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ABSTRACT
Action recognition has become a prerequisite approach to fluent
Human-Robot Interaction (HRI) due to a high degree of movement
flexibility. With the improvements in machine learning algorithms,
robots are gradually transitioning into more human-populated ar-
eas. However, HRI systems demand the need for robots to possess
enough cognition. The action recognition algorithms require mas-
sive training datasets, structural information of objects in the envi-
ronment, and less expensive models in terms of computational com-
plexity. In addition, many such algorithms are trained on datasets de-
rived from daily activities. The algorithms trained on non-industrial
datasets may have an unfavorable impact on implementing models
and validating actions in an industrial context. This study proposed
a lightweight deep learning model for classifying low-level actions
in an assembly setting. The model is based on optical flow feature
elicitation and mobilenetV2-SSD action classification and is trained
and assessed on an actual industrial activities’ dataset. The exper-
imental outcomes show that the presented method is futuristic
and does not require extensive preprocessing; therefore, it can be
promising in terms of the feasibility of action recognition for mu-
tual performance monitoring in real-world HRI applications. The
test result shows 80% accuracy for low-level RGB action classes.
The study’s primary objective is to generate experimental results
that may be used as a reference for future HRI algorithms based on
the InHard dataset.

CCS CONCEPTS
• Action Classification; • Human Robot Interaction; • Deep
Learning;

KEYWORDS
Fluent HRI, Machine Learning Algorithms
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1 INTRODUCTION
Collaborative robots require a set of functionalities that enable
them to behave in close proximity to operators; among the future
required is mutual performancemonitoring between the human and
the intelligent agent to realize some teamwork conditions. It is one
of the prerequisites of dynamic robot decision-making and implies
the feasibility of Human-Action Recognition [1]. Considering the
ultimate objective of a natural, human-like, and flawless interaction,
we acknowledge that recognizing human actions may enable robots
to complement humans more effectively in a teaming structure. Fur-
thermore, human actions in a Human Robotic Collaborative (HRC)
context can be classified as higher level with generic behaviors or
lower level with detailed descriptions. Low-level operations include:
Grabbing item X with the left hand, seizing a screwdriver of type Y,
or constricting the screw [2]. Anticipation of human intentions and
sequence of actions, regardless of general or specific, is nevertheless
a fundamental research topic that encourages more exploration.
During manufacturing, the industrial operator’s actions indicate
operational intent, for which the analysis approach incorporates
offline recognition and online anticipation in actual implementa-
tions. However, this form of HRI is challenging because it involves
a range of unforeseen events and behaviors that are difficult for
robots to interpret and respond to appropriately. Therefore, precise
action prediction is imperative for proactive HRI, enabling robots
to extrapolate human intentions and provide adaptive or proactive
assistance [3].

Existing deep learning methods may predict human behaviors
and human–object dynamics based on RGB, depth, and skeletal
data, or they can fuse multi-data models [4] [5]. Throughout most
proposed solutions, researchers relied on conventional CNN [6]
,and RNN [7] models, which required a substantial quantity of
training data. Although various datasets, such as MSR-Action3D
[8], UCF50 [9], NTU RGB+D [10] , HMDB51 [11] , provide a variety
of data classes to enable HRI algorithms, the majority of them are
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specific to everyday life or health-care activities [2]. Nearly all of
the offered algorithms are trained using datasets from [8-10, 11].
There is a lack of datasets and methodologies that offer genuine
industrial actions from the perspective of industrial activities. This
work aims to present an action classification framework trained on
low-level action frames for cognitive HRC applications.

The major contribution of our study is as follows:
• We investigated the industrial directions of fluent HRI ap-
plications as human action or intention prediction, which is
complex and preliminary in literature.

• We proposed an action recognition deep learning model for
fluent HRI applications for dynamic HRC scenarios. The pro-
posed method addresses two challenges for the HRI action
recognition algorithm, the structural feature information
and computational less expensive classification models i.e.,
optical flow (OpF) combined with MobilnetV2-SSD.

• The experimental outcomes demonstrate the significance of
the proposed system using industrial activity dataset. How-
ever, the dataset is new for the scientific community and can
provide a direction for designing HRI algorithms.

The remaining sections are structured as follows. Section II cov-
ers the existing research relevant to our subject area. Section III
discusses the proposed methodology. In section IV, the implementa-
tion parameters and experimental outcomes are described. Finally,
section V concludes the study and directs to future work.

2 RELATEDWORKS
Human and industrial robots have strengths and behavior within
the industrial manufacturing process. They complement each other
as a team member, leading to the development of HRI applications.
As a co-worker, the robot should quickly determine human partic-
ipants’ intentions and future positions in the HRC environment
[12]. Many studies have been proposed in past on human motion
[13] estimation and action recognition [14]. Within the machine-
assisted human interaction approaches, the types of collaborative
intelligence tasks more frequently addressed by the retrieved collec-
tion of research works are human intention prediction and human
motion recognition, specifically for human-robot collaboration ap-
plications. These two tasks have been addressed separately in some
works but are connected and commonly tackled together. Deep
learning approaches have become popular to ensure efficient recog-
nition of human activities in HRC applications. To our knowledge,
four studies were found addressing human motion recognition for
close human-robot collaboration, with two using CNN [15] [16].
Whereas [17] have used ANNs for the classification of human ges-
tures for robot instructions, moreover [18] used discrete Hidden
Markov Model (HMM) for human gesture recognition. For human
motion intention prediction [19] [20], applied HMM. The author
in [21] proposed RNN-based prediction of motor intention projec-
tion of upper-limb action in an HRC environment. For identifying
human behaviors, inconsistent SURF matches are eliminated by
adding a human detector. A supervised learning method based on
a three-dimensional convolutional neural network (CNN) has been
developed to infer action representations from the movements of
operators during the assembly of an optical controller [22]. Mean-
while, [23] introduced a deep wide network for 3D-feature extractor

that connects robotic correctness control and safety requirements
for collision avoidance. The methods, as mentioned earlier, are good
at collecting fine-grained details but inflexible when associating
visual patterns of the same activity from multiple perspectives,
not to mention the high computing cost for long-duration video
clips. In contrast, skeleton-based action recognition is computa-
tionally effective but lacks low-level details. Another problem with
traditionally used deep learning models is that they require substan-
tial training datasets. A study [24], addressed the aforementioned
problem and proposed a deep convolutional Generative adversarial
network (GAN) for the situation where the amount of training data
available is insufficient. However, GAN model does not have an
intrinsic evaluation metric for better training.

In order to achieve high kinematics, statistical models are also
renowned for their data-intensive requirements [25]. For instance,
Gaussian Mixture Models (GMM) and space partitioning are stan-
dard techniques that incorporate statistical models. These tech-
niques optimize probability by fitting gaussian model ensembles
to data in high-dimensional domains. In this sense, [26] intro-
duced a multi-model communication framework for HRI. They
used Bayesian inference for intention prediction through motions.
Similarly, [27] presented the probabilistic dynamic movement prim-
itive (PDMP) for determining human intent and estimating human
hand movements during an online operation. The challenge with
PDMP is that the framework is built on one-shot learning; there-
fore, it requires a unique set of features for the training dataset,
and feature engineering should be performed accurately. Although
several machine learning and statistical models have shown sig-
nificant improvement, these models must be trained on industrial
action datasets for HRI applications to be practical. Visual sensors
have been successfully used to record diverse human actions in
manufacturing setup [25]. The authors in [25] captured a range of
small industrial activities, including entering and exiting a work
cell, indicating at a target, exerting pressure, and grabbing for an
object to control robot actions. Different industrial operations, such
as assembly tasks, tool handling, and more dynamical and less
prescriptive activities, such as maintenance or inspection interven-
tions, can be monitored with high precision using a video-based
tracking system. Regarding industrial human actions, there is an
absence of industrial activity datasets. This issue has been partially
addressed by [28], which offers the industrial human activity recog-
nition dataset. The dataset comprises a range of industrial assembly
activities in multiple formats, i.e., RGB and skeleton. However, since
it is relatively recent, its merit must be thoroughly discussed within
the scientific community.

The motivation of this work is two-fold: first, to introduce a
future perspective for installing cognitive abilities in fluent HRI ap-
plications for an industrial setting, and second, to explore datasets
[28], that can serve as training data for HRI algorithms. The pre-
sented work is the preliminary step to our project, which intends
to introduce a mutual performance monitoring capacity of human-
robot collaborative applications.

3 MATERIAL AND METHODS
Complex deep neural networks for action/object recognition can
attain high accuracy, but they require significant calculation and
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Figure 1: The proposed architectural design for the action classification approach

configuration parameters within the model. These models can be
unsuitable for embedded devices and responsive applications. Based
on [29, 30], we propose MobilnetV2-SSD combined with optical
flow (OpF )feature elicitation, as illustrated in Figure-01.

We use OpF method for feature elicitation from three separate
frames i.e., left, right and topwhich are fused into feature vector. We
annotated the key action frames using machine learning libraries.
Further, we transform the RGB frames into feature vectors, includ-
ing spatial and temporal information for three distinct orientations
(left, right, and top views). The feature vector is then passed to
MobilnetV2 with SSD (Single Shot MultiBox Detector) networks
for action classification. We implemented the depth-wise separable
convolution method of calculus convolution to minimize model size
and computation. Each input channel is separately mapped to its
corresponding output channel by the depth-wise separable convolu-
tion. The proposed model is applicable for embedded architectures
and controller applications such as robots since mobilnetV2 is light-
weight and requires less time to execute [31]. To make our study
self-contained, we first briefly overview optical flow for feature elic-
itation and mobilnetV2-SSD. Subsequently, model implementation
and conducted experiments have been discussed in next section.

3.1 Spatio-Temporal Optical Flow based Feature
Extraction

Human activities are represented as a series of frames in which spa-
tial and temporal information changes over time while performing
an operation. The frame sequence can be in any format, such as
RGB, depth, skeleton, etc. The proposed method considered RGB
videos comprised of a series of moving frames where human partic-
ipant is performing a specific activity. We adopted OpF from [32]
for feature elicitation in the proposed method. OpF is effective for
feature recognition due to its robustness to appearance, even when
temporal consistency is insufficient.

The relevance of flow precision at edges and for minor displace-
ments is relatively significant for action recognition. In OpF, ob-
serving the instantaneous velocity of the pixel motion on frames
can reveal an object’s structure and motion relationship in a video.
Assuming, however, that time is continuous, and the spectrum of
motion is not violent, then 𝑑𝑡 time yields the following equations
[33].

𝐼 (𝑥,𝑦, 𝑡) = 𝐼 (𝑥 + 𝑑𝑥,𝑦 + 𝑑𝑦, 𝑡 + 𝑑𝑡) (1)

𝐼 (𝑥,𝑦, 𝑡) = 𝐼 (𝑥,𝑦, 𝑡) + 𝜕𝐼

𝜕𝑥
𝑑𝑥 + 𝜕𝐼

𝜕𝑦
𝑑𝑦 + 𝜕𝐼

𝜕𝑡
𝑑𝑡 (2)

Figure 2: The Illustration of optical flow feature frames

𝐼 (𝑥,𝑦, 𝑡) + 𝜕𝐼

𝜕𝑥
𝑑𝑥 + 𝜕𝐼

𝜕𝑦
𝑑𝑦 + 𝜕𝐼

𝜕𝑡
𝑑𝑡 = 0 (3)

(2) and (3) is the form (1) obtains when Taylor Expansion is applied.
We obtain following by dividing both sides of the equation by 𝑑𝑡 :

𝐼𝑥𝑚 + 𝐼𝑦𝑛 + 𝐼𝑡 = 0 (4)

𝐼𝑥 =
𝐼

𝑥
; 𝐼𝑦 =

𝐼

𝑦
(5)

𝑚 =
𝑑𝑥

𝑑𝑡
; 𝑛 =

𝑑𝑦

𝑑𝑡
(6)

Where𝑚 and 𝑛 are the horizontal and vertical optical flow field
components, 𝐼𝑥 and 𝐼𝑦 indicate the shift in light intensity between
adjacent pixels in the𝑚 and 𝑛 orientations of the same frame. It
reflects the temporal shift of the same pixel at an adjacent interval.
Consequently,𝑤 = (𝑚,𝑛)𝑡 forms the optical flow at that interval.
In our method, we compute the feature vector for each pixel in
each frame using dense optical flow. We obtain a two-channel array
containing optical flow vectors(𝑚,𝑛) that determine magnitude
and direction, (𝑚) and (𝑛)correspond to the saturation and plane
value respectively. Figure 2 shows the color-coded version of optical
frames for enhanced visibility.

3.2 Overview of MobilnetV2-SSD
MobileNetV2 is an efficient model that uses depth-separable con-
volutions to build lightweight deep convolutional neural networks
and facilitates a framework for mobile and controller-based vi-
sion applications [34]. The depth-wise separable convolutions are
more resource-efficient alternative to other neural network models,
where required resources increase proportionally to their size. It
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divides the traditional convolution layer into depth-based convolu-
tion and point-based pooling layers. The depth-based convolutional
component performs the filtering, whereas the point-based layer
corresponds to channel-specific feature mappings. Prior to combin-
ing the outcome with 1 × 1 convolution, depth-wise convolution
splits the input channels and filters into multiple streams. The net-
work input is 𝐷𝐹 × 𝐷𝐹 ×M, where the kernel size is 𝐷𝐾 , and the
network comprises 𝑛 output channels. The cost of depth convolu-
tion is computed as [29]:

𝐶 = 𝐷𝐹 × 𝐷𝐹 × DK ×M +M × N × DF × DF (7)

The average weight vector on an input filter is computed by per-
forming computations on each filter. Depth convolution maps ex-
clusively on each channel. Therefore, there is an equal distribution
of input and output channels. Two main mobilnetV2 architecture
elements are linear bottlenecks between layers and fast interconnec-
tions in bottlenecks [35]. After depth-wise separable convolution,
the ReLU function applied to low-dimensional features may lead
to data loss. In order to prevent data loss, the ReLU is replaced
by a linear function within the linear bottleneck of the convolu-
tional block. Like the residual blocks, the bottleneck blocks consist
of an input followed by many bottlenecks and expansions. The
bottlenecks include all pertinent information, but the expansion
layer provides an execution layer that enables a nonlinear tensor
transition. Subsequently, SSD adds extra bits to predict the action
and creates an action-occurrence probability vector [31]. SSD is
a fast model for classification using a single deep neural network
and can execute multi-target detection by concurrently predicting
target class and label. The SSD model employs a forward-feeding
convolution network where VGG16 [34], serves as the network’s
backbone, followed by six additional feature layers. Using six sepa-
rate feature layers, the feature map size is modified to distinguish
activities of varying scales. Then multi-scale discretized edges are
developed on respective data layers to predict the offset of the
default frame at various scales and aspect ratios, along with the
confidence associated with it. The actual SSD’s convolution layer
can be replaced with the MobileNet’s depth-wise separable layer to
solve the problem of excessive parameter size and model execution
efficiency.

4 EXPERIMENTS
This section details the experiments conducted and the performance
of the proposed method for recognizing the operator’s actions in
the assembly environment.

4.1 Dataset and Experimental Setup
We assessed the proposed algorithm on the InHard dataset [28],
comprising RGB multi-view videos (Left, right & top views). The
RGB videos incorporate annotations with multiple layers de-
pending on a user-defined coding scheme. The dataset contains
spatio-temporal information, including inter-level connections,
time tracks, and non-temporal objects.With almost 2million frames,
the dataset contains fourteen low-level action classes and seventy-
two high-level action classes for classification problems. The low-
level action classes of RGB data vary across multiple samples. Pro-
viding equal training data for each action while training a model is

important to ensure proper training and overall network accuracy.
We have considered 220 samples for each class at this point. Since
the duration of every action is variable, we observed 60 seconds of
information. The optical flow features are extracted in our experi-
ments using the OpenCV tools. The Keras framework is employed
in the deep learning step to develop the neural network structure
with a model size of 14MB and 3.4 million parameters. The experi-
ment uses the NVIDIA CUDA framework 10.1 and the cuDNN 8.0.3
library.

We selected categorical cross-entropy as the loss function, the
standard classification parameter, and set the learning rate to 0.02
to facilitate our experiments. The hardware setup employed for the
experiments contains an Intel Core i9-9900X processor, 64 GB of
RAM, and an NVIDIA Geforce RTX 2080TI * 2 graphic card.

4.2 Performance Metrices
To estimate the performance of the proposed system, we compute
the overall accuracy, which is defined as:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑑 𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

Furthermore, we use F1-score for a comprehensive evaluation of
the classifier’s performance which is defined:

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙

F1 score is generally used to determine the weighted average of
precision and recall. The F1 score demonstrates the model’s perfor-
mance is satisfactory even when competing in imbalanced classes
[35].

4.3 Results Analysis
This section provides a concise summary of the findings from our
experiments. For model evaluation, we conducted two experiments.
At the beginning of our research, we employed all of the low-level
RGB action classes that the Inhard dataset provided. We found that
a few classes negatively impact the overall model performance
and have a low total number of key feature points. The challenge
we confront with these data classes is that the spatial location
of a point varies abruptly. With increasing spatial distance, OpF
algorithm often underperform for this problem, which is highly
prevalent when identical feature points exist. The dataset for these
classes must be reassessed to enhance the features or eliminate the
noisy data points, which is part of another study. The results of our
experiments are presented in Tables 01 and 02 accordingly. In our
second experiment, we identified feature-rich classes for which we
do not need to perform excessive feature engineering. {Assembly
system, picking left, Put down screwdriver, Put down subsystem, Take
screwdriver, Take subsystem} are used in our second experiments.
The proposed action classification algorithm attained an accuracy
of 80% during validation and 89% during training, as shown in figure
03, the. However, the model confuses identical actions, such as Take
the screwdriver and Take subsystem.

The validation results of the proposed method demonstrate
advancements in the operator’s action recognition accuracy re-
ported in [4], which implements a conventional convolutional neu-
ral network (CNN) combined with long short-term memory (LSTM)
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Table 1: Experimental results with all action classes on the Inhard Dataset

Meta-Action Class labels Precision Recall F1- Score

No Action 0.60 0.76 0.67
Consult sheets 0.14 0.63 0.23
Turn sheets 0.39 0.39 0.39

Take screwdriver 0.55 0.73 0.63
Put down screwdriver 0.84 0.78 0.81

Picking in front 0.61 0.12 0.20
Picking left 0.71 0.46 0.56

Take measuring rod 0.69 0.52 0.59
Put down measuring rod 0.95 0.75 0.84

Take component 0.61 0.16 0.26
Put down component 0.50 0.46 0.48
Assemble System 0.58 0.53 0.55
Take sub system 0.79 0.49 0.61

Put down subsystem 0.85 0.23 0.37

Table 2: Experimental results of high feature action classes on the Inhard Dataset

Meta-Action Class labels Precision Recall F1- Score

Assemble System 0.76 0.93 0.83
Picking in front 0.86 0.90 0.88
Picking left 0.91 0.87 0.89

Put down screwdriver 0.72 0.68 0.70
Put down subsystem 0.99 0.83 0.90
Take screwdriver 0.66 0.51 0.58
Take subsystem 0.73 0.63 0.68

Figure 3: Overall training and validation accuracy using MobilnetV2-SSD low-level industrial human action classification for
assembly setting-(a) for all action classes, (b) high feature action classes

model on the same dataset. The problem with the conventional
CNN+LSTM model is computational time and model size, which
may not be appropriate for fluent HRI applications, where response
time does matter. Ourmethodology could be suited for dynamic HRI
applications where the recognition model requires environmental

structure information in addition to motion and objects which OpT
covers. Additionally, for the classification, the mobilnetV2-SSD is
appropriate in terms of computational complexity.
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Human action recognition applications are expanding rapidly
in computer vision, surveillance systems, human-machine interac-
tion, and human-object interaction. Several approaches have been
introduced in the literature for determining human actions using
spatio-temporal data. However, it remains a challenging field re-
garding fluent HRI and human-robot collaborative applications,
mainly low-level operator actions in manufacturing work cells. Al-
though the proposed algorithm performs well, it still suffers from
numerous scarcities such as the inability to distinguish across rel-
atively similar postures (Take screwdriver, Take measuring rod,
where the operator position is primarily static) and dynamic activi-
ties. In most instances, the relationship between completed actions
is inconsistent throughout the activities, making recognition even
more difficult.

5 CONCLUSION AND FUTURE OUTLOOKS
In this paper, we introduced an operator’s action recognition al-
gorithm based on optical flow and mobilnetV2-SSD for HRC en-
vironment. We investigated that the optical flow may infer the
operator’s movements, objects and the structure of environment-
related items. We concluded that the presented model performs well
but faces a few limitations. Different classes in the dataset demand
a high feature engineering procedure, and recognition of static pose
and dynamic actions remains difficult. However, predicting opera-
tor’s behavior and identifying the following actions are essential
for enhancing HRI’s collaborative operations. Integrating activity
detection algorithms into the cognitive assembly line can trans-
form the human-robot teaming structure. Appropriate datasets in
the industrial domain and a more responsive algorithm can fos-
ter human-robot team collaboration. As a potential application for
industrial environment, we will introduce a human-robot team-
ing structure driven primarily by visual recognition framework in
future work.
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