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Misalignment Limits for a Singlemode–Multi-
mode–Singlemode Fiber-Based Edge Filter

Agus Muhamad Hatta, Gerald Farrell, Pengfei Wang, Ginu Rajan, and Yuliya Semenova

Abstract—Misalignment effects on the spectral characteristics
of edge filters based on singlemode–multimode–singlemode (SMS)
fibre structures are investigated numerically and experimentally. A
modal propagation analysis is used with a set of guided modes cal-
culated using the finite-difference method to determine the trans-
mission loss of the SMS-based edge filters. A limit for the toler-
able misalignment of the SMS fiber-based edge filter is proposed,
beyond which the spectral performance of the SMS structure de-
grades unacceptably. The numerical results are verified experi-
mentally with good agreement.

Index Terms—Edge filter, multimode interference, optical fibers.

I. INTRODUCTION

S INGLEMODE–MULTIMODE–SINGLEMODE (SMS)
fiber structures have been investigated for use in several

applications, e.g., as a refractometer, a bandpass filter, and an
edge filter [1]–[4]. An optical device based on the SMS fiber
structure offers an all-fiber solution for optical communica-
tions and optical sensing applications with the advantages of
simplicity of packaging and ease of interconnection to other
optical fibers.

The SMS structure is fabricated by splicing a precisely di-
mensioned multimode fiber (MMF) section between two single-
mode fibers (SMFs). Ideally, the center axes of all the fibre cores
are precisely aligned. However, in practice the splicing process
itself, along with the manufacturing variations in core-cladding
concentricity can introduce lateral misalignment between the
centers of the SMF–MMF–SMF cores.

In [2], [4], and [5], the SMS fiber structure is analyzed using
a modal propagation analysis (MPA) for the linearly polarized
(LP) (or scalar) modes. The input light can be assumed to have
the field distribution of the fundamental mode of the SMF [5].
When the light launches into the MMF, the input field can be
decomposed into the eigenmodes of the MMF. Due
to the circular symmetric nature of the input field and an ideal
alignment assumption, the number of guided modes of the MMF
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used in the modal propagation analysis is greatly reduced from
to or the circular symmetry modes. This reduced

number of modes means the calculation can be performed effi-
ciently. In [1] and [3], the SMS structure is investigated using
the beam propagation method, where it is assumed that only the
circular symmetry modes exist. With this assumption the optical
field is simplified so that it is independent of the angular coor-
dinate in a cylindrical coordinate system. However, if the center
(or meridional) axes of the SMS cores are misaligned relative
to one another then we cannot assume circularly symmetrical
modes. Thus, both approaches published so far cannot be used
to study the effect of misalignment in an SMS structure.

An MPA using a complete set of hybrid modes or vectorial
form guided modes in the MMF has been proposed to analyze
the misalignment effect [6]. In this approach, a complete set of
guided modes in the MMF is calculated and an adaptive algo-
rithm is developed to perform mode expansion of the optical
field in the MMF. However, the complete set of guided modes
in the MMF can also be solved with an alternative numerical
method, the finite difference method (FDM) [7]. The numerical
approach using FDM offers simplicity of its implementation.
In this paper, the FDM is used to calculate the complete set of
guided modes in the MMF and then the MPA is performed to
analyze the misalignment effect. Building on previous research
on an SMS-based edge filter [3], [4], in this paper, the effect of
fiber misalignment within an SMS-based edge filter is investi-
gated both numerically and experimentally, so as to establish an
upper limit on tolerable misalignment above which the perfor-
mance of SMS structure is degraded significantly.

To put the misalignment induced performance degradation in
context, the application chosen here for the SMS is that of an
edge filter used within a ratiometric wavelength measurement
system. A ratiometric wavelength measurement usually consists
of a 3-dB coupler which the two outputs connect to an edge filter
arm with a well-defined spectral response and a reference arm,
or alternatively two edge filter arms with opposite slope spectral
responses can be used. The use of two opposite slope edge filters
can increase the usable resolution of the ratiometric system [8].
A ratiometric wavelength measurement based system on two
opposite slope SMS-based edge filters is built and demonstrated
in this paper.

II. SMS-BASED EDGE FILTERS

A schematic structure for a ratiometric wavelength measure-
ment consisting of two SMS-based edge filters is shown in
Fig. 1(a). The target spectral responses in dB of the SMS-based
edge filters are shown in Fig. 1(b), and can have either a
negative (P1) or a positive (P2) slope. Two key parameters for
an edge filter are baseline loss and discrimination range. The

0733-8724/$25.00 © 2009 IEEE
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Fig. 1. (a) Schematic configuration of a ratiometric wavelength measurement,
(b) desired spectral responses of the SMS-based edge filter, negative (solid line)
and positive (dash line) slope versions, and (c) the output ratio between two
output SMS-based edge filters.

SMS-based edge filter operates over a wavelength range from
to with a progressively larger or smaller transmission

loss as the wavelength increases from to , for the negative
or positive slope, respectively. The baseline loss is defined as
the transmission loss of the filter at or , for the negative
and the positive slopes, respectively, while the discrimination
range is the difference between the transmission loss at and

. The corresponding ratio (P2–P1) of the two outputs over
the wavelength range is presented in Fig. 1(c). The wavelength
of an input signal can be determined through measuring the
power ratio of the output ports at the outputs of the two arms,
assuming that a suitable calibration has taken place.

The fiber structure under consideration consists of an input
SMF, a sandwiched MMF section, and an output SMF, as
shown in Fig. 2(a). The concentric alignment and misalignment
conditions in the Cartesian coordinate system, between the
input SMF, MMF section, and output SMF cores, are shown
in Fig. 2(b) and (c), respectively. The radii of SMF and MMF
are denoted as and , respectively. The input SMF and

Fig. 2. (a) Schematic configuration of the SMS fiber structure, (b) concentric
alignment, and (c) misalignment condition.

output SMF positions are denoted by the coordinates
and , respectively, where and are in m.

III. MODAL PROPAGATION ANALYSIS

The MMF section can support many guided modes and the
input field is reproduced as single image at periodic intervals
along the propagation direction due to the interference between
these guided modes. This is the so-called self-imaging prin-
ciple and the distance at which self-imaging occurs is called
the re-imaging distance. The approach used here to analyze the
field distribution in the MMF section is a modal propagation
analysis [9]. In the MMF, an MPA using a cylindrical coordi-
nate system has been employed in [2], [4], and [5] based on
a scalar approximation of the modes. The modes
could not be used to investigate misalignment effects because it
only consists of circularly symmetrical modes. To analyze mis-
alignment it is necessary to calculate a complete set of guided
modes in the MMF [6]. In the approach used here, the MPA
is performed in the Cartesian coordinate system with a set of
calculated guided modes using FDM to allow investigation of
misalignment effects.

The MPA procedure is as follows: the input light is assumed
to have the field distribution of the fundamental mode
of the SMF. The input field can be decomposed into the eigen-
modes of the MMF, , when the light enters the MMF
section. The input field at the MMF can be written as

(1)
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where is the excitation coefficient of each mode. The co-
efficient can be calculated by an overlap integral between

and

(2)

As the light propagates in the MMF section, the field at a prop-
agation distance can be calculated by

(3)

where is the propagation constant of each eigenmode of the
MMF. The transmission loss in dB can be determined by using
the overlap integral method between and the eigen-
mode of the output SMF

(4)
Here and can be obtained by using a semivectorial
FDM. It should be noted that FDM calculates a set of all possible
guided modes in the MMF section, not just concentric circular
modes, allowing the transmission loss due to misalignment to
be calculated. Using the above equations, the light propagation
in the whole structure can be analyzed.

IV. DESIGN EXAMPLE AND SPECTRAL RESPONSE

To investigate the effect of misalignment, in the first instance
it is necessary to present a typical SMS structure designed to
meet a target spectral response and calculate its ideal, perfectly
aligned, spectral response.

To design the SMS-based edge filter, the MMF length needs
to be determined. It has been shown that the re-imaging distance
is wavelength dependent [2], [5]. If re-coupling into the output
SMF takes place at the re-imaging distance, then the MMF sec-
tion of the SMS structure has by definition a length equal to the
re-coupling distance and operates as a bandpass filter as in [2]
and [5]. However, for the purpose of designing an edge filter, the
bandpass response can be considered as two spectral responses,
on either side of a center wavelength. Consequently, the device
can behave as an edge filter for a selected wavelength range. Two
SMS-based edge filters with opposite slope spectral responses
within a given wavelength range can be obtained by choosing
two bandpass filters with appropriate center wavelengths [4].

As an example to illustrate the design process, a target wave-
length range for wavelength measurement from nm
to nm is chosen. This range is chosen as it corre-
sponds to the typical center wavelengths for many fiber Bragg
grating (FBG) sensors. Based on the target spectral responses
as in Fig. 1(b), the SMS-based edge filters are designed with
the baseline loss 8 dB and the desired discrimination range

8 dB. A standard SMF28 fiber is chosen as the SMF, for

Fig. 3. Transmission loss responses of the two SMS-based edge filters.

which the parameters are: the refractive indices for the core and
cladding are 1.4504 and 1.4447, respectively (at a wavelength
of 1550 nm), and the radius of the core m. An
MMF-type AFS105/125Y is chosen as the MMF section for
which the parameters are: refractive indices for the core and
cladding are 1.4446 and 1.4271, respectively, with a core ra-
dius m. The small difference between the refrac-
tive indices of the SMF and MMF means that the Fresnel re-
flection occurring at their interface is negligible (the level of re-
flection is 54 dB or lower relative to the injected light level)
and a one-way modal propagation analysis can be used [5]. As
mentioned above, for the specified wavelength range, two op-
posite response slope edge filters (negative and positive slopes)
can be obtained by designing two bandpass filters with peak
wavelengths: 1520 nm and 1545 nm, respectively. From
(10) in [5], the peak wavelengths from 1500 to 1520 nm cor-
respond to the MMF lengths – mm, and from
1545 to 1560 nm correspond to – mm. Suit-
able peak wavelengths for the targeted wavelength range are
1510 and 1547 nm and the corresponding MMF lengths are

mm and mm, for the negative and pos-
itive slope edge filters, respectively. The peak wavelengths at
1510 and 1547 nm are chosen for the SMS-based edge filters
because their transmission loss responses have a suitable spec-
tral response over the targeted wavelength range from 1520 to
1545 nm. The calculated transmission loss responses by using
(4) for the designed SMS-based edge filter are shown in Fig. 3.
These responses represent the performance of the design ex-
ample for the case of perfect alignment. It can be seen that
the two opposite edge filter responses within the targeted wave-
length range can be achieved using two bandpass filters. The cal-
culated negative and positive slope responses of the SMS-based
edge filters from 1520 to 1545 nm have a transmission loss from

7.20 to 15.53 dB and 11.84 to 0.77 dB, respectively,
and the corresponding discrimination ranges are 8.33 dB and
11.06 dB, respectively, suitable for use as edge filters.
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V. INVESTIGATION OF MISALIGNMENT EFFECTS

FOR THE DESIGN EXAMPLE

To investigate the misalignment effect, the transmission loss
of several positions of the input SMF and output SMF are calcu-
lated using (4). We calculated the transmission loss within the
wavelength range 1520–1545 nm of the offset positions, ,

, where –10 m with an increment of 2 m. Given
the need to undertake experimental verification, these misalign-
ment values are chosen based on the deliberate offset that can be
produced by the fusion splicer used in the experiments described
later. The calculated transmission loss responses are shown in
Fig. 4(a) and (b), for the negative and positive slope edge filters,
respectively. From Fig. 4(a), for the negative slope, is can be
seen that, even with misalignment, the response retains a mono-
tonically decreasing characteristic over the wavelength range
and thus is still suitable for use as the edge filter response. How-
ever, the discrimination range decreases as the offset increases,
from 8.33 dB without an offset to 8.03, 7.41, 6.64, 5.93, and
5.15 dB for an offset equal to 2, 4, 6, 8, and 10 m, respectively.
A reduced discrimination range will have a negative impact on
measurement accuracy where the edge filter is used within a
ratiometric wavelength measurement system. For the positive
slope filter, as shown in Fig. 4(b), the response slope changes
very significantly when the offset increases. For an offset
and 4 m the spectral responses are still suitable as the edge
filter, but for larger offset values the transmission loss responses
do not monotonically increase across the wavelength range and
therefore are not suitable for use as an edge filter.

The change in the negative and positive slopes due to an offset
needs to be considered in the context of changes to the overall
bandpass responses. The consequences of an increase in the
offset on the bandpass response are a shift of the self-imaging
position and a reduction in the maximum transmission loss at
the peak wavelength of the bandpass filter. Such changes in the
overall bandpass response will also clearly change the positive
and negative slope responses.

In practice, there is a significant difference between the neg-
ative and positive slope responses in terms of the change in the
response that is induced by an offset. This difference can be
explained as follows. From the MPA discussed above and as
described in [6], the presence of an offset for the input SMF
increases the number of excitation modes (circularly symmet-
rical modes and azimuthal modes) compared to the case without
an offset (circularly symmetrical modes only). Increasing the
number of excitation modes changes the MMF field pattern re-
sulting from interference in the MMF. In turn, the transmission
loss, which is a function of the overlap between the MMF field
and the eigenmode of the output SMF, varies with changes in
the offset of the output SMF.

To better understand the difference in the manner on which
an offset affects the negative and positive slopes, the MMF field
amplitude profiles for the cases of m and m
are shown in Fig. 5 for a wavelength of 1537 nm. This wave-
length is chosen as it corresponds to the wavelength at which the
changes in the positive slope are most pronounced, as shown in
Fig. 4. The MMF field amplitude profiles for the negative slope
response for the case of m and m are shown in

Fig. 4. Calculated transmission loss response due to misalignment effect of the
SMS-based edge filter. (a) Negative slope and (b) positive slope.

Fig. 5(a) and (b), respectively. The overlap between the MMF
field amplitude profile and the eigenmode of the output SMF is
located at and in m, for the case of m
and m, respectively. Comparing Fig. 5(a) and (b), there
is only a relatively small difference in the amplitude of the MMF
field in the MMF overlap region when an offset is introduced.
As a result, the transmission losses are not strongly influenced
by offset.

For the positive slope response, the MMF field amplitude pro-
file for the case of m and m is shown in
Fig. 5(c) and (d), respectively. Comparing these figures, it can
be seen that when an offset is introduced, that is m,
the eigenmode of the output SMF located at overlaps
a portion of the MMF field amplitude profile which has a very
low value. The result is a very high transmission loss when an
offset is introduced and thus there is a strong dependence of the
transmission loss on offset.

To further analyze the spectral quality of the edge filter, it is
necessary to examine the linearity of the transmission loss when
misalignment occurs. Linearity is important for an edge filter
used in wavelength measurement application for two reasons.

Authorized licensed use limited to: DUBLIN INSTITUTE OF TECHNOLOGY. Downloaded on August 7, 2009 at 05:13 from IEEE Xplore.  Restrictions apply. 
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Fig. 5. The MMF field amplitude profile at � � ���� nm for the negative slope (a) � � � �m, (b) � � �� �m; for the positive slope (c) � � � �m, (d) � �

�� �m.

First, a linear response by definition monotonically increases
or decreases, so there can be no ambiguity in wavelength mea-
surements. Second, a linear response will ensure that the resolu-
tion for wavelength measurement is the same for all measured
wavelengths. The linearity can be examined by using the cor-
relation coefficient of the linear regression analysis. An
ideal spectral response has , and a lower indi-
cates a lower quality for the spectral response linearity. Fig. 6
shows the correlation coefficient for the different offsets from
0 to 10 m with an increment of 1 m. It is shown that for the
negative slope, the maintains a high value and is almost con-
stant with , 0.98, 0.99, 0.99, 0.99, 0.99, and 0.99 for
the offset , 2, 4, 6, 8, and 10 m, respectively. This means
that the offset has little effect on the slope quality for the nega-
tive slope spectral response, but does reduce the discrimination
range as mentioned above. For the positive slope, it is clear that
the offset effects the slope quality. The are 0.98, 0.99, 0.99,
0.67, 0.28, and 0.07 for the offset of 0, 2, 4, 6, 8, and 10 m,
respectively. The value degrades beyond an offset value of

m, with , and such spectral responses are
not suitable for use in an edge filter. Based on the calculation of
the value, it is suggested as a conservative guiding principle
that the misalignment should be less than the core radius of the

SMF (4.15 m in this case) to maintain the slope quality for the
two SMS-based edge filters with opposite spectral responses.

For the purpose of experimental verification, the two
SMS-based edge filters were fabricated using a precision
Fujikura CT-07 cleaver and a Sumitomo type-36 three-axis
fusion splicer. For each SMS structure the process is the same.
First, the input SMF and the input end of the MMF are cleaved
and spliced together. To deliberately introduce an offset (and
thus misalignment) in this splice, an attenuation splicing mode,
available as an option on the fusion splicer, is used. This
splicing mode allows for the creation of a fiber splice with
a preset optical power loss. Given a preset power loss, the
fusion splicer will automatically perform the splice with an
appropriate axial offset.

The cleaver is again used to precisely cleave the un-termi-
nated end of the MMF fiber so that its length is set to the de-
sired value. Finally, the output end of MMF section is spliced
to the cleaved end of the output SMF, again with the attenuation
splicing option. The desired power loss is set so that it corre-
sponds to an offset of 3.3 m.

The transmission loss response of each fabricated filter is
measured using a tunable laser and an optical spectrum ana-
lyzer (OSA). The measured results are shown in Fig. 7 for the
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Fig. 6. Correlation coefficient of the spectral response for different offsets.

Fig. 7. Measured and calculated transmission loss with misalignment of the
SMS-based edge filters.

negative and the positive slope SMS-based edge filters. The cal-
culation of transmission loss using (4) is also shown in Fig. 7.
The calculated and measured results show a good agreement.
The discrepancy between the calculated and measured results is
most likely a result of: 1) residual splicing insertion losses and
2) errors in the exact length of the MMF section. MMF section
length errors, which arise during fabrication of the SMS struc-
ture, shift the peak wavelength of the bandpass filter response,
which in turn alters the measured transmission loss values over
a fixed wavelength range.

Experimentally the two edge filters with their deliberate mis-
alignment, while they do possess a higher insertion loss, demon-
strate response slopes with an acceptable discrimination ranges
of 9.47 and 8.89 dB for the negative and positive slopes, respec-
tively. The edge filters are therefore still suitable for use as edge
filters. This result verifies our assertion that as long as the mis-
alignment between SMF and MMF cores is less than an offset
misalignment limit which is equal to the SMF core radius then
there is no significant effect on the slope quality.

Fig. 8. Measured ratio.

To provide confirmation a misaligned SMS-based edge filter
will work as long as the lateral misalignment in an SMS struc-
ture is less than the limit proposed, the edge filter described
above with a 3.3 m lateral misalignment was employed in
a functioning wavelength measurement system, based on the
scheme described in Fig. 1(a). The input signal is split into
two equal intensity signals using a 3 dB fiber splitter. One of
the signals passes through the negative slope SMS-based edge
filter and the other passes through the positive slope SMS-based
edge filter. A dual channel power meter is placed at the ends
of both arms. Fig. 8 shows the measured ratio of the optical
power. The measured ratio between 1520 and 1545 nm has a
linear slope with a discrimination range of 18.14 dB from 7.17
to 10.97 dB, which is suitable for wavelength measurement.

It should be noted that for the fabrication of an SMS, it is
preferable to use a fusion splicing machine with the capability
of three-axis adjustment rather than a single-axis (also called
a fixed V-groove) fusion splicer. Lateral misalignment arises
in an SMS structure for two reasons. First, there is the lat-
eral misalignment introduced by the fusion splicer itself, and
second, there is the misalignment that results from the limited
manufacturing tolerance of core-cladding concentricity of the
fibers used. Using a fusion splicer with three-axis adjustment
can negate the effect of the limited core-cladding concentricity
of the fibers. This means that the only significant source of
misalignment is the inherent alignment accuracy of the fu-
sion splicer itself. Typical three-axis adjustment splicers can
maintain inherent misalignment to less than 0.5 m in the
case of identical SMF or MMF splicing and thus can allow
the fabrication of SMS structures with repeatably low lateral
misalignment. The use of a single-axis fusion splicer is less
advisable for SMS fabrication as it is not possible to overcome
misalignment due to limited core concentricity and furthermore
a single-axis splicer typically has an inherent misalignment that
is higher than a three-axis adjustment splice machine.

VI. CONCLUSION

The effect of misalignment on the spectral response of an
SMS-based edge filter has been investigated. An MPA with a
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calculated set of guided modes using FDM is employed to ana-
lyze the misalignment effect. It is shown that the performance of
the SMS based edge filter degrades when the lateral misalign-
ment is larger than a misalignment limit which is equal to the
core radius of the SMF used.The measured transmission loss re-
sponses show a good agreement with the numerical results. The
SMS-based edge filter used in the experiment is found to be suit-
able for use in a wavelength measurement system. Overall, it is
shown that an SMS structure fabricated using a fusion splicer
with three-axis adjustment has the advantage of a useful fabri-
cation tolerance, within which the lateral misalignment has no
significant effect on the slope of edge filter.
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