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Digital Watermarking and Self-Authentication using
Chirp Coding

Jonathan M Blackledge, Fellow, IET

Abstract— This paper discusses a new approach to ‘water-
marking’ digital signals using linear frequency modulated or
‘chirp’ coding. The principles underlying this approach are based
on the use of a matched filter to provide a reconstruction of a
chirped code that is uniquely robust, i.e. in the case of very low
signal-to-noise ratios.

Chirp coding for authenticating data is generic in the sense
that it can be used for a range of data types and applications
(the authentication of speech and audio signals, for example).
The theoretical and computational aspects of the matched filter
and the properties of a chirp are revisited to provide the essential
background to the method. Signal code generating schemes are
then addressed and details of the coding and decoding techniques
considered.

Index Terms— Digital Watermarking, Chirp Coding, Data
Authentication, Self-Authentication

I. I NTRODUCTION

D IGITAL watermarking has been researched for many
years in order to achieve methods which provide both

anti-counterfeiting and authentication facilities [1]. One of
equations that underpins this technology is based on the model
a the signal given by (e.g. [2], [3] and [4])

s = P̂ f + n (1)

wheref is the information content for the signal,̂P is a linear
operator,n is noise ands is the output signal. This equation is
usually taken to describe a stationary process which includes
the characterisation ofn (i.e. the probability density function
of n is assumed to be invariant of time).

In the field of cryptography, the operation̂Pf is referred to
as the processes of ‘diffusion’ and the process of adding noise
(i.e. P̂ f + n) is referred to as the process of ‘confusion’. The
principal ‘art’ is to develop methods in which the processes
of diffusion and confusion are maximized; one important
criterion being that the outputs should be dominated by the
noisen which in turn should be characterized by maximum
Entropy (i.e. a uniform statistical distribution) [6].

Instead ofn being taken to be noise, suppose thatn is a
known signal and that‖n‖ >> ‖P̂ f‖. In this case it may be
possible to embed or ‘hide’ the information contained inf in
the signaln without significantly perturbing it. The process
of hiding secret information in signals or images is known
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as Steganography [5] and being able to recoverf from s in
equation (1) can provide a way of authenticating the signal
n. If, in addition, it is possible to determine that a copy of
s has been made leading to some form of data degradation
and/or corruption that can be conveyed through an appropriate
analysis off , then a scheme can be developed that provides
a check on: (i) the authenticity of the datan; (ii) its fidelity
[7], [8]. In this case, signalf is an example of a watermark.

Formally, the recovery off from s is based on the inverse
process

f = P̂−1(s− n)

where P̂−1 is the inverse operator. Clearly, this requires the
signal n to be knowna priori and that the inverse process
P̂−1 is well defined and computationally stable. Since the host
signal n must be known in order to recover the watermark
f , this approach leads to a private watermarking scheme in
which the fieldn represents a key. In addition, the operatorP̂
(and its inversêP−1) can be key dependent. The value of this
operator key dependency relies on the nature and properties
of the operator that is used and whether it is compounded in
an algorithm that is required to be in the public domain, for
example.

Another approach is to consider the case in which the signal
n is unknown and to consider the problem of extracting the
watermarkf in the absence of knowledge of this signal. In
this case, the reconstruction is based on the result

f = P̂−1s + m

where
m = −P̂−1n.

If a processP̂ is available in which‖P̂−1s‖ >> ‖m‖, then
an approximate reconstruction off may be obtained in which
m is determined by the original signal-to-noise ratio of the
datas and hence, the level of covertness of the information
P̂ f - diffused watermark. In this case, it may be possible to
post-process the reconstruction and recover a relatively high-
fidelity version of the watermark, i.e.

f ∼ P̂−1s.

This approach (if available) does not rely on a private key
(assumingP̂ is not key dependent). The ability to recover
the watermark only requires knowledge of the operatorP̂
(and its inverse) and post-processing options as required. The
problem is to find an operator that is able to diffuse and recover
the watermarkf effectively in the presence of the signaln
when‖P̂ f‖ << ‖n‖, i.e. with very low signal-to-noise ratios.
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Ideally, we require an operator̂P with properties such that
P̂−1n → 0.

In this paper, we consider the case where the operatorP̂
is based on a chirp function, specifically, a linear Frequency
Modulated (FM) chirp of the (complex) typeexp(iαt2) where
α is the chirp parameter andt is the independent variable1.
This function is then convolved withf . The inverse process
is undertaken by correlating with the (complex) conjugate of
the chirp exp(−iαt2). This provides a reconstruction forf
that is accurate and robust. Further, we consider a water-
mark based on a coding scheme in which the signaln is
the input. The watermarkf is thereforen-dependent. This
allows an authentication scheme to be developed in which
the watermark is generated from the signal in which it is to
be ‘hidden’. Authentication of the watermarked data is then
based on comparing the code generated froms ∼ n and
that reconstructed froms = P̂ f + n when ‖P̂ f‖ << ‖n‖.
This is an example of a self-generated coding scheme which
avoids the use, distribution and application of reference data.
In this paper, the coding scheme is based on the application
of Daubechies wavelets.

There are numerous applications of this technique in areas
such as telecommunications and speech recognition where au-
thentication is often mandatory. For example, as demonstrated
in this paper, the method can be applied to audio data with no
detectable differences in the audio quality of the data.

II. T HE MATCHED FILTER AND L INEAR FM ‘CHIRP’
FUNCTIONS

The Matched Filter (e.g. [9], [10] and [11]) is one of the
most common filters used for pattern recognition. It is based
on correlating a signal/image with a matching template of the
feature that is assumed to be present in the signal/image [4].
If the feature does indeed exist, then the output of the filter
(the correlation signal/surface) produces a local maximum or
spike where the feature occurs. This process can be applied
generally, but when the template and feature are based on chirp
functions, the result has some special and important properties
which provide an output that is uniquely robust in the case
when the signal-to-noise ratio is very low. It is this property
that forms the basis for a variety of active imaging systems
such as those used in Real and Synthetic Aperture Radar (e.g.
[12], [13] and [14]), active sonar and some forms of seismic
prospecting, for example. Interestingly, some mammals (in-
cluding dolphins, whales and bats) use frequency modulation
for communication and (target) detection. The reason for this is
the unique properties that chirps provide in terms of the quality
of extracting information from signals with very low signal-to-
noise ratios and the simplicity of the process that is required
to do this (i.e. correlation). The invention and use of chirps
for man made information and communications recovery dates
back to the early 1960s (the application of FM to radar, for
example); ‘mother nature’ appears to have ’discovered’ the
idea some time ago.

1In practice this is undertaken using the real or imaginary part of the
complex chirp function.

A. The Matched Filter

We start by considering the basic linear stationary (convo-
lution) model for a signals as a function of timet, namely

s(t) = p(t)⊗ f(t) + n(t)

where p is the Impulse Response Function (IRF),f is the
object function (the information content of some input signal),
n is the noise (which is typically taken to have stationary
statistics) and⊗ is the convolution operation, i.e.

p(t)⊗ f(t) =
∫

p(t− τ)f(τ)dτ.

A fundamental inverse (deconvolution) problem is to find an
estimate f̂ of f given s. The Matched Filter is based on
assuming a linear convolution model for this estimate of the
form

f̂(t) = q(t)⊗ s(t).

Clearly, the problem is to find the filterq. The Matched Filter
is based on findingq subject to the condition that

r =
|
∫

Q(ω)P (ω)dω |2∫
| N(ω) |2| Q(ω) |2 dω

(2)

is a maximum whereQ, P andN are the Fourier transforms
of q, p andn respectively and where we defined the Fourier
transform pair as

F (ω) =
∫

f(t) exp(−iωt)dt,

f(t) =
1
2π

∫
F (ω) exp(iωt)dω

in which the limits of the integrals are taken to be in(−∞,∞)
andω is the (angular) frequency. Note that the ratio defining
r is a ‘measure’ of the signal-to-noise ratio. In this sense, the
matched filter maximizes the Signal-to-Noise Ratio (SNR) of
the output.

Assuming that the noisen has a ‘white’ or uniform power
spectrum, the filterQ which maximizes the SNR defined byr
can be shown to be given by the simple result (see Appendix
I)

Q(ω) = P ∗(ω).

The required solution is therefore given by

f̂(t) =
1
2π

∫
P ∗(ω)S(ω) exp(iωt)dω.

Using the ‘correlation theorem’ we can write

f̂(t) = p(t)� s(t) ≡
∫

p(τ + t)s(τ)dτ.

Hence, the matched filter is based on correlating the signals
with the instrument functionp.
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B. Deconvolution of Linear Frequency Modulated Chirps

The matched filter is frequently used in systems that utilize
linear Frequency Modulated (FM) signals. Signals of this type
are known as ‘chirped signals’. A linear FM signal which is
taken to be of compact support (t ∈ [−T/2, T/2]) is given (in
complex form) by

p(t) = exp(iαt2), | t |≤ T

2

whereα is a constant (this defines the ‘chirp rate’) andT is
the length of the signal. The phase of this signal is given by
αt2 (i.e. it has a quadratic phase factor) and its instantaneous
frequency is therefore given by

d

dt
(αt2) = 2αt

which varies linearly with timet. Hence, the frequency mod-
ulations are linear which is why the signal is referred to as a
‘linear’ FM pulse.

For the purpose of clarity, let us first consider the case when
the additive noise term is neglected and consider a signal given
by

s(t) = exp(iαt2)⊗ f(x), | t |≤ T

2
.

If we now apply a (white noise) matched filter, then we have

f̂(t) = exp(−iαt2)� exp(iαt2)⊗ f(t), | t |≤ T

2
.

The correlation integral can now be evaluated thus

exp(−iαt2)�exp(iαt2) =

T/2∫
−T/2

exp[−iα(τ+t)2] exp(iατ2)dτ

= exp(−iαt2)

T/2∫
−T/2

exp(−2iαtτ)dτ

Evaluating the integral overτ , we have

exp(−iαt2)� exp(iαt2) = T exp(−iαt2)sinc(αTt)

and hence

f̂(t) = T exp(−iαt2)sinc(αTt)⊗ f(t).

A further useful simplification can now be made to the result
for f̂ which allows the exponential term to be ignored. In
particular, if we considerT >> 1 then

cos(αt2)sinc(αTt) ' sinc(αTt)

and
sin(αt2)sinc(αTt) ' 0

so that
f̂(t) ' T sinc(αTt)⊗ f(t)

This simplification, under a condition that is usually practically
applicable, allows the result for̂f to be easily analysed in

Fourier space. Using the convolution theorem we can write
(ignoring scaling byπ/α)

F̂ (ω) =

{
F (ω), | ω |≤ αT ;
0, | ω |> αT.

which describesf̂ as being a band-limited version off
(assuming thef is not band-limited) where the bandwidth is
determined byαT .

In the presence of additive noise, the result is

f̂(t) ' T sinc(αTt)⊗ f(t) + exp(−iαt2)� n(t).

The correlation function produced by the correlation of
exp(−iαt) with n(t) will in general be relatively low in
amplitude sincen(t) will not normally have features that
match those of a (complex) chirp. Thus, it is reasonable to
assume that

‖T sinc(αTt)⊗ f(t)‖ >> ‖ exp(−iαt2)� n(t)‖

and that in practice,f̂ is a band-limited reconstruction of
f with high SNR. Thus, the process of using chirp signals
with matched filtering for the purpose of reconstruction in
the presence of additive noise provides a relatively simple
and computationally reliable method of ‘diffusing’ and re-
constructing information encoded in the functionf . This is
the underlying principle behind the method of watermarking
described in this paper.

An example of a matched filter reconstruction is given in
Figure 1. Here, two spikes have been convolved with a linear
FM chirp of the formp(t) = sin(αt2) whose width or pulse
length T is significantly greater than that of the input signal.
The output signal

s(t) = p(t)⊗ f(t) + n(t)

has been generated using an SNR of 1, the SNR being defined
by

SNR =
‖p(t)⊗ f(t)‖∞
‖n(t)‖∞

where ‖ • ‖∞ is the uniform norm. Clearly, this example
illustrates the quality of the restoration of the inputf(t) using
a relatively simple operation for processing data that has been
badly distorted by additive noise.

III. C HIRP CODING, DECODING AND WATERMARKING

We now consider the an approach to watermarking signals
using chirp functions. The basic model for the watermarked
signal (which is real) is

s(t) = chirp(t)⊗ f(t) + n(t)

where
chirp(t) = sin(αt2)

We consider the fieldn(t) to be some pre-defined signal
to which a watermark is to be ‘added’ to generates(t). In
principle, any watermark described by the functionf(t) can
be used. On the other hand, for the purpose of authenti-
cation we require two criterion: (i)f(t) should represent a
code which can be reconstructed accurately and robustly; (ii)
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Fig. 1. Example of a reconstruction using the matched filter (bottom right)
from a noisy signal based on the convolution of an input consisting of two
spikesf (top left) with a linear FM chirpp (top right) and the addition of
noisen with a SNR of 1 to give the signals (bottom left).

the watermark code should be sensitive (and ideally ultra-
sensitive) to any degradation in the fieldn(t) due to lossy
compression and/or copying. To satisfy condition (i), it is
reasonable to considerf(t) to represent a bit stream, i.e. to
consider the discretized version off(t) - the vectorfi - to
be composed of a set of elements with value 0 or 1. This
binary code can of course be based on a key or set of keys
which, when reconstructed, is compared to the key(s) for the
purpose of authenticating the data. However, this requires the
distribution of such keys. Instead, we consider the case where
a binary sequence is generated from the signaln(t). There
are a number of approaches that can be considered based
on the spectral characteristics ofn(t), for example. These
are discussed in Section IV in which binary sequences are
produced from the application power spectrum segmentation
and wavelet decomposition.

A. Chirp Coding

Given that a binary sequence has been generated fromn(t),
we now consider the method of chirp coding. The purpose of
chirp coding is to ‘diffuse’ each bit over a range of compact
support. However, it is necessary to differentiate between 0
and 1 in the sequences. The simplest way to achieve this is
to change the polarity of the chirp. Thus, for 1 we apply
the chirp sin(αt2), t ∈ T and for 0 we apply the chirp -
sin(αt2), t ∈ T whereT is the chirp period. The chirps are
then concatenated to produce a contiguous stream of data, i.e.
a signal composed of±chirps. Thus, the binary sequence 010,
for example, is transformed to the signal

s(t) =


−chirp(t), t ∈ [0, T );
+chirp(t), t ∈ [T, 2T );
−chirp(t), t ∈ [2T, 3T ).

The period over which the chirp is applied depends on the
length of the signal to which the watermark is to be applied and

the length of the binary sequence. In the example given above
the length of the signal is taken to be3T . In practice, care
must be taken over the chirping parameterα that is applied
given a periodT in order to avoid aliasing and in some cases it
is of value to apply a logarithmic frequency sweep instead of a
linear sweep as used in the MATLAB code given in Appendix
II.

B. Decoding

Decoding or reconstruction of the binary sequence re-
quires the application of a correlator using the function
chirp(t), t ∈ [0, T ). This produces a correlation function
that is either -1 or +1 depending upon whether−chirp(t) or
+chirp(t) has been applied respectively. For example, after
correlating the chirp coded sequence 010 given above, the
correlation functionc(t)becomes

c(t) =


−1, t ∈ [0, T );
+1, t ∈ [T, 2T );
−1, t ∈ [2T, 3T ).

from which the original sequence 010 is easily inferred - the
change in sign of the correlation function identifying a change
of bit (from 0 to 1 or from 1 to 0). Note that in practice
the correlation function may not be exactly 1 or -1 when
reconstruction is undertaken in the presence of additive noise;
the binary sequence is effectively recovered by searching the
correlation function for changes in sign.

C. Watermarking

The watermarking process is based on adding the chirp
coded data to the signaln(t). Let the chirp coded signal be
given by the functionh(t), then the watermarking process is
described by the equation

s(t) = a

[
bh(t)
‖h(t)‖∞

+
n(t)

‖n(t)‖∞

]
The coefficientsa > 0 and0 < b < 1 determine the amplitude
and the SNR ofs respectively where

a = ‖n(t)‖∞.

The coefficienta is required to provide a watermarked signal
whose amplitude is compatible with the original signaln. The
value of b is adjusted to provide an output that is acceptable
in the application to be considered and to provide a robust
reconstruction of the binary sequence by correlatings(t) with
chirp(t), t ∈ [0, T ).

IV. CODE GENERATION

In the previous section, the method of chirp coding a
binary sequence and watermarking the signaln(t) has been
discussed where it is assumed that the sequence is generated
from this same signal. In this section, the details of this
method are presented. There are a wide variety of coding
methods that can be applied [15]. The problem is to convert
the salient characteristics of the signaln(t) into a sequence of
bits that is relatively short and conveys information on the
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signal that is unique to its overall properties. In principle,
there are a number of ways of undertaking this. For example,
in practice the digital signalni - which is composed of an
array of floating point numbers - could be expressed in binary
form and each element concatenated to form a contiguous
bit stream. However, the length of the code (i.e. the total
number of bits in the stream) will tend to be large leading to
high computational costs in terms of the application of chirp
coding/decoding. What is required, is a process that yields
a relatively short binary sequence (when compared with the
original signal) that reflects the important properties of the
signal in its entirety. Two approaches are considered here:
(i) Power Spectral Density decomposition and (ii) Wavelet
decomposition [16].

A. Power Spectral Density Decomposition

Let N(ω) be the Fourier transformn(t) and define the
Power SpectrumP (ω) as

P (ω) =| N(ω) |2

An important property of the binary sequence is that it should
describe the spectral characteristics of the signal in its entirety.
Thus, if, for example, the binary sequence is based on just the
low frequency components of the signal, then any distortion of
the high frequencies of the watermarked signal will not affect
the recovered watermark and the signal will be authenticated.
Hence, we consider the case where the power spectrum is
segmented intoN components, i.e.

P1(ω) = P (ω), ω ∈ [0,Ω1)

P2(ω) = P (ω), ω ∈ [Ω1,Ω2)

...

PN (ω) = P (ω), ω ∈ [ΩN−1,ΩN )

Note that it is assumed that the signaln(t) is band-limited
with a bandwidth ofΩN .

The set of the functionsP1, P2, ..., PN now represent the
complete spectral characteristics of the signaln(t). Since each
of these functions represents a unique part of the spectrum, we
can consider a single measure as an identifier or tag. A natural
measure to consider is the energy which is given by the integral
of the functions over their frequency range. In particular, we
consider the energy values in terms of their contribution to the
spectrum as a percentage, i.e.

E1 =
100
E

Ω1∫
0

P1(ω)dω

E2 =
100
E

Ω2∫
Ω1

P2(ω)dω

...

EN =
100
E

ΩN∫
ΩN−1

PN (ω)dω

where

E =

ΩN∫
0

P (ω)dω.

Code generation is then based on the following steps:

1) Rounding to the nearest integer the (floating point)
values ofEi to decimal integer form:

ei = round(Ei), ∀i

2) Decimal integer to binary string conversion:

bi = binary(ei)

3) Concatenation of the binary string arraybi to a binary
sequence:

fj = cat(bi)

The watermarkfj is then chirp coded as discussed in
Section V.

B. Wavelet decomposition

Wavelet signal analysis is based on convolution type op-
erations which include a scaling property in terms of the
amplitude and temporal extent of the convolution kernel (e.g.
[3], [17], [18] and [19]). There is a close synergy between the
wavelet transform and imaging science. For example, in Fres-
nel optics, the two-dimensional (coherent) optical wavefieldu
generated by an object functionf (in the object plane at a
distancez) is given by (e.g. [4] and [20])

u(x, y, L) = p(x, y, L)⊗⊗f(x, y)

where

p(x, y, L) = i exp
(

i
2πz

λ

)
1
L

exp
[
iπ

L
(x2 + y2)

]
andL = λz for wavelengthλ. An important feature of this re-
sult is that the amplitude of the kernelp and its scale length is
determined by the reciprocal of the wavelengthλ. Physically,
this implies that as the wavelength decreases, the ‘resolving
power’ of an image given byI(x, y, L) =| u(x, y, L) |2
increases, the bandwidthu being proportional toλ−1. Thus, by
considering a hypothetical Fresnel imaging system, in which
the wavelength can be varied by the user, we can consider
the imaging system to have multi-resolution properties. The
Frensel transform is essentially a wavelet transform with a
wavelet determined by a (two-dimensional) chirp function.

The multi-resolution properties of the wavelet transform
have been crucial to their development and success in the
analysis and processing of signals. Wavelet transformations
play a central role in the study of self-similar or fractal
signals. The transform constitutes as natural a tool for the
manipulation of self-similar or scale invariant signals as the
Fourier transform does for translation invariant signals such
as stationary and periodic signals.

In general, the wavelet transformation of a signalf(t) say

f(t) ↔ FL(t)



6 ISAST TRANSACTIONS ON ELECTRONICS AND SIGNAL PROCESSING, VOL. 1, NO. 1, 2007

is defined in terms of projections off(t) onto a family of
functions that are all normalized dilations and translations of
a prototype ‘wavelet’ functionW , i.e.

Ŵ [f(t)] = FL(τ) =
∫

f(t)wL(t, τ)dt

where

wL(t, τ) =
1√
| L |

w

(
τ − t

L

)
.

The parametersL andτ are continuous dilation and translation
parameters respectively, and take on values in the range−∞ <
L, τ < ∞, L 6= 0. Note that the wavelet transformation is
essentially a convolution transform in whichw(t) is the convo-
lution kernel but with a factorL introduced. The introduction
of this factor provides dilation and translation properties into
the convolution integral that gives it the ability to analyse
signals in a multi-resolution role (the convolution integral is
now a function ofL). A multi-resolution signal analysis is a
framework for analysing signals based on isolating variations
that occur on different temporal or spatial scales. The basic
analysis involves approximating the signal at successively
coarser scales through repeated application of a smoothing
(convolution) operator.

A necessary and sufficient condition for a wavelet transfor-
mation to be invertible is thatw(t) satisfy theadmissibility
condition ∫

| W (ω) |2| ω |−1 dω = Cw < ∞

whereW is the wavelets Fourier transform, i.e.

W (ω) =
∫

wL(t) exp(−iωt)dt.

For any admissiblew(t), the wavelet transform has an inverse
given by [3]

f(t) = Ŵ−1[FL(τ)] =
1

Cw

∫ ∫
FL(τ)wL(t, τ)L−2dLdτ.

There are a wide variety of wavelets available [i.e. functional
forms for wL(t)] which are useful for processing digital
signals in ‘wavelet space’ when applied in discrete form. The
properties of the wavelets vary from one application to another
but in each case, the digital signalfi is decomposed into a
matrix (a set of vectors)Fij where j is the ‘level’ of the
decomposition.

The wavelet transform can be used to generate a suitable
code by computing the energies of the wavelet transformation
over N levels. Thus, the signalf(t) is decomposed into
wavelet space to yield the following set of functions:

FL1(τ), FL2(τ), ... FLN
(τ)

The (percentage) energies of these functions are then com-
puted, i.e.

E1 =
100
E

∫
| FL1(τ) |2 dτ

E2 =
100
E

∫
| FL1(τ) |2 dτ

...

EN =
100
E

∫
| FLN

(τ) |2 dτ

where

E =
N∑

i=1

Ei

The method of computing the binary sequence for chirp coding
from these energy values follows that described in the method
of power spectral segmentation given in previous Section.

V. MATLAB A PPLICATION PROGRAMS

Two MATLAB programs have been developed to implement
the watermarking method discussed in this paper. Thecoding
program reads in a named file, applies the watermark to the
data using wavelet decomposition and writes out a new file
using the same file format. TheDecodingprogram reads a
named file (assumed to contain the watermark or otherwise),
recovers the code from the watermarked data and then recovers
the (same or otherwise) code from the watermark. The coding
program displays the decimal integer and binary codes for
analysis. The decoding program displays the decimal integer
streams generated by the wavelet analysis of the input signal
and the stream obtained by processing the signal to extract the
watermark code or otherwise. This program also provides an
error measure based on the result

e =

∑
i

| xi − yi |∑
i

| xi + yi |

where xi and yi are the decimal integer arrays obtained
from the input signal and the watermark (or otherwise). In
the application considered here, the watermarking method
has been applied to audio (.wav) files in order to test the
method on data which requires that the watermark does not
affect the fidelity of the output (i.e. audio quality). Only a
specified segment of the data is extracted for watermarking.
The segment can be user defined and if required, form the basis
for a (private) key system. In this application, the watermarked
segment has been ‘hard-wired’ and represents a public key.

A. Coding process

The coding process is compounded in the following basic
steps:

1) Read a .wav file.
2) Extract a section of a single vector of the data (note that

a .wav contains stereo data, i.e. two vectors arrays).
3) Apply wavelet decomposition using Daubechies

wavelets with 7 levels. Note that in addition to wavelet
decomposition, the approximation coefficients for the
input signal are computed to provide a measure on
the global effect of introducing the watermark into
the signal. Thus, 8 decomposition vectors in total are
generated.

4) Compute the (percentage) ‘energy values’.
5) Round to the nearest integer and convert to binary form.
6) Concatenate both the decimal and binary integer arrays.
7) Chirp code the binary sequence.
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8) Scale the output and add to the original input signal.
9) Re-scale the watermarked signal.

10) Write to a file.

B. Decoding process

The decoding process is as follows:
1) Steps 1-6 in the coding processes are repeated
2) Correlate the data with a chirp identical to that used for

chirp coding
3) Extract the binary sequence
4) Convert from binary to decimal
5) Display the original and reconstructed decimal sequence
6) Display the error
Note that in a practical application of this method for

authenticating audio files, for example, a threshold can be
applied to the error value. If and only if the error lies below
this threshold is the data taken to be authentic.

The prototype MATLAB programs for implementing this
scheme are given in Appendix II (Coding) and Appendix
III (Decoding). They have been developed to explore the
applications of the method for different audio (.wav) signals
but can be tailored for different signals and file formats.
Note that in the decoding program, the correlation process
is carried out using a spatial cross-correlation scheme (using
the MATLAB function xcorr), i.e. the watermark is recovered
using the processchirp(t) � s(t) instead of the Fourier
equivalentCHIRP∗(ω)S(ω) where CHIRP and S are the
Fourier transforms ofchirp ands respectively. This is due to
the fact that the ‘length’ of the chirp function is significantly
less than that of the signal. Application of a spatial correlator
therefore provides greater computational efficiency.

VI. D ISCUSSION

The method of digital watermarking discussed here makes
specific use of the chirp function. This function is unique
in terms of its properties for reconstructing information (via
application of the Matched Filter). The watermarkf extracted
from the host signaln is, in theory, an exact band-limited
version of the original watermark.

The approach considered in this paper allows a code to be
generated directly from the host signal and that same code used
to watermark the signal. The code is therefore self-generating
and its reconstruction only requires a correlation process with
the watermarked signal to be undertaken. This means that the
signal can be authenticated without reference to a known data
base. In other words, the method can be seen as a way of
authenticating data by extracting a code (the watermark) within
a ‘code’ (the host signal) and is consistent with approaches that
attempt to reconstruct information without knowledge of the
host data [21].

Audio data watermarking schemes rely on the imperfections
of the human audio system. They exploit the fact that the hu-
man auditory system is insensitive to small amplitude changes,
either in the time or frequency domains, as well as insertion
of low amplitude time domain echo’s. Spread spectrum tech-
niques augment a low amplitude spreading sequence, which
can be detected via correlation techniques. Usually, embedding

is performed in high amplitude portions of the signal, either
in the time or frequency domains. A common pitfall for both
types of watermarking systems is their intolerance to detector
de-synchronization and deficiency of adequate methods to
address this problem during the decoding process. Although
other applications are possible, chirp coding provides a new
and novel technique for fragile audio watermarking. In this
case, the watermarked signal does not change the perceptual
quality of the signal. In order to make the watermark inaudible,
the chirp generated is of very low frequency and amplitude.
Using audio files with sampling frequencies of over 1000Hz,
a logarithmic chirp can be generated in the frequency band of
1-100Hz. Since the human ear has low sensitivity in this band,
the embedded watermark will not be perceptible. Depending
upon the band and amplitude of the chirp, the signal-to-
watermark (chirp stream) ratio can be in excess of 40dB.

Fig. 2. Original signal (above) and chirp based watermarked signal (below).

Figure 2 is an example of an original and a watermarked
audio signal which shows no perceptual difference during a
listening test. Various forms of attack can be applied which
change the distribution of the percentage sub-band energies
originally present in the signal including filtering (both low
pass and high pass), cropping and lossy compression (MP3
compression) with both constant and variable bit rates. In each
case, the signal and/or the watermark is distorted enough to
register the fact that the data has been tampered with. An
example of this is given in Figure 3 which shows the power
spectral density of an original, watermarked and a (band-pass
filtered) tampered audio signal. The filtering is such that there
is negligible change in the power spectral density. However,
the tampering was easily detected by the proposed technique.
Finally, chirp coded watermarks are difficult to remove from
the host signal since the initial and the final frequency is at the
discretion of the user and its position in the data stream can
be varied through application of an offset, all such parameters
being combined to form a private key.
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Fig. 3. Difference in the power spectral density of the original, watermarked
and tampered signal. The tampering has been undertaken using a band pass
filter with a normalised lower cut-off frequency of 0.01 and higher cut-off
frequency 0.99.

Chirp coding is generic in the sense that it can be used
to watermark any (user defined) bit stream in a signal. For
watermarking with plaintexts, the bit stream can be generated
using a standard ASCII (7-bit) code. Thus, the use of this
method for self-authenticating signals, as discussed in this
paper, is just one approach, albeit a useful one. However, in
terms of sending and receiving data through some communi-
cations channel, the most important feature of chirp coding
is the facility it provides for transmitting information through
environments with significant amounts of noise, recovery of
this information being based on knowledge of the exact chirp
function used to ‘chirp code’.

The radio frequency spectrum of the universe is relatively
quiet when compared to other parts of the electromagnetic
spectrum such as the microwave spectrum. Nevertheless, radio
wave emissions will acquire a significant amount of noise if
transmitted over distances of many light years. Chirp coding
may provide a way of preserving such information when it
is known that the final SNR is likely to be very small. In
the search for extraterrestrial intelligence, the radio spectrum
is considered to be the most likely frequency range in which
‘intelligent signals’ might exist. In light of the above, it may be
of value to analyse such radio signals by correlating them with
a range of different chirp functions, focusing on those outputs
(i.e. the correlation functions) that provide some minimum
Entropy measure.

APPENDIX I
DERIVATION OF THE MATCHED FILTER

Given equation (2), the matched filter is essentially a ‘by-
product’ of the ‘Schwarz inequality’, i.e. the result∣∣∣∣∫ Q(ω)P (ω)dω

∣∣∣∣2 ≤ ∫
| Q(ω) |2 dω

∫
| P (ω) |2 dω.

The principal trick is to write

Q(ω)P (ω) =| N(ω) | Q(ω)× P (ω)
| N(ω) |

so that the above inequality becomes∣∣∣∣∫ Q(ω)P (ω)dω

∣∣∣∣2 =
∣∣∣∣∫ | N(ω) | Q(ω)

P (ω)
| N(ω) |

dω

∣∣∣∣2

≤
∫
| N(ω) |2| Q(ω) |2 dω

∫
| P (ω) |2

| N(ω) |2
dω.

From this result, using the definition ofr given in equation
(2), we see that

r ≤
∫
| P (ω) |2

| N(ω) |2
dω.

Now, if r is to be a maximum, then we require that

r =
∫
| P (ω) |2

| N(ω) |2
dω

or ∣∣∣∣∫ | N(ω) | Q(ω)
P (ω)
| N(ω) |

dω

∣∣∣∣2

=
∫
| N(ω) |2| Q(ω) |2 dω

∫
| P (ω) |2

| N(ω) |2
dω.

But this is only true if

| N(ω) | Q(ω) =
P ∗(ω)
| N(ω) |

.

Hence,r is a maximum when

Q(ω) =
P ∗(ω)
| N(ω) |2

.

Noise is usually characterised by: (i) the Probability Den-
sity Function (PDF) or the Characteristic Function (i.e. the
Fourier transform of the PDF); (ii) the Power Spectral Density
Function (PSDF). To apply the Matched Filter, the function
| N(ω) |2 (i.e. the power spectrum of the noise), in addition
to P (ω), is required to be knowna priori. In some practical
systems, this is possible if the Impulse Response Function
is zero so that the output of the system is ‘noise driven’. In
general however, it is often necessary to develop a suitable
model for the PSDF. Such models may include uniform,
Gaussian, Poisson or random fractal noise, for example, which
may be suitable in many cases [3]. However, if we consider
the case when the PSDF is uniform or ‘white’ and of unit
amplitude then we can write

| N(ω) |2= 1∀ω

so that the Matched Filter reduces to the simple result

Q(ω) = P ∗(ω).
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APPENDIX II
PROTOTYPEMATLAB C ODING ALGORITHM

% Read a (.wav) audio file
[au2,fs,nbit]=wavread(’file’);

% Clear the screen
clc

% Compute the size of the data
size(au2);

% Extract a single set of data composed of
% 1500150 (arbitrary) elements

au1=au2(1:1500150,1);

% Set the watermarking scaling factor
% (user defined)

div_fac=270;

% Extract data segment from 300031 to
% 1500150 (arbitrary) and compute the
% maximum value

au=au1(300031:1500150,1);
au_max1=max(au1(300031:1500150,1));

% Apply wavelet decomposition using
% Daubechies wavelets with 7 levels

[ca cl]=wavedec(au(:,1),7,’db4’);

% Compute the approximation
% coefficients at level 7

appco=appcoef(ca,cl,’db4’,7);

% Extract the ’detail coefficients’
% at each level

detco7=detcoef(ca,cl,7);
detco6=detcoef(ca,cl,6);
detco5=detcoef(ca,cl,5);
detco4=detcoef(ca,cl,4);
detco3=detcoef(ca,cl,3);
detco2=detcoef(ca,cl,2);
detco1=detcoef(ca,cl,1);

% Compute the energy for each set
% of coefficients

ene_appco=sum(appco.ˆ2);
ene_detco7=sum(detco7.ˆ2);
ene_detco6=sum(detco6.ˆ2);
ene_detco5=sum(detco5.ˆ2);
ene_detco4=sum(detco4.ˆ2);
ene_detco3=sum(detco3.ˆ2);
ene_detco2=sum(detco2.ˆ2);
ene_detco1=sum(detco1.ˆ2);

% Compute the total enegy of all
% the coefficients

tot_ene=round(ene_detco7...

+ene_detco6+ene_detco5+...
ene_detco4+ene_detco3+...
ene_detco2+ene_detco1);

% Round towards the nearest
% integer the percentage energy of
% each set

pene_hp7=round(ene_detco7 * 100/tot_ene);
pene_hp6=round(ene_detco6 * 100/tot_ene);
pene_hp5=round(ene_detco5 * 100/tot_ene);
pene_hp4=round(ene_detco4 * 100/tot_ene);
pene_hp3=round(ene_detco3 * 100/tot_ene);
pene_hp2=round(ene_detco2 * 100/tot_ene);
pene_hp1=round(ene_detco1 * 100/tot_ene);

% Do decimal integer to binary conversion
% with at least 17 bits

tot_ene_bin=dec2bin(tot_ene,31);
f7=dec2bin(pene_hp7,17);
f6=dec2bin(pene_hp6,17);
f5=dec2bin(pene_hp5,17);
f4=dec2bin(pene_hp4,17);
f3=dec2bin(pene_hp3,17);
f2=dec2bin(pene_hp2,17);
f1=dec2bin(pene_hp1,17);

% Concatenate the arrays f1,f2,...
% along dimension 2 to produce a binary
% sequence (watermark code)

wmark=cat(2,tot_ene_bin,f7,f6,f5,f4,...
f3,f2,f1);

% Concatenate decimal integer array
per_ce=cat(2,tot_ene,pene_hp7,...
pene_hp6,pene_hp5,pene_hp4,...
pene_hp3,pene_hp2,pene_hp1);

% Write out decimal integer and binary
% codes for analysis

d_string=per_ce
b_string=wmark

% Assign -1 to 0 and +1 to 1
for j=1:150

if str2num(wmark(j))==0
x(j)=-1;

else
x(j)=1;

end
end

% Initialise a compute chirp
% function using a log sweep

t=0:1/44100:10000/44100;
y=chirp(t,00,10000/44100,100,’log’);

% Compute +chirp for 1 and -chirp for 0,
% scale by div_fac and concatentate.
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znew=0;
for j=1:150

z=x(j) * y/div_fac;
znew=cat(2,znew,z);

end

% Compute length of znew and
% watermark signal

znew=znew(2:length(znew));
wmark_sig=znew’+au1;

% Compute power of watermark and
% power of signal

w_mark_pow=(sum(znew.ˆ2));
sig_pow=(sum(au1.ˆ2));

% Rescale watermarked signal
wmark_sig1...
=wmark_sig * au_max1/max(wmark_sig);

% Concatenate and write to file
wmark_sig...
=cat(2,wmark_sig1,au2(1:1500150,2));
wavwrite(wmark_sig,fs,nbit,’file’);

APPENDIX III
PROTOTYPEMATLAB D ECODING ALGORITHM

% Clear variables and functions
% from memory

clear

% Read watermarked file and
% clear screen

[au,fs,nbit]=wavread(’file’);
clc

% Extract data
au1=au(300031:1500150,1);

% Do wavelet decomposition
[ca cl]=wavedec(au1,7,’db4’);

% Extract wavelet coefficients
appco=appcoef(ca,cl,’db4’,7);
detco7=detcoef(ca,cl,7);
detco6=detcoef(ca,cl,6);
detco5=detcoef(ca,cl,5);
detco4=detcoef(ca,cl,4);
detco3=detcoef(ca,cl,3);
detco2=detcoef(ca,cl,2);
detco1=detcoef(ca,cl,1);

% Compute energy of
% wavelet coefficients

ene_appco=sum(appco.ˆ2);
ene_detco7=sum(detco7.ˆ2);
ene_detco6=sum(detco6.ˆ2);

ene_detco5=sum(detco5.ˆ2);
ene_detco4=sum(detco4.ˆ2);
ene_detco3=sum(detco3.ˆ2);
ene_detco2=sum(detco2.ˆ2);
ene_detco1=sum(detco1.ˆ2);

% Compute total energy factor
tot_ene=round(ene_detco7...
+ene_detco6+ene_detco5...
+ene_detco4+ene_detco3...
+ene_detco2+ene_detco1);

% Express energy values as a
% percentage of thetotal energy
% and round to nearest integer

pene_hp7=round(ene_detco7 * 100/tot_ene);
pene_hp6=round(ene_detco6 * 100/tot_ene);
pene_hp5=round(ene_detco5 * 100/tot_ene);
pene_hp4=round(ene_detco4 * 100/tot_ene);
pene_hp3=round(ene_detco3 * 100/tot_ene);
pene_hp2=round(ene_detco2 * 100/tot_ene);
pene_hp1=round(ene_detco1 * 100/tot_ene);

per_ene=cat(2,tot_ene,pene_hp7,...
pene_hp6,pene_hp5,pene_hp4,...
pene_hp3,pene_hp2,pene_hp1);

% Output original decimal integer code
% obtained from signal via wavelet
% decomposition

original_d_string=per_ene;
original_d_string
orig=original_d_string;

% Compute chirp function
t=0:1/44100:10000/44100;
y=chirp(t,00,10000/44100,100,’log’);

% Correlate input signal with chirp
% and recover sign

for i=1:150
yzcorr=xcorr(au(10000 * (i-1)...
+1:10000 * i),y,0);

r(i)=sign(yzcorr);
end

% Recover bit stream
for i=1:150

if r(i)==-1
recov(i)=0;

else
recov(i)=1;

end
end

% Convert from number to sring
recov=(num2str(recov,-8));
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% Covert from binary to decimal
% and concatenate

rec_ene_dist...
=cat(2,bin2dec(recov(1:31)),...
bin2dec(recov(32:48)),...
bin2dec(recov(49:65)),...
bin2dec(recov(66:82)),...
bin2dec(recov(83:99)),...
bin2dec(recov(100:116)),...
bin2dec(recov(117:133)),...
bin2dec(recov(134:150)));

% Write out reconstructed decimal
% integer stream recoverd from
% watermark

reconstructed_d_string=rec_ene_dist;
reconstructed_d_string
rec=reconstructed_d_string;

% Write out error between
% reconsructed and original
% watermark (decimal integer) codes.

error...
=sum(abs(rec-orig))/sum(abs(rec+orig))
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