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Abstract 

In recent years source separation has become an increasingly popular area of research 

in the signal processing community. The subject has found applications in a variety of 

fields such as medical imaging, sound and audio, econometrics and geophysics. This 

document will discuss the application of source separation techniques to the area of 

audio. 

Sound source separation is the process of observing a mixture signal made up of a 

number of sources, and from this mixture estimating the individual source signals. 

Audio source separation techniques may be crudely split into the following areas; 

techniques that utilise attributes of the sources, and that mimic methods used by the 

human auditory system to perform separation; and statistical, mathematical methods 

which do not necessarily take advantage of the attributes of sources. A further division 

is also possible whereby techniques utilise prior knowledge of sources, and those that 

do not, known as blind separation techniques. 

The novel work presented in this document discusses an approach for performing 

blind separation on a single channel mixture. The technique utilises attributes of the 

environment in which the the signal was recorded, and combined with the ADRess 

source separation algorithm, a novel process for source separation is presented. 
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Chapter 1 

INTRODUCTION 

The goal of this document is to serve as a review of current audio source separation 

techniques, while also presenting a novel contribution to the field. 

Source separation is the process of recovering individual sources or signals, from a 

mixture containing a number of signals. A classic illustration of audio source separation 

is the 'cocktail party problem' [3]. The cocktail party problem describes the situation 

where a person is able to focus his or her attention on a single conversation, when 

surrounded by a number of separate conversations. Similarly, the process of separating 

a vocal track from a pop song involves performing source separation to isolate the vocals 

from the a mixture of drums, guitars and pianos. 

A review of source separation techniques is presented in this document. This dis- 

cusses how signals are mixed, as well the separation algorithms, some of which take 

advantage of the various mixing methods. 

Finally a novel contribution is presented in which signals are separated in an echoic 

environment [35]. The technique estimates the echoic coefficients of the sources, and 

then uses the estimates to create synthetic mixture signals from which the sources can 

be separated. 



1.1 Document Structure 

The structure of the document is described here. This chapter is intended to act as an 

introduction to audio signals, their construction, and the various mixture models that 

source separation will be performed upon. 

Firstly some applications of sound source separation are presented, Section (1.2). 

This will illustrate some of the uses for source separation, and similarly stimulate ideas 

for research. 

Section (1.3) discusses human auditory localisation. It may be possible to infer 

ideas from how humans successfully localise, and hence separate one sound source from 

another. If these attributes of how hunians perform separation can be quantified, ltnowl- 

edge of how it is achieved can be incorporated into sound source separation algorithms. 

Further to the human perception of audio signals, it will be useful to understand 

the construction of audio signals. This will allow algorithms to be tailored to separate 

sources, according to the composition of the particular format of audio being dealt with. 

This is discussed in Section (1.4). 

As well as the type of audio signals being dealt with, an understanding of how 

sounds physically propagate in an environment will be advantageous. The signals that 

separation is performed upon may have been recorded in a variety of different environ- 

ments. The effects of various environments, and how signals are recorded are discussed 

in the Room Acoustics and Signal Mixing sections, Sections (1.5) (1.6). 

In the second Chapter, existing source separation techniques will be reviewed. Some 

techniques are better suited to certain types of audio signals than others, hence a 

broad range of separation algorithms are discussed. Chapter 4 concludes with a critical 

analysis of existing approaches and suggests areas for further investigation. 

In Chapter 3 a novel method for blind single channel source separation is presented. 

This technique relies on the discussions in Chapters 1 and 2. The algorithm involves 

estimating the delay co-efficient of individual sources within an echoic mixture. Follow- 

ing this a 'pseudo-stereo mixture' is generated, and a technique involving an existing 

algorithm is used to perform source separation. 



1.2 Applications of Sound Source Separation 

There are many uses for sound source separation and its ability to de-mix signals into 

its individual sources. For example, it can be an important tool for music students. 

The ability to separate a single instrument, from many instruments can simplify how 

the student examines, and learns a piece of music. Similarly, the ability to remove an 

instrument from a recording is also useful, as it would allow a student to play along to 

the original track in place of the removed instrument. 

Sound source separation can also be used as a preprocessing tool for music tran- 

scription. The transfer of audio events into musical notation is known as transcription. 

When done manually, this is a slow, costly process. When using computers to apply 

transcription algorithms, polyphonic musical signals (signals containing multiple instru- 

ments) can complicate the transcription process. While a human can easily distinguish 

between two different instruments in a mixture, a computer may not easily be able 

to do the same, and hence they may interpret notes from different sources as a single 

instrument. This results in a large number of erroneous transcriptions in comparison 

to the monophonic case. If a single instrument is transcribed independently, the task 

is simplified. 

Con~munications technology may also benefit from the use of sound source separa- 

tion. When in a noisy environment speaking into a microphone, for example a mobile 

phone, background noise will be picked up. This interfering noise is undesirable, hence 

the pursuit of separation of the speakers voice from the noisy background. 

If audio is recorded in a large room, or echoic environment, the signal may become 

less intelligible or difficult to understand. As the sound waves of the signal are emitted 

from the source, they will reflect off surfaces, and hence cause echoes, see Section (1.5). 

This can be problem for speech recognition or musical transcription algorithms [34]. 

Hence the removal of echo or reverb from a source can be useful. 

It may also be desirable for a listener to re-render an auditory scene. For example, 

up-mixing a mono or stereo mixture to a 5.1 surround sound speaker mix. If a mixture 

can be separated into its individual sources, then the sources can be re-assigned to 



whatever source location within the 5.1 surround sound mixture that is desired. 

In an audio recording environment, music tracks are often remixed. Source sepa- 

ration will ease the difficulty of remixing recorded music. If it is possible to  get good 

quality separations of the individual musical sources, then it may be unnecessary to 

obtain the originally recorded instrument or vocal tracks. 

For audio coding and compression, the coding of the separated signals will be possi- 

ble. Encoding and compression of individual sources, allows for increased compression 

of audio files, according to the MPEG-4 philosophy for audio-visual objects [39]. 

1.3 Human Audio Separation and Localisation Tech- 

niques 

Humans can typically and easily differentiate between different sources, as illustrated 

by the cocktail party problem. Due to the ease by which humans distinguish between 

sources, facets of how the human audio perception works can be used when imple- 

menting source separation algorithms. For example, if it is understood how the human 

auditory system distinguishes between two individual musical instruments, a separation 

technique can be modelled on how this is accomplished by humans. In [74] and [76] 

aspects of how humans distinguish sources are mimicked. 

Psychoacoustics aims to explain human perception of sounds [27]. It attempts to 

describe the workings of human auditory perception as a 'black box'. As with many 

other sensations, such as seeing and smelling, perceived loudness increases logarithmi- 

cally as the intensity of the stimulus increases [27], hence the usefulness of the dB scale 

when describing changes in intensity, see Section (1.5). 

Before reaching the human ear, individual natural sounds will become part of a com- 

plex mixture of various sound sources. Depending on the environment, this mixture 

may contain the sum of many different sources. The human auditory system has the 

ability to recover individual sources [66]. This is known as human Auditory Scene Anal- 

ysis (ASA). Achieving artificial or computational ASA, comparable to that of human 



ASA is a difficult proposition. 

One of the many suggested attributes that the human auditory system uses as a 

means of distinguishing sound sources is known as 'common fate' [8]. Common fate 

is the phenomenon whereby spectral components change in parallel over time. These 

changes may be observed in amplitude, frequency, spatial localisation or phase. 

For example, spectral components, such as the harmonics of one instrument may be 

grouped together, as they all will change accordingly when an instrument produces a 

note, and then goes to produce another note. 

Typically, the suggested association cues in human auditory scene analysis are as 

follows; spectral proximity, harmonic concordance, synchronous changes of the compo- 

nents and spatial proximity [71]. 

Spectral proximity refers to how closely audio events occur in time and/or in fre- 

quency and pitch. Harmonic concordance is concerned with the level of 'harmonicity' 

in the relationship between audio partials. This refers to how closely audio partials 

resemble the typical arrangement of a fundamental frequency component, and its har- 

monic partials, as discussed in Section (1.4). In its use here, the term partial refers to 

a sinusoidal component which is part of a signal, rather than how a musician may refer 

to a harmonic as a partial. 

Synchronous changes of the audio components can be measured through time, by 

the common onset of sounds, common offset, common amplitude modulation, common 

frequency modulation, and equidirectional movement in frequency or pitch. 

Spatial proximity refers to the location from which the sound is emitted. The human 

auditory system accomplishes this task by using the differences in a sound as it travels 

to each ear. Known as the inter aural intensity difference, [52], and the inter aural time 

difference, [52], they describe the differences in intensity and time which occur when 

audio travels a differing distances to each ear. For example a signal will take more time 

to travel the greater distance to the furthest ear. Similarly the magnitude of a signal 

will decrease as it travels this extra distance. These intensity and time differences, have 

been used as a means of separating signals, see Section (2.3.2). 



1.4 The Role of Harmony in Audio Signals 

The topic of this dissertation is source separation of audio signals. In this section the 

construction of audio signals will be discussed. Some of the separation techniques pre- 

sented in the literature review, Chapter 2, are tailored to take advantage of certain 

attributes of the signals. For example, the DUET algorithm, Section (2.3.2), utilises 

properties of speech signals. Harmonic sounds are described as they introduce sig- 

nificant difficulties regarding separation of instruments in western tonal music. The 

properties of speech signals, used by DUET to separate sources do not necessarily hold 

for musical signals, hence it is less successfully applied to separation of musical sources. 

Within this document, audio will be generalised into the following categories, har- 

monic and inharmonic sounds, transients, noise and silence. 

1.4.1 Harmonic Sounds and Western Tonal Music 

Harmonic sounds will generally consist of a set of sinusoids whose frequencies are in- 

teger related. The fundamental frequency, fo, is the sinusoid of lowest frequency. The 

subsequent harmonics are located at frequencies that are at integer multiples of the 

fundamental frequency. Figure (1.1) is the magnitude spectrum of a synthetic sound. 

There are 5 sinusoids which make up the sound, the fundamental frequency fo,  is lo- 

cated at 440Hz. The others are at integer multiples of fo. It is these fundamental 

frequencies and their harmonics that make up pitched musical notes. 

Not all musical instruments are harmonic in nature. For example, percussive drum 

sounds typically do not display harmonic properties. While they may be sinusoidal in 

nature, the sinusoids may not be related harmonically, and are said to be inharmonic 

[17]. Also present in musical signals are transients. In the case of acoustic instruments, 

the transient refers to the excitation of the sound, [6 ] ,  such as the striking of a guitar 

string, or the breath noise associated with many wind instruments. Audio signals may 

also contain sections of silence and noise. 

Speech signals can also be similarly grouped. When analysed, 'voiced' sounds or 
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Figure 1.1: Harmonic spectrum of a synthetic tone whose fundamental frequency is 440Hz, the note 

of A above middle C 

speech, for example vowels, exhibit harmonic properties. Speech will also contain tran- 

sients, which come from the unvoiced or plosive sounds such as 'p' or 'k' sounds. 

Displayed in Figure (1.2) is the frequency spectrum of a snare drum, it shows the 

transient or noise like properties of the snare drum. There is no noticeable harmonic 

structure immediately visible, as there would be in that of a pitched musical note. 

When two or more musical notes occur together it is possible that their harmonics 

will overlap. Overlapping harmonics will then appear as the sum of the original sinu- 

soids. In the frequency domain, harmonic overlap means that the amplitude and phase 

of the individual sinusoids cannot be distinguished from their sum, making separation 

a difficult task. 

When two sounds are played simultaneously they may have no overlapping harmon- 

ics, for example, if a C and C# note are played simultaneously, to the human ear this 

will be percieved as sounding dissonant. Dissonance occurs when the interval between 

two notes on a musical scale sounds 'unpleasant' or 'rough', [44]. 



Frequency Hz 

Figure 1.2: The transient, noise like, frequency spectrum of a snare drum. The large prominent 

frequency component at approximately 200Hz is typical of a snare drum. 

For example, if foA and foB are the fundamental frequencies of two musical notes, 

then in order for their harmonics to overlap, they must satisfy the following formula 

m 
f = -  

0 A n x fo, 

where m and n are integers. In this case every nth harmonic of sound A overlaps a 

corresponding mth harmonic of sound B. The fundamental frequencies of two sounds 

may also have the following relationship, 

where n # 1. This is known as an octave relationship. In this situation every harmonic 

from B will overlap those of A. So every harmonic of the higher pitched sound will be 

overlapped by those of the lower ones. There is also the possibility that both sounds 

fundament a1 frequencies are the same 



In this case all the harmonics of each sound will overlap. 

Harmonic overlap forms the basis tonal western music. The fundamental frequencies 

for notes are arranged in a logarithmic fashion, where the fundamental frequency of a 

note k semitones above 440Hz is: 

440Hz being the IS0 (International Organization for Standardization) agreed frequency 

for the note of 'A above middle C'. Western tonal music is arranged into sets of 12 notes 

or semitones per octave. For example, 440 x 20/12~.z = 440Hz is the note A4. Whereas 

the note As, is 440 x 212 /12~z  = 88OHz, is the note A an octave above. 

If the notes C4 and G4 are played together there will be overlapping harmonics. 

Every third harmonic of C4 overlaps every second harmonic of G4. SO, the frequency 

at which the first of their harmonics overlap is 

There is a slight difference in the frequency of the harmonics, 784.877Hx x 783.8Hx, 

this difference is not noticed by the human ear. This is explained by the concept of 

critical bandwidths, whereby the human auditory system analyses the audio spectrum 

in a series of critical bands, [66]. 

When the frequency of two tones are a critical bandwidth apart, they are perceived 

by humans as two separate tones. When there is a very small difference between fre- 

quencies, there is no perceptual difference between the tones. As these small differences 

between frequencies increase, this causes the sensation of 'roughness' or dissonance. 

This dissonance is at its largest at a difference in frequency of a quarter of a critical 

band. As the frequency difference between tones becomes larger than a quarter of a 



critical band, dissonance decreases, or consonance increases, until maximum consonance 

is achieved at the difference in frequency of a critical band. 

The width of the critical bands, measured by the Bark scale [20], varies across the 

spectrum. The Bark is a unit of perceptual frequency, relating frequency, measured in 

Hz, to perceptually based measures of frequency such as pitch and critical bands. 

In the above example, as the frequency of higher harmonics of C4 and Gq overlap, 

the frequency difference will also increase. However, the critical bandwidths of the hu- 

man auditory system also increase at higher frequencies, hence the frequency difference 

causing dissonance or roughness will not be perceived. 

As discussed, harmonic overlap that occurs in music signals will mean that compo- 

nents of multiple signals may occur at the same frequency. This creates another task for 

source separation algorithms to tackle. The contribution of each source to individual 

frequencies must be decided. 

Some signals, such as speech, do not inherently exhibit harmonic overlap. Speech 

signals are said to have a sparse time-frequency representation. This sparse nature of 

speech is taken advantage of by some source separation algorithms, [50] as discussed in 

Section (2.3.2). The novel technique presented in this dissertation is primarily applica- 

ble to single channel mixtures of speech. 

The time frequency representation of a speech signal is displayed in Figure (1.3). 

Shown are voiced, harmonic parts of the signal, as well as the unvoiced components. 

1.5 Room Acoustics 

In this section the physical properties of how signals propagate within a room or enclosed 

environment will be discussed. The novel work of this dissertation utilises the properties 

of how sound waves propagate through an environment, and reflect off surfaces before 

reaching a sensor. 

Under standard humidity conditions and atmospheric pressure, the speed of sound 
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where T is the air temperature in degrees Celsius [27]. For example at 20°C the speed 

of sound in air is 343.3m/s. So if a surface is 3 metres away, it will take a approximately 

0.02 seconds for the sound wave to travel to the surface, and then reflect back. From 

this short distance a clear echo may not be distinguishable. This is explained by the 

precedence or Haas effect. When similar sounds arrive from different locations, if they 

arrive within about 0.05 seconds of each other, the human auditory system recognises 

these two sounds as one, [19]. In order to hear a full distinct echo, about 0.1 seconds, 

relates to a distance of 15 metres or more. 

The intensity of sound is the amount of sound energy flowing across a unit area 

surface in one second. A standard measurement is made in Watts/m2. The assessment 

of sound intensity is typically in relation to the threshold of human hearing, I. = 

10-l2 Watts/m2. The decibel (dB) scale is then used as a measurement of sound 

intensity, 

Decibels measure the logarithmic ratio between a given intensity I, and in this case, the 

threshold of human hearing, intensity I. (the case when dealing with dB levels in relation 

to the human auditory system). Hence, sound intensities at the threshold of hearing 

take on the value 0-dB. Using a logarithmic scale is convenient, as the human auditory 

system responds approximately logarithmically to changes in intensity, Section (1.3). 

As sound waves travel through air the sound intensity is subject to the inverse square 

where I = sound intensity, W = sound power, and d = distance from law, I = &&jF, 

source, [16]. This means that intensity will decrease as the sound wave travels from 

its source to the sensor or microphone. A sound wave that has travelled some distance 

will undergo an attenuation, and hence will not be of the same magnitude as when 

originally emitted. 

A theoretical model used to represent a single sound source in an echoic environment 

is illustrated in Figure (1.4). Here s(t) represents a source signal that is transmitted. 



Figure 1.4: Figure shows the direct path t ,  from the source s, to the sensor x. The three reflected paths 

Rti are also shown. Due to the extra distance traversed to reach the sensor, each Rti will be attenuated 

compared to  the direct path. Similarly, due to  the extra time taken to travel the the reflected paths, 

upon reaching the sensor they will appear as delayed versions of the source. 

Sound waves will travel along a direct path to the sensor, and also reflected paths, 

reflecting off surfaces, before accumulating at the target sensor x ( t ) .  This mixture 

model is represented in Equation (1.11) [36]. 

where ai 2 0 represents the attenuation over the various distances travelled along each 

path i, as illustrated in Figure (1.4). Rti is the time taken for the signals to reach 

the sensor along the ith reflected path, and t is the time taken for the signal to reach 

the sensor along the direct path. The resulting delay due to the extra time required 

to traverse the reflected path compared to that of the direct path is represented by 

Ati (= Rti - t ) .  

In reality an infinite number of possible reflections will be present in an echoic en- 

vironment. Typically however, many environments will have a small number of strong 



reflections. This is illustrated by measuring the impulse response of an echoic envi- 

ronment. Figure (1.5) shows the typical impulse response of a large room. A first 

prominent reflection can be seen, and until around 0.1 seconds after the first reflection, 

the responses appear as a rough series of discrete echoes. After 0.1 seconds the echoes 

take on a more continuous character as the reflections become more diffuse, [27]. 

Typical Impulse Response 

Figure 1.5: Typical Impulse Response of an echoic environment. A prominent reflection can clearly 

be distinguished. If these reflections can be estimated, it is theorised that separation is possible using 

the technique described Section (3). 
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A popular method of describing room acoustics is by measuring the rooms rever- 

beration time. The RT60 is a measure of the time taken for the sound level in a room 

to fall -6OdBs, after a sound source has stopped emitting sound, and is related by the 

ratio of the volume of the room to the surface area absorbtion of the room, [13]. 

where k(= 0.161) is a constant, Sa is the total surface absorbtion of a room (measured 

in Sabins), and V is the volume of the room. 
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Depending on the dimensions of the environment in which the audio was recorded, 

it may be possible to accurately observe when the prominent reflections will occur. It 

follows that a larger environment/room will make for easier observation of prominent 

reflections. In the novel work presented in this dissertation, the prominent reflections 

of a signal in an echoic environment are used as a basis for the implementation of the 

proposed source separation technique. 

For human listeners, small amounts of reverberation will generally not affect the 

intelligibility of a signal, even though the spectral representation may be quite different 

to a non-reverberant signal. Reverberation often serves to give the impression of the 

size or dimensions of a room. However for computers, short term echoes will alter a 

signals spectral representation, this may cause the echoic signal to be interpreted as a 

different signal. 

Real world acoustic environments are typically more complex than the simplified 

situation described above, Figure (1.4). The speed of sound will be affected by changes 

in temperature and humidity. Also, the movement of the sound source and sensor will 

contribute to the received signals. 

Further, depending on the shape of the room or environment, the occurrence of 

room modes may effect audio signals. As signals are reflected off a wall or surface, they 

can be viewed as a new source emitted from the point of incident on the wall. In the 

case of two parallel walls signals can become 'trapped', reflecting back and forth until 

they have dissipated. When sound is being constantly emitted from a source these 

trapped or 'standing waves' result. If there is a mathematical relationship between 

the the dimensions of a room (eg. length, width, height), and the frequency of the 

sinusoidal components of a signal, the interaction between the trapped waves can cause 

the amplitude of sinusoids to be attenuated or boosted. This means that sinusoids of 

certain frequencies can appear quieter or louder at different points in the trap. If these 

conditions are present, sound waves that become trapped are known as standing waves, 

and the frequencies of such problematic waves are known as resonant room modes. 

For example if a frequency of 40Hz is said to be the lowest resonant mode, all of its 



harmonics 80Hz, 120Hz, 160Hz will become trapped, [30]. 

Generally for a mid-frequency sound wave and given source and sensor positions 

within a room, the acoustic room effects can be seen as a linear time-invariant sum of 

attenuated, filtered, and delayed versions of the original signal [27]. 

1.6 Signal Mixing Models 

When people hear sounds in everyday life, they are rarely heard in isolation. In other 

words, it is rare that only one sound reaches our ear at any time. For example, while 

walking down the street in conversation with someone, we can distinguish that person's 

voice, even though it is part of a mixture of sounds, such as traffic or sirens. 

The following sections will discuss how signals are mixed in various environments/situations. 

By understanding how signals are mixed, it may be possible to use attributes of the 

mixture process to separate sources. Discussed below are two mixing models that are 

examined in this document. Other mixture models are not discussed here as they are 

not dealt with in the source separation techniques reviewed. 

1.6.1 The Convolutive Mixing Model 

The convolutive mixing model [40], is used to describe the situation when a sensor or 

microphone is placed within the acoustic space of the sources to be recorded. This can 

also be done with one or more microphones. It is the typical model used to describe 

audio recordings in an echoic environment [31]. 

where x,(n) is the signal recorded by the qth microphone at time n,  sp(n)  is the pth 

source signal, a,(l) denoted the impulse response from sources p to sensor q, and L, 

is the maximum length of all impulse responses. 



As discussed in the literature review in the following chapter, some techniques utilise 

properties of the convolutive mixing model to perform source separation. For example, 

the DUET algorithm [74], utilises properties of the convolutive mixture model, see 

Section (2.3.2). The technique employs the use of two sensors or microphones, therefore 

a signal will take longer to reach one microphone than the other. Also, the energy of 

a sound wave will dissipate as it passes through the air. This means that the signal 

will attenuate a s  it travels the extra distance between both microphones, see Section 

(1.5). This 'delay' and 'attenuation' are coefficients utilised by the DUET algorithm to 

perform separation. 

However, the DUET algorithm makes the assumption that signal mixing happens 

in an anechoic environment (an environment in which no echoes are caused by sound 

waves reflecting off surfaces). 

The above model is used to represent the situation where multiple microphones or 

sensors are used to record the audio signals. The case of a single sensor is illustrated 

in Section (1.5). 

1.6.2 Electronic Mixing Model 

Sources may also be electronically mixed. With the advent of multi-track recording 

this mixing technique became popular. Multi-track recording allows each source to be 

recorded separately. A mixture can then be created in accordance to the desires of the 

mixing engineer. For example, the intensity of the vocal source can be increased to 

make it more prominent. The mixture signals, X(t) ,  can be modelled as, 

X ( t )  = C a,s, (t) 

where Sj represents the j independent source signals, and aj is the mixing coefficient 

or intensity level of the sources. 

In the late fifties and sixties the widespread use of stereo mixing became more 

prevalent. Differing the intensity levels of a signal between channels produces the effect 

of localising a signal to the left or right. 



The stereo mixture of sources is modelled using the following equations, 

where L(t) and R(t) are the left and right channel mixes. Sj represents tlze j indepen- 

dent sources, and PEi and Prj are the left md right panning coefficients respectively. 

The ADRms algorithm [76], presented in detail in Section (2.41, takes advantage of 

this 'positioning' of sources across the stereo space in order t o  perform separation. 

1.7 Introduction Review 

This chapter has served as ~II introduction t o  audio signals and how mixture signals 

me constructed. The problem of source separation has been presented, and the ap- 

plications and aims of source separation ham been discussed. The following chaptner 

presents current source sepmation techniques, and goes on to consider the advantages 

and disadvantages of these techniques. 



Chapter 2 

LITERATURE REVIEW 

In this chapter a broad review of sound source separation techniques is presented. The 

approaches are quite varied in both the theory behind their implementation, and in 

the assumptions placed upon the mixture signals they deal with. It will be shown that 

different techniques can be used to separate sources depending on the mixture model, 

and the nature of the signals in question. 

The Short Time Fourier Transform is first discussed, Section (2.1). The source sep- 

aration techniques reviewed typically use a time-frequency representation to describe 

signals. Hence it is necessary to review the short time Fourier transform before pro- 

ceeding to discuss source separation techniques. 

Following the short term Fourier transform, sinusoidal modelling shall be reviewed, 

Section (2.2). Sinusoidal modelling estimates the sinusoidal components that are present 

in a signal. These sinusoidal components are synthesised according to the estimates, 

and hence a model of the signal is created. Separation is achieved by choosing to 

synthesize components associated to the desired source. 

The DUET algorithm, presented in Section (2.3.2), is a technique which can be ap- 

plied using multiple sensors/microphones placed in an echoic environment. Differences 

in signals reaching microphones are used to distinguish individual sources. 

The ADRess algorithm, Section (2.4), is a technique similar to DUET. The ADRess 

algorithm ulitises how sources are mixed in a stereo environment. For example, in a 



pop song a guitar may sound louder in the left speaker of a stereo mixture than the 

right. The ADRess algorithm separates sources in accordance to their position in a 

stereo field. This algorithm is ail integral component of the novel system developed i11 

Section (3). 

Matrix factorisation techniques, Section (2.5.1), and the various information theo- 

retic approaches, Section (2.6), are more algorithmical and statistically based techniques 

than DUET and ADRess. They do not typically take advantage of attributes of sound 

source separation used by the human auditory system, such as positioning relative to 

the listener. Essentially a means of reproducing the sound sources is found by using 

algorithms to reduce the mixtures of sources down to discrete representations. These 

representations may consist of the frequency spectrum of a source, and a measure of 

occurrences of the source throughout the length of the signal. 

2.1 Short Time Fourier Transform 

Jean Baptiste Joseph Fourier(1768-1830) put forward the theory that all signals are 

the sum of sinusoids. Frequency analysis makes it possible to separate a signal into its 

frequency (sinusoidal) components. 

The Fourier transform allows for signals to be view in frequency and time represen- 

tations. To transform a continuous time signal, x(t), into the frequency domain, X( f ) ,  

and back again, the analysis and synthesis equations can be used: 

w 

Analysis : X (  f )  = / ~ ( t ) e - j ~ " ~ ~ d t  

Synthesis : z(t) = /* ~ ( f ) e ~ ~ " ~ ' d f  

The subject of this dissertation will consist mainly of finite digital or discrete signals, 
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Figure 2.1: (Left) The time domain representation of a signal consisting of 3 sinusoids at 4Hz,  5Hz 

and 6Hz  occurring one after another at evenly spaced time intervals sampled at  2000Hz. (Right) The 

magnitude representation of the Fourier transform of a signal that consists of 3 sinusoids at 400Hz, 

500Hz and 6OOHz respectively. The three distinct frequencies are seen as the 3 distinct peaks in the 

frequency domain. This frequency magnitude representation does not give any information regarding 

what time the sinusoids occur, only that they are present over the length of the seven second signal. 

consequently the Discrete Fourier Transform (DFT) will be used: 

N-l 

Analysis : X [ k ]  = x[n]e-i2Tkn/N 
n=O 

N-1 
1 

Synthesis : x[n] = - AT ~ [ k ] e ~ ~ ~ ~ ~ / ~  

where x[n] are discrete samples in the time domain, N is the total number of samples, 

and X [ k ]  the discrete frequency domain representation. 

Transforming a signal to the frequency domain will detail the amplitude and phases 

of the frequencies present in the signal. This informs us of the frequency information 

present in the sample signal. Figure (2.1) shows the DFT of a signal consisting of 3 

sinusoids, at frequencies of 400Hz, 500Hz and 600Hx respectively. 



It may be preferable to track the changes in frequency over time. The Short Time 

Fourier Transform (STFT) allows this, [29]. The STFT of a signal x(n), is a function 

of two variables, time T and frequency f .  

or in discrete form, 

where w is the angular frequency (w = 27~ f ) ,  N is the total number of samples, and 

w(t) represents a windowing function. Like the DFT, the STFT is also invertible, 

The same signal from Figure (2.1) is shown in Figure (2.2). Using a STFT on the 

signal, it is possible to track which frequencies are present through time. 

In order to observe the signal over time it is divided up into equally sized 'frames' 

of samples which usually are chosen to overlap each other. These frames are typically 

in sets of samples of size to the base 2, such as 1024 or 2048. This facilitates the 

Fast Fourier Transform (FFT) [15], which is a computationally efficient algorithm that 

computes a Discrete Fourier transform. 

When a signal is segmented into frames, discontinuities may occur if a sinusoid does 

not complete a full period. This will cause frequency smearing. This smearing, also 

known as spectral leakage, appears as 'tails' at the base of the peak used to indicate 

frequency. This is illustrated in Figure (2.3) and Figure (2.4). If there are a number of 

different frequency sinusoids contained in the signal, then spectral leakage may inhibit 

the observation of the individual frequency peaks in close proximity. 
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Figure 2.3: Top - A sinusoidal signal represented in the time and frequency domain. Middle - The 

same sinusoid as above but windowed before it completes the last period. This is similar to what can 

happen when choosing time frames for an STFT. Notice how the frequency representation is smeared. 

This occurs when there are discontinuities in a sinusoid. This discontinuity appears impulsive, or as 

an impulse in the time domain. In the frequency domain, a time domain impulse appears flat. When 

combined with the peak indicating the frequency of the sinusoid, this appears as 'tails' or spectral 

leakage in the frequency representation. Bottom - By using a windowing function on the middle 

signal, in this case a Hanning window, the frequency smearing is reduced. 
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Figure 2.4: Shown are two spectrograms of the same signal. Left:- Without employing hanning win- 

dows. Right:- Employing hanning windows. The second image shows a much clearer representation of 

the true nature of the signal. 

To suppress frequency smearing, windowing can be used, Figure (2.3). The advan- 

tages of utilising windows are noticeable in Figure (2.4). Shown are two spectrograms 

of the same signal, one without employing windowing, the second employing window- 

ing. The second image shows a much clearer representation of the true nature of the 

signal. When using windowing functions with a STFT, each frame is multiplied by a 

windowing function w ( t ) ,  such as a Hanning or Blackman-Harris window, Figure (2.5)) 

prior to undergoing a Fourier transform, [2]. 

When using the STFT, to improve the frequency resolution the size of the FFT 

frame can simply be increased. However this will mean that the time resolution suffers. 

A way of getting better time resolution is to use overlapping windows. This is when 

consecutive frames can then be chosen so that they overlap. For example a 25% overlap 

with a 2048 FFT size, will mean that the last 512 samples of the first frame, will overlap 

with the first 512 samples of the second frame. 

The advantage that this technique gives is that it allows for better resolution of short 

spectral events. For example, if an event occurs in only one FFT frame, it may not be 

accurately represented on a spectrogram as other larger spectral content in the frame 

may make it seem insignificant. Overlapping windows allows for better time resolution 
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Figure 2.5: Examples of two typical windowing functions used in Short Term Fourier Transforms. Left:- 

The Hann or Hanning window. Right:- The Blackman-Harris window. These windowing functions 

differ in width, for example the Hann window in narrower than the Blackman-Harris window. Different 

windowing functions can be used depending on the signals being examined. Often the Hann window is 

used, however, experimentation with different windows may result in more desirable results, depending 

on the application or experiment. 

and hence a more accurate representation of a signal through time. 

The STFT will be used throughout this document as a means of analysing signals. 

All of the reviewed techniques that follow utilise the STFT to analyse signals. Similarly, 

within the novel work, Section (3), the STFT was found to be suitable for the proposed 

technique. 

2.2 Sinusoidal Modeling 

Sinusoidal modelling [55], assumes that a signal x(t), is comprised of deterministic and 

stochastic parts. For example when a guitar string is plucked, the deterministic part of 

the sound occurs when the string vibrates freely. The deterministic part of the signal 

can be represented by a small number of slowly varying sinusoids. The stochastic part 

of the signal can be caused by the sound of a plectrum striking the string or a buzzing 

from the guitar frets. 

Sinusoidal modelling attempts to use sinusoids to model the components of the 



mixture signals. Having analysed the sinusoidal components of a signal, the sinusoids 

can then be synthesised to model the original signal. Source separation can then be 

attempted by grouping the sinusoids belonging to individual sources. Synthesising only 

the components associated with individual signals, will allow for the reconstruction of 

the selected source signals. 

Below is the model used to represent sinusoids, 

N 

z (t) = ai (t) cos (0, (t)) + r (t) [ ~ O I  (2.9) 
i=l 

where ai(t) and Oi(t) represent the amplitude and phase of the ith sinusoid at time t. 

The stochastic part of the signal is represented by r(t) ,  the noise residual [70]. The 

model assumes that the sinusoids are locally stable (the sinusoids do not exhibit rapid 

changes in amplitude, and the phases are locally linear, ie. the phase is a linear function 

of frequency). 

2.2.1 Analysis Stage 

In classical sinusoidal algorithms, the analysis window width is typically set to be two 

or more times the size of the average pitch period [33]. To get a more precise estimate 

of the sinusoidal parameters, a multiresolution sinusoidal model can be used [33]. 

The analysis stage of sinusoidal modelling begins by transforming the input signal 

into the time frequency domain using a STFT. The magnitude spectrum is then anal- 

ysed to detect the prominent spectral peaks. These peaks are then used as an indication 

of sinusoidal partials. The parameters of the sinusoidal partials are estimated, and then 

grouped into trajectories or tracks with those in successive frames [70]. However, in 

the presence of multiple sources, it may be the case that components of more than one 

source contribute to a spectral peak. For example, two musical instruments played in 

harmony, will often produce musical notes of the same frequency. This leads to over- 

lapping of the frequency components of both instruments. Hence, while the estimation 

of the actual spectral peaks of a mixture signal may be accurate, sinusoids sythesised in 
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Figure 2.6: Peak estimation for sinusoidal modelling. A magnitude peak at the frequency bin index 

A, can be recognised according to JX(W~-~) 1 < IX(wx) 1 > IX(W~+~) 1. These individual frequency bins 

will indicate the presence of a peak. However it may not indicate the actual location of the peak, 

it will simply indicate the frequency bin it is situated in. An accurate estimation of the actual peak 

location must be made. A suggested solution is to use quadratic interpolation, [51]. 

accordance to those peaks may not be correct representations of the individual source 

signals. 

To illustrate a standard method of peak detection [51], the representation of the 

STFT time frame is simplified by dropping the time frame index m, such that, X(m, wk) = 

X(wk), where wk represents the frequency of the kth bin. A magnitude peak at the 

frequency bin index A, can then be recognised according to ( X ( W ~ - ~ ) (  < (X(wx)( > 

lX(w~+~) 1 .  This is not necessarily the only means of detecting peaks, for example, 

comparing peaks with the four nearest neighbours (X(wx-2) ( < (X(wx-,) ( < IX(wx) ( > 

\ X ( W ~ + ~ ) (  > I X ( W ~ + ~ ) ~ .  The magnitude of frequency peaks may be distorted using 

hamming windows, as well as the frequency resolution not being high enough to meet 

the requirements for accurate peak detection. Utilising four nearest neighbours allows 



for more accurate peak detection, [59]. 

A peak at the frequency index X indicates the presence of a sinusoidal partial at a 

nearby frequency, see Figure (2.6). To estimate the actual frequency w, and amplitude 

A, of a sinusoid, [51] suggests using quadratic interpolation. 

Interpolation allows the construction of new data points from a discrete set of known 

data points. A polynomial curve is fit around known data points, allowing for the 

estimation of further unknown points. Using quadratic interpolation, as suggested in 

[51], will create a polynomial of the form f (w) = Aw2 + BW + C. Where the coefficients 

A, B and C are chosen so that polynomial will pass through each of the points X ( W ~ - ~ ) ,  

X(wx) and X ( W ~ + ~ ) .  Better estimates may be gained using higher degree polynomials, 

however this may negatively effect the con~putational efficiency. 

When finding peaks, some simple methods choose a fixed amount of peaks, or lo- 

cal maxima, per spectrogram magnitude time-frame. However problems can occur as 

noise components may be identified as deterministic peaks. Also, if a large number of 

harmonics are present, a fixed nuniber of sinusoids may not be adequate to model the 

sound accurately. 

Rather than choosing a fixed nuiiiber of peaks, a threshold can be set within the 

magnitude spectrum. Local maxima can then be chosen from above the threshold. Any 

number of sinusoids can be represented, however a problem occurs if peaks caused by 

noise, are interpreted as 'true' sinusoidal components that continue over a number of 

frames. Also, most natural instruments contain most of their energy in their lower 

frequencies. Therefore the amplitude of the high frequency harmonics will fall below 

the threshold and not be recognised as peaks. 

The estimated peaks in consecutive time frames, are then grouped by a peak tracking 

or peak continuation algorithm. The algorithm attempts to find the most suitable peak 

in the next frame. This is accomplished by trying to match the frequency and amplitude 

in the following frame, as close as possible to the existing trajectory in the current 

frame. This will result in a set of sinusoidal trajectories with time-varying frequencies 

and amplitudes [71]. 



The case may also occur where two or more sources have the same trajectory. This 

can typically occur with musical signals, because as previously discussed, harmonic 

overlap is a feature of western music, Section (1.4). For non-musical sources such as 

human speech for example, usually the frequency of multiple speakers voices will not be 

overlap, unless perhaps while singing. Also, speakers will not typically talk in unison, 

usually starting to speak, and finishing speaking at  different times. This will allow 

changes in sinusoidal trajectories to be tracked, simply by judging the onset/offset, and 

change in frequency of sinusoids. This method may not be able to separate sources 

that change in unison, such as will happen in a musical mixture. It is here that the 

limitations of sinusoidal modelling, in application to source separation become apparent. 

2.2.2 Separation for Synthesis 

Sound source separation, using sinusoidal modeling techniques, attempts to determine 

to which sources the trajectories belong. The separated signals are then synthesized 

using only those trajectories that belong to the individual sources. There are different 

ways to determine which tracked sinusoids are part of one particular source [69]. For 

example, harmonics of one instrument will consist of different sinusoids than another 

instrument. A typical technique to determine which harmonics belong to which instru- 

ment is to group them by when they occur, and if they constantly occur at  the same 

relative magnitudes through time. For example, the oilset and offset of a note played on 

a piano, will be different to  that of the same note played on a guitar. One instrument 

may typically have a faster attack (the note will reach its greatest magnitude quickly), 

and another instrument will decay faster (the magnitude of the sound will decrease 

faster). 

However as harmonics of different sources overlap, it will be difficult to distinguish 

which contributes most to each individual harmonic. For example, assuming two si- 

nusoids of the same frequency and phase occur together, the magnitude will be the 

contribution of their individual magnitudes. It is not immediately obvious how much 

of each source contributed to that frequency bin which contains the overlapping har- 
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Figure 2.7: Sinusoidal model and how it may be used for sound source separation. 

monics. Similarly, if the sinusoids are not in phase, phase cancellation may occur. 

This again will lead to difficulties in deciphering the contribution of each source to a 

frequency bin. 

Assuming sinusoids can then be synthesized by interpolating the parameters of the 

trajectories [70], the synthesized sinusoids are subtracted from the signal. This will 

mean that the residual noise or stochastic data is left. The residual is represented 

as filtered noise [70]. In some implementations stochastic analysis is applied to the 

residual to obtain models for the noise in the signal, for example breath noise in wind 

instruments [68]. 

Ideally all deterministic components are removed before attempting the stochastic 

approximation. If this is not the case some remaining deterministic partials cause the 

stochastic process to model these partials as noise. Consequently this will give an 

inaccurate reconstruction of the signal. 

The process for performing sound source separation with sinusoidal modelling is 

illustrated in Figure (2.7). As discussed in Section (1.4), when two sounds overlap in 

time and frequency, separating them is not a simple task, and there is no general method 

to perform this, [70]. However, assumptions can be made about the nature of sounds, 

so that sinusoids that are judged to be perceptually close can be synthesised together. 



Similarly, when dealing with music and speech, an assumption on the harmonic nature 

of signals can also be made. Essentially the process of performing source separation 

using sinusoidal modelling involves decomposing the mixture signal into its spectral 

components, and synthesising the signals with sinusoidal trajectories. 

Secondly, breaks in the sinusoidal components through time, caused by interference 

from amplitude modulation, transients, or noise from resulting sinusoids are removed 

by interpolating trajectories. The perceptual closeness of trajectories is estimated, 

essentially attempting to mimic the human classification of sinusoids to sources. For 

example when dealing with musical signals, harmonically related sinusoids will typically 

be perceived by the human listener as belonging to one instrument. In the presence of 

multiple musical instruments playing in harmony further qualities such as instrument 

timbre may be examined before sinusoids are perceived as belonging to a specific source. 

Modelling this perceptual approach to trajectory classification allows for the alloca- 

tion of sinusoids to a source using cues such as the difference in the scaled amplitudes 

of the time and frequency of sinusoids, and the harmonic concordance of sinusoidal 

trajectories. These trajectories, resulting from the perceptual cues, are classified into 

sources. 

The source separation system must then determine which sinusoidal trajectories are 

the result of colliding harmonics, and hence, assign the trajectories into their relevant 

sources. Once the trajectories are successfully allocated, the system can synthesise the 

sounds separately. 

The most underdeveloped part of the system is the classification of sinusoids into 

trajectories, and the attribution of sinusoids into their relevant sources, [70]. Typically, 

measuring the onset of sinusoids is useful, however when dealing with musical signals, 

this becomes a problem. Music instruments are usually played 'in time', meaning the 

onset of many instrument will occur at the same time. Hence, perceptual cues other 

than onsets must be used to track trajectories through time. The use of perceptual dif- 

ferences between sinusoids, and then the use of generic clustering algorithms to classify 

sinusoids, is advocated to allocate trajectories to sources [70]. It is also stated that as 



the number of sources present in the mixture increases, the difficulty in obtaining good 

separations also increases, due to the larger amounts of overlapping harmonic partials. 

Some of the perceptual measurements, as discussed in Section (1.3), that are sug- 

gested for use are amplitude and frequency changes, as well as a measure of harmonic 

concordance, represented by da(i, j), df(i, j) and dh(i, j) respectively in the formula, 

where i and j represent two different trajectories. 

where fi(t) is the frequency of the trajectory pi at time t .  Times t l  and t2 are chosen 

so that both the trajectories pi and pi exist at times tl < t < tz. Scaling coefficients fi 

and f j  are the average frequencies of trajectories pi and pj  calculated over times tl and 

t2, [70]. Similarly for amplitude, 

where ai (t) is the amplitude of the trajectory pi at time t .  

A measure of harmonic concordance is suggested, [70], which does not compare 

sinusoids to a fundamental sinusoid. Rather, a pair of sinusoids are compared, such 

that if they are harmonically related, then the relationship between their frequencies 

will have an small integer relationship, = B ,  where fi and fi are the frequencies of 

the sinusoidal trajectories pi and pi, and which are the ath and bth harmonic of a sound. 

It is assumed that the fundamental frequency is not smaller than the minimum 

frequency found in the sinusoidal model. An upper limit for the value of a and b are 

then found. 

where fmi, is the minimum frequency found by the model. The harmonic distance 

between trajectories is then measured as 

dh (i, j) = min 1 log ( )  - 1 1701 



The overall perceptual distance between any two trajectories is a weighted sum of 

the above perceptual measures. 

A larger weighting is suggested to for frequency differences, wf, than amplitude, w,, as 

frequency does not typically vary as much as amplitude. Similarly, a strong weighting 

is suggested for the harmonic similarity, as perceptual weighting of trajectory tracking 

is based largely on harmonic concordance, [70]. 

In order to classify trajectories as belonging to one source or another, the minimum 

error between each trajectory class is measured. 

where S1 U S2 = S, Sl n S2 = 0. In the above equations it is assumed that two 

sources are to be modelled. For the number of sinusoids appearing in a typical musical 

signal, the amount of calculations required to assign trajectories using Equation (2.15) 

becomes impractical. 

A potential method of reducing the number of computations would be to group 

initial sets of trajectories according to their similar onsets. Distances of the remaining 

trajectories can then be measured individually in order to assign them to their closest 

sources. 

Colliding or overlapping sinusoids and harmonics will be present in many mixture 

signals. A means of detecting overlapping sinusoids is proposed in which the distance 

between the trajectory and each source are measured, [70]. If this distance is less than 

a specified value, it can be classified as a colliding sinusoid. 

where Climit is a constant. If a trajectory pi satisfies the equation then it is probable 

that it contains harmonic partials from both sources, [70]. 



As discussed previously, estimation of the exact amplitudes and frequencies is very 

complicated, as all that is known is the detected sinusoid. It is suggested to interpolate 

the the amplitudes of colliding trajectories using the amplitude curves from other non- 

colliding trajectories, [70]. This techniques has shown success when tested on a mixture 

signal containing two musical instruments. 

Other methods to determine trajectories of sources have also been proposed. By 

using time-frequency based timbre models, [Ill,  templates of the spectral envelopes are 

used to assign trajectories to sources. The viability of this method has been shown on 

mixture signals of up to three musical instruments. However it suffers from the limi- 

tation that common onsets from different instruments do not allow robust separations. 

Also in order to apply the technique to a mixture containing a large number of signals, 

a large amount of timbre models may be required. Also, the method used to record 

the mixture may require that even more timbre models be used. For example, if the 

mixture signal is recorded in a echoic environment, different timbre models may be 

required to take this into account. 

In an environment containing more than one recording device, it is possible to use 

the spatial co-ordinates to assign trajectories, [43]. As well as modelling sinusoids, 

direction of arrival can also be used as an attribute to determine the construction of 

overlapping sinusoids. This technique has found success when used to separate speech 

signals as discussed in Section(2.3). 

Essentially, the difficulty for sinusoidal modelling is in tracking trajectories, and 

deciding on the contribution of sources to overlapping trajectories. There is no general 

method for solving this task, [70]. 

Sinusoidal modelling alone is not sufficient to represent audio signals in general, 

typically only allowing for reconstruction of the deterministic components of signals. 

Methods to represent noise and transient components may also be required to model 

separated sources, [63]. For example, with speech signals only voiced or vowel, harmonic 

sounds are easily modelled as deterministic components. 

Using sinusoidal modelling for source separation is not suitable for real time im- 



plementation. As the number of sinusoids being modelled increases, so does the com- 

putational complexity of the algorithm. This coupled with the problem of accurately 

tracking trajectories, and the difficulty in modelling non-deterministic components, lim- 

its the techniques applicability to sound source separation. 

2.3 Separation of Sparse Audio signals with more 

than one mixture signal 

Discussion in this section is centered around the DUET algorithm. This technique has 

shown success in separating sparse signals, primarily speech signals, by using multiple 

microphones and the differences in signals as they reach the individual microphones. 

The DUET algorithm is limited in its applicability in that it requires 'sparse' signals 

to perform separation, for example speech signals. 

Before the DUET algorithm is discussed a measure of sparsity is introduced. This 

is known as W-Disjoint Orthogonality. 

2.3.1 W-Disjoint Orthogonality 

W-Disjoint orthogonality (W-DO) [74], is an assumption made in relation to  sparse 

signals. It states that only components of one source signal will occupy a time-frequency 

bin at any instance. 

As discussed in Section (1.4)' it is the nature of musical signals to have a large 

amount of harmonic overlap. In the magnitude spectrum the overlapping harmonics 

may occupy the same frequency bin. When this occurs, the frequency bin will contain 

elements of more than one source, this means that the contribution of each source to 

the bin is not immediately obvious. 

Speech signals do not exhibit as much overlapping as musical signals. If a frequency 

bin contains information from only a single source, amongst a mixture of speech sources, 

the information for that bin can generally be attributed to a single source. 



If more than one source contributes to a bin, the bin cannot simply be assigned as 

belonging to one source or another. W-disjoint orthogonality is a term used to describe 

non-overlapping signals. 

Sources are said to be disjoint orthogonal, when the mixture of their time frequency 

representations do not overlap. More simply put, what this means is that having 

undergone a STFT, no more than one source occupies each frequency bin, at any point 

in time. Sparse speech signals will approximately satisfy this assumption. Generally 

however, musical signals will not satisfy W-Disjoint Orthogonality. This is because 

harmony rules in Western music leads to overlap between harmonics as discussed earlier 

in Section (1.4). 

More precisely, if the ith source in a mixture is represented as si(t), and its Fourier 

Transform in one time frame of an STFT is Si(w),  then disjoint orthogonality can be 

expressed using the inner product of two signals as, 

Wliile musical signals cannot be classified as W-disjoint orthogonal, speech signals do 

not completely satisfy the assumption either. However they are said to be approximately 

W-disjoint orthogonal. A measure of W-disjoint Orthogonality is introduced in [75], 

which is summarised as follows. 

Firstly yj(t) is defined as the summation of sources that interfere with source j ,  

A common method for separating time-frequency bins of interest, from a spectrogram of 

mixture signals, is to use a 'binary mask'. A binary mask consists of a matrix equal to 

the size of the spectrogram in question. The time-frequency bins of interest are denoted 

the value 1 in the binary-mask, correspondingly, bins of no interest are denoted by a 0. 

When measuring W-disjoint orthogonality, the frequency mask described in Equation 

(2.19) is considered. Here, frequency bins of interest are chosen if their contribution to 



the mixture signal is greater than x-dB. 

1 20l0g(lSj(kwo,i~)(/IY,(kwo,l~o)I) > X  
@j,x(k7 1) = 

0 otherwise 

where Sj(kwo, lie) and Y,(kwo, 1 ~ ~ )  are the time frequency representations of s and y 

respectively. Along with the resulting energy ratio, 

which returns the percentage of energy of source j ,  for the time-frequency points where 

it dominates the other sources by x-dB. This energy ratio rj(x) is proposed as a 

measure of W-disjoint orthogonality [75]. 

Figure 2.8: Approximate W-Disjoint orthogonality measured using the energy ratios rj(x) [50]. I t  can 

be seen that as the dB threshold (x from Equation(2.19)) increases, that the remaining percentage 

power decreases. 



Even though practical signals such as speech do not satisfy complete W-Disjoint 

Orthogonality, imperfect W-Disjoint Orthogonality is it still sufficient to perform sep- 

aration and acquires good results [50]. 

2.3.2 The DUET algorithm 

The DUET (Degenerate Un-mixing Estimation Technique) algorithm [74], is a source 

separation technique that separates of a number of sources from two mixtures. It takes 

advantage of the disjoint orthogonality of sources. The typical setup of a real imple- 

mentation consists of two closely spaced sensors or microphones, receiving a mixture of 

signals from various positions. 

As each signal reaches the sensors or microphones, there will be a difference between 

the signals received at each microphone. A signal will reach the first microphone, it then 

must travel a longer distance to reach the second microphone. This means the signal 

received by the second microphone, will appear as a delayed and attenuated version of 

the signal received by the first microphone. 

Similarly, this will occur for other sources. If the various delay and attenuation 

attributes of each source can be measured, then all time-frequency bins with the same 

attributes can be assigned to belong to sources. 

A11 underlying assumption of DUET is that of W-Disjoint Orthogonality, Section 

(2.3.1). When dealing with audio the algorithm is restricted to just speech signals as 

generally musical signals will not satisfy the W-DO condition, Section (1.4). Once the 

W-DO condition is satisfied, a binary mask can be created. This will be used to extract 

time-frequency bins, attributed to the desired source from the spectrogram. These 

chosen time frequency bins will contain information attributed to only one source, and 

can hence be used to recover separated sources. 

A typical representation of DUET is illustrated in Figure (2.9). Emitted sound 

waves will travel a different path to each sensor or microphone. Hence, signals from 

each source will reach each n~icrophone at different times, this is interpreted as a time 

delay between microphones. 



Figure 2.9: Positioning of microphones with the DUET algorithm. The distance from Source 1 to  

Mimophone 1 is shorter than that to Microphone 2. Similarly for Source 2. The extra distance 

Between microphones will mean that there will be an apparent time deIay, as the signal tretmls the 

extra distance from one microphone to another. Also, over the larger distance covered, the magnitude 

of the output of the sources will be less having traversed a longer distance, Section (1.5) 



Also, due to the distance between the sensors, there will be a difference in the 

magnitudes of the sources, from one sensor to the other. This can be explained by the 

inverse square law, whereby the magnitude of a sound will decrease as it travels the 

extra distance from one microphone to another. 

As illustrated by Figure (2.9), DUET requires the use of at least two sensors or mi- 

crophones placed close beside each other. They must be positioned, so that the distance 

between them, is less than the wavelength of the highest frequency sinusoid in the sig- 

nal. This is known as the narrowband assumption when dealing with array processing 

[74]. The reasoning behind this microphone positioning is illustrated in Figure (2.10). 

The DUET algorithm uses delay, as one attribute to distinguish sources. This delay 

is interpreted from the phase difference between each microphone mixture. A sinusoid 

that undergoes a full phase rotation, before reaching the the second microphone, will 

result in an erroneous delay estimate. In Figure (2.10), Distance B is greater than the 

period of the sinusoid, hence it undergoes a more than one full phase rotation. In this 

case the wrong phase difference will be perceived by the algorithm, hence the estimated 

delay between both microphones will be incorrect. 

In practical terms, for example CD quality sample rates of 44100Hx, the distance 

between microphones must be less then lcm to avoid phase ambiguities. A further 

problem associated with a distance of lcm is that the intensity difference between 

microphones becomes extremely small, [78]. 

Using two microphones, the mixtures signals, (xl (t) , xz (t)) , are represented as fol- 

lows [74], 

where si(t) is the ith individual sound source. bj signifies the delay of the jth sound 

reaching one microphone compared to the other and aj is the attenuation factor for the 

jth source between microphones. nl (t) and nz(t) represent independent gaussian noise. 

Transforming si(t) with a STFT results in Si(w, 7 ) .  Writing Equations (2.21) in 
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matrix form and transforming into the frequency domain results in the following, 

However due to the assumption of the W-Disjoint Orthogonality of the sources, for a 

given frequency w, all the sources will be zero except for one so that, 

X1(w, 7) 1 [ w ,  7) ] = [ a e x P w  ] Sl (w,  7), for some ith delay and attenuation coefficient. 

(2.23) 

The relative amplitude and delay parameters for a particular source can be calculated 

from, 

Here ai represents the relative amplitude difference, and 6i gives the relative delay, 

for a source between microphones. The ai and bi estimates, measured over the entire 

spectrogram, are then used as parameters to plot a 2-d histogram. This histogram will 

then show peaks corresponding to different sources, Figure (2.11). 

If sources are disjoint orthogonal, then clustering of the common amplitude and 

delay ratios leads to the mixing parameters becoming apparent. In the non-degenerate 

case (when number of sources 5 number of mixtures) matrix inversion can be used, 

Section (2.22). In the degenerate case, since the amplitude and delay ratios of sources 

are known, parts of the mixtures with the same attributes can be resynthesised in order 

to recover a separated source. 

As previously stated, DUET is not useful for separating musical signals because 

they exhibit frequency overlap. Speech signals can be separated, however a reverber- 

ant environment can cause harmonic overlap between previously W-disjoint orthogonal 

speech signals. This will cause significant deterioration in the resulting separations. 

Experimental tests of the DUET algorithm result in near perfect demixtures from 

synthetic speech mixtures, as well as speech mixtures in anechoic environments. It was 



Figure 2.11: 2-d histogram containing 5 peaks. These 5 peaks correspond to different amplitude 

attenuation and delay coefficients, indicating the presence of 5 distinct sources. A binary mask is then 

used to extract the desired source(s) from the time-frequency spectrogram, in accordance with their 

a, and 6, coefficients corresponding to  a specific peak in the histogram, taken from [74]. 



found that the mask generated by DUET to separate sources was very close to an ideal 

mask. However in the case of echoic mixtures the performance was judged to decrease. 

Demixtures were found to contain some crosstalk and distortion, however the resulting 

separations were often intelligible, [79]. Also as discussed earlier, the requirement for 

small, closely spaced microphones remains a problem in terms of the practical, real 

world applicability of the DUET algorithm. The current direction of the technique is 

to extend DUET by using a greater number of microphones. 

Extensions have been made to the original, two-channel anechoic mixture DUET al- 

gorithm [74]. The DESPRIT technique extends upon DUET by utilising more than two 

mixtures [38]. DESPRIT (DUET - ESPRIT) utilises the ESPRIT (Estimation of signal 

parameters via rotational invariance techniques [53]) direction of arrival technique. 

There are three extensions presented, firstly hard DESPRIT is a multi channel 

extension of the original technique, where M > 2 mixtures fall under the W-disjoint 

orthogonal assumptions. Secondly, soft DESPRIT allows M - 1 sources to be active 

in a single time-frequency point, as long as the same frequency point is not occupied 

for more than M - 1 adjacent time points. Finally, echoic DESPRIT allows for the 

separation of sources from an echoic mixture environment, restricted by the assumption 

that the echoic reflections of sources travel up to M/2 paths between sensors, and the 

number of reflections present at a time-frequency point is less than M/2. 

The model used to represent the M > 2 channel sensor mixture is presented in 

Equation (2.25). 

The aim of DESPRIT is to demix N source signals, Sl (w, T) , . . . , SN (w, T) ,  from M 

mixtures X1 (w, T) , . . . , XM (w , T) . The attenuation and delay coefficients of the nth 



signal, a,, and delay d, respectively, upon reaching the lst sensor, are represented by 

A,(w, r) = ane-jUdn. The delay and attenuation of the nth signal between adjacent 

sensors, an and 6, respectively, are represented by &(w) = a,e-jwb". The terms 

Vi (w, r) , % (w, r) , . . . , VM (w, r) represent independent and identically distributed noise 

terms [38]. 

The DESPRIT algorithm creates a time-frequency data matrix of mixture signals, 

Z(w, r), Equation (2.26), from the M mixture signals. 

The matrix consists of two smaller matrices of the mixture signals. A matrix of the 

first M - 1 mixture signals (xl (t) -+ XM-I (t)), is above the last M - 1 signals, (x2(t) + 

xM(t)). Singular value decomposition (SVD), [48], is then used to find a subspace 

decomposition of the time-frequency covariance matrix, 

where E(.)  is the 'Expectation' operator, and where ( . ) H  is the conjugate transpose 

[371. 

Singular value decomposition is a technique used to factorise rectangular matrices, 

which can be applied to problems such as computing pseudo inverses, and least squares 

fitting of data. SVD states that if A is an m x n matrix, then there exists a factorisation 

of the form, [28]: 

A = U D V ~  (2.28) 

where U is an m x n matrix, whose columns consist of the eigenvectors of AAT. 

The eigenvector and eigenvalue terms are defined as follows: If A is an n x n matrix, 



a scalar X is an eigenvalue of A if there is a n o n  - zero column vector v in Rn such that 

Av = Av. The vector v is then an eigenvector of A corresponding to A, [24]. 

D is a non-negative m x n diagonal matrix (zeros everywhere except along the main 

diagonal), consisting of the square roots of the eigenvalues of ATA and AAT. V is a 

n x n matrix whose columns consist of the eigenvectors of ATA. 

For example, given the system, Ax = b, in general it may not always be possible to 

find the vector x which solves the system. However, one can attempt to  minimise the 

Euclidean norm (IAx - b(I2 to solve the problem. A solution will be given by finding 

the 'pseudo inverse': x = A+b, where (.)+ denotes the pseudo inverse. 

The pseudo inverse, also known as the Moore-Penrose pseudo inverse, A+, in an 

m x n matrix that is subject to the following laws: 

AASA = A 

ASAAf = A' 

( A A + ) ~  = AA+ 

( A + A ) ~  = A'A 

If A can be decomposed with a SVD, then the pseudo-inverse can be found from AS = 

UDtVT, where Dt  is the transpose of D where each non-zero entry is replaced by its 

reciprocal. 

The time-frequency matrix, from Equation (2.25), can be expanded out: 

where z(w, T) contains the top M - 1 rows of A(w , T), and @(w , T) is a diagonal matrix 

with entries corresponding to the mixing parameters q51(w, T), q52(w, r), . . . , q5N(w, T). It 



follows that the spatial covariance matrix Rzz(w, T), is of the form 

where Rss = E{[s(t)][s(t)lH), and Rvv = E{[~( t ) ] [v ( t ) ]~ ) .  The SVD of Equation 

(2.34) is decomposed into the form 

Estimations for the M - 1 mixing parameters can be found from the eigenvalues of 

( E t  E2},  see Equation (2.36), 

where [.I+ denotes the Moore-Penrose pseudo-inverse [38]. The M - 1 attenuation and 

delay estimates are then given as, 

- 
Gm = l $ r n ( ~ ~ ) I ,  

h = -&~$rn(w,) ,  

where m = 1,. . . , M - 1 

A two-dimensional histogram of the parameter estimates can then be created using Grn 
- 

and 6,. As in DUET, the histogram will contain N peaks, thus indicating the presence 

of N sources. Re-synthesis back into the time domain follows as the last step of the 

algorithm 

DESPRIT shows improvement over 2-channel DUET techniques by reducing the 

amount of spurious peaks found on the attenuation-delay histogram. Also, the exten- 

sions of soft and echoic DESPRIT allow for the relaxation of the W-Disjoint Orthogo- 

nality assumptions [38]. However DESPRIT requires the use of multiple sensors which 

may not always be feasible in real-world implementations. 



2.4 The ADRess algorithm 

The ADRess algorithm [76], has similarities with the DUET algorithm. DUET per- 

forms separation by taking the input mixtures from two sensors placed a short distance 

apart from each other. This induces a delay and amplitude difference between sources. 

However ADRess works on the principle that most modern music is recorded in stereo. 

The ADRess algorithm effectively views the localisation of sources on the stereo field 

from far left to far right. Rather than having a single mixture signal containing all the 

source signals, with stereo recordings two separate mixture signals are used, typically 

referred to as the left and right channels. 

Since becoming popular in the early 60's, musical sources are distributed across two 

stereo channels. One means of distributing sources of two channels is by using a pan 

pot. The pan pot allows the intensity of each source to be varied between both channels 

of a stereo mixture. This produces the effect of localising the sources between the far 

left and far right. 

Sources of equal intensity in both channels will appear in the center of the stereo 

field. Whereas, for example, a source with greater intensity in the left channel than 

right channel will be localised to the left. 

Stereophonic mixing allows for sources to be localised within a stereo mixture. For 

example, in a pop song a guitar may be positioned to the 'far left' of the stereo space, 

or, the singing or vocals may appear in the center. 

In [76], the mixing process of the sources is expressed as, 

L(t) and R(t) are the left and right channel mixtures. Sj  represents the j indepen- 

dent sources, and Plj and Prj are the left and right panning coefficients respectively. 



Figure 2.12: Stereo space representation. Here a source is located just to the right of the center of the - 

stereo field, as well as a second source towards the far right of the stereo field. 

The intensity ratio between the left and right channels for the jth source is then ex- 

pressed as, 

The intensity ratio implies that Plj = g(j).Prj.  In order to remove the jth source, 

the right channel, R, is multiplied by g ( j ) .  This makes the intensity of the jth source 

equal in both the left and right channels, L and R respectively. Then simply L - g ( j ) .  R 

will cause the jth source to cancel out. In practice it is suggested to use L - g(j).R, if 

the jth source is predominantly in the right channel, [76]. Conversely, R - g(j).L, is 

used if the source is predominantly located in the left channel. This construction is used 
Plj - 1 so that g will always be between 0 and 1. For example if - 2 + g = 0.5. Whereas, 

using the same panning coefficients with an alternate construction, 2 = f + g = 2.0. 

A source may also be panned entirely to the right hand side 2 = + g = GO. With 

g tending towards infinity, it becomes impractical to perform ADRess. For this reason, 

the suggested construction above is used within the ADRess algorithm. 

To recover a cancelled source, the signals are examined in the time-frequency do- 



main. A STFT is carried out on Equations (2.38) and (2.39), resulting in 

where Wn = e-j"lN, and Lf(,) and Rf(k) are the single frame FFT representations of 

the left and right channels. The azimuth resolution P is introduced, which will indicate 

how many bins are used to represent the stereo-field. This gives the amount of scaling 

values of g used to create the frequency azimuth plane, 

for all i, where 0 5 i < p. Larger ,8 values will give better azimuth discrimination, but 

will also have larger computational requirements. Positions on the azimuth plane are 

then plotted using the following equations: 

for all i where, 0 < i < p, and k where 1 < k < N. In order to view the azimuth 

position more clearly, the above equations are redefined. 

These equations, realised by the iteration of i ,  will result in an azimuth plane which 

will contain peaks at the estimated location of sources, Figure (2.13). 

As previously discussed, with real inusical signals there is significant harmonic over- 

lap resulting in 'frequency-azimuth smearing'. This occurs when the energy from more 
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Figure 2.13: Frequency Azimuth Plane for the right channel containing two sources. The harmonic 

structure of both sources is apparent. Also a partial can be seen. I t  is not immediately obvious to 

which source it belongs. The azimuth subspace width, H, is set so that the partial is included as part 

the first source, from [76]. The size of the azimuth subspace width H in this case is chosen subjectively. 



than one source is in a single frequency bin. The resulting peaks in the frequency- 

azimuth plane appear away from the actual position of the source. To combat this 

problem an "azimuth subspace width", H is defined, 1 5 H 5 P. The size of H can 

be chosen subjectively. This allows the recovery of partials within a neighborhood, 

Figure (2.13) illustrates this (Partial in this case refers to a constituent frequency of a 

sound which might not be harmonically related to actual harmonics contaminated in 

the original sound being examined). 

The size of H is important, if it is too large then information from multiple sources 

may be recovered, rather than just the the information of the desired source. Also 

if H is too small then missing frequency information will result in poor resynthesis. 

Figure (2.14) represents the stereo azimuth space of a musical audio sample. The peaks 

indicate the presence of a source in the stereo field through time. It shows that there is 

a lot of sources present in the center of the stereo space. Also sources appear slightly 

to the right, as well as on the far left of the stereo space. 

To resynthesize a source, the discrimination index d is chosen, such that 1 < d 5 p. 
d will be used, in conjunction with H to denote the section of the azimuth plane to be 

resynthesised. Once the best azimuth subspace width H has been chosen, the region 

to be resynthesised will have d at its centre, and be spanned by d - H/2 and d + H/2. 

The peaks to be resynthesised are then selected using, 

The time domain representation of the separated signal can be re-synthesised using the 

phase information from the original mixture signal. Combining the separated magni- 

tude spectrogram, and original mixture phases, an inverse FFT is carried out. Rather 

than using iterative techniques to estimate phase information, [57], using the original 

mixture phases was found to result in satisfactory source separations in a comparative 
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Figure 2.14: The figure shows the position of sources within the stereo field, and shows when sources 

are active through time. 



examinat ions, [5]. 

Due the effects of the separation by the ADRess algorithm, the estimated signah 

will not preserve the windowed characteristics of the signal. Because of this, a standard 

overlap and add scheme cannot be used for the reconstruction of the signal. To remedy 

this, a synthesis window, or second windowing, is employed to remove discontinuities 

in the resynthesised signal. A 75% overlap is used so that amplitude modulation does 

not occur in the resynthesised signal. Effectively windowing twice using a 50% overlap 

results in amplitude modulation, whereas a 75% overlap results in unity amplitude gain. 

The ADRess technique allows the discrimination of one source from another in the 

azimuth plane. Musical sources may have many overlaps. These potential overlaps are 

chosen to be part of one source or another using a 'discrimination index'. As shown 

in Figure (2.13), the discrimination index in this case the azimuth width H, is chosen 

to include the the partial in the center of the azimuth subspace. In situations such as 

this, the partial may contribute to improve the perceived quality of a source, hence its 

inclusion for resynthesis. However, if the width of the discrimination index H is too 

large and includes partials belonging to undesired source signals, the perceived quality 

of the separation will be worse than if a smaller discrimination index had been utilised. 

The discrimination index can be varied according to the best perceived re-synthesis 

by the listener. Once the partials of a source relating to a region of the azimuth plane 

have been decided upon, they are re-synthesised. 

ADRess has shows itself to be a successful sound source separation algorithm. Most 

modern music is recorded in stereo so it a useful audio source separation technique. 

However, it will not be applicable to single channel mono recordings. A limitation 

of ADRess also depends upon where in the stereo space sources are positioned. It is 

common practice for a number of instruments to be positioned in the centre of a stereo 

space, for example bass and vocals. In this situation separation of bass and vocals is not 

possible using just the ADRess technique. Essentially the quality of source separation 

depends on how well positioned the source instruments are in the stereo space. 

By modifying ADRess, it is possible to perform speech separation in an anechoic 



environment. Similar to the DUET algorithm, Section (2.3.2), [12] proposes using 

the delay or phase differences of sources between two microphones. Instead of using 

difference in intensity of sources between channels to plot a frequency azimuth plane, 

see Equation (2.44), the apparent delay of a source between microphones is used. To 

measure the delay, the phase difference between the sensors is utilised. 

A z ~ ( k , i )  = ILLf(k) - S w g @ ) .  R f (k) / (2.50) 

A z ~ ( k , i )  = lLRf(k) - L ,jwg('i' . L f (k) 1 (2.51) 

Similar to DUET the time delay between microphones must be less than half the 

sample period, so that the phase difference is always less than n-. Otherwise, unwrapped 

phase will lead to erroneous phase estimates. To avoid phase ambiguities, as discussed 

in Section (2.3.2), in practical terms the distance between microphones must be less 

then lcm for sample rates of 44100Hz, see Figure (2.10). 

M-ADRess (Modified ADRess), [12], demonstrates that it is possible to separate 

speech signals based simply on the delay estimates. This differs from ADRess which 

uses the intensity and phase differences to distinguish sources. Also DUET, where 

attenuation and delay between sensors is used to distinguish sources, M-ADRess shows 

that it is possible to use only the delay between sensors to accomplish this. However, 

similar to DUET, the W-Disjoint Orthogonality constraints apply to M-ADRess. These 

constraints will limit its applicability in real world scenarios. 

2.5 Matrix Factorization Techniques 

2.5.1 Non-Negative Matrix Factorization 

Non-Negative Matrix Factorisation(NMF) [go], is a statistical analysis technique that 

can be used to perform source separation. Physical or 'real world' attributes of sources, 

such as positioning or harmonic similarity, have be used to perform source separation, as 



previously discussed. As a means of separation, NMF does not typically take advantage 

of these physical attributes that are used by the human auditory system. 

Non-Negative Matrix Factorisation performs source separation by finding the best 

mathematical fit of the sources, into a set of basis functions. The term basis function 

here is a degeneration of the vector space from linear algebra. A basis function is defined 

as follows: If V is a vector space, a set of vectors in V is a 'basis' for V if the following 

conditions are met: 

1. The set of vectors spans V. [24] 

2. The set of vectors are linearly independent. 1241 

Essentially, if {wl, w2 . . . wk) are a set of basis functions of a vector space W, then 

any vector in W can be described as linearly combination of {wl, w2 . . . wk). For 

example a vector vi in W can be expressed as a linear sum of the basis vectors, 

vi = alwl + a2w2 + - . + anwn, where ai is a constant representing the amount of 

the ith basis vector that contributes to the vector vi. 

In relation to audio, a basis function may consist of the spectral representation of 

a single note played on a musical instrument. A chord, when multiple notes are played 

simultaneously, may then be made up of a linear sum of the basis functions of notes 

that contribute to the chord. 

A matrix is said to be non-negative when all of its elements are equal to or above 

zero. For a i j ,  an element of a non-negative matrix, ai,j > 0 for all i, j [37]. Audio is 

well suited to the use of non-negative matrices. Transforming an audio signal using 

a STFT, a magnitude spectrogram can be produced in which every element will be 

greater than or equal to zero, thus fitting the requirements of a non-negative matrix. 

Formally the NMF algorithm consists of solving the following problem, given a 

non-negative matrix V, find approximate non-negative matrix factors W and H such 

that: 



The n x m matrix V is a data set, which consists of m examples of multivariate, n 

dimensional data vectors. V is factorised into an n x r matrix W, and an r x n matrix 

H. r is typically chosen to be less than m and n. This results in W and H being smaller 

than V, and will thus give a compressed version of the original data matrix [go]. 

In order to find an approximate factorisation, a cost function is required so that 

the quality of an approximation can be measured. Given two non-negative matrices, A 

and B,  two cost functions are suggested [80]. The Euclidean distance measure between 

matrices A and B,  

The second suggested measure is the Kullback-Liebler divergence, 

where A and B are regarded as normalized probability distributions, so that C, AU = 

C, B i j  = 1. 

The task for Non-negative matrix factorisation is then to iteratively minimise 1 1  
V - W H  [ I 2 ,  or D(V 11 WH), with respect to W and H, where W, H 2 0. When 

applying Non-negative matrix factorisation to sound source separation, [77] formulates 

the problem as 

Each sound source n, is characterised by its power spectrum Sn(f), and its time varying 

gain, at,, of the nth source in time frame t. Xt(f) is the power spectrum of the mixture 

in the time frame t, and Et(f) is the error term. Expressing the above in matrix form 

gives, 

where X represents the power spectrum of the input signal. A is the mixing matrix, 

and S the source matrix. E represents the error spectrum. The following is an outline 



of the NMF algorithm detailed by Virtanen [77]. The Cost Function used, e, is defined 

as 

Each of w(g), w ( ~ )  and w(") are scalars relating to the terms and weights for optimization 

of reconstruction, sparseness, and temporal continuity respectively. The functions are 

defined as follows 

where at,,, indexes each entry in the the matrix A, using the co-ordinates t and n. And 

The algorithm begins by first initialising A and S as white noise. S is updated using 

the update rule suggested by Lee and Seung [77], 

where .* is element-wise multiplication and ./ is element-wise division. A is updated 

by employing the steepest descent method [go], 

where Vek is the gradient of e with respect to A at the point (Ak, Sk+l), and Xk > 0 is 

the step size. Any negative elements of Ak+l are set to zero. The columns of Akfl are 

normalized, and the rows of Shl are re-scaled, so that the product Ak+'SW1 remains 

the same as that of X. The iterations of Sk+' and A"' are then repeated, until the 

cost function e, is smaller than a chosen tolerance. 

As an illustration for the above algorithm, Virtanen employs it to separate drums 

from music signals, [77]. Drums are chosen, in particular the Bass and Snare drums, 



because they are present in most popular music. Secondly, they occur often, and 

have high amounts of energy. Also, drum and percussive sounds typically have similar 

spectral shapes each time they occur. The same cannot be said for melodic instruments, 

as each note will have a different spectral representation. Also a smaller number of 

percussive sounds, means a smaller source matrix, S ,  of spectra that the algorithm 

must model. 

The system was tested by attempting to transcribe the occurrences of the bass and 

snare drum in synthesised MIDI tracks. By using MIDI tracks, the resulting tran- 

scription could be compared with the actual location of the drums in each track. In 

experiments using 50 test signals, consisted of 20 second samples of western music, 

the error rate was reported as 34%, [77]. Given that this techniques is proposed as a 

drum transcription algorithm, the large error rate indicates that further work must be 

undertaken before it can be seen as a reliable solution. 

NMF is well suited to transcribing drums because of the nature of their spectral 

representation. As discussed earlier, a drum is pitch stationary. It does not play 

different notes like for example a piano or fiddle. This ineans that essentially the 

spectral shape of a drum remains constant throughout the track. Because of this, 

drums will be among the most commonly separated components amongst polyphonic 

signals [77]. Melodic instruments however are more difficult to separate. Each note will 

be separated individually because each note will have a different spectral shape. 

In [58], NMF is employed to perform polyphonic music transcription. As an illus- 

tration of how NMF works, the following synthetic example is used. Using the familiar 

V = WH, V is the synthetic spectrogram shown in Figure (2.15). 

After applying NMF the resulting matrices W and H can be seen in Figure (2.16). 

In this example the matrix H represents the temporal information, and W the frequency 

spectrum information. This is a very contrived, theoretical example, but the frequency 

of each note is obvious. However [58] also shows that the same basic principle can be 

applied when many notes are present. 

NMF is applicable to mixtures of speech signals also. It is shown in [81], that NMF 



Figure 2.15: A synthetic spectrogram used to illustrate NhW 1681. This mock spectrogram coasists of 

sinusoids at two different frequencia, that occur at differat stages in time. 

Rows of H 

Figure 2.18: The f~~ctorisatian of the synthetic spectrogram shown in Figure (2.1 5 )  1581. The left figure 

represents the presence of sources through time. In this case there are two sources. The right figure 

represents the frequencies the make up each source. In this synthethic example, each source consists 

of just a single frequency peak. 
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Figure 2.17: Spectrogram of a signal composed of auditory objects with time-varying spectra, and its 

factors obtained by convolutive NMF, [42] 

can be used to estimate a representation of a sparse phoneme dictionary. The sparse 

dictionaries were first learned and then used to separate signals. It is claimed that the 

performance of the sparse dictionaries performs only slightly worse than dictionaries 

learned on a complete data set [81]. 

The example illustrated in Figure (2.15) and Figure (2.16), as noted above, is a sim- 

plified spectrogram. Convolutive Non-Negative Matrix Factorisation, [42], has been in- 

troduced to deal with more complex mixtures such as those illustrated in Figure (2.17). 

This example contains two signals, which have differing frequency sweeps over time. 

The previously discussed NMF method, modelling two sources, will result in a set of 

basis functions that are a combination of both sources, not an individual representation 

of each, [42]. For example, if two individual spectral events occur at the same time, 

NMF may model a basis function on the sum of both of these, rather than modelling 

two individual basis functions. 

Convolutive NMF represents objects as sequences of spectral events, and their cor- 

responding activations in time. As shown in Figure (2.17), the objects are modelled 



over each of their progressions through time. The objects activation pattern can then 

be modelled through time. The model proposed for convolutive NMF is shown below, 

where V E R ~ O ~ M x N  is the input to be decomposed, Wt E R20,MxR and H E J W 2 O y N x R  

are the two factors to be decomposed into, and T is the length of each spectrum 

sequence. In Figure (2.17), T = 2 seconds. The ith column of Wt describes the spectrum 
i-+ 

of the ith object, t time steps after the object has begun. (.) denotes a column shift 

operator that moves its argument i places to the right, as each column is shifted to the 
+i 

right, the leftmost columns are zero filled. Conversely, the (.) operator shifts columns 

off to the left, with zero filling on the right [42]. 

The cost function suggested for the convolutive model is 

where A is the approximation of V, defined as A F;: CTG' Wt. g. Conventional NMF 

uses a cost function to update two matrices, W and H at each iteration. However 

convolutive NMF requires T+ 1 updates for Wt and H. The update equations proposed 

by O'Grady [42] are 

At each iteration, H and Wt , for all t ,  are updated. H is updated to the average results 

of its updates for all Wt, [42]. In the case of T = 1, convolutive NMF reduces to 

conventional NMF. 

A modification to the convolutive NMF algorithm is introduced in [42]. This opti- 

mises the algorithm for use with signals with sparse spectral representations, for exam- 

ple speech signals. The suggested improvement to the original cost function, Equation 



(2.61), is shown below, 

Here an additional constraint is placed upon the sparseness of H by minimising the 
n L1-norm (Ixll = CrZ1 Iq.1) of its columns, [42]. The parameter A, chosen on an ad hoc 

basis [42], controls the trade off between sparseness and accurate reconstruction. 

This new update rule then requires modified update rules which are detailed i11 

[42]. The convolutive NMF algorithm was tested on audio spectra, including a simple 

musical signal. It was found to accurately model two convolutive basis functions for 

simple spectral events, such as those illustrated above, Figure (2.17). 

A simple musical signal was synthesised, which consisted of the fundamental notes of 

a midi based electric guitar. The notes played were the six notes of the G chord, which 

consisted of 98.00 Hz(G), 123.47 Hz(B), 146.83 Hz(D), 196.00 Hz(G), 246.94 Hz(B) 

and 392.00 Hz(G). Figure (2.18) illustrates the example used. It consists of the notes 

played in order of increasing frequency, followed by a 'chord' consisting of all 6 notes 

played simultaneously, followed again by the notes in order of decreasing frequency. In 

Figure (2.18), rows 3 and 4 consist of the time and frequency estimations using a sparse 

NMF representation. The chord consisting of a mixture of the other basis functions is 

modelled as a new basis function. Rows 5 and 6 are the results of convolutive NMF, 

using this technique the chord is represented as a sum of the other basis functions. 

Using the sparse assumption with convolutive NMF, an improvement can be made 

upon the originally described convolutive NMF. This shows noticeable gains when at- 

tempting to model the chord from the test signal. The original convolutive NMF models 

an entirely new basis function. Whereas sparse convolutive NMF models the chord us- 

ing a linear addition of the previously discovered basis functions. 

Non-Negative Matrix Factorisation has shown to be an effective means of source 

separation on simplified musical signals, and also for speech signals [81]. However NMF 

also has limitations. Effectively basis functions are modelled for each different part of 

a signal. This is useful for particular tasks such as transcribing drums. However, in 
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Figure 2.18: Application of Convolutive NMF to a synthetic music signal, from [42] 



order to transcribe a melodic instrument, a basis function will be required for each note. 

While a melodic instrument was used to illustrate sparse convolutive NMF above, it is 

a theoretical example which will rarely occur in in practice. 

In the presence of polyphonic musical signals, a large amount of basis functions 

will be required. With the increase in basis size, to achieve separation, a method of 

grouping basis functions according to source is required. In practice it is difficult to 

obtain correct clustering according to similarity in time or frequency, [23]. The problem 

of decreasing the basis size needed to model musical instruments is explored with Shifted 

Non-Negative Matrix Factorization, Section (2.5.3). 

2.5.2 Constant Q-Transform 

Before describing Shifted Non-Negative Matrix Factorisation, Section (2.5.3), the Con- 

stant Q-Transform is discussed. 

When a note is produced by a musical instrument, typically the spectral represen- 

tation will consist of a sinusoid at the fundamental frequency, as well as harmonics, 

consisting of sinusoids at integer multiples of the fundamental frequency. For example, 

the synthetic notes shown in Figure (2.19). 

The Constant &-Transform (CQT) was put forward as an alternative to the Fourier 

Transform because the Fourier transforni does not efficiently map musical signals [lo]. 

The CQT creates a log-frequency resolution spectrogram. The log frequency resolution 

is better suited to musical data. In western music, frequencies of harmonics are geo- 

metrically spaced, rather than linearly spaced. A further convienience of the CQT is 

that it resembles the human auditory system. The human auditory system takes longer 

to perceive low frequencies, a computer using the CQT to analyse signals will now also 

have this attribute. This is convenient when dealing with musical signals, where low 

frequencies are usually less agitated than higher frequencies, [7]. 

Typically musical notes are made up of a sinusoid at a fundamental frequency, and 

a set of harmonics made up of sinusoids spaced at integer multiples of the fundamen- 

tal frequency. This is shown in Figure (2.19), where the frequency representation of 
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Figure 2.19: Frequency representation of two artificially produced musical notes, A4 and C5, whose 

fundamental frequencies are 440Hz and 523.25Hz respectively. Also shown are 4 harmonics at integer 

multiples of the fundamental frequencies of each musical note. 

two synthetic musical notes (A4 and C5) are illustrated. For many instruments, the 

ratio of magnitude of subsequent harmonics to that of the fundamental frequency will 

be approximately the same for different notes. This can be observed in Figure (2.19). 

Here the magnitude each harmonic belonging to both notes, are of approximately the 

same ratio of magnitude to the fundamental frequency. This is similar to the situation 

where two different notes are played on the same instrument. For example, the fur- 

thest harmonics on the right are of the same ratio of magnitude to their fundamental 

frequencies. It must be noted that this is not strictly true, it is an approximation [86]. 



Figure 2.20: Log frequency representation of two artificially produced musical notes, A4 and C5, whose 

fundamental frequencies are 440Hz and 523.25H.z respectively. Also shown are 4 harmonics at integer 

multiples of the fundamental frequencies of each musical note. 
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If the magnitude peaks corresponding to the A4, are shifted so that the fundamental 

frequency is positioned at the fundamental frequency of C4, while the fundamental 

frequencies align, the harmonics will not. This is because the harmonics of A4 are spaced 

at multiples of 440, while those of C4 are spaced at multiples of 523.25. Essentially a 

different note from the same instrument, will appear to have logarithmically shifted the 

spectrum of the original note. 

The CQT introduces a constant spectral pattern between notes played on an in- 

strument. This pattern can then potentially be used to perform instrument recognition 
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[18] or sound source separation [86]. 

Similar to the FFT, the Constant Q-transform (CQT) represent frequency infor- 

mation using a series of bins. However, unlike the FFT, the CQT uses geometrically 

spaced bins. The center frequencies of the bins can be obtained by first choosing a 

minimum frequency fo. The other center frequencies are then obtained using 

where b is the number of frequency bins per octave. The bins are then made adjacent to 

each other by choosing the bandwidth of the kth bin as Akcq = fk+l  - f k  = fk(2t - 1). 

Then the constant ratio of frequency to resolution is Q = & = (2t  - I)-'. So by 

appropriate choice of fo and b the Q-transform can be used to center the frequencies 

so that they correspond to musical notes. With a window length of N, = Q$, where 

f, is the sampling frequency. The CQT is defined as 

where x(n) is the signal and WN, is a windowing function of length Nk. 

With the Q-transform the spectral resolution is improved at lower frequencies and 

time resolution improved at higher frequencies. This resembles the human auditory 

system. With the CQT, harmonics of musical notes form a 'pattern'. These patterns 

are characteristic of the timbre of the instrument. Difference in timbre is an attribute 

which allows one to distinguish between sounds emitted from different instruments. 

Timbre is that characteristic of a tone which depends on its harmonic structure [Zl]. 

Making the assumption that the relative strengths of each harmonic are the same, when 

the fundamental frequency changes, the relative position of the harmonics, against that 

of the fundamental, remains constant. 

2.5.3 Shifted Non-Negat ive Matrix Factorization 

Shifted Non-Negative Matrix Factorisation (SNMF) [86], is an extension to NMF which 

can be applied as a single channel source separation technique. As discussed above, if 



NMF is to be applied to melodic instruments, a large amount of basis functions will 

be required. Shifted Non-Negative Matrix Factorisation attempts to overcome this 

limitation. It differs from NMF in that it represents a source as translations of a single 

frequency basis function, rather than a different basis function for each note. 

As previously discussed, drums do not change pitch so will only require one basis 

function per drum. However, many musical instruments do change pitch, and hence 

require a different frequency basis function for each note. SNMF uses a single frequency 

basis function to represent a note of an instrument. When in the log-frequency domain, 

Section (2.5.2), by shifting the basis function of a single note, each note of the instrument 

can be modelled [86]. As described in Section (2.5.2), this reduces the number of basis 

functions required, in order to model multiple notes of an instrument. 

Notes played on an instrument will not be an exact translation of the original fre- 

quency basis function. This is due to the fact that the timbre of an instrument will 

change from note to note. However the assumption is made that shifting the frequency 

basis function is valid over a limited pitch range [86]. This will differ from instrument 

to instrument, certain instruments obeying the assumption better than others. 

In [86], tensors are used to perform Shifted Non-Negative Matrix Factorisation. 

Tensors allow for the representation of multiple shifted versions of a single basis function 

used by SNMF. Where NMF uses a 2-dimensional matrix, for example, an n x n matrix, 

in their use here tensors can be thought of as a n-dimensional matrix. For example, 

a 3-dimensional matrix, where the n x n x 1 matrix represents n instruments, over n 

time-frames, then n x n x 1 + 12 will represent the twelve notes in a musical octave. 

Following the notational conventions put forward by [4], and used in [86], tensors are 

notated using calligraphic uppercase letters, for example 7. The indexing of elements 

in a tensor are usually denoted as X i f .  However the convention set out in [86] will 

be continued here, so that Xilj will be denoted as X ( i , j ) .  If W is a tensor of size 

Il x ... x IN x J1 x ... x JM, and Y is a tensor of size Il x ... x IN x K1 x ... x Kp ,  

then the contracted product multiplication of the two tensors along the first N modes 



is given by 

With the notation in use here, the modes that are multiplied are specified in the sub- 

scripts that follow the angled brackets. 

To perform translations, for example to translate an n x 1 vector, an identity matrix 

can be translated and multiplied as such, 

If k possible translations are required, then the translation tensor 7 of size n x k x n can 

be grouped from the k translation matrices. For example if k = 12, then the 12 notes in 

a musical octave can be represented. If r sources are present then the frequency basis 

functions are contained in an n x T tensor A. Translated basis functions can then be 

obtained by 

If S is a tensor of size k x r x m that represents the amplitude envelopes of each 

source translation, then the input or mixture spectrogram X is approximated by 

In [86] it is suggested to use the KullBack-Leibler divergence that is employed in 

NMF, Equation (2.54) 

D ( x  1 1  (Ps){2:3,1:2)) = 



along with the following multiplicative update equations : 

where [.*I denotes element-wise multiplication, [./I denotes element-wise division and 

O is a tensor of ones of size n x m. D is defined as 

The update equation for A is given as: 

where W = ( ' T S ) ( I , ~ )  and & = ( ~ Q ) { l , l l  

Once the initial estimates of A and S are set as positive values the multiplicative 

updates ensure that the factorisation is non-negative [86]. It is also stated that the 

proofs of convergence from [BO] do not apply, however in practice the algorithm was 

found to converge reliably [86]. 

Shifted Non-negative Matrix Factorisation was shown to be an improvement upon 

NMF when transcribing musical signals [86]. An example of which is illustrated in 

Figure (2.22). Here the algorithm specifies that there are two sources present. Also the 

algorithm is set to use 11 frequency translations, so as to represent all possible notes in 

an octave. However the employment of the constant Q-transform has a drawback. I t  is 

useful in allowing translations of musical notes, but the inverse Q-transform is not as 

efficient as the inverse Fourier transform. Although approximations are possible [87]. 

Similarly, mapping from the log-frequency domain to the linear frequency domain is 

an approximate mapping. This approximation can have an adverse effect on the sound 

quality of the resynthesis, [23]. A method to overcome this problems involved with the 

resynthesis stage, is to use the recovered spectrograms to create masks, which can then 

be used to filter the original spectrogram, [54]. 



Figure 2.22: Shifted non-negative Matrix factorisation performed on a synthetic mixture of clarinet 

and piano. The first figure is the original mixture of the piano and clarinet in the Constant-& domain. 

The second figure is the extracted clarinet example, also in the Constant-Q domain. 
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2.6 Information Theoretic approaches 

Like Non-Negative Matrix Factorisation, Information Theoretic approaches such as 

principal Component Analysis (PCA) [9 11 and Independent Component Analysis (ICA) 

[88] can be used as source separation techniques. 

These techniques are typically statistical based approaches, and do not nessecesarily 

take advantage of known attributes of the signals they are applied to. For example, 

how the DUET algorithm takes advantage of the sparse nature of speech, Section (2.3). 

PCA is a technique for simplifying a dataset by reducing possibly correlated mul- 

tidimensional datasets to lower dimensional uncorrelated datasets for analysis. It has 

found applications in fields such as neural networks and stock market analysis. Infor- 

mation theoretic approaches also are applicable to source separation [89]. 

2.6.1 Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) , [32], is a technique that performs dimensional 

reduction on a data-set. It will transform a set of correlated variables into a number 

of uncorrelated or orthogonal variables. For example, PCA attempts to create a set 

of basis functions, each basis function is ordered by how much variance it contributes 

to the overall variance data. Each successive principal component is then ordered in 

accordance to its contribution to the remaining variance. Dimensional reduction is then 

achieved by discarding the components that contribute least variance to the overall data, 

[831. 

Typically PCA has shown success when separating and transcribing drum signals. 

Dimensional reduction is accomplished by assigning basis functions to principal com- 

ponents in order of the most prominent basis functions. Typically drum sounds do not 

vary much in their frequency representation and contain a large amount of energy, and 

hence will typically be assigned as a principal component in the mixture data. 



If the random variables xl and x2 are uncorrelated or orthogonal, then 

where E{X) is the Expectation of the variable x. (If x is a discrete random variable 

with probability mass function p(x), then the Expected value of x is E(x) = xi xip(xi).) 

The uncorrelated components within a mixture signal are known as the 'principal 

components'. These components are ordered according to those that contribute most to 

overall variance, and then successive components according to those containing most of 

the remaining variance. This will allow dimensional reduction by discarding components 

that contribute least variance to the overall data. 

Singular Value Decomposition (SVD) (see Section (2.3.2) can be used to perform 

PCA. SVD decomposes an m x n input matrix A into 

where U is an m x n orthogonal matrix, V is an n x n orthogonal matrix and D is an n x m 

diagonal matrix of singular values. The eigenvectors of AAT and ATA are calculated to 

find the coluillns of U and V respectively. The square roots of the eigenvalues of AAT 

and ATA make up the singular values in D. These entries are arranged diagonally and 

in order of decreasing variance. When performing dimensional reduction, the singular 

values that contribute the least to overall variance are discarded. 

The scope of this review is within source separation of musical or speech signals, 

with this in mind it is worth noting that PCA is best utilised when separating gaussian 

sources. An argument put forth in [83] is that musical signals are not gaussian, and 

hence PCA is limited in adequately describing them. However [83] shows that PCA can 

be used to separate audio signals, in particular drums, although with limited success. 

With the aim of PCA being to perform separation by transforming correlated signals 

into a set of uncorrelated signals, this rules out using PCA to separate speech, [61], 

as speech is inherently uncorrelated. A further limitation of PCA is that it inherently 

biases the analysis towards the loudest sounds in the spectrum, making it difficult to 

recover sources of low amplitude, [83]. 



2.6.2 Independent Component Analysis (ICA) 

ICA is a statistical technique for decomposing a complex dataset into independent 

sub-parts [82]. Whereas PCA seeks to find a set of signals that are mutually decor- 

related, ICA finds a set of source signals that are mutually independent (note: data 

independence + uncorrelated data, however uncorrelated data + independent data). 

ICA utilises multiple input signals. Taking for example the cocktail party problem 

when 5 source signals are present, 3 people speaking, a radio and a television. ICA 

must have five different microphones placed within the room, hence five different signal 

mixtures are found. ICA requires that the number of sensors are greater than, or equal 

to, the number of sources. 

ICA assumes that individual physical processes will produce unrelated source sig- 

nals. These source signals are assumed to be statistically independent. Each micro- 

phone recording will contain a mixture of the unrelated source signals. If these unrelated 

source signals are statistically independent, then a function can be used to transform 

the mixture so that the independent signals have maximum entropy, as will be discussed 

below. 

An un-mixing matrix W is iteratively adjusted until it maximises the entropy of the 

signals. The maximum entropy of the signals implies that the estimated source signals 

recovered by W are also independent. 

Independent Component Analysis takes the fa~niliar model for source separation, S 

the matrix of sources, a mixing matrix A and the outputs X ,  [83]. 

ICA attempts to find the source matrices S by finding an uniilixing matrix W = A-I 

such that 

where Y consists of the independent components of X. 

Before implementing the ICA algorithm, the observed mixtures X are 'centered'. 

This is achieved by subtracting the expected value E ( X ) ,  so as to make X a zero-mean 



variable, simplifying the ICA algorithm [89]. Before applying the ICA algorithm X is 

whitened, see Figure (2.23(b)). Whitening causes X to undergo a linear transformation 

to a new vector X, which contains uncorrelated components with variances of equal 

unity. In other words the covariance matrix, E(xxT) = I. 

A suggested method of whitening is to use the Eigen Value Decomposition (EVD) 

of the covariance matrix E ( X X ~ )  = EDET [89]. Where E is the orthogonal matrix 

of eigenvectors of E (%%~) ,  and D is the diagonal matrix of its eigenvalues, D = 

diag (dl, d2.. .d,) . Whitening can then be performed by 

-'I2, dill2.. .dill2). When performing the whitening process, the Where 0-'12 = diag(dl 

mixing matrix A is transformed to A 

By transforming A to the new mixing matrix A, it becomes orthogonal. 

Whitening reduces the number of parameters to be estimated. Now only the orthog- 

onal mixing matrix A has to be estimated. The advantage of estimating an orthogonal 

matrix is that it will contain n(n- 1)/2 degrees of freedom. Whereas the original matrix 

A would require estimating up to n2 parameters. 

The ICA algorithm finds mutually independent sources by iteratively reducing the 

gaussianisity until the minimum is found. The measure suggested to compare gaussian- 

isity at each iteration is the fourth order statistic Kurtosis. 

Kurtosis is a measure of the 'peakedness' of a histogram or probability density 

function (PDF). Kurtosis is calculated using the following formula 

where pq (pk = E [(X - E[x])~]), is the fourth moment about the mean, and a is the 

standard deviation. 



A second measure of gaussianisity that can be employed is Negentropy [89]. Negen- 

tropy is based on the information-theoretic quantity entropy. The entropy of a random 

variable, can be interpreted as the degree of information an observation of a random 

variable gives [89]. In other words the entropy of a random variable is the coding length 

of the random variable. The entropy H of a discrete random variable Y is defined as 

H(Y) = - P(Y = ai) log P (Y = ai) 
i 

A gaussian random variable will have the largest entropy among all random variables of 

the same variance. So entropy can be used as a measure for gaussianisity. For gaussian 

distributions, the most random distribution will have the largest entropy. Entropy will 

be small for distributions that are concentrated on certain values, or simply if its pdf 

is 'spiky'. In order to measure non-gaussianisity such that it is zero for a gaussian 

variable, and always positive, the negentropy J is used 

The following is a popular ICA algorithm, FastICA [88]. Firstly an initial (eg. 

random) weight vector w is chosen. w is the approximation for the mixing matrix A in 

Equation (2.77). w+ is then set to, 

w is then updated according to w = w+/((w+(l .  If w has not converged, then wf 

is recalculated. Examples of the iterations involved in ICA are illustrated by Figure 

(2.23(c)-(g)) . Effectively each iteration transforms the axes. 

A major drawback to using ICA is that the number of sensors must be greater 

than, or equal to, the number of sources. This represents a potential difficulty in blind 

source separation, for example when working with musical signals. Music recordings 

predominantly consist of only one or two channels and many will contain more than 2 

sources thus rendering ICA ineffective if this is the case. Similarly, it may be impractical 

for real world applications as a larger number of sources will require a larger and larger 

number of microphones. 
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Figure 2.23: ICA algorithm steps performed on two mixture signals. (a) is the joint density of the 

original mixture signals. (b) the mixtures signals post whitening. (c)-(g) the subsequent iterations of 

the fastICA algorithm until the original signals become apparent. Effectively the original joint density 

undergoes an axis shift [88] 

0 - w  



2.6.3 Independent Subspace Analysis (ISA) 

Independent Subspace Analysis is a source separation technique similar to ICA, how- 

ever, it does not require that there be at least as many sensors as sources. Similar 

sources are tracked through time-frames. 

ISA algorithm assumes that the single channel mixture S(t), is the sum of p unknown 

sources Sq (t ) . 

This translated into a time-frequency represent ation takes the form of Equation 

(2.87), where Y is the sum of 1 unknown time-frequency representations of the signal 

source signals, Yj. 
1 

ISA attempts to decompose yj into two matrices, each representing a set of frequency 

basis, fj, and a set of amplitude envelopes, t j .  Represented in matrix form, 

The decomposition of Y is then performed using singular value decomposition from 

PCA, such that 

Y = U D V ~  (2.89) 

ISA makes the assumption that the sound sources are low dimensional, hence dimen- 

sional reduction can be accomplished by discarding the components of low variance, 

and retaining 1 components. 
1 

The frequency components are then estimated from ujdj = hj, and the time components 

are recovered from vj = xj, such that 



As previously noted, PCA does not return independent basis functions, only uncorre- 

lated basis functions. To recover independent basis functions ICA must be carried out 

on the 1 components recovered using the PCA technique. 

It is independence in the frequency basis functions that is required, hence ICA is 

performed on H ,  

F = W H  (2.92) 

where F contains the independent frequency basis functions, and W is the unmixing 

matrix. 

The amplitude basis functions can be obtained from multiplying Y by the pseudo 

inverse of F, F t .  

T = F ~ Y  (2.93) 

hence the independent subspaces have been estimated so that 

This technique returns the magnitude information, however it does not return the phase 

information. A fast but crude solution is to use the phase information from the original 

spectrogram to obtain the separated signals. 

ISA has been shown to cope well with pitch stationary events. Pitch stationary 

signals such as drum signals typically conform to pitch stationarity, and have previously 

been separated successfully using ISA, [83]. 

A technique is proposed in [67], where the STFT magnitude representation is split 

into sections of time. By splitting the signal into short time segments, it is assumed 

that components maintain pitch stationarity over that time frame. This allows for the 

application of ISA to pitch varying signals. 

where ii represents the kth time frame. Within these k time periods, the assumption 

is made that sources or subspaces are stationary for an interval of spectrogram time 



frames, 6t, and that each of these blocks has a unique subspace decomposition [67]. 

Suggested time blocks are from 0.25 seconds up to 10 seconds. ISA is then carried out 

on each time section to obtain the independent components. The problem then remains 

as to how to group the independent components to sources. 

It is proposed to group the independent components by measuring the similarity of 

the independent components, and by tracking them through time using a cross-entropy 

matrix. A dissimilarity matrix, known as an Ixegram is created using the kullback- 

Leibler divergence as a distance measure, [67]. 

The Kullback-Liebler divergence between two probability density functions, p and 

q, where ii is a random variable, as defined in [67], is given by 

When applying the Kullback-Liebler divergence to ISA, the random variables or 

vectors are the recovered independent subspaces. The entries of the Ixegram, D(i ,  j ) ,  

are then plotted using the pairwise distance between the probability density functions 

of the subspaces. This resulting Ixegram then takes on the following structure: 

The Ixegram, see Figure (2.24), illustrates similar components. Dark regions indi- 

cate a high degree of similarity. For example, a dark region associated with the 10th 

and 44th components indicates that they are quite similar. Rather that creating a 

basis function for each of these components, it is more efficient to use one basis func- 

tion to represent both. Clustering algorithms can then be used to accomplish this by 

partitioning the Ixegram into 1 classes or subspaces. 

Further improvements have been made on this technique by using prior information 

about the signals. It is suggested to incorporate frequency information to improve 

separation using ISA, [84]. What is proposed is that the spectrum of individual drums 
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Figure 2.24: Similarity matrix resulting from an ixegram of time-varying independent components 

extracted from the drum mixture. Dark regions indicate a high degree of similarity based on the 

Kullback-Leibler entropy. [67] 



are taken into account. Standard rock drum h t s  can be split into skinned drums 

(kick drums, snares and toms), and drums where metal is hit (hi-hats and symbols 

etc ...). Skinned drums typically have most of their energy below IkHz on the frequency 

spectrum. Whereas metal drums have most of their energy spread out over the spectrum 

above 2kHz, [84]. Before beginning ISA it is proposed to first split the signal using a 

low pass filter at a cut off of IkHz, and a high pass filter at a cutoff 2kHz. This is known 

as Sub-band ISA [84]. Thus removing either the skinned or metal drums making the 

other easier to detect. 

As previously discussed, expanding this technique for use with non-pitch stationary 

instruments is more difficult than pitch stationary sources. This is because pitched 

instruments will require a different basis function for each note, and when multiple 

notes or chords are present, more basis functions are required. 

As ISA does not determine which components belong to which source. It then 

becomes necessary to employ some sort of source recognition in order to assign com- 

ponents to sources. With a larger number of basis functions required to model pitch 

variant sources, the difficulty in allocating basis functions to sources may also increase. 

It is also a problem to estimate the number of components in a mixture, an hence 

the number of basis functions required. This depends on the amount of sources in the 

mixture signal, and how many components one wishes to retain. Again, if the mixture 

signal contains a number of pitch variant sources, the number of basis functions required 

will increase. 

2.6.4 Prior Subspace Analysis (PSA) 

Prior Subspace Analysis (PSA) is an extension upon ISA. The use of prior knowledge 

is employed to remove the need to estimate basis functions as well as the number of 

basis functions. PSA assumes that there are known prior frequency subspaces or basis 

functions f, that are good approximations to the actual subspaces. The model used to 



approximate the mixture signal is then, 

where Y is the mixture of the set of independent signals and t j  represents the invariant 

amplitude basis function corresponding to the each of the frequency basis functions f,, 

1851- 
PSA has been successfully applied to drum transcription, [85]. In the example 

illustrated, prior subspaces were obtained by using samples of snares, kickdrums and 

high-hats. Transcription results were then tested against those of ISA. The reported 

PSA transcription rate success rate was 92.5%, whereas the sub-band ISA transcription 

rate was 89.5%, [85]. 

Review Conclusions 

A review of source separation techniques has been presented above. A summary of 

these techniques is displayed in Table (2.1). The Short Time Fourier Transform has 

been discussed as it is allows signals to be represented in the time and frequency domain. 

It is utilised by all the reviewed separation techniques, and will similarly be used within 

the novel work in Chapter 3 . 
Sinusoidal modelling is a technique that creates a model of every sinusoid contained 

in a signal. Source separation is achieved by synthesising only the sinusoids associated 

with the desired source. The difficulty with sinusoidal modelling is in assigning sinu- 

soids to sources, and tracking the sinusoids through time. There is no general robust 

method to accomplish this. This is also a difficulty that presents itself with other source 

separation techniques. Also, robust methods to represent components of signals such 

as breath noise, or the striking of a string of a musical instrument are required. 

The DUET algorithm has shown success when dealing with speech signals with a 

sparse time-frequency representation. It has also been expanded through the use of 

a larger number of sensors or microphones. Similarly the ADRess algorithm has also 



been successfully applied to the separation of stereo mixtures. However both these 

techniques require at least two mixture signals. This limits the applicability of the 

techniques as they cannot be applied to single channel mixture signals. 

Both the DUET and ADRess techniques were found to produce robust results, 

however the ADRess algorithm can be successfully applied to both speech and music 

signals, as opposed to DUET, which typically produces robust results only when dealing 

with sparse speech signals. A novel source separation technique is proposed in Chapter 

3.A stage in the algorithm involves creating a 2-channel 'pseudo-stereo' mixture, from a 

single channel mixture signal. It is then proposed to apply an existing source separation 

technique to the 'pseudo-stereo' mixture. The ADRess technique is chosen over that 

of DUET for this step, due to its robust performance in the separation of music and 

speech signals. 

Non-Negative Matrix Factorisation techniques have been applied to single channel 

mixtures, however there are limitations to the separations. NMF and convolutive NMF 

techniques are not practical for use with non-pitch stationary signals. Shifted NMF 

improves upon this by allowing different musical notes to be modelled using a single 

basis function. This basis function can then be shifted to model other musical notes 

on the instrument. However this technique requires the use of a log-frequency repre- 

sentation to allow basis functions to be shifted. Transforming from the log-frequency 

domain leads to increased computational requirements in comparison to the inverse 

Fast Fourier Transform, and can have adverse effects on the sound quality. Matrix fac- 

torisation techniques are subject to the problem of grouping basis functions. Similar to 

the problem of tracking sinusoids involved with sinusoidal modelling, there is no general 

robust method to group basis functions to sources. 

The Information Theoretic techniques have similarly shown success when applied to 

single channel mixtures. As discussed above, some algorithms such as PCA, have been 

applied to the task of musical transcription, as opposed to separation and resynthesis of 

audio source signals. The ICA technique has been used as a source separation technique, 

however it typically requires as many microphones as sources that are contained in the 



mixture signal. This may be prohibitive to the ease of implementation of the technique 

when a large number of sources are present. Further, as multiple mixture signals are 

required ICA will not be suitable for application with the pre-existing single channel 

and stereo signals. 

Factorisation based approaches such as PCA, ICA, and NMF, have been applied 

using just a single mixture of sources. These techniques have shown their effectiveness 

for certain tasks such as music transcription. However, in general, the output resynthesis 

quality of the separations are not as robust as the above Zchannel techniques. 

Throughout the review a common problem presents itself in a number of the source 

separation approaches. The problem of grouping individual components of separated 

signals. For example, sinusoidal nlodelling groups sinusoids corresponding to a specific 

source, and hence tracks them through time as the signal changes. Similarly matrix 

factorisation techniques must allocate basis functions to specific sources, depending on 

the signal there may be a large nuniber of basis functions. These difficulties are also 

present with the information theoretic approaches. Again, no general robust method to 

solve the these problems has been proposed to solve this problem. With this in mind 

the novel work that follows focuses the physical properties of signals. The ADRess and 

DUET techniques perform separation based on the physical 'positioning' of sources 

rather than the sinusoidal or mathematical construction of the signal itself. 

Proposed in the novel work section is a technique that performs source separation 

on a single channel mixture signal. From this single channel mixture, a 2-channel, 

pseudo-stereo mixture is established. The ADRess algorithm is applied to this 2-channel 

mixture in order to recover an individual source signal. The novel technique is designed 

to be employed in echoic environments. It is the echoic components that allow for the 

creation of the pseudo-stereo mixture signal. 

This technique is introduced in the following chapter. Test results are presented, 

and the limitations of the technique are discussed. 
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Chapter 3 

NOVEL WORK - SINGLE 

CHANNEL SOUND SOURCE 

SEPARATION COMBINING 

DELAY ESTIMATION AND THE 

ADRESS ALGORITHM 

3.1 Introduction 

Previously presented techniques such as DUET and ADRess, Sections (2.3.2) and (2.4) 

respectively, have been successfully applied to source separation. Both of these tech- 

niques however require the use of at least two different mixtures of the source signals. 

In the case of audio separation, two microphones, or a two channel stereo recording are 

required. These techniques have been shown to work successfully by producing robust, 

high-quality results. Conversely factorisation based approaches have been applied using 

just a single mixture of sources. Generally the output resynthesis quality of the separa- 

tions are not as robust as the above 2-channel techniques. This novel work applies the 



ADRess technique, which typically requires 2-channels, to a single channel mixture. 

Proposed here is a source separation technique which creates a two-channel pseudo- 

stereo mixture, from a single-channel mixture signal. The ADRess algorithm can then 

be employed to separate a single source from the pseudo-stereo mixture. Under the ap- 

propriate echoic conditions, this technique illustrates a novel means of source separation 

for a single channel mixture signal. 

The described technique will first be explored for a simplified, synthetic case. Ex- 

amination of these techniques will then be used to pave the way for further exploration. 

Delay Model 

The theoretical model used to represent a single source in an echoic environment, pre- 

sented in Section (1.5), is represented in Equation (3.1) [36]. 

where s(t) represents the individual source signals, Ati is the extra time taken for a 

source to reach the microphone having travelled a longer reflected path, and ai is the 

attenuation of the signal having travelled the longer path. N represents the number of 

reflections reaching the microphone, in real-world environments this will be large. 

A simplified version of this model is illustrated in Figure (3.1). The figure shows 

the direct path t ,  from the source s ,  to the sensor x. The three reflected paths Rti 

are also shown. Due to the extra distance traversed to reach the sensor, each Rti will 

be attenuated compared to the direct path. Similarly, due to the extra time taken to 

travel the the reflected paths, upon reaching the sensor they will appear as delayed and 

attenuated versions of the source. 

In order to test the validity of the separation technique that will be presented, a 

simplified situation is used as an illustration. It is assunled that oiily two sources are 

present, and that each source is only reflected once. This situation is presented in 



Figure 3.1: Shown is a simplified example of how a sound wave propagates an echoic environment 

according to  the model from Equation (3.1). 

Figure (3.2), the model described in Equation (3.2) is used. 

~ ( t )  = [ s l ( t )  + a s l ( t  + At,)] + ... 
+[sz(t> + Psz(t  + Atz)] 

where s i ( t )  represents sources received by the sensor at time t. The value Ati (= 
Rti - ti), represents the extra time taken for a reflected signal to reach the sensor. 

The attenuation coefficients of the first and second signals having travelled the extra 

reflected distance before reaching the sensor, are represented by a! and P respectively. 

Hence the mixture recorded by the sensor will consist of each source, and one delayed 

and attenuated version of each source. 

3.3 Delay Estimation using Auto-Correlation 

The next step in performing the separation technique is to create a stereo mixture, 

this will allow ADRess to be used to separate the required sources. Before creating the 



Figure 3.2: Theoretical model used illustrate situations in which source separation will be performed. 

The system contains 2 sources si(t).  Each will take a direct path ti to the sensor x ( t ) ,  and also a 

reflected path Rti. 

stereo mixture, the delay coefficient Ati must be recovered. One suggested technique 

to find these delay coefficients is non-negative quadratic factorisation, [56]. This is an 

iterative technique which optimises a quadratic function of several variables. However, 

this technique has so far only shown success in finding the different delay coefficients 

of a single source in an echoic environment. 

Correlation is a technique used to measure the mutual relationship between time 

series or random variables. It can also be used to measure the correlation between one 

signal and another, shown in Equation (3.3). 

where two signals are represented by x(t) and y(t), and 1 represents the time shift, 

or 'lag' between signals. Cross correlating two waveforms will give a measure of the 

similarity of the two signals as a function of the time lag between them. 



Autocorrelation is the cross correlation of a signal with itself, Equation (3.4). 

CO 

Autocorrelation is used to find periodic or repeating patterns within a signal, 1471. 

By applying autocorrelation to the mixture signal (such as described above, Equa- 

tion (3. l)), the resulting lags will give an estimation of the length of the delays. Shown 

in Figure (3.4), the peaks indicate the size of the delay or echo. No strict thresholds 

were used to identify delays, peak selection was performed by choosing the largest peaks 

on an experiment by experiment basis. 

During research and informal experimentation, it was found that this method re- 

turned accurate estimates of the delay coefficients Ati, present in mixture signals. A 

number of signals were tested at various delay lengths, and the resulting estimates 

proved quite accurate. However, the limitations of this method of measuring delay 

coefficielits become apparent in the presence of a large number of signals, as discussed 

in following sections. Future work may investigate the use of dynamic time warping 

techniques to produce more robust delay coefficient estimates, [49]. 

3.4 Creation of a Stereo Mixture and Stereo align- 

ment 

Once the delay coefficient has been established a second channel is created, thus creating 

a pseudo stereo mixture. This second channel will consist of the original mixture 

signal, shifted forward in time by the estimated delay coefficient At,. The delayed and 

attenuated version of the ith source will then be time-aligned with the target source 

within the mixture. This results in a two channel mixture, consisting of x(t) and 

x(t - Ati), which will be used to recover the ith source, Equations (3.5) and (3.6). The 

ADRess algorithm can then be applied to the 'left' and 'right' channels of this pseudo 

stereo mixture. 

L(t) = x(t) (3.5) 



Mixture signal - 
- - - - 

1. ' I I 

8 - 
0 1 2 3 4 5 6 7 8 9  

Tlme (seconds) 

Figure 3.3: Mixture signal consisting of male speech sample, female speech sample, and an attenuated 

and delayed version of each. 
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Figure 3.4: Autocorrelation of the mixture signal shown in Figure (3.3). The peaks are used to estimate 

the delay coefficients Ati. The autocorrelation function here shows two signscant peaks which indicate 

time delays Atl and Atz. 



In theory it should be possible to separate single sources from a mixture of a large 

number of sources. What limits this is the increased difficulty associated with measur- 

ing the delay coefficients using autocorrelation, in the presence of increasing numbers 

of sources, and under more realistic echoic conditions. Typical natural echoic envi- 

ronments will result in a large number of reflections reaching the microphone, and in 

normal sized rooms, the time delays associated with these reflections will be smaller 

than those of those shown in Figure (3.4). As long as accurate estimates can be found, 

it is theorised that it is be possible to perform separation from n sources. However as 

n increases, time-frequency overlap will reduce the resynthesis quality attainable with 

ADRess. 

3.5 Stereo Space Source Separation 

Having time aligned the mixture signals into a pseudo-stereo two-channel mixture in 

accordance to the delay coefficient of the target source, Equation (3.5) and (3.6), the 

ADRess algorithm can be used to separate the desired source signal, Section (2.4). Tak- 

ing a stereo mixture, ADRess separates sources according to their lateral displacement 

within a stereo field. A stereo localisation, or lateral displacement effect, occurs when 

there is a difference in the intensity of a single source between each channel. This is 

perceived as localising a source to the left or right of the listener. The intensity differ- 

ence allows for the creation of a histogram plot representing the location of sources in 

the stereo space. The position of sources can then be located within the stereo field. 

In order for ADRess to operate, the linear intensity mixing model must apply, 

(2.4). Essentially the sources for separation in the left and right mixture must be phase 

coherent, ie. time aligned. The lateral stereo displacement must only be a function of 

intensity difference between each channel. The time alignment procedure and pseudo- 

stereo mixture creation attempt to satisfy these criteria. 

By taking our mixture signal x(t) as one channel, and x(t - At,) as a second, the 



ADRess algorithm can then be applied. Our source si(t), and its delayed and attenuated 

version, asi(t + At,), have now been aligned in time. If the attenuation coefficient is 

negligible, ie. a! = 1, then the source i will have the same intensity in both channels, 

and hence will be located in the center of the stereo field. Generally the attenuation 

coefficient of the delayed source is less than one, and this will cause the source to be 

located off center in the lateral stereo energy histogram. 

The ADRess algorithm allows for real-time plotting of this histogram. This permits 

the localisation of the source, and allows the user to choose the correct attenuation 

factor manually, as indicated by a peak on the stereo space histogram as discussed in 

Section (2.4). 

Testing 

3.6.1 Objective Measurement of Quality 

In order to measure the accuracy of separation results a performance measure is re- 

quired. A popular method of evaluation for blind sound source separation techniques is 

proposed by Vincent and Co. [64]. The technique evaluates the quality of a separation, 

dj,  by comparing it to the true source sj, where j indicates the jth source. Hence it 

is required that the separation estimate and the original signal, as well as any noise 

components shown in Equation (3.7) are all known. The techniques decomposes the 

separated signal, Sj, as follows, 

where staTget = f (sj) represents the original source which may be modified by an allow- 

able distortion f E F, where F is typically a set of time invariant gain distortions. sinterf, 

enoise and eaTtif respectively represent the interference from other sources, ( s ~ I ) ~ I + ~ ,  sen- 

sor noises, and artifacts effected by other causes (described as forbidden distortions 

of sources or 'burbling7 artifacts). Energy ratios are then computed to evaluate the 



relative amount of each of the four terms contained in gj. 

Once the estimated source signal ij is recovered, the suggested performance metrics 

outlined below are applied. The Signal to Distortion Ratio (SDR) gives an overall 

measure of the quality of the sound source separation, [64]. 

SDR = 10 log,, - Ilstmget 112 
J J  einterf + enoise eartif 1 1 2  (3.8) 

The Source to Interference ratio (SIR), [64] 

SIR = 10 loglo I I Starget 1 I 
1 )  einterf I I 

The Source to Noise Ratio, [64] 

SNR = 10 log,, 11 starget + einterf ( I 2  
Ilen&sel12 

The Source to Artifacts Ratio, [64] 

SAR = 10 log,, I I Starget f einter f + enoise 1 1  
I)eartif1I2 

The decibel notation is used to as a measure of the energy ratios. 

The performance criteria put forward in [64], allows for measurement of the con- 

tribution of different noise sources, as described in Equation (3.7). For example, the 

source to noise ratio, Equation (3.10), by taking the ratio of enoise, against starget and 

einterf, it returns a performance measure independent of the source to interference ratio. 

To evaluate the novel technique proposed here, the Source to Interference Ratio is 

deemed an appropriate measure in this document. This measure was chosen as the 

model will contain no noise as the experiments are artificially created and will hence 

contain no noise. The only error in the estimation of the source signal, si(t), will be 

the contribution of the other source, s j  ( t) ,  and the reflected signals, si(t + At,) and 

sj(t + Atj), b'i # j .  

The SIR is determined both pre-separation, Equation (3.12), and post-separation, 

Equation (3.13). Their respective differences are then used to indicate the level of noise 

rejection achieved. 



where Starget is the test signal to be separated, and Sestimate represents the separated 

estimation of the target signal. Smixture is the mixture of signals represented by Equa- 

tion (3.2). 

Speech signals are chosen to illustrate this algorithm, the unsuitability of musical 

signals is discussed in Section (3.6.5). 

3.6.2 Initial Investigations 

The test signal used here for illustration, is a single channel mixture signal, of the form 

described by Equation (3.2), see Figure (3.6). For illustrative purposes and as a proof 

of concept, two test signals were initially used to test the validity of the technique. 

Each is approximately 7 seconds of male and female speech, see Figure (3.7). Further 

tests are also illustrated using multiple signal mixtures, Section (3.6.3), as well as using 

actual impulse responses from echoic environments, Section (3.6.4). 

The system was tested by employing 50 linearly spaced delay values, between 0 

and 500 milliseconds, and illustrates the system's ability to separate the desired speech 

signal from the mixture described. As the experiments were artificially created, the 

attenuation coefficieiits of the reflections were known. Hence the approximate position 

of the target source in the stereo field was known. These parameters were then used to 

perform separation using the ADRess algorithm. 

As a performance measurement the respective differences between the Signal to In- 

terference Ratio (SIR), determined pre-separation, Equation (3.12), and post-separation, 

Equation (3.13), are used to indicate the level of noise rejection achieved. 

Prior to separation the mixture signal was generated. This results in the interfering 

sources (the other source signal, as well as the attenuated and reflected versions of 

both) being 4dB louder than the source of interest, leading to a signal to noise ratio 



of -4dB. After applying the process described in this document, analysis shows that 

an average of +4dB of signal to interference ratio has been achieved, resulting in an 

average signal to noise ratio increase of 8dB. 

SIRpost for a delay coefficient from 0.5 to 0.1 seconds averages approximately +4dB. 

For this delay time-frame, an approximate +8dB noise rejection difference is maintained 

over SIR,,,. As the delay coefficient decreases below 0.1 seconds, SIGOst diminishes. 

However, even though SIRpost decreases, the separated signal was found subjectively 

to maintain intelligibility, depending on the source signals, up to around Ati = 50 

milliseconds. 

A reason proposed here for the deterioration of separation results as the delay ap- 

proaches 0.1, is the stationary length of speech is also approximately 0.1 seconds. Vowel 

sounds are said to be quasi-stationary over 40 - 80ms segments, and unvoiced sounds 

over 20ms segments, [65]. When the delay length becomes less than 0.1 seconds seg- 

ments of speech signals will begin to overlap, similar to that of musical signals described 

in Figure (3.16). 

The Source to Interference Ratio is a good quantitative measure of the success of the 

algorithm, but there is also a need for perceptually based performance measures. This 

becomes particularly apparent when measuring the SIR below one tenth of a second. 

The SIR for the resulting separations for delay coefficients of this size are shown to 

decrease, see Figure (3.5), however the perceived intelligibility of the signal was found 

to remain high during informal subjective listening tests. Due to time constraints more 

extensive rigorous subjective tests could not be performed. 
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Figure 3.5: The Signal to interference ratio (SIR) of the target source prior separation, SIR of the 

estimated source post separation over a varying delay from 0.5 to zero seconds. 

3.6.3 Performance under various conditions 

In the previous sections a theoretical situation was used to illustrate how the technique 

works. In this section and those following, the performance of the algorithm will be 

examined under different conditions. 

For the following experiments the sample signals used were chosen from the TIMIT 

Speech Database, [62]. Illustrated in Figures (3.8) and (3.9) the technique is applied to 

mixture signals when an increasing number of sources are present. 

These tests were performed by choosing eight speech signals at random. The mix- 

tures were artificially synthesised and consist of each chosen speech signal, and a reflec- 

tion of each signal, similar to the mixing model shown in Equation (3.1). 

The solid lines shown in Figure (3.8) and (3.9) indicate the resulting SIR of the 

separation of a single source from a mixture of two sources (the signal itself, another 

speech signal, and a delayed and attenuated version of each). The increasing number 
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Figure 3.6: Mixture signal consisting of male speech sample, female speech sample, and an attenuated 

and delayed version of each. 

Male speech saniple 
1 

0 

Female speech sanlple 

Estlmate of male sample Estlmate of female samole 

Figure 3.7: Male(top left), and Female(top right), speech signals used for illustration in this paper. 

Male and Female estimates (bottom left and right respectively). 



of sources can then be compared against this. 

The delay coefficents were chosen from 0.8 seconds down to 0.01 seconds. As the 

number of signals present in the mixture increases, each are assigned individual delay 

coefficients, similar to the situation where sources are physically placed in different 

positions around a room. As is to be expected, the quality of the separation decreases 

as the number of sources increases. 

When experiments involving multiple signals were performed, difficulties were en- 

countered in finding the correct delay coefficients using auto-correlation. As the com- 

plexity or number of sources in the the mixture signal increased, the prominence of 

the peaks became less distinct. For the purpose of illustration when accurate estimates 

we not available, the delay coefficients were manually inserted into the algorithm. A 

topic for further research is to  improve upon the current method of delay coefficient 

estimation. 

The experiments in Figures (3.8) and (3.9) also show that as the number of sources 

present in a mixture increase, for example up to 6, 7 and 8 sources, the SIR reaches a 

somewhat stationary level. As opposed to the comparatively large change in SIR that 

occurs in the presence of 2 - 4 sources. From these experiments it becomes apparent 

that the separation of female speech signals result in higher SIR as opposed to male 

speech signals. 

Figure (3.10) compares the resulting separation of male and female speech signals. 

Each figure shows the average SIR using either eight different male or eight female 

speech samples from the TIMIT database, following the separation of the target source 

from a mixture signal containing itself, one other male or female speech sample, and 

a delayed and attenuated version of each. The delay and attenuation coefficients were 

again artificially created. Experimental results indicate that the separation of female 

speech results in greater SIR than male speech. The components of female speech 

will typically be of a higher frequency than those of male speech. Consequently less 

harmonic overlap occurs when female speech is mixed. This in turn leads to better 

quality separation using the ADRess algorithm. 
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Figure 3.8: Illustrated is the decrease in quality of the separations as the number of sources in the 

mixture increases. Here a single female voice is separated from a mixture of an increasing number of 

female voices. The solid line indicates the separation of a single source when two sources are present in 

the mixture signal. The broken line represents the separation results from the given number of sources 

in the mixture. 



Figure 3.9: Illustrated is the decrease in quality of the separations as the number of sources in the 

mixture increases. Here a single male voice is separated from a mixture of an increasing number of 

female voices. The solid line indicates the separation of a single source when two sources are present in 

the mixture signal. The broken line represents the separation results from the given number of sources 

in the mixture. 
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Figure 3.11: As the delay coefficient tends towards zero, the SIR tends towards OdB. For illustration 

over shorter delay lengths see Figure (3.12). 

These synthetic situations were used as a further test of the hypothesis. Theoreti- 

cally in an actual echoic environment, if a prominent large first reflection can be found 

the technique may be valid, as discussed in Section (3.6.4). 

As shown in the Figures (3.8), (3.9) and (3.10), and as illustrated in Figures (3.11) 

and (3.12), there is a somewhat counter intuitive change in the direction of the SIR 

curve. As the delay coefficient approaches zero, typically the SIR decreases as Ati 

decreases. The increase in the SIR, shown in Figures (3.11) and (3.12), can be explained 

by noting that as the delay coefficient decreases and becomes very small, the signals 

being compared become closer and closer to being the same signal. Hence why the SIR 

tends towards zero at very small delay coefficients. 
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Figure 3.12: As the delay coefficient tends towards zero, the SIR tends towards OdB. 

3.6.4 Applicability to 'Real-World' Signals 

While the novel technique has shown success in theoretic signal mixtures, it remains to 

be seen how it performs with more realistic mixture signals. Experiments were carried 

out to judge the 'Real-world' performance of the technique. Models of the impulse 

response of typical echoic environments were created using the 'Cooledit' audio editing 

software, [14]. 

Due to time constraints involved with completing this document it was not possible 

to use actual recordings. With this in mind it is assumed that the models used by 

cooledit are accurate. Shown in Figure (3.13) is an example of the impulse response 

used. 

Difficulties were encountered when attempting to accurately estimate the delay co- 

efficients, so for the purpose of illustration the delay coefficients of the first prominent 

reflection were manually inserted into the algorithm. As expected the separation results 

achieved were not as high as those of the synthetic examples. 

The average SIR prior to separation was found to be -8dB, and the post separation 

SIR was found to be -1.5dB. In fact for the experiments performed it was judged 
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Figure 3.13: Magnitude representation of a typical impulse response of a large room from [14]. 

during informal subjective tests that the separated signal was no more intelligible than 

the mixture signal. 

The first prominent reflection of the synthesised echoic impulse responses, a s  shown 

in Figure (3.13), occur less that 0.1 seconds after the direct signal reaches the micro- 

phone. As described in the synthetic examples above reflections of this size will lead to 

smaller Signal to Interference Ratios, as opposed to those where the delay coefficient is 

greater than 0.1 seconds. Unless they are of a very large size, real-world environments 

will typically have a first prominent reflection of less than 0.1 seconds. For this rea- 

son, application of the technique beyond a theoretical example will not lead to useful 

separation in its current form. 

3.6.5 Suitability for use with speech or music signals 

In order to test the systems effectiveness, speech signals were used rather than musical 

signals. Lllustrated in Figure (3.14), the technique is applied to the separation of musical 

signals. The synthetic mixture consists of an acoustic guitar and a harmonica, mixed 



rnv SNR Harmonica &Guitar Seuaration of Guitar 

Delay coefficient (Seconds) 

Figure 3.14: The attempted separation of musical signals. Shown is the resulting separation of a guitar 

from a mixture signal containing an acoustic guitar and a harmonica. An artificial mixture was created 

using the model proposed in Equation (3.2). The solid line represents the SIRpost over various delay 

coefficients, and the broken line represents the SIR,,, at various delay coefficients. 

according to the model proposed in Equation (3.2). Difficulties arose when estimating 

the delay coefficients, and for the purposes of illustration, when erroneous estimates 

were made, the actual delay coefficients were inserted directly into the algorithm. The 

limitations of the algorithm for application to musical signals becomes apparent when 

the resulting musical separations, Figure (3.14), are compared against of those of speech 

signals, Figure (3.5). 

Speech signals are said to display sparse time-frequency representations known as 

W-disjoint orthogonality [74]. This sparse representation will mean that mixtures of 

multiple speech signals will not display as much time-frequency overlap as that of music 

signals. 

It is the nature of musical signals that their harmonic components to overlap, Section 

(1.4). For this reason multiple sources may contribute to a single time frequency point. 

Also pitched musical notes, for example a note played on a piano, will often tend to 

last longer than an utterance of speech. The nature of speech and music is such that 



they can both be characterised by continuous harmonic tracks. However speech signals 

typically correspond to lower fundamental frequencies, and are also of shorter duration 

because of interruptions due to the occurrence of unvoiced phonemes and silences, [46]. 

These attributes of musical signals lead to increased difficulty in recovering an accu- 

rate delay estimate using auto-correlation. Also the stationary length of musical signals, 

or the amount of time a note persists, will typically be longer than the delay coefficient 

of the first reflection, see Figure (3.16). If this is the case, the musical sound will still 

be present when its delayed equivalent reaches the microphone, causing a change in the 

magnitude where they overlap. This new magnitude will cause the intensity to vary er- 

ratically, essentially causing the attenuation estimate to vary. Also the erratic variation 

of the intensity will lead to erratic positioning of the source within the pseudestereo 

field. 

The stationary length of speech is usually less than that of musical signals, hence 

the suitability of this technique to speech signals rather than musical audio signals. 

Figures (3.15) and (3.16) are a simplified hypothetical representation of the mag- 

nitude of an audio signal reaching a microphone in a echoic eilvironment. The figures 

show the source signal which travels a direct path to the microphone, as well as a de- 

layed and attenuated source signal having travelled a reflected path. The first figure is 

an example of a signal with a short stationary pitch period such as speech. The second 

represents a signal that has a longer stationary length, for example a musical signal. 

In Figure (3.15) the source signal reaches the microphone, and as illustrated, the 

stationary length of the signal is smaller than the delay length, Ati. Hence the delayed 

and attenuated version of the signal reaches the microphone after the original sound 

has dissipated. When the pseudo-stereo mixture is created with signals such as this, 

there will be a constant intensity difference between channels. 

In Figure (3.16) the stationary length of the signal is longer than the delay. Hence 

the reflected signal reaches the microphoiie while the original signal is still present. 

When this occurs, the overlapping signals will contribute to a change in magnitude of 

the mixture signal. This erratic change in magnitude will then lead to varying intensity 
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levels between each of the pseudo-stereo channels, and hence less accurate separations 

using the ADRess algorithm. 



Chapter 4 

CONCLUSIONS 

In this document audio signals, their construction, and source separation techniques 

were discussed. The purpose of this was to serve as a review of source separation 

techniques by consolidating popular existing algorithms into a single document, and 

consequently developing an original source separation technique. 

Existing algorithms were arranged into sections such as Sinusoidal Modelling, Matrix 

Factorisation Techniques and Information Theoretic Approaches. A common problem 

encountered by many source separation techniques is the difficulty involved in assigning 

separated components of signals to the correct sources. There is currently no popular 

robust method to accomplish this for a single channel mixture signal. 

The DUET and ADRess algorithms do not encounter this problem as they per- 

form separation based on the 'positional' information of sources. Unfortunately these 

techniques require multiple mixture signals and cannot perform separation on a single 

channel mixture. 

A novel approach to blind single channel source separation has been presented, 

which has been designed to work in an echoic environment. The ADRess technique, 

Section (2.4), which separates sources according to their position within a stereo field, 

is used within the proposed technique. However, the ADRess algorithm requires a 2- 

channel stereo mixture, therefore a pseudo-stereo mixture is first constructed from the 

echoic, single channel mixture signal. 



It is shown that if the first prominent reflection of the desired signal in the echoic 

environment can be found, then the technique can successfully separate sources. Auto- 

correlation was found to provide accurate estimates in simplified examples. However, 

difficulties emerge when attempting to find delay coefficients in the presence of multiple 

sources, or under realistic echoic conditions. Further research must be carried out into 

methods to improve the delay estimates. 

Additional problems occur if the delay coefficient of the first prominent reflection is 

less than one tenth of a second. If the stationary length of components within a signal 

are longer than the most prominent delay, then components will overlap causing the 

position of the source within the pseudo-stereo mixture to vary erratically in the lateral 

stereo space. 

In testing, it was found that the technique performed well with synthetic mixture 

signals. However, it was not found to be as successful when dealing with mixtures of 

multiple signals, and 'real-world' echoic environments. 

In the initial stages of conception of this algorithm both the DUET and ADRess 

techniques could have been utilised having created the pseudo-stereo mixture. The 

novel technique was initially envisaged for use with both music and speech signals. For 

this reason the ADRess algorithm was chosen due to its robust results with both signal 

types, as opposed to DUET which typically produces robust results only with speech 

signals. 

However, having tested the novel algorithm with both musical and speech signals, 

it becomes apparent that it is only applicable with the latter. The problem of time- 

frequency overlap of musical signals, which inhibits robust separation using DUET, is 

also found to effect the separation using the proposed novel technique, as discussed in 

Section (3.6.5). As the algorithm performs robust separation solely on speech signals, 

it is expected that the application of the DUET algorithm should in theory produce 

similar results. 

Due to time constraints, testing the algorithm utilising the DUET technique was 

not possible, however future work on the technique may involve comparisons of utilising 



the DUET algorithm against the results obtained with ADRess. Further, more accurate 

estimation of delay coefficients in the presence of multiple signals is required. 

Additional improvements can also be made by automating the choice of position on 

the stereo field for resynthesis by the ADRess algorithm. Future research may investi- 

gate the possibility of using the size of the correlation peaks to estimate the attenuation 

coefficients, and hence positions of sources in the stereo field. The occurrence of a large 

peak indicates large similarities between the reflected signal and the direct signal. Ex- 

amining the size of the peak may give an indication of the attenuation coefficient, and 

hence the position of the desired source in the stereo field. A peak in the correlation 

plot indicates the length of the delay, however if the magnitude of a peak can be used 

as an indication of the size of the attenuation coefficient, this can be used to estimate 

the position of the desired source in the stereo field. For example, a peak with a large 

magnitude may indicate that the reflected signal underwent a small attenuation. The 

desired source will then be of approximately the same magnitude in both channels of 

the pseudo stereo mixture, and hence be located in the center of the stereo field. 

This document has provided a review of current sound source separation techniques, 

and also presented a novel contribution to the field. While the technique was shown 

to perform well with synthetic mixture signals, it did not achieve similar results under 

more realistic real-world conditions. Ultimately the testing performed serves as a proof 

of concept for the novel technique, while at the same time leading to potential areas of 

further research. 



Bibliography 

[I] Aldred, J., The First Sound Recorder, www .amps.net/newsletters/issue23/23,ecord htm, 

last accessed June '07 

[2] Allen, R., L., Mills, D . , W., Signal Analysis: Time, Frequency, Scale, and Structure, 

Published by Wiley-IEEE, 2004 

[3] Arons, B., A Review of the Cocktail Party Effect, MIT Media Lab, 1992. Retrieved 

May 2007 

[4] Bader, B.W., Kolda, T.G., MATLAB Tensor Classes for Fast Algorithm Proto- 

typing, Technical Report SAND2004-5 187, Sandia National Latobatory, Livermore, 

California, Oct . 2004 

[5] Barry, D., Lawlor, B,. Coyle, E. Comparison of Signal Reconstruction Methods 

for the Azimuth Discrimination and Resynthesis Algorithm, , Proc. 118th Audio 

Engineering Society Convention, May 28-31, Barcelona, Spain, 2005 

[6] Bello , J.P., Daudet, L., Abdallah, S., Duxbury, C., Davies, M. and Sandler, M.B. 

A tutorial on onset detection in music signals. IEEE Transactions on Speech and 

Audio Processing. Scheduled for publication on September, 2005. 

[7] Beauchamp, J.  W., Analysis, Synthesis, and Perception of Musical Sounds: The 

Sound of Music, Published by Springer, 2007 

[8] Bregman, A.S., Psychological Data and Computational ASA, Computational Au- 

ditory Scene Analysis, Lawrence Erlbaum Associates, 1989. 



[9] Bregman, A.S., Auditory Scene Analysis, MIT press 1990 

[lo] Brown, J.C., Calculation of a Constant Q spectral transform, Journal of Acoustic 

Society of America, 90 60-66, 1991 

[ll] Burred, J.J., SikoraMonaural T., Source Separation from Musical Mixtures Based 

on Time-Frequency Timbre Models, ISMIR 2007 

[12] Cahill, N., Cooney, R., Humphreys, K., Lawlor, R., Demixing of Speech Mixtures 

and Enhancement of Noisy Speech Using ADRess Algorithm, Irish Signals and 

Systems Conference, 2006. 

[13] Cowan, J.P., Handbook of Environmental Acoustics, Published by Wiley- 

Interscience, 1993 

[14] http://www.adobe.com/special/products/audition/syntrillium.html, Last ac- 

cessed, Jan 2008 

[15] Cooley, J.W., Tukey, J.W., 1965, "An algorithm for the machine calculation of 

complex Fourier series," Math. Comput. 19: 297301. 

[16] Egan, D .M., Architectural Acoustics, Published by J. Ross Publishing, 2007 

[17] Egbertus, M., Schouten, H., The Auditory Processing of Speech: From Sounds to 

Words, Published by Walter de Gruyter, 1992 ISBN 3110135892, 9783110135893 

[18] Essid, S., Richard, G., David, B. Musical Instrument recognition based on class 

pairwise feature selection, ISMIR p102, page 560, 2004 

[19] Everest, F., A., The Master Handbook of Acoustics, Published by McGraw-Hill 

Professional, 2000 ISBN 0071360972, 9780071360975 

[20] Fastl, H., Zwicker, E., Psychoacoustics: Facts and Models, Published by Springer, 

2007 



[21] Ferdinand, Olson, H., Music, Physics and Engineering, Courier Dover Publications, 

1967 

[22] FitzGerald, D., Barry, D., Cranitch, M., Coyle, E., Automatic detection of optimal 

azimuth widths for sound source separation using Adress, Irish Signals and Systems 

Conference, Galway, 2008 

[23] Fitzgerald, D., Cranitch, M., Coyle, E., Extended Non-Negative Tensor Factorisa- 

tion Models for Musical Sound Source Separation, Computational Intelligence and 

Neuroscience, Volume 2008, Article ID 872425. 

[24] Fraleigh, Beauregard, Linear Algebra 3rd Edition, Addison Wesley Publishing 

Company, 1995 

[25] Foote, J. Visualizing Music and Audio using Self-Similarity. In Proc of ACM Mul- 

timedia. 1999. Orlando. 

[26] Gainza, M., Coyle, E. Time Signature Detection by Using a Multi-Resolution Au- 

dio Similarity Matrix, Audio Engieneering Society 122nd Convention, Viena, 2007 

1271 Gold, B., Morgan, N. Speech and Audio Signal Processing, John Wiley and Sons, 

INC. 2000 

[28] Golub, G, H., Van Loan, C, F., Matrix Computations, JHU Press, 1996 

[29] Hlawatsch, F., Boudreaux-Bartels, G.F., Linear and quadratic time-frequency sig- 

nal representations Signal Processing Magazine, IEEE Publication Date: Apr 1992 

Volume: 9, Issue: 2 On page(s): 21-67 

[30] Izhaki, R., Mixing Audio: Concepts, Practices and Tools, Published by Focal Press, 

2007 

[31] Jafari, M, G., Vincent, E., Abdallah, S, A., Plumbley, M, D., and Davies, M, E., 

Blind source separation of convolutive audio using an adaptive stereo basis. In: A 



K Nandi and X Zhu (eds.), Proceedings of the ICA Research Network International 

Workshop, Liverpool, UK, 18-19 Sept 2006, pp 105-108, 2006. ISBN 0 906370 44 2 

[32] Jolliffe, I. T., Principal Component Analysis (2nd ed.), Springer-Verlag, 2002 

[33] Kim, K., Hong, J,. Lim, J. Multiresolution sinusoidal speech model using Elliptic 

band pass filter, NOLISP 2005 

[34] Kim, D., Choi, H., Bae, H., Acoustic echo cancellation using blind source separa- 

tion. Signal Processing Systems, 2003. SIPS 2003. IEEE Workshop on Publication 

Date: 27-29 Aug. 2003 On page(s): 241- 244 

[35] Leddy, M., Barry, D., Dorran, D., Coyle, E., Single Channel Sound Source Sep- 

aration combining Delay Estimation and the ADRess algorithm, Irish Signals and 

Systems Conference, National University of Galway, 2008 

[36] Lin, Y., Lee, D.D., Saul, L.K., Nonnegative deconvolution for time of arrival es- 

timation. In Proceedings of the international Conference of Speech, Acoustics, and 

Signal Processing (ICASSP-2004), volume 2, pages 377-380, Montreal, Canada, 

2004. 

1371 http: //mathworld.wolfram.com/ last accessed: August 2008 

1381 Melia, T., Rickard, S. Underdetermined Blind Source Separation in Echoic Envi- 

ronments Using DESPRIT, EURASIP Journal on Advances in Signal Processing 

Volume 2007, Article ID 86484, 19 pages 

1391 Mituanoudis, N., Davies, Audio Source Separation: Solutions and Problems, Int. 

J. Adapt. Control Signal Process. 2002; 00:l-6 

1401 Mituanoudis, N., Davies, M.E. Audio Source Separation of Convolutive Mixtures, 

IEEE Transactions on Speech and Audio Processing, Vol. 11, No. 5, September 

2003. 



[41] Montgomery, P.L., Modular multiplication without trial division, Math. Compu- 

tation, 44:519-521, 1985. 

[42] O'Grady, P., Pearlmutter, B., Convolutive Non-Negative Matrix Factorisation with 

a Sparseness Constraint. In Proceedings of the IEEE International Workshop on 

Machine Learning for Signal Processing (MLSP 2006), September 2006, pages 427- 

432. 

[43] Parviainen, M., Virtanen, T., Two-channel separation of speech using direction- 

of-arrival estimation and sinusoids plus transients modeling, IEEE International 

Symposium on Intelligent Signal Processing and Communication Systems, ISPACS 

2003. 

[44] Pen, R., Introduction to Music, Published by McGraw-Hill Professional, 1992 ISBN 

0070380686, 9780070380684 

[45] Pohlmann, K., C., Principles of Digital Audio, Published by McGraw-Hill Profes- 

sional, 2005 

[46] Prasad, B., Speech, Audio, Image and Biomedical Signal Processing Using Neural 

Networks, Springer, 2008 

[47] Proakis, J., G., Manolakis, D., G., Digital Signal Processing, Principles, Algo- 

rithms, and Applications, 1996, Prentice-Hall. 

[48] Quarteroni, A., Sacco, R., Saleri, F., Numerical Mathematics Published by 

Springer, 2007 

[49] Rabiner, L., R., Juang, B., Fundamentals of speech recognition. Prentice-Hall, Inc., 

1993 (Chapter 4) 

[50] Rickard, S., Balan, R., Rosca, J., Real-time time-frequency based blind source 

separation, in 3rd International Conference on Independent Component Analysis 

and Blind Source Separation, San Diego, CA, December 9-12 2001. 



[51] Rodet, X., Musical Sound Signal Analysis/Synthesis: Sinusoidal+ Residual and 

Elementary Waveform Models. IEEE Time-Frequency and Time-Scale Workshop 

1997, Coventry, Grande Bretagne. 

[52] Roeser, R. J., Valente, M., Hosford-Dunn, H., Audiology Diagnosis, Published by 

Thieme, 2007 

[53] Roy, R., and Kailath, T., ESPRIT - estimation of signal parameters via rota- 

tional invariance techniques, IEEE Transactions on Acoustics, Speech, and Signal 

Processing, vol. 37, no. 7, pp. 984995, 1989. 

[54] Schmidt, M., N., Mgrup, M., Non-Negative matrix factor 2-D deconvolution for 

blind single channel source separation, in Proceedings of the 6th International Con- 

ference on Independent Component Analysis and Blind Signal Separation (ICA '06), 

vol. 3889 of Lecture Notes in Computer Science, pp. 700-707, March 2006 

[55] Serra, X. Musical Sound Modeling with Sinusoids plus Noise, 1997, Musical Signal 

Processing, Swets & Zeitlinger. 

[56] Sha, F. Lin, Y. Saul, L.K. Lee, D.D., Multiplicative Updates for Nonnegative 

Quadratic Programming, Neural Computation, Volume 19, p.2004-2031, 2007 

[57] Slaney, M., Naar, D., and Lyon, R.F., Auditory Model Inversion for Sound Sepa- 

ration, Proc. ICASSP 94 1994 International Conference on Acoustics, Speech, and 

Signal Processing, Adelaide, Australia, 19-22 April 1994. 

[58] Smaragdis, P., Brown, J. Non-negative Matrix Factorization for Polyphonic Music 

Transcription, Proceedings of the IEEE Workshop on Applications of Signal Pro- 

cessing to Audio and Acoustics, pp. 177180, New Paltz, NY, USA, October 2003 

[59] Smith, J. 0 .  ; Serra, X., PARSHL: An analysis/synthesis program for non-harmonic 

sounds based on a sinusoidal representation, Proceedings of the International Com- 

puter Music Conference, pp. 290 297, 1987. 



[60] Stautner, J.P., "Analysis and Synthesis of Music using the Auditory" Transform" , 
Masters Thesis, MIT EECS Department, 1983 

[61] Stone, J.V., Independent Component Analysis, Encyclopedia of Statistics in Be- 

havioral Science, Volume 2, pp. 907912, 2005 

[62] http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S1, Last 

accessed - December 2008. 

[63] Tolonen, T. ,  Methods for Separation of Harmonic Sound Sources using Si- 

nusoidal Modeling. 106th - Audio Engineering Society Conv, Preprint 4958, 

(Munich, Germany), May 1999. AES E-Library Location: (CD aesl5) 

/pp9900/pp0009/109050.pdf 

[64] Vincent, E., Gribonval, R., Favotte, C., Performance Measurement in Blind Audio 

Source Separation, IEEE Transactions on Speech and Audio Processing, 2005. 

[65] Tyagi, V., Bourlard, H., Wellekens, C., On Variable-Scale Piecewise Stationary 

Spectral Analysis of Speech Signals for ASR, Technical report 2005, Ecole Poly- 

technique Federale de Lausanne. 

[66] Zwicker, E., Audio engineering and psychoacoustics: Matching signals to the final 

receiver, the human auditory system, J. Audio Eng. Soc, 1991 

[67] Casey, M.A., Westner, A., Separation of Mixed Audio Sources by Independent 

Subspace Analysis, in Proc. of ICMC 2000, pp. 154-161, Berlin, Germany. 

[68] Goodwin, M. Residual modeling in music analysis-synthesis, Proc IEEE-ICASSP, 

Atlanta, GA, pp. 1005-1008, May 1996. 

[69] Lavine, S. Audio representations for data compression and compressed domain 

processing, Thesis, 1998 

[70] Virtanen, T .  Audio Signal Modeling with Sinusoids Plus Noise, Masters Thesis, 

2000. 



[71] Virtanen, T., Klapuri, A. Separation of Harmonic Sound Sources Using Sinusoidal 

Modeling, IEEE International Conference on Acoustics, Speech and Signal Process- 

ing, ICASSP 2000. 

[72] Allan, J.B. and Rabiner, L.R. 1977. "A Unified Approach to Short Time Fourier 

Analysis and Synthesis," Proc. IEEE, vol. 65, pp. 1558-1564. 

[73] Yilmaz, O., Rickard, S., Blind Separation of Speech Mixtures via Time-Frequency 

Masking, IEEE Transactions on Signal Processing, Vol. 52, No. 7, pages 1830-1847, 

July 2004. 

[74] Jourjine, A., Rickard, S., Yilmaz, 0 .  Blind Separation of Disjoint orthogonal sig- 

nals: Demixing N sources from 2 mixtures, ICASSP 2000. 

[75] Yilmaz, O., Rickard, S. Blind Separation of Speech Mixtures via Time-Frequency 

Masking, IEEE Transactions on Signal Processing, Vol. 52, No. 7, pages 1830-1847, 

July 2004 

[76] Barry, D., Lawlor, B., Coyle, E. Real-time Sound Source Separation: Azimuth 

Discrimination and Resynthesis, AES 2004. 

[77] Virtanen, T. Sound source separation using sparse coding with temporal continuity 

objective, in Proc. of International Computer Music Conference, Singapore, Oct 

2003 

[78] H. Viste and G. Evangelista, On the use of spatial cues to improve binaural source 

separation, Proceedings of the International Conference on Digital Audio Effects 

(DAFx-03) London, UK (2003), pp. 209213. 

[79] 0. Yilmaz and S. Rickard, Blind Separation of Speech Mixtures via Time- 

Frequency Masking, IEEE Transactions on Signal Processing, Vol. 52, No. 7, pages 

1830-1847, July 2004 

[80] Lee, D., Seung, H. (2001) Algorithms for Non-negative Matrix Factorization, Adv. 

Neural Info. Proc. Syst. 13, 556-562. 



[81] Schmidt, M., Olsson, R. Single-Channel Speech Separation using Sparse Non- 

Negative Matrix Factorisation, in Proceedings of the 6th International Symposium 

on Independent Component Analysis and Blind Signal Separation, Charleston, USA, 

(2006). 

[82] Hyvarinen, A. Independent Component Analysis: A Demo, 

www.cis.hut .fi/projects/ica/icademo/. 

1831 Fitzgerald, D. Automatic Drum Transcription and Source Separation, PhD Thesis, 

Dublin Institute of Technology 2004. 

[84] FitzGerald, D., Coyle, E., Lawlor, B. Sub-band Independent Subspace Analy- 

sis for Drum Transcription, Proceedings of the. Digital Audio Effects Conference 

(DAFX02), pages: 65 - 69, Hamburg, Germany, 2002 

[85] FitzGerald, D., Lawlor, B., Coyle, E. Prior Subspace Analysis for Drum Transcrip- 

tion, 114th AES Conference, Amsterdam, Netherlands, 2003 

[86] FitzGerald, D., Cranitch, M., Coyle, E., Sound Source Separation using shifted 

Non-negative Tensor Factorisation, IEEE International Conference on Acoustics, 

Speech and Signal Processing, Toulouse, France, 2006 

[87] FitzGerald, D., Cranitch, M., Cychowski, M. Towards an Inverse Constant Q 

Transform, 120th AES Convention, Paris, France, 2006 

[88] HyvLinen, A., Errkki, Oj a. Independent Component Analysis: A Tutorial, 

http://www.cis.hut.fi/projects/ica/. 

[89] Hyviirinen, A., Erkki, Oja. Independent Component Analysis: Algorithms and 

Applications, Neural Networks, 13(4-5) :411-430,2000. 

[go] Gainza, M., Lawlor, B., Coyle, E. Multi pitch estimation by using modified IIR 

Comb Filters, ELMAR 2005. 



[91] Smith, L. A tutorial on Principal Components Analysis, 

http://csnet.otago.ac.nz/cosc453/student~tutorials/principal~components.pdf 


	Blind Single Channel Sound Source Separation
	Recommended Citation

	tmp.1320242225.pdf.dxwCI

