. ThenM = G ⊕ X is minimal.

Proof. SinceR is Noetherian, the notions of finitely presented and finitely generated coin-
cide: a submodule of a finitely generated module over a Noetherian domain is again finitely
generated. Now suppose thatH is of finite index inM = G ⊕ X. ThenM/H is finitely
presented and(H+G)/H �M/H is also finitely presented. SinceG/H∩G�(H+G)/H ,
we conclude thatH ∩ G is of finite index inG. Furthermore,M/(H + G), as the quotient
of two finitely presented modules is again finitely presented, and so(H +G)/G is of finite
index inM/G. Thus, we have shown thatH ∩ G and(H + G)/G are of finite index in
the minimal modulesG andM/G, respectively. As noted in the remark after Corollary 3.4,
this is sufficient to obtain the desired result by simply repeating the proof of Theorem 3.3,
replacingF by the minimal moduleG. �

Corollary 3.7. Let R be a discrete valuation domain and G a minimal R-module. If F is a
free R-module of arbitrary rank, thenM = G ⊕ F is minimal.

Proof. SinceF is free, Ext1R(F,G) = 0, and hence is trivially torsion-free.�

In special circumstances, the preceding results enable one to characterize summands of
minimal groups.

Corollary 3.8. Let R be a discrete valuation domain and let M be an R-module of the form
M = G ⊕ F , where F is free of finite rank. Then M is minimal if and only if G is minimal.
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Proof. One implication follows from the corollary above. The converse follows from
Proposition 3.1. �
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