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Lagrangian Relaxation for Scheduling of Intelligent and@omous Vehicles in
Container Terminals Under Pairifignpairing Strategy

Shahin Gelaréet, Rochdi Merzould, Kay McGinley, Roisin Murray

3LAGIS FRE CNRS 3303, Ecole Polytechnique de Lille, AvenukLRagevin, 59655 Villeneuve d’Ascq, France
bEcole Polytechnique de Lille, Avenue Paul Langevin, 596B&n¢uve d’Ascq, France
¢Department of Transport Engineering, Dublin Institute etfinology, Bolton St., Dublin 1. Ireland

Abstract

A new class of Intelligent and Autonomous Vehicles (I1AVskHieeen designed in the framework of Intelligent Trans-
portation for Dynamic Environment (InTraDe) project fuddey European Commission. These vehicles which are
technologically superior to the existing Automated Guitketticles (AGV) in diferent technical aspectsfer more
flexibility and intelligence in manoeuver in the area whérelbgistics operations take place. This includes thetgbili
of pairingunpairing enabling a pair of 1-TEU (Twenty-foot Equivaléhtit) IAVs join and transport any size between
a 1-TEU and a 1-FFE (Forty-foot Equivalent) containers. dcomnmodate this feature, in this article, we extend the
classical mixed integer programming model of AGV scheduimorder to minimize the makespan of operations to
transport a set of containers offidirent size between quay cranes and yard cranes. In partiautase study on
Dublin Ferryport Terminal is carried out. In order to copeéhwthe complexity of the scheduling model, we design a
Lagrangian decomposition approach utilized with varidbxi@g procedure and a primal solution heuristics to obtain
high quality solution of instances of the problem.

Keywords:
Intelligent Autonomous Vehicle, Automated Guided Vehjdlexed Integer Programming, Scheduling, Lagrangian
Relaxation

1. Introduction

The ever increasing volume of international tarde whichpisai90 percent fully containerized has demanded for
appropriate solutions for several other issues arisingsaahe entire logistics operations and supply chain.
This circulation of huge number of containers is mainly tgjkplace on three main routes: 1) Asia-Europe, 2) Trans-
Pacific, and 3) Trans-Atlantic. In total more than 500 portd tens of liner shipping companies are involved in the
global maritime logistics.
Due to the intensive interaction and global-wide spatisiribution of components of the containerized transpat sy
tem, the indiciencies in individual parts of the system (both from linendce providers and port authorities points
of view) will propagate its negative impact spatially anthferally across the network of systems.

From the liner shipping industry point of view, larger vdssie needed to help the service providers benefit from
the economy of scale in transport of the growing volumes. I®gpg such vessels is very expensive (often more
than several millions dollars per day) and such vesselserergting profit for the owner only during the sailing time
and the part of voyage time spent at ports which is referrexstarn-around timeof a complete voyage at fiierent
ports are actually the unprofitable parts. Therefore, ttomeay of scale may not be exploited unless in long-haul
transport. This means that the Liner Service Providers §) 8Bually do not find it profitable to call too many ports
along a service rotation (the so callestring’). Consequently, some major transhipment hubs came imtp which

*Corresponding author (Tek45 4525 3386)
Email addressshahin.gelareh@polytech-1lille.fr;shahin.gelareh@gmail.com (Shahin Gelareh)

Preprint submitted to Transportation Research Part C October 24, 2011



are consolidation and distribution ports and in turn arexpirtg service to other smaller ports in their region. The
selection of such ports depends on several aspects —one ofdhkt important is theféiciency and infrastructure in
terms of turn-around time (of course assuming that portpbésntial to be a hub port, i.e., it has enough draft for
admitting larger vessels and a lot more eco-political ais)ec

From the port (equivalently terminal) operators point awi, their port competitiveness is essentially dependent
on that they must be able to minimize the turn around time e$g&ks while maximizing the throughput. In this way
they can compete with other neighboring ports and survigeiah a highly competitive market. Due to the dynamism
of the competition, the goal is not reached unless someegitattactical and operational decisions at the terminals
being constantly reviewed and addressed in better ways.ifitludes three main issues: i) the layout and equipment,
i) routing decisions and, iii) scheduling of operations.

Since introduction of containerized transport, severiédint type of port equipments has been developed which
includes several type of cranes (for quay side and yard sidd)carriers (e.g. with and without the ability to lift,
single and multiple carriers) with severaligrent physical and mechanical characteristics. Alongsitle the en-
hancements in Information and Communication Technolo@@$§) the concept of automated and semi-automated
infrastructures came into play and the port authoritiegesiato gradually incorporate ICT in order to improve their
efficiencies. Nowadays, the European Container Terminal (ERGits of PSA in Singapore, Kaoshiung in Taiwan,
Pusan in Korea, Kawasaki and Kajima in Japan, ThamesporkinBsemerhafen and Hamburg in Germany, and
Antwerp in Belgium are among the most automated contaimsnitel in the world.

The same trends is still alive and all around the globe sépeogects are funded to develop new technologies for
ports. From among such facilities, the vehicles with a ¢éedagree of intelligence and also autonomy —at the same
time— exploiting ICT and equipped with several kind of saissand Geographical Information System (GIS) tools
(see InTraD&as an example) are of special interest.

Although the hub ports are in a breath-taking competitiarirfgoroving their dficiencies but such a competition is
not limited only to them. The smaller ports (e.g the Dubliour case) are concerned about tifecency of operation
under the current trend of impgexport volume while there is almost no chance for any expansf the ports
and terminals due to the land-use and infrastructures iméighborhood. This suggest investing on technological
enhancements eventually leading to mofficeent facilities (both transporters and stackingstacking). Intelligent
Autonomous Vehicles (IAVs) (see Figure 1) are a new classasfsporters designed in the framework of InTraDE
which generalize the performance of AGVs. A few facts regaydiAVs follows:

- in contrast to AGVs, |AVs do not need to follow signed segimafroads to reach destination and do not have
to follow a particular itineraries. Rather, they are MIMO M-Input Multi-Output) systems equipped with
several sensors enabling them to benefit from the GeograpPdsitioning Systems (GPS) and several other
sensors to detect the distance to other vehicles, etc,

- the unit capacity of an 1AV is one TEU and for transporting aontainer between 1-TEU and 1-FFE, two 1AVs
pair in a leader-follower manner to make a 40-foot capaaigjlable to transport the object.

- the IAVs can form platoons based on a leader-follower maand every 1AV can be leader or follower,

- all four wheels possess actuators and a failure to any otteeoitheels individually does not stop the vehicle
from operation. Rather it runs into a degraded mode of perdmice in which the operations continues with a
lower performance,

- 1AVs move lateral and longitudinal without need to a largase to make turns. The wheel§er 360 degree
movements,

Lintelligent Transportation for Dynamic Environment (laDre) httpl/www.intrade-nwe. gt



Figure 1: Intelligent and Autonomous Vehicle (IAV).

- Finally, an 1AV system should adapt to its surrounding esrwiment, while for the case of the AGV system, the
existing environment should adapt to them.

While in total, hundreds of ports all around the globe ar®ived in the liner transport network, there are only
few major LSPs serving some major ports. This makes it quitanal that as far as the professional and academic
literature are concerned, there has been a rich body ofestuai the optimization and simulation of operations at the
terminals.

1.1. Objective and contribution

This paper first rectifies a flaw in the model presented in N¢ @007) for AGVs. We show that while the model
is infeasible, it can still be corrected and generalizedeg@pplicable for both AGVs and IAVs. We then examine
the impact of a class of valid inequalities on the computetipperformance of a general-purpose solver for solving
instances of model. As an inherent property of most of thedaling problems, only instances of very small size are
solvable by general-purpose solvers and we propose a gigradecomposition approach equipped with a variable
fixing and primal bound generation heuristic to solve instaof the problem for high quality solutions and in reason-
able time. Several class of violated valid inequalitiesideatified and relaxed in Lagrangian fashion to acceletse t
convergence. As a case study, we apply the model on the Diebtigport Terminal in Ireland —one of the terminals
for which 1AVs are designed.

1.2. Literature review

As mentioned earlier, IAVs are technologically superiot bery similar to the AGVs. Many dierences such
as independency from detecting any sign on the earth surfagsder to follow a path, the ability of in-place 90
degree rotation of wheels, leader-follower behavior ete, more relevant in the routing problems. However, from
among them the ability to join and cooperate in performingsktis of interest in scheduling and minimization of
makespan. The literature is aware of several works dealittgsgheduling of AGVs in container terminals and also
in manufacturing systems. Meersmans and Wagelmans (28)qQifoposed a heuristic algorithm for combined AGV
and crane allocation problems.

Grunow et al (2004) proposed an online logistics control ing a priority-based approach which is compared
against an filine approach. A simulation study of AGVs in an automated @imet terminal is proposed by Grunow
et al (2007) to examine thdfiency of diferent dispatching strategies.
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For other similar works, one can refer to Bish et al (2001)4GV dispatching and yard allocation, Bish (2003)
extended the work to consider loading and unloading sciregiat quay cranes. Bish et al (2005) extended the work
in Bish (2003) and adds some analytical performance studtie¢se proposed algorithm.

Cao et al (2010) proposed a MIP formulation for an integragi@al truck and yard crane scheduling problems
while only the import containers were taken into accounteylapplied a combinatorial Benders decomposition on
their model.

Lee et al (2010) studied a transshipment port where botlingahd discharging containers are considered. While
it has been often simplified by other authors, Lee et al (206@6%ider the delays at yard crane as well. The objective is
to minimize the makespan of quay side operations as to retiedarnaround time of vessels. Because the vessel can
leave as soon as the last job of quay cranes is finished. Tipeged a MIP formulation but two heuristic approaches
were used to solve the problem. Lee et al (2010) work is basg@h@n et al (2007) but they consider loading and
unloading simultaneously.

Ng et al (2007) proposes a MIP model for scheduling a fleetumkis at a container terminal and the fleet size is
assumed to be given exogenously.

However, as we show later, the model in Ng et al (2007) doealnetys produce a feasible solution to the problem
of scheduling AGVs.

Other works on dispatching fiierent equipments at container terminals can be found in KichBae (1999,
2004) for AGV dispatching problem while Kim and Bae (2004)moys a look-ahead strategy which considers
local and temporal information of future tasks and assumdsad cycle operations of AGVs; Nguyen and Kim
(2009) extended Kim and Bae (2004) for automated liftingiclels (ALV); Hartmann (2004) for a wider range of
equipments; Narasimhan and Palekar (2002) in which evacktis dedicated to a particular quay crane as opposed
to the approach in Kim and Bae (2004).

2. Problem statement

As mentioned earlier, IAVs are intelligent vehicles whiemavork in groups. That means given a set of individual
IAVs it is possible that anyone plays the role of a leader &iedést be connected to it as followers to form a platoon.
This resembles the behavior of locomotive and wagons inim fiHowever, in this article we restrict the size of such
a train of vehicles to 2, i.e. the size of a 1-FFE container).

Given such a property, in order to perform a job for an FFE aioetr, two single IAVs must join together and
perform the task. That is, if a 35-foot container is going &ifmportedexported then two 1AVs move towards the
corresponding crane to collect it.

The 1AV scheduling problem we consider in this article cardbscribed as in Ng et al (2007):

At the earliest ready-time for vehicle e{1, ..., M}, i.e. t, the vehicle is at location . There are N tasks and
toeverytaskre {1,..., N} a pick-up R and a delivery @ location is associated. There is an approximate travel time
ty. between every two locationsl L = {L;,...,Lu,Pi,...,Pn,Di,...,Dnyandt e LY = {Pj,...,Pn, D, ..., Dn}
and §- # t, in general. The duration of job i,;Tis the time elapsed from the moment that I1AV(s) arrive(shat t
pick-up location of task i, P to the moment that 1AV(s) depart the drofidocation of task i, D (the average delays
both at quay crane and yard crane are implicitly included)eTl; plus the time that I1AV(s) travel(s) empty from. D
to P, is the processing time of task i. There is a time at which aer@an generate the task i and expect one or two
IAVs to arrive at that location —not earlier. This is refedréo by ready-timejaand g < a1, Vi€ {1,...,N-1}. 1AV
scheduling problem seeks for minimizing the makespan satlihte turn-around time of vessels are minimized.

3. Mathematical Model

The model is a mixed integer programming with objective fiorcof minimizing the makespan. This means that
we are minimizing the completion time of the last task befassel is ready to depart.

We employ a very similar notation as used by Ng et al (2007).



Parameters. The parameters are listed here:

Parameters

rm: the earliest time that the IAYwill be available,

Lm: the initial location of 1AV, at tm,

T;: the elapsed time from the arrival of an IAV to the locatiorpafk up until
the time that its container being unloaded at the destinatio

tij: the travel time between locationsj in the terminal,

a: the ideal time for performing tadki.e., the time the task becomes available.
N: the total number of tasks,

M: the total number of available vehicles,

I:the setofalltaské={i: 1 <i < N},

I”: the set of all task$’ = {i : 0 <i < N+ 1} where QN + 1-th

task are dummy source and sink tasks, respectively,

V: the set of all task¥ = {m: 1 < m< M},

S;: size of container of task

K: a suficiently big constant (calculated based

on known upper bound on optimal solution).

Decision Variables.The decision variables are listed below:

Variables

Xiim: 1, if task j is performed after taskon vehiclem, O otherwise,
Vim: 1, if taski is performed on vehiclm,

Ci: the completion time of task

W: makespan, i.e. the completion time of the last task.

The AGV scheduling problem in Ng et al (2007) follows:

AGV-Scheduling (AGVS)

min W

st. G<W Vi
M
ZYimZJ- Vi el
1
Zxa,-msyim Viel,meM
jel”
N
ZX@ijy]‘m Yjel,meM
i=1
1> Xijm + Xjim = ¥Yim + Yjm — 1 Vi,jel:j#i,meM
Ci+tDi,pj+Tj§K(1—Xijm)+Cj Vi,jel:j#i,meM
a+Ti <G Yiel,meM
rm+t|_m!pi+TiSCi Viel,meM

Xijm,Yim € {0,1}iel,jel’,meM
W=>0,C;>0,jel.

(1)
()

3)
(4)

(5)

(6)
(7)
(8)
(9)
(10)
(11)
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Figure 2:xm: taskj is performed after on vehiclem.
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Figure 3:xm: taskj is performedmmediatelyafteri on vehiclem.

Remark 1. AGV-Scheduling (AGVS) is infeasible.

The definition ofx;jm is confusing. In Figure 2 and Figure 3 we depict an examplb Witasks and 2 two vehicles
(distinguished by connection style) —excluding the dumimyrse and sink nodes in this representation. Depending
on a precise definition ofj, one of the Figure 2 and Figure 3 is expected.

The issue arises in the definitionwiariables. One of the following definitions is correct:

o thetask j is performed after thetask i on the vehicle m: in which the variablejm = 1 for all tasksj’ # i
which is completed after completion bbn the same vehicle. Therefore the total number of links arriving at
any non-first task is more than one and this contradicts BithThis is depicted in Figure 2 (machine 2, with
solid connection between tasks) where oy, = X152 = Xo52 = 1. In such case we haye, = Y2 = ysp = 1
and consequently the constraint (5) becomes infeasiblezbyzg1 Xijm < Yjm=1forj=5m=2.

e thetask j is performed immediately after the task i on the vehicle m: in which the variablejm = 0 for
all tasksj’ # i which is completed after completion bbn the same vehiclen. There is no link between two
non-consecutive tasks on the same machine which contsasiittt (6). This is depicted in Figure 3 (machine
2, with solid connection between tasks) where aghys = X352 = 1. In such case we hayg, = Yoo = Yo = 1
and consequently the constraint (6) becomes infeasiblebyd3, + X522 > Yoo + Y52 — 1 = 1.

Under of the aforementioned definitionsxgf, the model is infeasible. However, it is still possible toremt the
formulation and also extend for being capable of accomniloglfint operations of handling an FFE by pairing of
vehicles.

Henceforward we use the following definition fQfn:

Xijm: 1, if taskj is performedmmediatelyafter taski on vehiclem, O otherwise.



3.1. Intelligent and Autonomous Vehicle (IAV) Scheduling

In the following we use the term IAV and machine alternativéle also need to employ two extra dummy tasks:
SourceandSink The source task is the starting task on every 1AV and thetsisk s the last task performed on every
machine.

IAV Scheduling (IAVS)

min W (12)
st. G <W Viel (13)
D Vm=S viel  (14)
meM
N
Xom + Y Xjm = Yim Viel,meM (15)
j=Lj#i
N
XiNeam+ Y Xim = Yim Viel,meM (16)
j=1,j#i
Xijm + Xjim < 1 Vi,jel:j#i,meM a7
D Xom =1, Vme M (18)
i
D Xinam=1, vmeM  (19)
i
Ci+tpp, + Tj < K(1 - Xijm) + C; Vi,jel:j#i,meM (20)
a+Ti <G Viel,meM (21)
rm+t,p+Ti <G Viel,meM (22)
Xijm €10, 1}, (i, j,m) € (I’ X I” X M), yim € {0, 1}, (i, m) € (I x M) (23)
W>0,Cj>0,jel (24)

The obijective function (12) minimizes the makespan as thiestpossible time to complete the mission.

Constraints (13) is a minimax constraints to determine tmepdeting time of last event. Constraints (14) indicates
that the number of 1AVs allocated to the taisknust be equal to the size of task. On the same machine, ey ta
(including the source task and excluding the sink) is foovio a consecutive task. In the graph sense from any node
representing a task one arc is encompassed. This is coagiae(l5). Similarly, on the same IAV, every node repre-
senting a task in the network is carried out after at anotsde including sink and excluding source). Constraint$ (16
stands for this. If both tasksand j are carried out by machima then one proceeds another as stated by constraints
(17). The dummy source and sink tasks are performed the ficstree last on every AV in constraints (18)-(19). If
task j is performed after taskon machinen then the completion time of tagkis at least as late as the completion
time of taski plus the travel time from the dropidocation of task to the pick-up location of taskplus the process
time of taskj (we say at least because one IAV might need to wait for anathefor performing a task). Constraints
(20) indicate this. Constraints (21) states that the cotigpidime of taski cannot be earlier than the ready time plus
the process time. If taskis the first task assigned to machimehen it cannot be completed before the earliest time
that the machine is ready plus the travel time of machine fterimitial location to the pick-up location of taslplus
the process time of taslas stated in constraints (22).

Figure 4 depict an optimal solution to an instance vt = 3 and|l| = 20. Three IAVs are deployed (IAV1
(solid), IAV2 (dashed) and IAV3 (dotted)). 1AV1 and IAV2 cperate to perform the tasks 1 and 3, while IAV3 does
the task 2 independently as it is a 1-TEU container. Then I1&¢2ouples from 1AV1 after completing task 3 and
performs the task 4 and afterwards IAV1 and 1AV2 ally to pemidask 5. The process continues following the same
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Figure 4: lllustration of optimal solution of an 1AV insta@c

manner until the final task which is 20 is completed in a coapen between IAV2 and 1AV3 in 1400.67 unit of time.

3.1.1. valid inequalities

If the machines were working independently then we couldwdate the accumulated time-in-service of every
machine independently and take the maximum as the objedivue. However, since in our model two AGV may
cooperate on a single machine, therefore in a cooperatiieoement the vehicles must wait for each others to be
able to pair and start ¢ 1- TEU job. Therefore, unless a machis only performing on 1-TEU throughout the time

containers the value of term:
Z Z(tDist + Tj)Xijm, ym
i,j# m
does not exactly coincide with the real time-in-servicehafttparticular machine because of the wait-for-pairing
time of machines with cooperating jobs. However, this iéatjood lower bound on the makespan of the machine
Letgi = maXa + Ti,rm+ 1t p +Ti:Yme MLViel:

= Z¢iX0im + Z(tDi P, + Tj)Xijm, Vme M (25)

iel i,j#i

It states that in a network representation of problem asdutéi 4, the length of path from source to the node preced-
ing the sink node of every machine is a lower bound or\the

We show in the numerical section that these inequalitiesheas@ a significant impact on the performance of
general-purpose solvers.

4. Solution method

IAVS is a challenging model for which even very small sizegamses with three to four vehicles and 20 tasks are
quite time consuming and iffecient to solve by the general-purpose solvers. The majaigb#ne works in literature
adopted (meta-)heuristic strategies, often without adication of quality of such solutions.

Here, we exploit the decomposable structure of the problaipaopose a decomposition approach based on La-
grangian relaxation equipped with affieient local search approach and a variable fixing phase ier@aodproduce
lower and upper bound on the optimal solution and obtain dicétion of optimality of the solutions.

4.1. Lagrangian Decomposition for IAVS

Lagrangian relaxation for solving (mixed) integer prognaimg problems was first proposed in Fisher (1981,
2004).
The idea behind this method is to releamplicating constraintby penalizing the objective function upon violation
of these constraints. The relaxed problem is expected t@siereto solve than the original problem and provides a
dual bound on the optimal value (as well as valuable infoimnatbout the dual) of the problem (see Guignard (2003)
for a comprehensive survey of the method.).



Three well-known methods are commonly practiced in theditee for solving the Lagrangian relaxation problems.
The oldest and most well-known one is the subgradient msthedn iterative methods for solving convex minimiza-
tion problems. The subgradient method was originally psegloin 60’s in the former Soviet Union. Very similar
methods has been also proposed in Held and Karp (1971) fangdtaveling salesman problem. Later, Lemarechal
(1975) proposed the well-known bundle methods as an extemsithe subgradient. The volume algorithm was pro-
posed in Barahona and Anbil (2000) as a methods which simadiasly produces a primal feasible solution for the
problem and a further analysis of its relation with bundle¢hmds is reported in Bahiense et al (2002).

Several variants of the subgradient methods have been ggdpo the literature. Here, based on some observa-
tion from the performance of bundle and volume algorithmriesgnce of big-M, we choose to employ the variant of
subgradient proposed in (Larsson et al, 1999) where an krgeduence of subproblem solutions converges to the
primal solution set.

We chose to relax constraints (15), (16):

(LRX-IAVS)
min W+
N
Z Uiy (Xoim + Z Xjim = Yim)+
m j=1j#i
N
Z Uﬁn(xj N+1im Tt Z Xijm — Yim) (26)
im j=1)#i
(27)

st. G <W viel  (28)
D Ym=S Viel  (29)
meM
Xijm + Xjim < 1 Vi,jel:j#i,meM (30)
D Xam =1, VymeM  (31)

i
D Xinam=1, vmeM  (32)
i

Ci+tpp, + Tj < K(1- Xijm) + C; Vi,jel:j#i,meM (33)
aq+Ti<G Viel,meM (34)
rm+t,p+Ti <G Viel,meM (35)
Yim < Zm, Yiel,meM (36)
Zm, Xijm € {0,1}, (i, j,m) € (I’ X I” x M), yim € {0, 1}, (i, m) € (I x M) (37)
W>0,C;>0,jel (38)

In this relaxation the lagrangian multipliers are Chosehduilm e R, uﬁn]R, Yi,m.
4.1.1. More constraints to relax

From Figure 5 one observes that in a solution of a given itaraidf subgradient the above relaxation, there is no
arc arriving to nodes 5,6,7 and 8 and no arc departing fromahd34 as it is not enforced by any constraint. Moreover,
there is no constraint to enforce that there must be one jan(@e dummy source and sink wherever applies) before
and after any (non-dummy) task.

In order to encourage this and improving the convergencelmjirmdient we also dualize the following constraints:



Figure 5: There is no arc arriving to nodes 5,6,7 and 8 and adeparting from 1, 3 and 4.

I
source,

I
I
T

£21

I sink |
|

Figure 6: The total number of arc arriving to a task node igast equal to the size of task.

Xoim+ D Xjm =Xneam+ Y Xjm, i (39)

j#i, m j#i, m
with? e R, Vi.

In this particular example in Figure 5, three tasks namel§ and 8 are 2-TEU tasks and the rest are 1-TEU
tasks. But the number of arcs arriving to all these three are. ZTherefore we also consider dualizing the following
constraints:

D Xjm = S(i), Vi (40)

j#i, m

However, extensive computational experiment revealedtteafollowing less tighter constraints provide better
results from the bound quality point of view:

Z Xjim = 1, Vi (41)

j#i, m

Similarly, the following constraints:
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Z Xijm = 1, Vi (42)

j#i, m
are dualized using*, u? € R™, Vi # j multipliers:

Theorem 1. The total number of arcs % = 1, i, j # i, N+1) in an optimal solution is within NM < |E| < }; S;—1.

Proor. If there is no jobi whereS(i) = 2 then we have:

a. if the total number of tasks is equal to the total number afinnes and every machine does one task, therefore,
the total number of arcs is 0. The lower bound obtained.

b. if all the tasks are carried out by one single machine fbeze¢he only tree containd — 1 arcs and upper bound is
obtained.

On the other hand if there is at least one tagkth S(i) = 2 then:

a. if the total size of tasks (total w.r.t the size) is equath® total available capacity such that every machine does
only one task them > N andN — M < 0 and the lower bound is valid.

b. if no machine participate in performing a taskith S(i) = 2 as its first task then the total number of arcs is equal
to Zi S;.
The Theorem 1 can be presented as following constraints:
ZinmZN—MZQ (43)
i,j#i,m
This constraint is added to the model.
4.1.2. decomposition
To facilitate the resolution for larger instances we decosgthe (RX - AV S) into two sub-problems by taking

into account that the sequencing part and the schedulirig @ linked only by the big-M constraints. Therefore we
add a duplication constraints and dualize them uaﬂwe R, Ymi#j:

Xijm = X’ijm Yi, j,m (44)
Xijm € {0, 1} (45)

By doing so, we obtain two problems, one for sequencing (URXS-Seq in the space of binaryy) and one for
scheduling (LRX-IAVS-Sch space of continuddsC).

The resulting relaxation follows: (LRXS-1AVS)

min W+

j=Lj#i
N

Z uﬁn(xi N+im*+ Z Xijm — Yim)+
i,m

N

1
§ Um(X 0 im + § Xjim = Yim)+
im 1j

j=1j#
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Zu?(xoim+ Z Xjim = Xi N+1m = Z Xijm)+
i

j#i, m j#i, m

Z UL - Z Xjim)+

i j#i, m
Z U?(l— Z inm)+

i j#i, m
D U (Xjim = X jim) +
i,j,m

st. G<W

Z Yim = S
mem
Xijm + Xjim < 1

i
ZXiN+1m=1,
i

Ci +to.p, + Tj < K1 - Xijm) + Cj

Viel
Viel

Vi,jel:j#i,meM

Yme M

Yme M

Yi,jel:j#i,meM

a+T <G Yiel,meM
rm+t,p+Ti<C Yiel,meM
Yim < Zm, Yiel,meM
Z Xjim 2 0, Yme M
i, j#i
D Xim=N-M=g
i,j#i,m
Zm, Xijm € {0,1}, (i, ,m) € (I" x I” x M), yim € {0, 1}, (i, m) € (I x M)
W=>0,C;>0,jel
The problem separates into 4 independent problems:
a. Scheduling Sub-Problem with continuous variables:
(LRX-IAVS-Sch)
min W - Z Uiejmxljim
i,j,m
st. G<W Yiel
Ci+tDi,pj+TjSK(l—X’ijm)+C]‘ Yi,jel:j#i,meM
a+T; <G Viel,meM
rm+t,p+Ti <G Yiel,meM

W=>0,C;>0,jel
Xijm € (I X | x M)

b. A semi-knapsack problem:

12

(46)
(47)

(48)

(49)
(50)

(51)

(52)
(53)
(54)
(55)
(56)

(57)

(58)
(59)

(60)
(61)
(62)
(63)
(64)
(65)



(LRX-IAVS-Seq)

N N
min Zullm Z Xjim +Z:uﬁn Z Xijm +Zui3 Z Xijm—
imo =L mo =Ly i j#i, m
Zu? Z Xjim — Zuf‘ Z Xjim—
i j#i, m i j#i, m
DD Xim+ Y Wxim + Y Uf(D)+ D U(L) (66)
i j#i, m i,Lm i i
St Xijm + Xjm < 1 Vi,jel:j#i,meM (67)
Z Xjim = 0, Yme M (68)
i,j#i
Xijm € {0, 1}, (i, m) e (I’ x I x M) (69)
W=>0,C;>0,jel (70)

c. A semi-assignment problem which is again decomposabkofarce and sink:
(LRX-1AVS-SourceSink)

H 1 2 3 3
min E UimXoim + E U Xi N+1m + E UXoim— E U7X N+1 m
i,m i,m i i

(71)
st Xom=1, VmeM  (72)

i
inNﬂmzl, YmeM  (73)

i

d. A knapsack problem:
(LRX-IAVS-y)
min - Z U Yim — Z UG Yim (75)
i,m i,m
St ) Ym=S, Viel (76)
meM

Yim € {0, 1}, (i, m) € (I x M) (77)
(78)

whereV*(LRX-1AVS) = V*(LRX-1AVS-Sch + V*(LRX-IAVS - Seq + V*(LRX- IAVS - SourceS ink+
V*(LRX-1AVS - y) andV*(.) stands for the optimal value.

Three out of the all fours separated problems are binaryi@nadbwhich can be solved by inspection without resorting
to any LEMIP solver. The only dierent problem isl(RX-1AV S-S ch which does not show any integrality property
according to our extensive numerical experiments and cafficently solvable by using a MIP solver.

4.1.3. algorithms for solving subproblems

Except for LRX-IAVS-Sch), the rest of problems namely,RX- IAVS-Seq, (LRX-1AVS- SourceSink
and LRX-1AVS - ) can be solved by inspection.

13



In the following we outline specialized algorithms for eante.

Algorithm for (LRX - IAVS - Seq. Letaijn be the cofficient of xjm in (LRX - IAVS — S eq after re-ordering
terms. The problem does not have too many constraints:

Algorithm 1: Inspection algorithm for(RX - IAVS - S eq.

Input: lagrangian multipliers

Output: Xijm, Vi, j,m

counter=0;

for s=1 to qdo
(@i, j,m) = argmin{aijm 1 i, j#iel,me M}
Xijm = 1;
Xjim :=0;

Qjjm = ©9;

This algorithm finishes in linear time.

Algorithm for (LRX-1AVS—SourceSink LetBum be the cofficient of Xgim andBi n+1 m the codficient of X n+1 m.
Then let !, ) = argmin{Boim : i € I, me M}, we setgiy = 1. Also let (7, m”’) = argminBins1m: 1 € I,me M},
we setxginy = 1. The rest of variables fixed to zero.

Algorithm 2: Inspection algorithm forl(RX - IAVS — S ourceS ink
Input: lagrangian multipliers
Output: Xoim, X N+1 m, Yi, M
counter=0;
for me M do
L (i, ) = argminBom i € I,me M};

Xoirmy 1= 1,
for me M do
@i”,m") = argminBi ns1m ;1 € I, me M};
L XiN+1m = 1;

This algorithm finishes i®(M).

Algorithm for (LRX-1AVS -Yy). Letyi’:n be the cost of variablgn. If S(i) = 1 then (,m’) = argmin{yiym ‘me M},
Yim = 1. If S(i) = 2 then {,m”) = argmin{y},, : m# m'} andyiy = Yirpy = 1.

Algorithm 3: Inspection algorithm forl(RX - [AVS - y).
Input: lagrangian multipliers
Output: Yim, Yi,m
forieldo
(i,m) = argmin{y’, : me M};
Yimv = 1;
if S(i) = 2then
L (i,m”) = argmin(y’, : m# m,me M};

Vi = Yirne =15

This algorithm finishes i®(N).

4.2. Variable Fixing
In the course of subgradient optimization, after a few stghen the multipliers are stabilized we have lower
bound obtained from the Lagrangian relaxatibB-RX, and also an upper bound B"'", using a heuristic which is

14



described in the following.

Given the reduced cost of a binary varialée, if reduced cosRC'® > UB — LB the this variable will not take 1
in any optimal solution and we can remove its column fromHeartcomputations and get a reduced problem.

We give priority toyim, Yi € I, me M variables for testing the possibility of elimination. Besa, eliminating one
Yim implies reduction of all variablegjn andx;m Vj € I’,me M which is quite significant and makes the problem
size iteratively smaller and resolution becomes easier.

We perform this test whenever lower bound improves in thesmaf subgradient.

4.3. Primal Bound

A heuristic algorithm is needed to exploit the informatidstained from the LR model to produce high quality
feasible solution while being computationally very viabk®r every given solution to the LR the assignment of jobs
to the machines are determined LLRX — 1AV S — y) while the sequencing part might not make a complete or even
feasible solution.

The basic idea behind the heuristic is to do the following:

e accepting the assignment reported bRK — 1AV S — y) and optimize for sequence by taking into account the
tasks which need to be done in cooperation between two meshin

¢ optimizing for the assignment which inevitably will leadasequence optimization.

We employ a local search approach which tries to re-assigjotis in a systematic way aiming at minimizing the
makespan for every machine.

4.3.1. initial solution
We start by distributing the jobsy(, Vi € |) between the machines in a way that the first tasks of all mashi
havea; very close to each others. We follow the same pattern fohaltasks. LeA = {1,4,7,11,15,16,17,19, 21}
andM = 3 then we distribute the jobs as following:
wi1(ag = 1) - wa(ay = 11) > wr(az = 17)
w2(a2 = 4) — ws(as = 15) - wsg(ag = 19)
w3(@g = 7) — we(as = 16) — wo(ag = 21)

Let assume tha®(w4) = S(wg) = 2 then the following pattern applies:

wi( = 1) = wa(ay = 11) > we(as = 16) — ws(ag = 19)
wo(ap = 4) = wa(as = 11) — w7(a7 = 17) —» wo(ag = 21)
w3(a = 7) = ws(as = 15) — wg(ag = 19)

where a duplicate of every job with sizel is presentin the representation. By doing so we are tryimijstribute
the jobs more equally such that the variance in the compigioe of last task on machines is reduced.

4.3.2. neighborhood structure and move strategies
We employ two kind of movesTemporaland Spatial In temporal moves, the sequence of performing tasks on
the same machine is modified while in the spatial moves, ajidlbbe assigned to dierent machine(s).
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Temporal Move.A temporal move is a move which transforms the current smhuto another solution by putting
forward or postponing a job by only one step, if feasible. tTibaif job w; is the j-th job on machinen then the
temporal moves will result in a solution having the (j — 1)-th or (j + 1)-th job on the same machine.

Spatial Move. A spatial move is a move which transforms the current satutmanother solution by changing the
machine to which it is assigned to. Thatis, if jebis the j-th job on machinenthen the temporal moves will resultin

a solution havingy; the j’-th job on another machin® (the choice ofj’ is rather biased towards a greedy approach)
minimizing possible increase in the completion time of guaachine.

Search StrategyOur main emphasis is on distributing the jobs on machinek that the machines finish their final
tasks very close to each other. This helps to avoid havingvarfachines of heavily loaded with long makespan and
the rest being less occupied and significantly shorter npeitess In order to achieve this goal, we first must ensure
that, given our neighborhood structure and a greedy se#lrete is no other sequence better than the current one
which makes the makespan for the given machine shorter.niédgms we employ a two-level search. In the first level
we only employ temporal moves for each machine in order tainlitigh quality sequences, for a given assignment.
We try to greedily re-sequence the jobs by finding the besteptd each job starting from the firsts to the last one
in the current solution. It must be noted that for the jobsW@{w;) = 2 any re-sequencing will result in the change
of makespan in the collaborating machines. Therefore,ph{oe the machines which are not cooperating at all with
any other machine, the rest of machines are analyzed lexipbgally to avoid any confusion. In the second phase,
spatial moves are performed in which we start from the mashwith the highest makespan and try to re-assign the
tasks to another machines with less makespan and subséguations of temporal moves is applied. Of course the
issues related to the jobs with size 2 are taken into account.

Tabu list. We employ a tabu list which keeps track of the moves in theckespace. A spatial or temporal move
become forbidden fay', ™ iterations, repeatedly. That is if a move has caused a jolsamhinem being postponed
or put forward, then the reverse move will be forbiddenfdterations. This analogously applies to the spatial moves.

Scape strategiesThe greedy approaches often are in the danger of trappiragal bptima and facing a premature
convergence. In order to avoid that, we incorporate someeeegf randomness in our approach. In moving from one

f
solution to a neighboring solution, we will accept even @eigng solution if the value o~ o) s bigger tharg"
and reject otherwise.

Termination criteria. The termination criteria is set to a total number of conseeuton-improving iterations.

5. Numerical results

We have generated instances with perturbed data of Dubtigp@t Terminal (DFT). Instances range from 10 to
400 jobs and number of deployed IAVs are{ln2, ..., 6}. Through extensive experiments on instances of problem
we observed that our heuristic is robust against changgsaind;™ and therefore we have fixed these two values to

A

7' =™ = 10. The same applies to the choice of gtranen), Foré', the best value betwee, 0.2, 0.4, 0.6, 0.8, 1}
is 0.8.
As for termination, we stop the search as soon as conset%ltumuccessful iterations being observed.

The instances are generated based on the reality, howeveerasoned earlier there is still a minimal level of
perturbation due to some confidentialities. A part of thidymbation tries to linearly scale the time unit. That means
the time unit we employ here is not any of second, minute or,lrather a linearly scaled one.

There are in general 16 drogEpick-up locations. The terminal yard is composed of 12 staelé import and 6
export. For the sake of simplicity and avoiding excessivaotational &orts, we have considered that every stack
has only one drop4typick-up point along it. There is an area where the emptiestacked and there are three quay
cranes which can be potentially uded

Zinstances are publicly available via the correspondinbaut
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All the numerical results has been carried out on an Intel{i&e(TM)2 Duo CPU 2.93Ghz with 4.00 GB RAM.

In the following we first examine theffect of the tightening inequality and afterwards report thmarical exper-
iment on instances of the problem.

5.1. Inequalities

In Table 1 we report the computational experiment carrigicbefore and after adding the valid inequalities (25).
Thebold faced content represent the instances for which the adda@suited in improve in performance whether
CPLEX status or time-wise. Thtalic cases are those instances for which the added cut detedgratformance of
CPLEX in a way that optimality has been lost or the same smiujuality has been obtained in longer computational
time.

Instance names are written in formatroX _nY whereX is the number of machines aivds the number of tasks. The
instance sizes are only those which can be tackled by CPLEdUomachine.

A time limit of 1200 seconds and a maximum number of branafHaound node 500,000 has been set for this
experiment. In the Table Dptimal stands for optimalityNodeLimFeas indicates that the solver terminated with
node limit but a feasible solution has been founedeLimInfeas states that the node limit has been reached but
no feasible solution detected andortTimeLim indicates that a time limit is reached without any feasilolkion
being found.

For instances such a2_n8 the number of branch-and-bound nodes has been reducedf loyillian nodes. In
fact, whenever an improvement has been observed the redurctihe tree size is impressive (by some hundred thou-
sands nodes). There are of course cases where no improveateins or even the solver performance deteriorates.
Instances of that are, for exampiha4_n12 andm4_n16.

On larger instances, namely 60, 70, 80, 100, while CPLEX &blato find any feasible solution, employing our

valid inequality (25) helps CPLEX to find feasible solutiomgh good qualities. More precisely, the gap is always
below 10 percent.
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Table 1: Hrect of valid inequalities (25) on the performance of CPLEX

Initial Model Model with (25)
Instance nbNodes  CpuTime  CplexStatus MIPRelativeGap  dbslo CpuTime  CplexStatus MIPRelativeGap
m2.n4 541 0.34 Optimal 0.00 60 0.09 Optimal 0.00
m2n8 500001 118.00 NodeLimFeas 18.11 5613 2.81  Optimal 0.00
m2n12 500001 204.58 NodeLimFeas 1.95 500002 356.14 NodelamFe 10.91
m2n16 0 0.17 Optimal 0.00 500001 576.85 NodeLimFeas 23.06
m2n20 500002 424.68 NodeLimInfeas - 500001 602.24 NodeLieasf -
m2.n24 485382 1430.86 AbortTimeLim - 500002 1190.63 NodelLimFeas 17.63
m2.n28 0 0.64 Optimal 0.00 500001 1241.77 NodeLimFeas 58.92
m2n32 379179 1427.03 AbortTimeLim - 388520 1411.86 AbortTime -
m2:n36 277723 1406.96 AbortTimeLim - 373301 1435.74 AbortTime -
m2.n40 379774 1385.73 AbortTimeLim - 0 1.45 Optimal 0.00
m2.n50 186465 1430.03 AbortTimeLim - 0 2.93 Optimal 0.00
m2.n60 500001 1865.13 NodeLiminfeas - 500001 1836.03 NodeL imFeas 33.00
m2.n80 500001 1867.12 NodeLiminfeas - 500001 2010.20 NodeL imFeas 24.00
m2:n100 500001 2556.10 NodeLimlInfeas - 500001 2785.94 NodeL imFeas 29.00
m3.n4 671 0.50 Optimal 0.00 20 0.25 Optimal 0.00
m3.n8 0 0.22 Optimal 0.00 0 0.08 Optimal 0.00
m3.n12 500001 518.22 NodeLimFeas 20.69 63367 51.39 Optimal 0.00
m3.n16 500001 966.22 NodeLimFeas 0.30 500002 772.81 NodelamFe 45.51
m3.n20 0 0.81 Optimal 0.00 0 0.76 Optimal 0.00
m3.n24 500002 1360.42 NodeLimFeas 18.08 500002 1337.47 Nodedas 19.60
m3.n28 509 3.96 Optimal 0.00 500001 1177.17 NodeLimFeas  0.20
m3.n32 0 1.28 Optimal 0.00 0 1.40 Optimal 0.00
m3.n36 9671 42.93 Optimal 0.00 482 9.67 Optimal 0.00
m3.n40 0 2.17 Optimal 0.00 0 2.78 Optimal 0.00
m3.n50 112378 1412.29 AbortTimeLim - 0 3.85 Optimal 0.00
m3.n60 500001 1972.34 NodeLiminfeas - 500001 NodeL imFeas 16.00
m3.n80 500001 2228.63 NodeLiminfeas - 500001 NodeL imFeas 24.00
m3.n100 500001 2882.55 NodeLimlInfeas - 500001 NodeL imFeas 12.00
m4.n4 42 0.31 Optimal 0.00 97 1.11 Optimal 0.00
m4.n8 238 0.33 Optimal 0.00 75 0.41 Optimal 0.00
m4.n12 0 0.41 Optimal 0.00 500001 698.87 NodeLimFeas  9.93
m4.n16 0 0.48 Optimal 0.00 500001 885.35 NodeLimFeas  66.08
m4.n20 0 0.78 Optimal 0.00 0 0.70 Optimal 0.00
m4.n24 0 1.95 Optimal 0.00 0 1.39 Optimal 0.00
m4.n28 0 2.56 Optimal 0.00 86060 274.09 Optimal 0.00
m4.n32 0 2.23 Optimal 0.00 3 3.76 Optimal 0.00
m4.n36 545 22.59 Optimal 0.00 2847 37.92 Optimal 0.00
m4.n40 106152 1413.60 AbortTimeLim 3.52 0 4.77 Optimal 0.00
m4.n50 140954 1403.62 AbortTimeLim - 0 9.20 Optimal 0.00
m4.n60 500001 1800.58 NodeLiminfeas - 500001 1777.01 NodeL imFeas 10.00
m4.n80 500001 2206.94 NodeLiminfeas - 500001 1866.89 NodelL imFeas 35.00
m4.n100 500001 2602.40 NodeLiminfeas - 500001 2893.39 Nodel imFeas 38.00
mb5_n4 31 0.36 Optimal 0.00 37 0.25 Optimal 0.00
m5.n8 538 1.51 Optimal 0.00 61 0.51 Optimal 0.00
m5.n12 0 0.39 Optimal 0.00 3061 9.67 Optimal 0.00
m5.n16 21162 52.18 Optimal 0.00 500001 756.45 NodeLimFeas  14.76
m5.n20 12626 52.01 Optimal 0.00 0 1.26 Optimal 0.00
mb5._n24 0 2.89 Optimal 0.00 0 218 Optimal 0.00
m5.n28 488 6.43 Optimal 0.00 482 7.77 Optimal 0.00
m5.n32 - - - 0.00 497 19.84 Optimal 0.00
m5.n36 0 6.07 Optimal 0.00 0 474 Optimal 0.00
m5_n40 0 9.03 Optimal 0.00 0 6.13 Optimal 0.00
m5.n50 82710 1446.27 AbortTimeLim 0.00 0 35.12 Optimal 0.00
m5_.n60 500001 1668.49 NodeLiminfeas - 500001 1516.95 NodeL imFeas 36.00
m5.n80 500001 2119.25 NodeLiminfeas - 500001 2190.70 NodeL imFeas 17.00
m5.n100 500001 2675.28 NodeLiminfeas - 500001 2410.12 Nodel imFeas 10.00
m6.n8 156 0.59 Optimal 0.00 18 0.36 Optimal 0.00
mé.n4 39 0.19 Optimal 0.00 0 0.11 Optimal 0.00
m6é_.n12 359 1.65 Optimal 0.00 0 0.45 Optimal 0.00
m6.nl16 0 0.80 Optimal 0.00 0 1.45 Optimal 0.00
m6.n20 0 1.09 Optimal 0.00 18 2.79 Optimal 0.00
mé.n24 9689 46.27 Optimal 0.00 339680 1324.03 Optimal 0.00
m6.n28 0 3.14 Optimal 0.00 0 4.85 Optimal 0.00
m6é.n32 46305 421.70 Optimal 0.00 220828 1523.63 AbortTimeLim 0.07
m6.n36 123198 1439.56 AbortTimeLim - 0 7.58 Optimal 0.00
m6_n40 141421 1410.61 AbortTimeLim - 0 8.97 Optimal 0.00
m6.n50 10633 1515.78 AbortTimeLim - 0 23.21 Optimal 0.00
m6.n60 500001 1914.72 NodeLiminfeas - 500001 1535.65 NodeL imFeas 22.00
m6.n80 500001 2136.14 NodeLiminfeas - 500001 1842.02 NodeL imFeas 32.00
m6.n100 500001 2720.65 NodeLimlInfeas - 500001 2882.80 NodeL imFeas 40.00




As shown in table, as the instance size grows the cut becomesditective in improving the quality of solution
obtainer by CPLEX.

5.2. lagrangian relaxation vs. local search

As mentioned earlier, the instances are generated basedltata of the case study.
The Dublin Ferryport Terminal (DFT) is a rather small teradiand Dublin port is mostly a non-transhipment port.
The terminal authority is going to deploy 2-6 IAVs inside teeminal.
In our generated instances, 2-TEU (i.e. 1-FFE) containemxtse 60% of the total dischargegloaded containers
for every vessel call. As a result we know a priori that it isddikely that duplicating the number of I1AVs will pro-
portionably reduce the makespan.

we use the well-known subgradient algorithm to solve ourdagian problem and every 10 iterations we invoke
the heuristic algorithm to obtain a primal bound. The altjon terminates when the average subgradient size drops
below certain threshold depending on the size of instanaghan there has not been any improvement in last 20
iterations even after adjusting the step size of subgradi€he big-M constraints are modeled by the concept of
indicators in CPLEX to avoid numerical instability in theseathat the big-M constraints are not removed at the
preprocessing phase of CPLEX.

The variable fixing is applied procedure is invoked everyebations if there has been any improvement in either
bounds.

From the Table 2, the values are choseNas{20, 30, 40, 50, 100, 15Q 20Q, 250, 300, 350 400;andM € {2, 3,4, 5, 6}.
The first column of table represent valueswfwhile the second repont The computational time spentin LR resolu-
tion is reported in the next column which is followed by théucon representing the number of subgradient iterations.
We then report the computational time required for the hetigralgorithm in the next column. The following column
reports the gap between the best solution of heuristic andRhbound. Finally, the last column reports the best-found
makespan.

Due to the numerical diculties in solving MIPs in LR, the number of iterations arglfasmall, except in cases
where LR problem of instance looks rather easy. The comiputttime ranges from approx. 35 second to approx.
14,902. This time includes the time used in for heuristica®auring the search. Nevertheless, the computational
time of heuristic is very small when compared to the total tdRations CPU time.

The gap between the heuristic and the LR bound are pragtmedleptable for this application for confirming the
quality of solutions. The maximum average gap is 16.72 wii@uite acceptable.

While the increase in the makespan is not linear with the rarmbtasks, decrease in the length of makespan is
not proportional to the size of fleet of 1AVs, either. Thisusiified by the fact that most of the discharged containers
actually lead to cooperation between 1AVs which in turn issin significant waiting time which is spent for IAVs
waiting for each other to start a task.
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Table 2: Numerical results: Lagrangian decompositiongrernce.

M| IN| Lagrangian Relaxation Local Search makespan|M| Lagrangian Relaxation Local Search makespan
Time (sec.) #iteration Time (sec.) GAP(%) Time (sec.) #itien Time (sec.) GAP(%)
2 20 208.53 81 21.19 28.72 134.40 5 20 751.29 71 13.81 2.93 899.4
30 441.13 36 18.58 13.86 393.71 30 234.07 47 17.22 5.96 272.42
40  132.90 49 13.14 16.50 815.27 40 185.25 33 13.82 2.50 564.10
50 758.25 35 48.20 8.34 2409.73 50 420.68 84 48.30 28.18 25687.
100 820.60 46 78.97 25.54 6384.74 100 3812.05 37 17.00 8.24 48.04
150 35.95 59 208.29 6.59 11680.89 150 6303.94 14 450.62 26.588646.29
200 95.29 77 28.47 29.00 26687.28 200 9316.84 46 586.58 18.3117261.11
250 1053.25 42 321.45 27.05 64034.56 250 11517.96 21 29.96 .0923 42228.12
300 3460.36 52 111.83 10.17 127765.75 300 11587.74 83 515.69 0.87 89414.73
350 4676.58 82 525.20 0.75 227634.73 350 901.47 81 74.06 2.34 147232.25
400 4988.63 53 60.46 3.01 439510.88 400 8413.12 27 126.56 3511. 325677.56
avg. 15.41 avg. 11.85
3 20 515.30 16 39.70 15.36 123.20 6 20 145.11 14 22.99 10.53 8887.
30 879.88 19 88.01 28.97 301.85 30 716.34 20 71.37 19.81 248.8
40  816.33 24 18.68 9.83 625.04 40 234.54 35 32.51 5.72 515.21
50 593.26 64 79.13 6.34 2088.44 50 1015.63 67 18.36 7.60 a449.
100 2596.86 41 235.69 17.26 5852.68 100 1262.78 89 95.09 628.7 3929.10
150 3837.04 99 84.63 15.58 10707.48 150 456.43 48 109.62 612.4 7896.95
200 2087.99 97 198.90 12.27 19125.88 200 2706.71 64 124.87 .6410 15247.31
250 2135.31 46 506.60 23.82 52294.89 250 953.77 74 72.62 415.7 38568.35
300 1911.92 89 528.74 13.15 110730.31 300 7798.86 95 407.25 9.482 81665.45
350 5167.25 46 475.29 27.63 163138.22 350 3987.62 36 658.41 2.001 130055.15
400 10404.03 41 1124.90 13.74 380909.43 400 7273.53 41 881.2 14.02 287681.85
avg. 16.72 avg. 15.16
4 20 98.01 53 32.01 0.09 104.72
30 170.59 24 34.22 8.79 286.76
40  1263.83 35 138.95 7.94 593.79
50 249.93 40 150.46 25.30 1670.75
100 2215.72 41 238.49 11.34 4682.14
150 3515.87 42 165.68 9.55 9101.36
200 2766.83 60 186.66 9.84 18169.59
250 984.18 69 54.35 15.73 49680.15
300 9476.48 67 192.11 1.39 94120.77
350 7519.82 36 836.61 25.16 154981.31
400 14902.79 46 1184.40 6.35 361863.96
avg. 11.04




5.3. Comparison with the current practice of port

The current practice of port is comprised of a fleet of manedrishunters each of which will transport a 1-TEU
or 1-FFE containers. A precise performance comparisondmtweurrent practice and the 1AV-based logistics is not
very straightforward as a fair comparison is rathdficlilt. That is, comparing an output of a deterministic model
with the real practice including the stochasticity anduieéletc might not be fair.

However, our discrete event simulation of the terminal bjecting the parameters from the field ensures an up
to 11 percent reduction in the size of makespan.

6. Summary, conclusion and outlook to future works

An effective use of the emerging technologies is realized thrammhmization and simulation of environment
over which they are operating. 1AVs developed in the framdwbinTraDE are expected to be deployed in some
of the smaller container terminal in North-West Europe. @htonomy and intelligence of 1AVs is promoting their
applications in dferent environment, container terminals as the most impbotae.

We corrected the infeasibility and extended the model in Ng ¢€2007) to accommodate cases where a 1-FFE
container needs to be carried by two 1AVs. Once IAV arrivea atane to pick-up a container of more than 1-TEU
size, it has to wait for another partner 1AV to arrive and jgaid do the pick-up jointly. We then developed a lagrangian
decomposition to solve instance of a case-study of Dublire Afumerical results confirm thé&ieiency of our method
and quality of the solutions.

The IAVs work in three conditions: 1) fully-functional, 2edraded and 3) faulty. In the fully functional case, the
speed is the desired speed and every thing is in order. Ineip@aded condition, perhaps part of the system (system
comprised of 4 independent wheels and several independestis) has been failed but still the system is able to
complete the jobs with less performance and in the later Z&&ehave to stop operations when it is faulty. In the
future, we will take into account this features and exteredrttodel to accommodate this case. Of course studies on
improving we the mathematical model is of major importaned dfective solution approaches deserve particular
attentions.
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