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Lagrangian Relaxation for Scheduling of Intelligent and Autonomous Vehicles in
Container Terminals Under Pairing/Unpairing Strategy

Shahin Gelareha,∗, Rochdi Merzoukib, Kay McGinleyc, Roisin Murrayc

aLAGIS FRE CNRS 3303, Ecole Polytechnique de Lille, Avenue Paul Langevin, 59655 Villeneuve d’Ascq, France
bEcole Polytechnique de Lille, Avenue Paul Langevin, 59655 Villeneuve d’Ascq, France

cDepartment of Transport Engineering, Dublin Institute of Technology, Bolton St., Dublin 1. Ireland

Abstract

A new class of Intelligent and Autonomous Vehicles (IAVs) has been designed in the framework of Intelligent Trans-
portation for Dynamic Environment (InTraDe) project funded by European Commission. These vehicles which are
technologically superior to the existing Automated GuidedVehicles (AGV) in different technical aspects offer more
flexibility and intelligence in manoeuver in the area where the logistics operations take place. This includes the ability
of pairing/unpairing enabling a pair of 1-TEU (Twenty-foot EquivalentUnit) IAVs join and transport any size between
a 1-TEU and a 1-FFE (Forty-foot Equivalent) containers. To accommodate this feature, in this article, we extend the
classical mixed integer programming model of AGV scheduling in order to minimize the makespan of operations to
transport a set of containers of different size between quay cranes and yard cranes. In particular, a case study on
Dublin Ferryport Terminal is carried out. In order to cope with the complexity of the scheduling model, we design a
Lagrangian decomposition approach utilized with variablefixing procedure and a primal solution heuristics to obtain
high quality solution of instances of the problem.

Keywords:
Intelligent Autonomous Vehicle, Automated Guided Vehicle, Mixed Integer Programming, Scheduling, Lagrangian
Relaxation

1. Introduction

The ever increasing volume of international tarde which is up to 90 percent fully containerized has demanded for
appropriate solutions for several other issues arising across the entire logistics operations and supply chain.
This circulation of huge number of containers is mainly taking place on three main routes: 1) Asia-Europe, 2) Trans-
Pacific, and 3) Trans-Atlantic. In total more than 500 ports and tens of liner shipping companies are involved in the
global maritime logistics.
Due to the intensive interaction and global-wide spatial distribution of components of the containerized transport sys-
tem, the inefficiencies in individual parts of the system (both from liner service providers and port authorities points
of view) will propagate its negative impact spatially and temporally across the network of systems.

From the liner shipping industry point of view, larger vessels are needed to help the service providers benefit from
the economy of scale in transport of the growing volumes. Deploying such vessels is very expensive (often more
than several millions dollars per day) and such vessels are generating profit for the owner only during the sailing time
and the part of voyage time spent at ports which is referred toasturn-around timeof a complete voyage at different
ports are actually the unprofitable parts. Therefore, the economy of scale may not be exploited unless in long-haul
transport. This means that the Liner Service Providers (LSPs) usually do not find it profitable to call too many ports
along a service rotation (the so called ’string’). Consequently, some major transhipment hubs came into play which
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are consolidation and distribution ports and in turn are proxying service to other smaller ports in their region. The
selection of such ports depends on several aspects —one of the most important is the efficiency and infrastructure in
terms of turn-around time (of course assuming that ports haspotential to be a hub port, i.e., it has enough draft for
admitting larger vessels and a lot more eco-political aspects).

From the port (equivalently terminal) operators point of view, their port competitiveness is essentially dependent
on that they must be able to minimize the turn around time of vessels while maximizing the throughput. In this way
they can compete with other neighboring ports and survive insuch a highly competitive market. Due to the dynamism
of the competition, the goal is not reached unless some strategic, tactical and operational decisions at the terminals
being constantly reviewed and addressed in better ways. This includes three main issues: i) the layout and equipment,
ii) routing decisions and, iii) scheduling of operations.

Since introduction of containerized transport, several different type of port equipments has been developed which
includes several type of cranes (for quay side and yard side)and carriers (e.g. with and without the ability to lift,
single and multiple carriers) with several different physical and mechanical characteristics. Alongsidewith the en-
hancements in Information and Communication Technologies(ICT) the concept of automated and semi-automated
infrastructures came into play and the port authorities started to gradually incorporate ICT in order to improve their
efficiencies. Nowadays, the European Container Terminal (ECT), Ports of PSA in Singapore, Kaoshiung in Taiwan,
Pusan in Korea, Kawasaki and Kajima in Japan, Thamesport in UK, Bremerhafen and Hamburg in Germany, and
Antwerp in Belgium are among the most automated container terminal in the world.

The same trends is still alive and all around the globe several projects are funded to develop new technologies for
ports. From among such facilities, the vehicles with a certain degree of intelligence and also autonomy —at the same
time— exploiting ICT and equipped with several kind of sensors and Geographical Information System (GIS) tools
(see InTraDe1 as an example) are of special interest.

Although the hub ports are in a breath-taking competition for improving their efficiencies but such a competition is
not limited only to them. The smaller ports (e.g the Dublin inour case) are concerned about the efficiency of operation
under the current trend of import/export volume while there is almost no chance for any expansion of the ports
and terminals due to the land-use and infrastructures in theneighborhood. This suggest investing on technological
enhancements eventually leading to more efficient facilities (both transporters and stacking/unstacking). Intelligent
Autonomous Vehicles (IAVs) (see Figure 1) are a new class of transporters designed in the framework of InTraDE
which generalize the performance of AGVs. A few facts regarding IAVs follows:

- in contrast to AGVs, IAVs do not need to follow signed segment of roads to reach destination and do not have
to follow a particular itineraries. Rather, they are MIMO (Multi-Input Multi-Output) systems equipped with
several sensors enabling them to benefit from the Geographical Positioning Systems (GPS) and several other
sensors to detect the distance to other vehicles, etc,

- the unit capacity of an IAV is one TEU and for transporting any container between 1-TEU and 1-FFE, two IAVs
pair in a leader-follower manner to make a 40-foot capacity available to transport the object.

- the IAVs can form platoons based on a leader-follower manner and every IAV can be leader or follower,

- all four wheels possess actuators and a failure to any one ofthe wheels individually does not stop the vehicle
from operation. Rather it runs into a degraded mode of performance in which the operations continues with a
lower performance,

- IAVs move lateral and longitudinal without need to a large space to make turns. The wheels offer 360 degree
movements,

1Intelligent Transportation for Dynamic Environment (InTraDe) http://www.intrade-nwe.eu/
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Figure 1: Intelligent and Autonomous Vehicle (IAV).

- Finally, an IAV system should adapt to its surrounding environment, while for the case of the AGV system, the
existing environment should adapt to them.

While in total, hundreds of ports all around the globe are involved in the liner transport network, there are only
few major LSPs serving some major ports. This makes it quite natural that as far as the professional and academic
literature are concerned, there has been a rich body of studies on the optimization and simulation of operations at the
terminals.

1.1. Objective and contribution

This paper first rectifies a flaw in the model presented in Ng et al (2007) for AGVs. We show that while the model
is infeasible, it can still be corrected and generalized to be applicable for both AGVs and IAVs. We then examine
the impact of a class of valid inequalities on the computational performance of a general-purpose solver for solving
instances of model. As an inherent property of most of the scheduling problems, only instances of very small size are
solvable by general-purpose solvers and we propose a lagrangian decomposition approach equipped with a variable
fixing and primal bound generation heuristic to solve instances of the problem for high quality solutions and in reason-
able time. Several class of violated valid inequalities areidentified and relaxed in Lagrangian fashion to accelerate the
convergence. As a case study, we apply the model on the DublinFerryport Terminal in Ireland —one of the terminals
for which IAVs are designed.

1.2. Literature review

As mentioned earlier, IAVs are technologically superior but very similar to the AGVs. Many differences such
as independency from detecting any sign on the earth surfacein order to follow a path, the ability of in-place 90
degree rotation of wheels, leader-follower behavior etc.,are more relevant in the routing problems. However, from
among them the ability to join and cooperate in performing a task is of interest in scheduling and minimization of
makespan. The literature is aware of several works dealing with scheduling of AGVs in container terminals and also
in manufacturing systems. Meersmans and Wagelmans (2001b,a) proposed a heuristic algorithm for combined AGV
and crane allocation problems.

Grunow et al (2004) proposed an online logistics control by using a priority-based approach which is compared
against an offline approach. A simulation study of AGVs in an automated container terminal is proposed by Grunow
et al (2007) to examine the efficiency of different dispatching strategies.
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For other similar works, one can refer to Bish et al (2001) forAGV dispatching and yard allocation, Bish (2003)
extended the work to consider loading and unloading scheduling at quay cranes. Bish et al (2005) extended the work
in Bish (2003) and adds some analytical performance studieson the proposed algorithm.

Cao et al (2010) proposed a MIP formulation for an integratedyard truck and yard crane scheduling problems
while only the import containers were taken into account. They applied a combinatorial Benders decomposition on
their model.

Lee et al (2010) studied a transshipment port where both loading and discharging containers are considered. While
it has been often simplified by other authors, Lee et al (2010)consider the delays at yard crane as well. The objective is
to minimize the makespan of quay side operations as to reducethe turnaround time of vessels. Because the vessel can
leave as soon as the last job of quay cranes is finished. The proposed a MIP formulation but two heuristic approaches
were used to solve the problem. Lee et al (2010) work is based on Chen et al (2007) but they consider loading and
unloading simultaneously.

Ng et al (2007) proposes a MIP model for scheduling a fleet of trucks at a container terminal and the fleet size is
assumed to be given exogenously.

However, as we show later, the model in Ng et al (2007) does notalways produce a feasible solution to the problem
of scheduling AGVs.

Other works on dispatching different equipments at container terminals can be found in Kim and Bae (1999,
2004) for AGV dispatching problem while Kim and Bae (2004) employs a look-ahead strategy which considers
local and temporal information of future tasks and assumes adual cycle operations of AGVs; Nguyen and Kim
(2009) extended Kim and Bae (2004) for automated lifting vehicles (ALV); Hartmann (2004) for a wider range of
equipments; Narasimhan and Palekar (2002) in which every truck is dedicated to a particular quay crane as opposed
to the approach in Kim and Bae (2004).

2. Problem statement

As mentioned earlier, IAVs are intelligent vehicles which can work in groups. That means given a set of individual
IAVs it is possible that anyone plays the role of a leader and the rest be connected to it as followers to form a platoon.
This resembles the behavior of locomotive and wagons in a train (However, in this article we restrict the size of such
a train of vehicles to 2, i.e. the size of a 1-FFE container).

Given such a property, in order to perform a job for an FFE container, two single IAVs must join together and
perform the task. That is, if a 35-foot container is going to be imported/exported then two IAVs move towards the
corresponding crane to collect it.

The IAV scheduling problem we consider in this article can bedescribed as in Ng et al (2007):

At the earliest ready-time for vehicle m∈ {1, . . . ,M}, i.e. tm the vehicle is at location Lm. There are N tasks and
to every task n∈ {1, . . . ,N} a pick-up Pn and a delivery Dn location is associated. There is an approximate travel time
tll ′ between every two locations l∈ L = {L1, . . . , LM,Pi , . . . ,PN,Di , . . . ,DN} and l′ ∈ L′ = {Pi , . . . ,PN,Di , . . . ,DN}

and tll ′ , tl′ l , in general. The duration of job i, Ti is the time elapsed from the moment that IAV(s) arrive(s) at the
pick-up location of task i, Pi , to the moment that IAV(s) depart the drop-off location of task i, Di (the average delays
both at quay crane and yard crane are implicitly included). The Ti plus the time that IAV(s) travel(s) empty from Di−1

to Pi , is the processing time of task i. There is a time at which a crane can generate the task i and expect one or two
IAVs to arrive at that location —not earlier. This is referred to by ready-time ai and ai ≤ ai+1,∀i ∈ {1, . . . ,N−1}. IAV
scheduling problem seeks for minimizing the makespan such that the turn-around time of vessels are minimized.

3. Mathematical Model

The model is a mixed integer programming with objective function of minimizing the makespan. This means that
we are minimizing the completion time of the last task beforevessel is ready to depart.

We employ a very similar notation as used by Ng et al (2007).
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Parameters.The parameters are listed here:

Parameters

rm: the earliest time that the IAVm will be available,
Lm: the initial location of IAVm at tm,
T j : the elapsed time from the arrival of an IAV to the location ofpick up until
the time that its container being unloaded at the destination,
ti j : the travel time between locationsi, j in the terminal,
ai : the ideal time for performing taski, i.e., the time the task becomes available.
N: the total number of tasks,
M: the total number of available vehicles,
I : the set of all tasksI = {i : 1 ≤ i ≤ N},
I ′: the set of all tasksI ′ = {i : 0 ≤ i ≤ N + 1} where 0,N + 1-th
task are dummy source and sink tasks, respectively,
V: the set of all tasksV = {m : 1 ≤ m≤ M},
Si : size of container of taski,
K: a sufficiently big constant (calculated based
on known upper bound on optimal solution).

Decision Variables.The decision variables are listed below:

Variables

xi jm: 1, if task j is performed after taski on vehiclem, 0 otherwise,
yim: 1, if taski is performed on vehiclem,
Ci : the completion time of taski,
W: makespan, i.e. the completion time of the last task.

The AGV scheduling problem in Ng et al (2007) follows:

AGV-Scheduling (AGVS)

min W (1)

s.t. Ci ≤W ∀i (2)
M∑

1

yim = 1 ∀i ∈ I (3)

∑

j∈I ′
xi jm ≤ yim ∀i ∈ I ,m ∈ M (4)

N∑

i=1

xi jm ≤ y jm ∀ j ∈ I ,m ∈ M (5)

1 ≥ xi jm + x jim ≥ yim + y jm − 1 ∀i, j ∈ I : j , i,m ∈ M (6)

Ci + tDi ,P j + T j ≤ K(1− xi jm) +C j ∀i, j ∈ I : j , i,m ∈ M (7)

ai + Ti ≤ Ci ∀i ∈ I ,m ∈ M (8)

rm + tLm,Pi + Ti ≤ Ci ∀i ∈ I ,m ∈ M (9)

xi jm, yim ∈ {0, 1}, i ∈ I , j ∈ I ′,m∈ M (10)

W ≥ 0,C j ≥ 0, j ∈ I . (11)
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Figure 2:xi jm: task j is performed afteri on vehiclem.
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Figure 3:xi jm: task j is performedimmediatelyafter i on vehiclem.

Remark 1. AGV-Scheduling (AGVS) is infeasible.

The definition ofxi jm is confusing. In Figure 2 and Figure 3 we depict an example with 5 tasks and 2 two vehicles
(distinguished by connection style) —excluding the dummy source and sink nodes in this representation. Depending
on a precise definition ofxi jm one of the Figure 2 and Figure 3 is expected.

The issue arises in the definition ofx variables. One of the following definitions is correct:

• the task j is performed after the task i on the vehicle m: in which the variablexi j ′m = 1 for all tasksj′ , i
which is completed after completion ofi on the same vehiclem. Therefore the total number of links arriving at
any non-first task is more than one and this contradicts with (5). This is depicted in Figure 2 (machine 2, with
solid connection between tasks) where onlyx212 = x152 = x252 = 1. In such case we havey12 = y22 = y52 = 1
and consequently the constraint (5) becomes infeasible by 2=

∑N
i=1 xi jm ≤ y jm = 1 for j = 5,m= 2.

• the task j is performed immediately after the task i on the vehicle m: in which the variablexi j ′m = 0 for
all tasks j′ , i which is completed after completion ofi on the same vehiclem. There is no link between two
non-consecutive tasks on the same machine which contradicts with (6). This is depicted in Figure 3 (machine
2, with solid connection between tasks) where onlyx212 = x152 = 1. In such case we havey12 = y22 = y52 = 1
and consequently the constraint (6) becomes infeasible by 0= x252+ x522 ≥ y22 + y52− 1 = 1.

Under of the aforementioned definitions ofxi jm the model is infeasible. However, it is still possible to correct the
formulation and also extend for being capable of accommodating joint operations of handling an FFE by pairing of
vehicles.
Henceforward we use the following definition forxi jm:

xi jm: 1, if task j is performedimmediatelyafter taski on vehiclem, 0 otherwise.
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3.1. Intelligent and Autonomous Vehicle (IAV) Scheduling

In the following we use the term IAV and machine alternatively. We also need to employ two extra dummy tasks:
SourceandSink. The source task is the starting task on every IAV and the sinktask is the last task performed on every
machine.

IAV Scheduling (IAVS)

min W (12)

s.t. Ci ≤W ∀i ∈ I (13)∑

m∈M

yim = Si ∀i ∈ I (14)

x0im +

N∑

j=1, j,i

x jim = yim ∀i ∈ I ,m∈ M (15)

x j N+1 m +

N∑

j=1, j,i

xi jm = yim ∀ j ∈ I ,m∈ M (16)

xi jm + x jim ≤ 1 ∀i, j ∈ I : j , i,m∈ M (17)∑

i

x0im = 1, ∀m∈ M (18)

∑

i

xi N+1 m = 1, ∀m∈ M (19)

Ci + tDi ,P j + T j ≤ K(1− xi jm) +C j ∀i, j ∈ I : j , i,m∈ M (20)

ai + Ti ≤ Ci ∀i ∈ I ,m∈ M (21)

rm + tLm,Pi + Ti ≤ Ci ∀i ∈ I ,m∈ M (22)

xi jm ∈ {0, 1}, (i, j,m) ∈ (I ′ × I ′ × M), yim ∈ {0, 1}, (i,m) ∈ (I × M) (23)

W ≥ 0,C j ≥ 0, j ∈ I (24)

The objective function (12) minimizes the makespan as the earliest possible time to complete the mission.

Constraints (13) is a minimax constraints to determine the completing time of last event. Constraints (14) indicates
that the number of IAVs allocated to the taski must be equal to the size of task. On the same machine, every task
(including the source task and excluding the sink) is followed to a consecutive task. In the graph sense from any node
representing a task one arc is encompassed. This is considered in (15). Similarly, on the same IAV, every node repre-
senting a task in the network is carried out after at another task (including sink and excluding source). Constraints (16)
stands for this. If both tasksi and j are carried out by machinem then one proceeds another as stated by constraints
(17). The dummy source and sink tasks are performed the first and the last on every IAV in constraints (18)-(19). If
task j is performed after taski on machinem then the completion time of taskj is at least as late as the completion
time of taski plus the travel time from the drop-off location of taski to the pick-up location of taskj plus the process
time of taskj (we say at least because one IAV might need to wait for anotherone for performing a task). Constraints
(20) indicate this. Constraints (21) states that the completion time of taski cannot be earlier than the ready time plus
the process time. If taski is the first task assigned to machinem then it cannot be completed before the earliest time
that the machine is ready plus the travel time of machine fromits initial location to the pick-up location of taski plus
the process time of taski as stated in constraints (22).

Figure 4 depict an optimal solution to an instance with|M| = 3 and|I | = 20. Three IAVs are deployed (IAV1
(solid), IAV2 (dashed) and IAV3 (dotted)). IAV1 and IAV2 cooperate to perform the tasks 1 and 3, while IAV3 does
the task 2 independently as it is a 1-TEU container. Then IAV2decouples from IAV1 after completing task 3 and
performs the task 4 and afterwards IAV1 and IAV2 ally to perform task 5. The process continues following the same
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Figure 4: Illustration of optimal solution of an IAV instance.

manner until the final task which is 20 is completed in a cooperation between IAV2 and IAV3 in 1400.67 unit of time.

3.1.1. valid inequalities
If the machines were working independently then we could calculate the accumulated time-in-service of every

machine independently and take the maximum as the objectivevalue. However, since in our model two AGV may
cooperate on a single machine, therefore in a cooperative environment the vehicles must wait for each others to be
able to pair and start ¿1- TEU job. Therefore, unless a machine m is only performing on 1-TEU throughout the time
containers the value of term:

∑

i, j,i

∑

m

(tDi ,P j + T j)xi jm, ∀m

does not exactly coincide with the real time-in-service of that particular machine because of the wait-for-pairing
time of machines with cooperating jobs. However, this is still a good lower bound on the makespan of the machinem.

Let φi = max{ai + Ti , rm+ tLm Pi + Ti : ∀m ∈ M},∀i ∈ I :

W ≥
∑

i∈I

φi x0 i m +
∑

i, j,i

(tDi P j + T j)xi jm, ∀m ∈ M (25)

It states that in a network representation of problem as in Figure 4, the length of path from source to the node preced-
ing the sink node of every machine is a lower bound on theW.

We show in the numerical section that these inequalities canhave a significant impact on the performance of
general-purpose solvers.

4. Solution method

IAVS is a challenging model for which even very small size instances with three to four vehicles and 20 tasks are
quite time consuming and inefficient to solve by the general-purpose solvers. The major part of the works in literature
adopted (meta-)heuristic strategies, often without any indication of quality of such solutions.

Here, we exploit the decomposable structure of the problem and propose a decomposition approach based on La-
grangian relaxation equipped with an efficient local search approach and a variable fixing phase in order to produce
lower and upper bound on the optimal solution and obtain an indication of optimality of the solutions.

4.1. Lagrangian Decomposition for IAVS

Lagrangian relaxation for solving (mixed) integer programming problems was first proposed in Fisher (1981,
2004).
The idea behind this method is to relaxcomplicating constraintsby penalizing the objective function upon violation
of these constraints. The relaxed problem is expected to be easier to solve than the original problem and provides a
dual bound on the optimal value (as well as valuable information about the dual) of the problem (see Guignard (2003)
for a comprehensive survey of the method.).
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Three well-known methods are commonly practiced in the literature for solving the Lagrangian relaxation problems.
The oldest and most well-known one is the subgradient methods as an iterative methods for solving convex minimiza-
tion problems. The subgradient method was originally proposed in 60’s in the former Soviet Union. Very similar
methods has been also proposed in Held and Karp (1971) for solving traveling salesman problem. Later, Lemarechal
(1975) proposed the well-known bundle methods as an extension to the subgradient. The volume algorithm was pro-
posed in Barahona and Anbil (2000) as a methods which simultaneously produces a primal feasible solution for the
problem and a further analysis of its relation with bundle methods is reported in Bahiense et al (2002).

Several variants of the subgradient methods have been proposed in the literature. Here, based on some observa-
tion from the performance of bundle and volume algorithm in presence of big-M, we choose to employ the variant of
subgradient proposed in (Larsson et al, 1999) where an Ergodic sequence of subproblem solutions converges to the
primal solution set.

We chose to relax constraints (15), (16):
(LRX-IAVS)

min W+

∑

i,m

u1
im(x0im +

N∑

j=1, j,i

x jim − yim)+

∑

i,m

u2
im(x j N+1 m +

N∑

j=1, j,i

xi jm − yim) (26)

(27)

s.t. Ci ≤W ∀i ∈ I (28)∑

m∈M

yim = Si ∀i ∈ I (29)

xi jm + x jim ≤ 1 ∀i, j ∈ I : j , i,m ∈ M (30)∑

i

x0im = 1, ∀m ∈ M (31)

∑

i

xi N+1 m = 1, ∀m ∈ M (32)

Ci + tDi ,P j + T j ≤ K(1− xi jm) +C j ∀i, j ∈ I : j , i,m ∈ M (33)

ai + Ti ≤ Ci ∀i ∈ I ,m∈ M (34)

rm + tLm,Pi + Ti ≤ Ci ∀i ∈ I ,m∈ M (35)

yim ≤ zm, ∀i ∈ I ,m∈ M (36)

zm, xi jm ∈ {0, 1}, (i, j,m) ∈ (I ′ × I ′ × M), yim ∈ {0, 1}, (i,m) ∈ (I × M) (37)

W ≥ 0,C j ≥ 0, j ∈ I (38)

In this relaxation the lagrangian multipliers are chosen tobeu1
im ∈ R, u

2
imR, ∀ i,m.

4.1.1. More constraints to relax
From Figure 5 one observes that in a solution of a given iteration of subgradient the above relaxation, there is no

arc arriving to nodes 5,6,7 and 8 and no arc departing from 1, 3and 4 as it is not enforced by any constraint. Moreover,
there is no constraint to enforce that there must be one job (even the dummy source and sink wherever applies) before
and after any (non-dummy) task.

In order to encourage this and improving the convergence of subgradient we also dualize the following constraints:
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Figure 5: There is no arc arriving to nodes 5,6,7 and 8 and no arc departing from 1, 3 and 4.
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Figure 6: The total number of arc arriving to a task node is at least equal to the size of task.

x0 i m +
∑

j,i, m

xi jm = xi N+1 m +
∑

j,i, m

xi jm, ∀i (39)

with u3
i ∈ R, ∀ i.

In this particular example in Figure 5, three tasks namely 2,6 and 8 are 2-TEU tasks and the rest are 1-TEU
tasks. But the number of arcs arriving to all these three are zero. Therefore we also consider dualizing the following
constraints:

∑

j,i, m

x jim ≥ S(i), ∀i (40)

However, extensive computational experiment revealed that the following less tighter constraints provide better
results from the bound quality point of view:

∑

j,i, m

x jim ≥ 1, ∀i (41)

Similarly, the following constraints:

10



∑

j,i, m

xi jm ≥ 1, ∀i (42)

are dualized usingu4, u5
i ∈ R

−, ∀ i , j multipliers:

Theorem 1. The total number of arcs (xi jm = 1, i, j , i,N+1) in an optimal solution is within N−M ≤ |E| ≤
∑

i Si−1.

Proof. If there is no jobi whereS(i) = 2 then we have:

a. if the total number of tasks is equal to the total number of machines and every machine does one task, therefore,
the total number of arcs is 0. The lower bound obtained.

b. if all the tasks are carried out by one single machine therefore the only tree containsN − 1 arcs and upper bound is
obtained.

On the other hand if there is at least one taski with S(i) = 2 then:

a. if the total size of tasks (total w.r.t the size) is equal tothe total available capacity such that every machine does
only one task thenM > N andN − M < 0 and the lower bound is valid.

b. if no machine participate in performing a taski with S(i) = 2 as its first task then the total number of arcs is equal
to
∑

i Si .

The Theorem 1 can be presented as following constraints:
∑

i, j,i,m

x jim ≥ N − M = q (43)

This constraint is added to the model.

4.1.2. decomposition
To facilitate the resolution for larger instances we decompose the (LRX− IAVS) into two sub-problems by taking

into account that the sequencing part and the scheduling parts are linked only by the big-M constraints. Therefore we
add a duplication constraints and dualize them usingu6

i jm ∈ R, ∀m, i , j:

xi jm = x′i jm ∀i, j,m (44)

x′ i jm ∈ {0, 1} (45)

By doing so, we obtain two problems, one for sequencing (LRX-IAVS-Seq in the space of binaryx, y) and one for
scheduling (LRX-IAVS-Sch space of continuousW,C).

The resulting relaxation follows: (LRXS-IAVS)

min W+

∑

i,m

u1
im(x 0 im +

N∑

j=1, j,i

x jim − yim)+

∑

i,m

u2
im(xi N+1 m+

N∑

j=1, j,i

xi jm − yim)+

11



∑

i

u3
i (x0 i m +

∑

j,i, m

x jim − xi N+1 m −
∑

j,i, m

xi jm)+

∑

i

u4
i (1−

∑

j,i, m

x jim)+

∑

i

u5
i (1−

∑

j,i, m

x jim)+

∑

i, j,m

u6
i jm(x jim − x′ jim)+

(46)

s.t. Ci ≤W ∀i ∈ I (47)∑

m∈M

yim = Si ∀i ∈ I (48)

xi jm + x jim ≤ 1 ∀i, j ∈ I : j , i,m ∈ M (49)∑

i

x0im = 1, ∀m ∈ M (50)

∑

i

xi N+1 m = 1, ∀m ∈ M (51)

Ci + tDi ,P j + T j ≤ K(1− x′i jm) +C j ∀i, j ∈ I : j , i,m ∈ M (52)

ai + Ti ≤ Ci ∀i ∈ I ,m∈ M (53)

rm + tLm,Pi + Ti ≤ Ci ∀i ∈ I ,m∈ M (54)

yim ≤ zm, ∀i ∈ I ,m∈ M (55)∑

i, j,i

x jim ≥ q, ∀m ∈ M (56)

∑

i, j,i,m

x jim ≥ N − M = q (57)

zm, xi jm ∈ {0, 1}, (i, j,m) ∈ (I ′ × I ′ × M), yim ∈ {0, 1}, (i,m) ∈ (I × M) (58)

W ≥ 0,C j ≥ 0, j ∈ I (59)

The problem separates into 4 independent problems:

a. Scheduling Sub-Problem with continuous variables:

(LRX-IAVS-Sch)

min W−
∑

i, j,m

u6
i jmx′ jim

s.t. Ci ≤W ∀i ∈ I (60)

Ci + tDi ,P j + T j ≤ K(1− x′ i jm) +C j ∀i, j ∈ I : j , i,m ∈ M (61)

ai + Ti ≤ Ci ∀i ∈ I ,m ∈ M (62)

rm + tLm,Pi + Ti ≤ Ci ∀i ∈ I ,m ∈ M (63)

W ≥ 0,C j ≥ 0, j ∈ I (64)

xi, j,m ∈ (I × I × M) (65)

b. A semi-knapsack problem:
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(LRX-IAVS-Seq)

min
∑

i,m

u1
im

N∑

j=1, j,i

x jim +
∑

i,m

u2
im

N∑

j=1, j,i

xi jm +
∑

i

u3
i

∑

j,i, m

xi jm−

∑

i

u3
i

∑

j,i, m

x jim −
∑

i

u4
i

∑

j,i, m

x jim−

∑

i

u5
i

∑

j,i, m

x jim +
∑

i, j,m

u6
i jmx jim +

∑

i

u4
i (1)+

∑

i

u5
i (1) (66)

s.t. xi jm + x jim ≤ 1 ∀i, j ∈ I : j , i,m ∈ M (67)
∑

i, j,i

x jim ≥ q, ∀m ∈ M (68)

xi jm ∈ {0, 1}, (i, j,m) ∈ (I ′ × I ′ × M) (69)

W ≥ 0,C j ≥ 0, j ∈ I (70)

c. A semi-assignment problem which is again decomposable for source and sink:
(LRX-IAVS-SourceSink)

min
∑

i,m

u1
imx 0 im +

∑

i,m

u2
imxi N+1 m +

∑

i

u3
i x0 i m −

∑

i

u3
i xi N+1 m

(71)

s.t.
∑

i

x0im = 1, ∀m ∈ M (72)

∑

i

xi N+1 m = 1, ∀m ∈ M (73)

xi N+1 m, x0 i m ∈ {0, 1}, (i, j,m) ∈ (I ′ × I ′ × M), yim ∈ {0, 1}, (i,m) ∈ (I × M) (74)

d. A knapsack problem:
(LRX-IAVS-y)

min −
∑

i,m

u1
imyim −

∑

i,m

u2
imyim (75)

s.t.
∑

m∈M

yim = Si ∀i ∈ I (76)

yim ∈ {0, 1}, (i,m) ∈ (I × M) (77)

(78)

whereV∗(LRX− IAVS) = V∗(LRX− IAVS−S ch)+V∗(LRX− IAVS−S eq)+V∗(LRX− IAVS−S ourceS ink)+
V∗(LRX− IAVS− y) andV∗(.) stands for the optimal value.

Three out of the all fours separated problems are binary problems which can be solved by inspection without resorting
to any LP/MIP solver. The only different problem is (LRX− IAVS−S ch) which does not show any integrality property
according to our extensive numerical experiments and can beefficiently solvable by using a MIP solver.

4.1.3. algorithms for solving subproblems
Except for (LRX− IAVS−S ch), the rest of problems namely, (LRX− IAVS−S eq), (LRX− IAVS−S ourceS ink)

and (LRX− IAVS− y) can be solved by inspection.
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In the following we outline specialized algorithms for eachone.

Algorithm for (LRX− IAVS − S eq). Let αi jm be the coefficient of xi jm in (LRX− IAVS − S eq) after re-ordering
terms. The problem does not have too many constraints:

Algorithm 1: Inspection algorithm for (LRX− IAVS− S eq).
Input: lagrangian multipliers
Output: xi jm,∀i, j,m
counter= 0 ;
for s= 1 to q do

(i, j,m) = argmin{αi jm : i, j , i ∈ I ,m∈ M};
xi jm := 1;
xjim := 0;
αi jm = ∞;

This algorithm finishes in linear time.

Algorithm for (LRX− IAVS−S ourceS ink). Let β0im be the coefficient ofx0im andβi N+1 m the coefficient ofxi N+1 m.
Then let (i′,m′) = argmin{β0im : i ∈ I ,m ∈ M}, we setx0i′m′ = 1. Also let (i′′,m′′) = argmin{βi N+1 m : i ∈ I ,m ∈ M},
we setx0i′′m′′ = 1. The rest of variables fixed to zero.

Algorithm 2: Inspection algorithm for (LRX− IAVS− S ourceS ink).
Input: lagrangian multipliers
Output: x0im, xi N+1 m,∀i,m
counter= 0 ;
for m ∈ M do

(i′,m′) = argmin{β0im : i ∈ I ,m∈ M};
x0i′m′ := 1;

for m ∈ M do
(i′′,m′′) = argmin{βi N+1 m : i ∈ I ,m ∈ M};
xi N+1 m := 1;

This algorithm finishes inO(M).

Algorithm for (LRX− IAVS− y). Let γy
im be the cost of variableyim. If S(i) = 1 then (i,m′) = argmin{γy

im : m ∈ M},
yim′ = 1. If S(i) = 2 then (i,m′′) = argmin{γy

im : m, m′} andyi′m′ = yi′′m′′ = 1.

Algorithm 3: Inspection algorithm for (LRX− IAVS− y).
Input: lagrangian multipliers
Output: yim,∀i,m
for i ∈ I do

(i,m′) = argmin{γy
im : m ∈ M};

yim′ = 1;
if S(i) = 2 then

(i,m′′) = argmin{γy
im : m, m′,m∈ M};

yi′m′ = yi′′m′′ := 1;

This algorithm finishes inO(N).

4.2. Variable Fixing

In the course of subgradient optimization, after a few stepswhen the multipliers are stabilized we have lower
bound obtained from the Lagrangian relaxation,LBLRX, and also an upper bound ,UBheur, using a heuristic which is
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described in the following.

Given the reduced cost of a binary variablevar, if reduced costRCvar > UB− LB the this variable will not take 1
in any optimal solution and we can remove its column from further computations and get a reduced problem.

We give priority toyim, ∀i ∈ I ,m ∈ M variables for testing the possibility of elimination. Because, eliminating one
yim implies reduction of all variablesxi jm andx jim ∀ j ∈ I ′,m ∈ M which is quite significant and makes the problem
size iteratively smaller and resolution becomes easier.

We perform this test whenever lower bound improves in the course of subgradient.

4.3. Primal Bound

A heuristic algorithm is needed to exploit the information obtained from the LR model to produce high quality
feasible solution while being computationally very viable. For every given solution to the LR the assignment of jobs
to the machines are determined in (LRX− IAVS− y) while the sequencing part might not make a complete or even
feasible solution.
The basic idea behind the heuristic is to do the following:

• accepting the assignment reported by (LRX− IAVS− y) and optimize for sequence by taking into account the
tasks which need to be done in cooperation between two machines,

• optimizing for the assignment which inevitably will lead toa sequence optimization.

We employ a local search approach which tries to re-assign the jobs in a systematic way aiming at minimizing the
makespan for every machine.

4.3.1. initial solution
We start by distributing the jobs (ωi ,∀i ∈ I ) between the machines in a way that the first tasks of all machines

haveai very close to each others. We follow the same pattern for all the tasks. LetA = {1, 4, 7, 11, 15, 16, 17,19, 21}
andM = 3 then we distribute the jobs as following:

ω1(a1 = 1)→ ω4(a4 = 11)→ ω7(a7 = 17)

ω2(a2 = 4)→ ω5(a5 = 15)→ ω8(a8 = 19)

ω3(a3 = 7)→ ω6(a6 = 16)→ ω9(a9 = 21)

Let assume thatS(ω4) = S(ω8) = 2 then the following pattern applies:

ω1(a1 = 1)→ ω4(a4 = 11)→ ω6(a6 = 16)→ ω8(a8 = 19)

ω2(a2 = 4)→ ω4(a4 = 11)→ ω7(a7 = 17)→ ω9(a9 = 21)

ω3(a3 = 7)→ ω5(a5 = 15)→ ω8(a8 = 19)

where a duplicate of every job with size> 1 is present in the representation. By doing so we are trying to distribute
the jobs more equally such that the variance in the completion time of last task on machines is reduced.

4.3.2. neighborhood structure and move strategies
We employ two kind of moves:TemporalandSpatial. In temporal moves, the sequence of performing tasks on

the same machine is modified while in the spatial moves, a jobswill be assigned to different machine(s).
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Temporal Move.A temporal move is a move which transforms the current solution to another solution by putting
forward or postponing a job by only one step, if feasible. That is, if job ωi is the j-th job on machinem then the
temporal moves will result in a solution havingωi the (j − 1)-th or (j + 1)-th job on the same machine.

Spatial Move.A spatial move is a move which transforms the current solution to another solution by changing the
machine to which it is assigned to. That is, if jobω j is the j-th job on machinem then the temporal moves will result in
a solution havingωi the j′-th job on another machinem′ (the choice ofj′ is rather biased towards a greedy approach)
minimizing possible increase in the completion time of every machine.

Search Strategy.Our main emphasis is on distributing the jobs on machines such that the machines finish their final
tasks very close to each other. This helps to avoid having a few machines of heavily loaded with long makespan and
the rest being less occupied and significantly shorter makespans. In order to achieve this goal, we first must ensure
that, given our neighborhood structure and a greedy search,there is no other sequence better than the current one
which makes the makespan for the given machine shorter. Thismeans we employ a two-level search. In the first level
we only employ temporal moves for each machine in order to obtain high quality sequences, for a given assignment.
We try to greedily re-sequence the jobs by finding the best place of each job starting from the firsts to the last one
in the current solution. It must be noted that for the jobs with S(ωi) = 2 any re-sequencing will result in the change
of makespan in the collaborating machines. Therefore, except for the machines which are not cooperating at all with
any other machine, the rest of machines are analyzed lexicographically to avoid any confusion. In the second phase,
spatial moves are performed in which we start from the machines with the highest makespan and try to re-assign the
tasks to another machines with less makespan and subsequentiterations of temporal moves is applied. Of course the
issues related to the jobs with size 2 are taken into account.

Tabu list. We employ a tabu list which keeps track of the moves in the search space. A spatial or temporal move
become forbidden forηl , ηm iterations, repeatedly. That is if a move has caused a jobs onmachinem being postponed
or put forward, then the reverse move will be forbidden forηt iterations. This analogously applies to the spatial moves.

Scape strategies.The greedy approaches often are in the danger of trapping in local optima and facing a premature
convergence. In order to avoid that, we incorporate some degree of randomness in our approach. In moving from one

solution to a neighboring solution, we will accept even degrading solution if the value ofe(− ∆ f
log iteration) is bigger thanθtr

and reject otherwise.

Termination criteria. The termination criteria is set to a total number of consecutive non-improving iterations.

5. Numerical results

We have generated instances with perturbed data of Dublin Ferryport Terminal (DFT). Instances range from 10 to
400 jobs and number of deployed IAVs are in{1, 2, . . . , 6}. Through extensive experiments on instances of problem
we observed that our heuristic is robust against changes inηl andηm and therefore we have fixed these two values to

ηl = ηm = 10. The same applies to the choice oft in e(− ∆ f
log iteration). Forθtr , the best value between{0, 0.2, 0.4, 0.6, 0.8,1}

is 0.8.
As for termination, we stop the search as soon as consecutiveN

M unsuccessful iterations being observed.

The instances are generated based on the reality, however asmentioned earlier there is still a minimal level of
perturbation due to some confidentialities. A part of this perturbation tries to linearly scale the time unit. That means,
the time unit we employ here is not any of second, minute or hour, rather a linearly scaled one.

There are in general 16 drop-off/pick-up locations. The terminal yard is composed of 12 stacks —6 import and 6
export. For the sake of simplicity and avoiding excessive computational efforts, we have considered that every stack
has only one drop-off/pick-up point along it. There is an area where the empties arestacked and there are three quay
cranes which can be potentially used2.

2instances are publicly available via the corresponding author
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All the numerical results has been carried out on an Intel(R)Core(TM)2 Duo CPU 2.93Ghz with 4.00 GB RAM.

In the following we first examine the effect of the tightening inequality and afterwards report the numerical exper-
iment on instances of the problem.

5.1. Inequalities

In Table 1 we report the computational experiment carried out before and after adding the valid inequalities (25).
Thebold faced content represent the instances for which the added cut resulted in improve in performance whether
CPLEX status or time-wise. Theitalic cases are those instances for which the added cut deteriorated performance of
CPLEX in a way that optimality has been lost or the same solution quality has been obtained in longer computational
time.
Instance names are written in format ofmX nY whereX is the number of machines andY is the number of tasks. The
instance sizes are only those which can be tackled by CPLEX onour machine.
A time limit of 1200 seconds and a maximum number of branch-and-bound node 500,000 has been set for this
experiment. In the Table 1,Optimal stands for optimality,NodeLimFeas indicates that the solver terminated with
node limit but a feasible solution has been found,NodeLimInfeas states that the node limit has been reached but
no feasible solution detected andAbortTimeLim indicates that a time limit is reached without any feasible solution
being found.

For instances such asm2 n8 the number of branch-and-bound nodes has been reduced by half million nodes. In
fact, whenever an improvement has been observed the reduction in the tree size is impressive (by some hundred thou-
sands nodes). There are of course cases where no improvementoccurs or even the solver performance deteriorates.
Instances of that are, for example,m4 n12 andm4 n16.

On larger instances, namely 60, 70, 80, 100, while CPLEX is unable to find any feasible solution, employing our
valid inequality (25) helps CPLEX to find feasible solutionswith good qualities. More precisely, the gap is always
below 10 percent.
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Table 1: Effect of valid inequalities (25) on the performance of CPLEX

Initial Model Model with (25)

Instance nbNodes CpuTime CplexStatus MIPRelativeGap nbNodes CpuTime CplexStatus MIPRelativeGap

m2 n4 541 0.34 Optimal 0.00 60 0.09 Optimal 0.00
m2 n8 500001 118.00 NodeLimFeas 18.11 5613 2.81 Optimal 0.00
m2 n12 500001 204.58 NodeLimFeas 1.95 500002 356.14 NodeLimFeas 10.91
m2 n16 0 0.17 Optimal 0.00 500001 576.85 NodeLimFeas 23.06
m2 n20 500002 424.68 NodeLimInfeas - 500001 602.24 NodeLimInfeas -
m2 n24 485382 1430.86 AbortTimeLim - 500002 1190.63 NodeLimFeas 17.63
m2 n28 0 0.64 Optimal 0.00 500001 1241.77 NodeLimFeas 58.92
m2 n32 379179 1427.03 AbortTimeLim - 388520 1411.86 AbortTimeLim -
m2 n36 277723 1406.96 AbortTimeLim - 373301 1435.74 AbortTimeLim -
m2 n40 379774 1385.73 AbortTimeLim - 0 1.45 Optimal 0.00
m2 n50 186465 1430.03 AbortTimeLim - 0 2.93 Optimal 0.00
m2 n60 500001 1865.13 NodeLimInfeas - 500001 1836.03 NodeLimFeas 33.00
m2 n80 500001 1867.12 NodeLimInfeas - 500001 2010.20 NodeLimFeas 24.00
m2 n100 500001 2556.10 NodeLimInfeas - 500001 2785.94NodeLimFeas 29.00

m3 n4 671 0.50 Optimal 0.00 20 0.25 Optimal 0.00
m3 n8 0 0.22 Optimal 0.00 0 0.08 Optimal 0.00
m3 n12 500001 518.22 NodeLimFeas 20.69 63367 51.39 Optimal 0.00
m3 n16 500001 966.22 NodeLimFeas 0.30 500002 772.81 NodeLimFeas 45.51
m3 n20 0 0.81 Optimal 0.00 0 0.76 Optimal 0.00
m3 n24 500002 1360.42 NodeLimFeas 18.08 500002 1337.47 NodeLimFeas 19.60
m3 n28 509 3.96 Optimal 0.00 500001 1177.17 NodeLimFeas 0.20
m3 n32 0 1.28 Optimal 0.00 0 1.40 Optimal 0.00
m3 n36 9671 42.93 Optimal 0.00 482 9.67 Optimal 0.00
m3 n40 0 2.17 Optimal 0.00 0 2.78 Optimal 0.00
m3 n50 112378 1412.29 AbortTimeLim - 0 3.85 Optimal 0.00
m3 n60 500001 1972.34 NodeLimInfeas - 500001 NodeLimFeas 16.00
m3 n80 500001 2228.63 NodeLimInfeas - 500001 NodeLimFeas 24.00
m3 n100 500001 2882.55 NodeLimInfeas - 500001 NodeLimFeas 12.00

m4 n4 42 0.31 Optimal 0.00 97 1.11 Optimal 0.00
m4 n8 238 0.33 Optimal 0.00 75 0.41 Optimal 0.00
m4 n12 0 0.41 Optimal 0.00 500001 698.87 NodeLimFeas 9.93
m4 n16 0 0.48 Optimal 0.00 500001 885.35 NodeLimFeas 66.08
m4 n20 0 0.78 Optimal 0.00 0 0.70 Optimal 0.00
m4 n24 0 1.95 Optimal 0.00 0 1.39 Optimal 0.00
m4 n28 0 2.56 Optimal 0.00 86060 274.09 Optimal 0.00
m4 n32 0 2.23 Optimal 0.00 3 3.76 Optimal 0.00
m4 n36 545 22.59 Optimal 0.00 2847 37.92 Optimal 0.00
m4 n40 106152 1413.60 AbortTimeLim 3.52 0 4.77 Optimal 0.00
m4 n50 140954 1403.62 AbortTimeLim - 0 9.20 Optimal 0.00
m4 n60 500001 1800.58 NodeLimInfeas - 500001 1777.01 NodeLimFeas 10.00
m4 n80 500001 2206.94 NodeLimInfeas - 500001 1866.89 NodeLimFeas 35.00
m4 n100 500001 2602.40 NodeLimInfeas - 500001 2893.39NodeLimFeas 38.00

m5 n4 31 0.36 Optimal 0.00 37 0.25 Optimal 0.00
m5 n8 538 1.51 Optimal 0.00 61 0.51 Optimal 0.00
m5 n12 0 0.39 Optimal 0.00 3061 9.67 Optimal 0.00
m5 n16 21162 52.18 Optimal 0.00 500001 756.45 NodeLimFeas 14.76
m5 n20 12626 52.01 Optimal 0.00 0 1.26 Optimal 0.00
m5 n24 0 2.89 Optimal 0.00 0 2.18 Optimal 0.00
m5 n28 488 6.43 Optimal 0.00 482 7.77 Optimal 0.00
m5 n32 - - - 0.00 497 19.84 Optimal 0.00
m5 n36 0 6.07 Optimal 0.00 0 4.74 Optimal 0.00
m5 n40 0 9.03 Optimal 0.00 0 6.13 Optimal 0.00
m5 n50 82710 1446.27 AbortTimeLim 0.00 0 35.12 Optimal 0.00
m5 n60 500001 1668.49 NodeLimInfeas - 500001 1516.95 NodeLimFeas 36.00
m5 n80 500001 2119.25 NodeLimInfeas - 500001 2190.70 NodeLimFeas 17.00
m5 n100 500001 2675.28 NodeLimInfeas - 500001 2410.12NodeLimFeas 10.00

m6 n8 156 0.59 Optimal 0.00 18 0.36 Optimal 0.00
m6 n4 39 0.19 Optimal 0.00 0 0.11 Optimal 0.00
m6 n12 359 1.65 Optimal 0.00 0 0.45 Optimal 0.00
m6 n16 0 0.80 Optimal 0.00 0 1.45 Optimal 0.00
m6 n20 0 1.09 Optimal 0.00 18 2.79 Optimal 0.00
m6 n24 9689 46.27 Optimal 0.00 339680 1324.03 Optimal 0.00
m6 n28 0 3.14 Optimal 0.00 0 4.85 Optimal 0.00
m6 n32 46305 421.70 Optimal 0.00 220828 1523.63 AbortTimeLim 0.07
m6 n36 123198 1439.56 AbortTimeLim - 0 7.58 Optimal 0.00
m6 n40 141421 1410.61 AbortTimeLim - 0 8.97 Optimal 0.00
m6 n50 10633 1515.78 AbortTimeLim - 0 23.21 Optimal 0.00
m6 n60 500001 1914.72 NodeLimInfeas - 500001 1535.65 NodeLimFeas 22.00
m6 n80 500001 2136.14 NodeLimInfeas - 500001 1842.02 NodeLimFeas 32.00
m6 n100 500001 2720.65 NodeLimInfeas - 500001 2882.80NodeLimFeas 40.00
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As shown in table, as the instance size grows the cut becomes more effective in improving the quality of solution
obtainer by CPLEX.

5.2. lagrangian relaxation vs. local search

As mentioned earlier, the instances are generated based on real data of the case study.
The Dublin Ferryport Terminal (DFT) is a rather small terminal and Dublin port is mostly a non-transhipment port.
The terminal authority is going to deploy 2-6 IAVs inside theterminal.
In our generated instances, 2-TEU (i.e. 1-FFE) container comprise 60% of the total discharged/uploaded containers
for every vessel call. As a result we know a priori that it is less likely that duplicating the number of IAVs will pro-
portionably reduce the makespan.

we use the well-known subgradient algorithm to solve our lagrangian problem and every 10 iterations we invoke
the heuristic algorithm to obtain a primal bound. The algorithm terminates when the average subgradient size drops
below certain threshold depending on the size of instance orwhen there has not been any improvement in last 20
iterations even after adjusting the step size of subgradient. The big-M constraints are modeled by the concept of
indicators in CPLEX to avoid numerical instability in the case that the big-M constraints are not removed at the
preprocessing phase of CPLEX.

The variable fixing is applied procedure is invoked every 5 iterations if there has been any improvement in either
bounds.

From the Table 2, the values are chosen asN ∈ {20, 30, 40, 50, 100, 150, 200, 250, 300, 350,400}andM ∈ {2, 3, 4, 5, 6}.
The first column of table represent values ofm, while the second reportn. The computational time spent in LR resolu-
tion is reported in the next column which is followed by the column representing the number of subgradient iterations.
We then report the computational time required for the heuristic algorithm in the next column. The following column
reports the gap between the best solution of heuristic and the LR bound. Finally, the last column reports the best-found
makespan.

Due to the numerical difficulties in solving MIPs in LR, the number of iterations are fairly small, except in cases
where LR problem of instance looks rather easy. The computational time ranges from approx. 35 second to approx.
14,902. This time includes the time used in for heuristic search during the search. Nevertheless, the computational
time of heuristic is very small when compared to the total LR iterations CPU time.

The gap between the heuristic and the LR bound are practically acceptable for this application for confirming the
quality of solutions. The maximum average gap is 16.72 whichis quite acceptable.

While the increase in the makespan is not linear with the number of tasks, decrease in the length of makespan is
not proportional to the size of fleet of IAVs, either. This is justified by the fact that most of the discharged containers
actually lead to cooperation between IAVs which in turn results in significant waiting time which is spent for IAVs
waiting for each other to start a task.
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Table 2: Numerical results: Lagrangian decomposition performance.

|M| |N| Lagrangian Relaxation Local Search makespan|M| |N| Lagrangian Relaxation Local Search makespan

Time (sec.) # iteration Time (sec.) GAP(%) Time (sec.) # iteration Time (sec.) GAP(%)

2 20 208.53 81 21.19 28.72 134.40 5 20 751.29 71 13.81 2.93 99.48
30 441.13 36 18.58 13.86 393.71 30 234.07 47 17.22 5.96 272.42
40 132.90 49 13.14 16.50 815.27 40 185.25 33 13.82 2.50 564.10
50 758.25 35 48.20 8.34 2409.73 50 420.68 84 48.30 28.18 1587.21
100 820.60 46 78.97 25.54 6384.74 100 3812.05 37 17.00 8.24 4448.04
150 35.95 59 208.29 6.59 11680.89 150 6303.94 14 450.62 26.588646.29
200 95.29 77 28.47 29.00 26687.28 200 9316.84 46 586.58 18.3117261.11
250 1053.25 42 321.45 27.05 64034.56 250 11517.96 21 29.96 23.09 42228.12
300 3460.36 52 111.83 10.17 127765.75 300 11587.74 83 515.69 0.87 89414.73
350 4676.58 82 525.20 0.75 227634.73 350 901.47 81 74.06 2.34 147232.25
400 4988.63 53 60.46 3.01 439510.88 400 8413.12 27 126.56 11.35 325677.56

avg. 15.41 avg. 11.85

3 20 515.30 16 39.70 15.36 123.20 6 20 145.11 14 22.99 10.53 87.88
30 879.88 19 88.01 28.97 301.85 30 716.34 20 71.37 19.81 248.81
40 816.33 24 18.68 9.83 625.04 40 234.54 35 32.51 5.72 515.21
50 593.26 64 79.13 6.34 2088.44 50 1015.63 67 18.36 7.60 1449.65
100 2596.86 41 235.69 17.26 5852.68 100 1262.78 89 95.09 28.76 3929.10
150 3837.04 99 84.63 15.58 10707.48 150 456.43 48 109.62 12.46 7896.95
200 2087.99 97 198.90 12.27 19125.88 200 2706.71 64 124.87 10.64 15247.31
250 2135.31 46 506.60 23.82 52294.89 250 953.77 74 72.62 15.74 38568.35
300 1911.92 89 528.74 13.15 110730.31 300 7798.86 95 407.25 29.48 81665.45
350 5167.25 46 475.29 27.63 163138.22 350 3987.62 36 658.41 12.00 130055.15
400 10404.03 41 1124.90 13.74 380909.43 400 7273.53 41 881.28 14.02 287681.85

avg. 16.72 avg. 15.16

4 20 98.01 53 32.01 0.09 104.72
30 170.59 24 34.22 8.79 286.76
40 1263.83 35 138.95 7.94 593.79
50 249.93 40 150.46 25.30 1670.75
100 2215.72 41 238.49 11.34 4682.14
150 3515.87 42 165.68 9.55 9101.36
200 2766.83 60 186.66 9.84 18169.59
250 984.18 69 54.35 15.73 49680.15
300 9476.48 67 192.11 1.39 94120.77
350 7519.82 36 836.61 25.16 154981.31
400 14902.79 46 1184.40 6.35 361863.96

avg. 11.04

2
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5.3. Comparison with the current practice of port

The current practice of port is comprised of a fleet of man-driven shunters each of which will transport a 1-TEU
or 1-FFE containers. A precise performance comparison between current practice and the IAV-based logistics is not
very straightforward as a fair comparison is rather difficult. That is, comparing an output of a deterministic model
with the real practice including the stochasticity and failure etc might not be fair.

However, our discrete event simulation of the terminal by collecting the parameters from the field ensures an up
to 11 percent reduction in the size of makespan.

6. Summary, conclusion and outlook to future works

An effective use of the emerging technologies is realized throughoptimization and simulation of environment
over which they are operating. IAVs developed in the framework if InTraDE are expected to be deployed in some
of the smaller container terminal in North-West Europe. Theautonomy and intelligence of IAVs is promoting their
applications in different environment, container terminals as the most important one.

We corrected the infeasibility and extended the model in Ng et al (2007) to accommodate cases where a 1-FFE
container needs to be carried by two IAVs. Once IAV arrives ata crane to pick-up a container of more than 1-TEU
size, it has to wait for another partner IAV to arrive and pairand do the pick-up jointly. We then developed a lagrangian
decomposition to solve instance of a case-study of Dublin. The numerical results confirm the efficiency of our method
and quality of the solutions.

The IAVs work in three conditions: 1) fully-functional, 2) degraded and 3) faulty. In the fully functional case, the
speed is the desired speed and every thing is in order. In the degraded condition, perhaps part of the system (system
comprised of 4 independent wheels and several independent sensors) has been failed but still the system is able to
complete the jobs with less performance and in the later caseIAVs have to stop operations when it is faulty. In the
future, we will take into account this features and extend the model to accommodate this case. Of course studies on
improving we the mathematical model is of major importance and effective solution approaches deserve particular
attentions.

7. Acknowledgement

This work has been supported by the European Commission in the framework of Intelligent Transportation for
Dynamic Environment (InTraDe).

8. Bibliography
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