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Modelling and Computer Simulation of Radar
Screening using Plasma Clouds

Jonathan M Blackledge, Fellow, IET, Fellow, IoP

Abstract— Following a brief introduction on the principles
of screening an aerospace vehicle using a plasma, we develop
models for the Impulse Response Functions (IRFs) associated
with microwave (Radar) back-scattering from a strong and
weakly ionized plasma screen. In the latter case, it is shown that
the strength of the return signal is determined by an IRF that is
characterised by the simple negative exponentialexp(−σ0t/ε0)
where σ0 is the average conductivity of the plasma,ε0 is the
permittivity of free space and t is the two-way travel time.
For a weakly ionized plasma, the conductivity is determined
by the number density of electrons. We develop a model for
an electron beam induced plasma that includes the effect of
cascade ionization and losses due to diffusion and recombination.
Qualitative results are then derived for the number density of a
plasma screen over a sub-sonic aerospace vehicle and a numerical
simulation considered that is based on an iterative approach using
a Green’s function solution for a stationary and a moving vehicle.
An example is provided for an idealised case relating to a sub-
sonic missile such as a ‘cruise missile’.

Index Terms— Stealth Technology, Microwave Scattering,
Radar, Weak Plasmas, Plasma Density Simulation

I. I NTRODUCTION

SINCE its original development in the late 1930s by Britain
and Germany, Radio Detection and Ranging or Radar has

been used for many years to detect airborne objects using
ground and/or airborne platforms. The use of stealth technol-
ogy for suppressing the detection of aerospace vehicles by
Radar has been the subject of intensive research since the early
1970s following the development of radar guided surface-to-
air missiles in the 1960s. One of the most notable current
examples of the results of this research is the Lockhead-Martin
F-117 stealth fighter and later the stealth bomber, first tested
successfully under combat conditions in the Gulf war of 1991.
Based on ideas first introduced by Denys Overholser in 1974 at
Lockhead’s advanced engineering laboratories, the technology
is based on two principal aspects: (i) design features; (ii) radar
absorbing materials and coatings. The geometry of the design
is based on trying to minimize those features of an aerospace
vehicle that are responsible for reflecting microwave radiation
in such a way that the result can fly. Obvious features include
embedding the gas turbine engines deep into the structure
of the aircraft and introducing facets - diamond shaped flat
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surfaces - that reflect the microwave radiation away from the
source. However, one of the principal factors for reducing the
Radar Cross Section (RCS) is to minimize the profile of the
aircraft while maximizing the ‘smoothness’ of the design. This
effect was first noticed when a prototype ‘flying wing’ was
developed in Germany by two Luftwaffe officers - the Horten
brothers - and first tested in late 1944. This unique design was
many years ahead of its time and was investigated further in
the 1950s by the USA (the Northrop flying wing). However,
limitations in control systems technology available at that time
meant that the design was not practically viable due to an
aerodynamic performance that was intrinsically unstable. The
flying wing design only became of practical significance after
the development of digital control processing (primarily in the
1970s), leading to the realisation of ‘fly by wire’.

The problem of designing stealthy aerospace vehicles can
be posed as follows: given that the aircraft can be assumed to
be a Born scatterer and that [2], [3]

(∇2 + k2)Es(r, ω) = −k2γ(r)Ei(r, ω)

+ikz0σEi(r, ω)−∇[Ei(r, ω) · ∇ ln εr(r)] (1)

where
γ(r) = εr(r)− 1,

find ‘flying functions’ γ andσ which are of compact support
such thatEs = 0. Here,Es is the Fourier transform of the
time-dependent scattered electric field vectores given by

Es(r, ω) =

∞∫
−∞

es(r, t) exp(iωt)dt,

Ei is the Fourier transform of the time-dependent incident
electric field vector, i.e.

Ei(r, ω) =

∞∫
−∞

ei(r, t) exp(iωt)dt,

εr is the relative permittivity,σ is the conductivity,z0 is the
impedance of free space,r is the three-dimensional spatial
vector andk = ω/c0 is the wavenumber whereω is the angular
frequency andc0 is the speed of light (in a vacuum).

In addition to investigating the RCS for different designs
and materials, there is another approach to producing stealthy
flying objects using a plasma. The reduction of the RCS of
an aerospace vehicle through the generation of a plasma is an
effect that has been known about for many years. The phe-
nomenon has an obvious connection with the ‘radio silence’
phenomenon that occurs during re-entry of a spacecraft. This
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occurs when a plasma is formed around the spacecraft due to
the ‘friction’ of the Earth’s atmosphere.

A fundamental parameter of any plasma is the ‘plasma
(angular) frequency’ωp given by

ωp =
(

4πne2

m

) 1
2

where e is the charge of an electron (1.6 × 10−19 C), m
is the mass of an electron (0.91 × 10−30 kg) and n is the
number density of electrons inm−3. For a plane (transverse)
electromagnetic wave incident on a plasma [4]

k =
1
c0

√
ω2 − ω2

p.

A cut-off occurs whenω = ωp, i.e. when there is a critical
number density

nc =
mω2

4πe2
.

Radio waves can only propagate through a plasma whenω >
ωp. For a typical laboratory plasma withn = 1012 cm−3, a
cut-off occurs when

fp =
ωp

2π
∼ 104

√
n = 10GHz

which is in the microwave range. This effect is used as a
method of measuring the density of laboratory plasmas.

The idea of screening an aerospace vehicle in a self-induced
plasma with an appropriate critical number density is not
a practical proposition. However, partial plasma screening
of specific features which are good radar point-scatterers is
possible, one example being the ‘point’ on the ‘nose-cone’ of
a missile.

In this paper, we derive a model for radar signals generated
by a conductor that is screened by a plasma. We develop an
electromagnetic scattering model to investigate the effect that
a plasma has on a conventional radar system. Expressions for
the Impulse Response Function [5] generated by a scatterer
with and without a plasma screen are studied. For a weakly
ionized plasma, we derive a result that shows that the screening
of the scatterer by the plasma is characterized by a simple
negative exponential whose decay rate is determined by the
conductivity which in turn, is proportional to the electron
number density. A model for the distribution of the electron
number density is then considered.

II. M ICROWAVE SCATTERING MODEL

Our aim is to develop a suitable model for the plasma
screening effect by developing some relatively simple ana-
lytical results that explain why, under certain conditions, it
provides a near-zero RCS. The basic reason for this effect
is assumed to be due to the following: (i) a plasma is a
(good) conductor and will therefore absorb (and disperse)
electromagnetic (microwave) radiation before it is reflected
by a scatterer; (ii) the air/plasma boundary is continuous (on
the scale of the wavelength) and will therefore not generate a
strong reflection compared with that generated by the surface
of the scatterer which represents a sharp discontinuity on the
scale of a wavelength (of a microwave field).

Let us model the problem using the scalar wave equation
(under the Born approximation)

(∇2 + k2)Es = −k2γ(r)Ei + ikz0σ(r)Ei, r ∈ V

where V is the volume of the scatterer. In order to obtain
this equation, we are required to ignore the cross-polarisation
term ∇[Ei · ∇ ln εr] in equation (1). A general solution to
this equation can now be obtained using the Green’s function
method which, for homogeneous boundary conditions, gives

Es =
∫

g(k2γ − ikz0σ)Eid
3r

whereg is the ‘out-going’ Green’s function given by [6]

g(r | r0) =
exp(ik | r− r0 |)

4π | r− r0 |
and the integral is taken over the volumeV of the scatterer.
Here, r and r0 are the spatial coordinates of the scatterer
and the position at which the scattered field is measured,
respectively. The characteristics of the back-scattered field are
dependent onεr, σ and their geometry (i.e. the shape of the
scatterer over volumeV ). Note that, ifεr = 1 andσ = 0, then
the scattered field is zero.

Let us assume that the scatterer is a good conductor, and that
εr = 1 so thatγ = 0. This assumption is consistent with the
application of a scalar wave equation since∇(Ei ·∇ ln εr) = 0
with εr = 1. The scattered field is now determined by the
conductivity alone. Let us also assume that the incident field
is described by the Green’s functiong instead of a plane
wave (the more usual case). This assumption helps to simplify
slightly the analysis required in generating a model for the
back-scattered field.

If the incident field propagates through a medium whose
conductivity is effectively zero (i.e. air) then the solution for
the back-scattered field will be given by

Es =
∫

ikz0σg2d3r.

The volume over which scattering is effective will be deter-
mined by the skin depth

δ =
(

2
kz0σ

) 1
2

which, although very small for a good conductor, will be
considered to be finite. This allows us to adopt a volume
scattering approach instead of one based on surface scattering.
The reason for this is that we can then consider the volume
scattering effects introduced by a plasma screen. Note that
the homogeneous boundary conditions used to produce this
Green’s function solution yield a surface integral that is zero
(i.e. Es and∇Es are considered to be zero on the surface of
V ).

The solution forEs in the far field (i.e. whenr/r0 << 1)
is (ignoring numerical scaling factors)

Es(r0, k) = exp(2ikr0)F

whereF is the reflection coefficient given by

F (r0, k) =
∫

ikz0σ exp(−2ikn̂ · r)d3r
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and n̂ = r0/r0. A relatively simple result can now be
developed by considering the radar beam to be a narrow
pencil-line beam oriented in thex-direction so that

r0 ≡| r0 |= x0

(
1 +

y2
0

x2
0

+
z2
0

x2
0

) 1
2

' x0;

y0

x0
<< 1,

z0

x0
<< 1.

This provides us with a solution for the reflection coefficient
of the form

F (x0, y0, z0, k) =
∫

ikz0Ω exp(−2ikx)dx

where
Ω(x, x0, y0, z0, k)

=
∫ ∫

σ(x, y, z) exp(−2iky0y/x0) exp(−2ikz0z/x0)dydz.

If we now consider the case when the back-scattered field is
measured at a fixed point(x0, 0, 0), we obtain

F (k) =
∫

ikz0Ω exp(−ikx)dx

where
Ω(x) =

∫ ∫
σ(x/2, y, z)dydz.

Note that this result has been obtained by replacingx by x/2
and then ignoring scaling. If we assume thatσ is a constant
as a function ofy andz, then

Ω(x) = Aσ(x/2)

whereA is the area of the scatterer. Here, we see that the back-
scattered field (i.e. the reflection coefficient) is given by the
Fourier transform ofikz0Ω. The time signature associated with
the reflection coefficient (i.e. the temporal Impulse Response
Function or IRF) can now be obtained by taking the inverse
Fourier transform giving

f(t) = −Az0
dσ

dt

where we have ignored scaling and wheret is the ‘two-
way’ travel time (i.e.x = 2c0t where c0 is the speed of
an electromagnetic wave in a vacuum). This result illustrates
that the strength of the return signal is determined by the
following: (i) the areaA of the scatterer that is illuminated
by the radar beam; (ii) the gradient in the conductivity (from
air to scatterer). Thus, assuming that the conductivity of air
is zero, a scatterer, such as an aerospace vehicle composed
of Aluminium alloy with a conductivity of approximately
2.5 × 107 siemens/metre, represents a huge change in the
conductivity across the air/scatterer boundary and so produces
a very strong reflection. It is useful to consider a scatterer with
unit area, so thatΩ = σ which is assumed from now on.

Let us now consider the case when the scatterer is embedded
in a plasma which is taken to be a conductor with average
conductivityσ0. The screen contributes to the volumeV over
which the scattered field is to be computed and is assumed
to have a conductivity profile with no distinct air/plasma
boundary. The average conductivityσ0 is taken to be the

volume integral of the plasma conductivity profile divided
by the volume of the screen over which the incident field is
scattered. The effect of this is of course to introduce absorption
(and frequency dispersion) of the electric field before it is
incident upon the scatterer.

We consider the conductivity profile of the plasma together
with the scatterer over volumeV to be described byσ0 +
σ(x, y, z). Our wave equation then becomes (forεr = 1)

(∇2 + k2 − ikz0σ0)Es = ikz0σEi.

We can now repeat the calculation undertaken previously
to obtain a far-field solution for the back-scattered field at
(x0, 0, 0) produced by a narrow incident radar beam in the
x-direction. In this case, the reflection coefficient is given by

F (k) =
∫

ikz0σ(x) exp[−2i(k2 − ikz0σ0)1/2x]dx.

Note that an absorption effect has been introduced as a conse-
quence of our model in which the electric field propagates
through a plasma with an average conductivityσ0 before
incidence with the scatterer.

A. Impulse Response Function for a Good Conductive
Plasma:k << z0σ0

We can simplify the equation forF (k) by noting that for
a good conductork2 − ikz0σ0 ∼ −ikz0σ0. Using the result√
−i = (1− i)/

√
2 we can then write

F (k) =
∫

dxikz0σ(x)...

... exp

[
−2i

(
kz0σ0

2

) 1
2

x

]
exp

[
−2
(

kz0σ0

2

) 1
2

x

]
.

The form of this integral transform does not provide a simple
Fourier-based relationship betweenσ andF . Nevertheless, the
IRF f(t) is given by the inverse Fourier transform ofF (k)
and it is clear that a major feature of this integral transform is
the negative exponential which characterizes the absorption of
electromagnetic energy in the plasma. The plasma is in effect
producing a conductive shield that screens the scatterer from
incident radiation.

For a given wavelength, the skin depthδ depends on the
average conductivity of the plasma; the more conductive the
plasma, the shorter the skin depth (i.e.δ ∝ σ

−1/2
0 ). For a

fixed average conductivity, there is less penetration of radiation
at higher frequencies. Since radar relies on high frequency
sweeping (i.e. the emission of chirped and other coded pulse)
to obtain high resolution, the dispersion introduced through
this integral transform will yield a spectrum at the receiver in
which the frequency components are attenuated according to
a exp(−α

√
k) power law, whereα =

√
z0σ0/2.

B. Impulse Response Function for a Weakly Conductive
Plasma:k >> z0σ0

The equation forF (k) given in the previous section is a
consequence of considering the case whenk << z0σ0, and it
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is not possible to Fourier invert to give an analytical expression
for the IRF. However, if we consider the condition

k >> z0σ0

which is valid for the case when the plasma is weakly conduc-
tive, then we can consider the approximation

√
k2 − ikz0σ0 '

k − iz0σ0/2, giving

F (k) =
∫

ikz0σ exp(−2ikx) exp(−z0σ0x)dx.

Fourier inversion then allows us to establish the IRF, i.e.

f(t) = −z0
d

dt
[σ(t) exp(−σ0t/ε0)]

where, as before,t is the ‘two-way’ travel time and scaling has
been ignored. Assuming that the variations in conductivity are
smooth and that the boundary between the atmosphere and the
plasma (in terms of variations in conductivity) is continuous,
the effect of the plasma on the IRF is characterised by
exp(−σ0t/ε0). On the other hand, if the air/plasma boundary
is discontinuous, the IRF is dominated by the gradient in the
conductivity across this boundary. In either case, there is no
frequency dependence and the form of the negative exponential
is the same as that describing the rate of decay of chargeρ in
a conductor, i.e.

ρ = ρ0 exp(−σ0t/ε0).

Note that, sinceε0 ∼ 10−11, only relatively low values ofσ0

are required to cause rapid decay in the IRF. For example,
if we consider a 1cm wavelength radar, then the condition
k >> z0σ0 that has been applied to achieve this simplification
reduces to

σ0 << 17.

The skin depth for this case is

δ =
10−3

√
σ0

and, for a plasma with a very low conductivity of say 1
siemens/metre, the skin depth is 1 mm, i.e. the length over
which the electric field strength has decayed bye−1 or by
63% .

The results obtained here are for the back-scattered field
only; a special case has been considered where the field is
measured at a fixed point(x0, 0, 0). Fork = k0 (i.e. the carrier
wavenumber), the field strength as a function ofθ ' y0/x0

andφ ' z0/x0 is determined by

Ω(x, θ, φ)

=
∫ ∫

σ(x, y, z) exp(−2ik0θy) exp(−2ik0φz)dydz

and provides a Born estimate of the diffraction pattern pro-
duced byσ, i.e. a map of the back-scattered cross-section at
small anglesθ andφ.

C. The Radar Signal Equation

Assuming that the return has been demodulated with a
carrier frequencyω0, the radar signals(t) generated by a
scatterer embedded in a weakly conductive plasma is (ignoring
scaling)

s(t) = p(t)⊗ f(t) + r(t)

where

f(t) = exp(−iω0t)
d

dt
[σ(t) exp(−σ0t/ε0)],

p(t) is the outgoing pulse (typically a linear FM pulse [7], [8]),
r(t) is the random noise associated with the whole system and
⊗ denotes the one-dimensional convolution integral [5].

The negative exponential component from whichf(t) is
composed can be thought of as a Signal-to-Noise Ratio (SNR)
control; as the conductivity increases, the SNR is reduced
through negative exponential decay. In general, and in the
practical application of using plasmas to screen aerospace
vehicles, it is more likely that the plasma will be weakly
ionized and weakly conductive. Hence, the equation above
provides a useful initial model.

For a weakly ionized plasma, the electron number density
determines its conductivity. In terms of this result, there are
three principle factors affecting the performance of a practical
radar plasma screening system: (i) maximizing the electron
number density of the plasma; (ii) maximizing the thickness
of the screen; (iii) maintaining continuity of the air/plasma
interface. Points (i)-(iii) will depend on the power of the
plasma generator, the stability of the plasma and its profile.
Thus, a model is required for the electron number density
profile of a plasma that is typically induced by application of
an electron beam which is discharged through an appropriate
feature on a moving aerospace vehicle. This is considered in
the following sections.

III. M ODEL FOR AN ELECTRON-BEAM INDUCED PLASMA

The conductivity of a plasma depends upon whether we
consider it to be weakly or strongly ionized. A weakly ionized
plasma is one in which the frequency of collisionsν of
electrons (e) and ions (i) with atoms (a) greatly exceeds that
of collisions of these particles with one another, i.e.

νea >> νee, νei; νia >> νii, νie.

A highly ionized plasma is described by the reverse of these
conditions.

The conductivity of a weakly ionized plasma is given by
[4]

σ =
ne2

meνea
+

2ne2

miνia

where me and mi are the masses of an electron and ion,
respectively. This expression for the conductivity is dominated
by the first term which describes the conductivity for the
electron component of the plasma. The reason for this is
that mi >> me. Clearly, in this case, the conductivity
is proportional to the electron number densityn and the
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conductivity of a weakly ionized plasma can be approximated
by

σ =
ne2

meνea
∼ 10−9 n

νea

where νea is the frequency of collisions between electrons
and atoms. The ration/νea will vary considerably from one
regime (i.e. altitude and speed of flight) to another, although
the values ofn and νea may tend to off-set each other.
Assuming that the plasma is generated by e-beam breakdown
of the atmosphere, at ambient atmospheric pressures,n will
be large as willνea. At higher altitudes,n will be less but so
will νae. Finally, above the atmosphere there will be relatively
few atoms to break down and the collision frequency will be
relatively small. However, if, for example, hydrogen gas could
be generated prior to ionization, then it would be possible to
generate large electron densities with low collision frequencies
leading to high and sustainable plasma conductivities and,
therefore, more effective plasma screening systems.

Since the conductivity of the plasma screen is linearly pro-
portional to the electron number density, a principal problem
is to determine the number density distribution for a given
configuration (of source and aerospace vehicle). Thus, we
are required to obtain a model that predicts the generation
and transport of electrons subject to a variety of processes
such ionization, recombination, diffusion, radiative losses,
air flow, etc. This can be accomplished by considering the
macroscopic properties of the plasma which are governed by
the dynamics of the growth process, a process that involves
avalanche electron multiplication (an exponential process), i.e.
the ionization rate per initial electron. A limiting mechanism
for the growth of the cascade is taken to be due to the (am-
bipolar) diffusion of electrons out the volume of the e-beam.
Away from the plasma source, the electron number density
is taken to be determined primarily by the recombination
rate, radiative losses or bremsstrahlung radiation and flow
regime. The ionization mechanism is taken to include inverse
bremsstrahlung processes [4].

A. Ionization

The ionization of a neutral gas by an electron beam, for
example, is determined by a cascade process that produces an
exponential growth in the electron density. In the absence of
diffusion processes, this electron density is determined by the
equation

dn

dt
= In

where I is the ionization rate per initial electron and is
assumed to be a constant. The solution is trivial, represents
exponential growth and is given by

n = n0 exp(It)

where n0 is the initial electron density. Suppose that for a
given volume, we require the e-beam to produce1013 electrons
say and that this number should be produced from an initial
value of 10 electrons that have been ionized by electrons from
the e-beam alone, then

ln
(

n

n0

)
=
∫

Idt ∼ 40.

In other words, the cascade process requires 40 generations
to produce1013 electrons from just 10 of them. This number
is not strongly dependent on the assumed value ofn0 within
reasonable bounds. The electron density becomes large only
near the end of the cascade process; 99% of the ionization
is produced from the last 7 generations. Therefore, quantities
such as the growth and losses from the cascade and the time
to breakdown are determined by the conditions at times when
the electron density is small.

The ionization rate will be determined by two principal
processes: (i) the ionization rateIb due to collisions of neutral
atoms or molecules with electrons that have absorbed energy
in the inverse bremsstrahlung process; (ii) the loss of potential
ionizing electrons due to electron attachment with an ion
which we denote by a rate coefficientIa. Thus, in general

I = Ib − Ia.

The process of inverse bremsstrahlung involves raising a free
electron to a higher energy state in the continuum of states
available to it. The energy is a result of the absorption of a pho-
ton due to bremsstrahlung radiation which is itself produced
by the acceleration of charged particles involved in elastic
collisions. This absorption must occur with a simultaneous
interaction with a heavy particle (atom, molecule or ion) in
order that momentum is conserved.

B. Diffusion

The diffusion of electrons in a plasma is determined by the
diffusion equation

∂n

∂t
= D∇2n

where D is the (ambipolar) diffusion coefficient. In this
equation,n represents the electron density of the plasma. With
regard to ionization, the termIn can be added to the diffusion
equation to produce the inhomogeneous equation

∂n

∂t
= D∇2n + In.

Note that, in general,I and D may be functions of both
space and time. Another source term that is required is the
multi-electron ionization rate due the e-beam alone which is
responsible for the production of the initial electron density
from which the cascade process develops. This ionization will
also depend on both space and time and, in particular, on the
distance of the beam away from the source. Thus, if we denote
the e-beam ionization rate byB (for beam), then the diffusion
equation becomes

∂n

∂t
= D∇2n + In + B.

C. Recombination

Electron-ion collisions may lead to recombination, i.e. the
production of a neutral atom as a result of the capture of an
electron by an ion. The efficiency of the processes responsible
for recombination is considerable at low electron energies at
which the electron-ion interaction time is sufficiently large.
Accordingly, at low electron temperatures (i.e. much less
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than the ionization energy) these processes strongly affect
the balance of the charged plasma particles. The rate of
charged particle removal due to recombination in a volume
is determined by the total recombination cross section and
depends of the number densities of both ionsni and electrons
ne. Thus, the rate equation is given by

∂n

∂t
= −Rnine = −Rn2

whereR is the recombination coefficient. The minus sign is
introduced here because the process is lossy. This nonlinear
equation has a simple analytical solution which can be ob-
tained by inspection and is given by

1
n

=
1
n0

+ Rt

wheren0 is the initial number density. After the density has
fallen far below its initial value, it decays reciprocally with
time, i.e.

n ∝ 1
Rt

.

This is a fundamentally different behaviour from the exponen-
tial decay associated with diffusive processes and exponential
growth associated with ionization processes. Since the recom-
bination rate is proportional ton2, for high values ofn it can
be expected to be the dominant process.

With regard to the diffusion equation,−Rn2 is a source
term and, thus, the diffusion equation must be modified again,
this time to the nonlinear inhomogeneous form

∂n

∂t
= D∇2n + In + B −Rn2.

Note that, in general, it is expected that, likeI, D andB, the
recombination coefficientR may be a function of both space
and time.

The rate equation above, has two source terms and two
loss terms. The source terms areB and In which describe
the initial population density of electrons produced by the
e-beam alone and the population density generated by the
cascade process. The loss termsD∇2n and Rn2 describe
losses due to the processes of diffusion and recombination,
respectively. Another effect that can be considered is loss
through radiative processes. However, for weakly ionized
plasmas, it reasonable to assume that this effect is relatively
small compared to diffusion and recombination. These losses
will also be proportional ton2 since the total powerP radiated
per unit volume by a plasma is given by [4]

P ∼ 1.5× 10−38Z2neniT
1
2

e (Watts/m3)

wheren is in m−3 andTe is in eV. Because the radiated power
is proportional to the square of the atomic numberZ, a low
Z plasma (e.g. a hydrogen plasma) will last longer.

IV. RATE EQUATION ANALYSIS

Analytical solutions to the rate equation

∂n

∂t
= D∇2n + In + B −Rn2

can be considered for different conditions compounded in the
inclusion, or otherwise, of different terms.

In some practical cases, the diffusion loss will dominate
over losses from recombination after initiation (whenB can
be ignored), and we can consider the electron density to be
determined by the solution of

∂n

∂t
= D∇2n + In.

For the characteristic diffusion lengthΛ of the breakdown, we
may replace∇2 by −1/Λ2 to obtain a solution of the form

n = n0 exp[(I −D/Λ2)t].

This solution illustrates exponential growth of electrons, sub-
ject to exponential damping due to diffusion. Clearly, for
a given coefficient of diffusion, the characteristic diffusion
length should be large in order to achieve a high concentration
of electrons.

Under conditions where, along with diffusion, the quadratic
recombination term substantially affects the plasma decay, the
rate equation takes the form

∂n

∂t
= D∇2n + In−Rn2

or, in terms of the characteristic length of diffusion,

dn

dt
= −

(
D

Λ2
− I

)
n−Rn2.

The solution to this equation is [4]

n(t) =

(
D
Λ2 − I

)
n0 exp

(
It− D

Λ2 t
)(

D
Λ2 − I

)
+ Rn0

[
1− exp

(
It− D

Λ2 t
)] .

Note that, whenD/Λ2−I >> Rn, this solution changes into
an exponential form that is characteristic of ionization growth
and diffusion decay. Alternatively, whenRn >> D/Λ2 − I
the electron density is determined by the equation.

1
n

=
1
n0

+ Rt.

V. STEADY STATE SOLUTIONS

For steady state conditions

∂n

∂t
= 0

and our rate equation reduces to

D∇2n + In + B −Rn2 = 0.

Let us now consider some of the solutions available under
different conditions.

A. Steady State Solution without Flow

If we consider the e-beam to produce ionization along the
axis alone then the plasma source can be assumed to be axially
symmetric. The electron density is then a function of the radius
r and, using cylindrical coordinates, we have

∇2n =
1
r

∂

∂r

(
r
∂n

∂r

)
.
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The simplest solution available to us in this case is obtained
under the assumption thatB, I andR are all zero. The plasma
is therefore assumed to be a cylindrical plasma with losses due
to diffusion alone. Except atr = 0, the density must satisfy

1
r

∂

∂r

(
r
∂n

∂r

)
= 0

which has the solution

n(r) = n0 ln r + c.

With the boundary conditionn(a) = 0 (i.e. the electron
density is zero some distance away from the source) we have
c = −n0 ln a and therefore

n(r) = n0 ln
(a

r

)
which is the fundamental solution to the 2D Laplace’s equa-
tion.

Let us now consider the solution to the equationD∇2n +
In = 0 in cylindrical coordinates. This requires that we solve
the equation

1
r

∂

∂r

(
r
∂n

∂r

)
= −In

D

or
d2n

dr2
+

1
r

dn

dr
+

I

D
n = 0

which is Bessel’s equation of order zero. This has the solution

n(r) = n0J0

(
r

√
I

D

)
whereJ0 is the Bessel function of order zero. The boundary
condition that must be applied is thatn = 0 at r = a. The
Bessel function is zero for multiple values ofx = r

√
I/D.

However, the first zero occurs whenx ' 2.4 or when

r = a = 2.4

√
D

I
.

This solution describes the lowest diffusion mode in whicha
can be taken to define the boundary between the plasma and
air. Although it is possible for higher diffusion modes to occur,
they tend to decay rapidly in most plasmas and may therefore
be ignored. Note that the radial extent of the electron density is
proportional to the square root of the coefficient of diffusion.

B. Steady State Equation with Flow

Suppose we consider the case when the plasma source is
in a steady state condition (i.e. the e-beam is operating in
the continuous mode) and that the radial distribution of the
electron density is described byJ0. For the case when the
plasma source is moving through the atmosphere, it will be
expected that the plasma streams away from the source (down
wind) producing a decay of the electron density due to: (i)
air flow effects, e.g. boundary layer thickening; (ii) recombi-
nation. Let us assume that the plasma forms a boundary layer
with thickness

∆ ∼ L√
Re

whereRe is the Reynolds number given by

Re =
Lv

η
,

L is the characteristic length scale of the flow,v is the velocity
of the flow andη is the kinematic viscosity of air. For a 10
m long aerospace vehicle travelling at 100 m/s, say, and with
η ∼ 10−3m2/s for air,

∆ = 1 mm.

For a 1mm thick plasma screen of 1 siemen/metre and con-
sidering the two-way travel path, the absorption of microwave
radiation with a wavelength of 1cm (due to the skin depth
effect) is 87%. Thus, relatively large absorption can occur
over small boundary layers composed of low conductivity
plasmas (i.e. plasmas with low electron number densities). As
the plasma streams away from the source, the electron density
will decrease due to an increase in the extent of the boundary
layer (ignoring recombination). Since the initial radial extent
of the plasma at source is given bya, we can expect the screen
thickness to be of the order ofa+∆. The decay of the electron
density as a function ofr and L can therefore be estimated
by

n(r, L) =
a

a + ∆
n0J0

(
r

√
I

D

)
=

n0J0

(
r
√

I
D

)
1 + 0.4167

√
LηI
vD

.

This steady state estimate neglects the effects of recombination
but provides a qualitative estimate of the electron density
profile produced by a continuous on-axis e-beam.

C. Numerical Simulation

The rate equation for the electron density is given by

∂n

∂t
= D∇2n + B + In−Rn2.

If the plasma is generated in a flow of air then, to a good
approximation, we can consider the electrons to flow with the
air and thus conform to the conservation equation

∂n

∂t
= ∇ · (nv)

wherev is the velocity of the flow. Hence, we are required to
solve the equation

D∇2n + B + In−Rn2 −∇ · (n∇u) = 0

where u is the velocity potentialv = ∇u. Our problem is
to find n given u which requires the velocity potential to be
computeda priori. Suppose we compute the velocity potential
for air (in the absence of a plasma). We can then consider a
model in which the electron density is a characteristic of this
potential. In other words, we consider the plasma to flow away
from the source in a manner that is determined by the stream
lines associated with the flow of air over the aerospace vehicle.
For constant (air) density, the velocity potential is obtained by
solving Laplace’s equation

∇2u = 0
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subject to appropriate boundary conditions. Noting that

∇u · ∇n = ∇ · (u∇n)− u∇2n

we can write

(D + u)∇2n + B + In−Rn2 −∇ · (u∇n) = 0.

This is the steady state equation for the electron densityn
subject to a flow regime characterized by velocity potentialu.
The 3D Green’s function solution to this equation is [6]

n =
1

4πr
⊗3

(
B

u + D
+

In

u + D
− Rn2

u + D
−∇ · (u∇n)

)
where⊗3 denotes the three-dimensional convolution integral.
The order of iteration required to computen can follow the
order in which the physical mechanisms described by each of
the terms occur. Thus:

Electron generation

n1 =
1

4πr
⊗ B

u + D

Ionization

n2 = n1 +
1

4πr
⊗ In1

u + D

Recombination

n3 = n1 + n2 −
1

4πr
⊗ Rn2

2

u + D

Flow

n4 = n1 + n2 − n3 −
1

4πr
⊗∇ · (u∇n3)

Figure 1 shows the effect of a plasma (specifically, the electron
number densityn3) generated without (u = 0) and with
(∇2u = 0) an air flow (from right to left) over a cone
with a smooth point. Here, we assume that the screen is
axially symmetric and undertake the computations in the plane
(x, y, 0). This is achieved by implementing the equations
above on a two-dimensional uniform grid of size 700×300,
applying the convolution theorem and using the result (where
⇐⇒ denotes transformation from real space to Fourier space)

1√
x2 + y2

⇐⇒ 1√
k2

x + k2
y

with the boundary conditionn = 0 (applied over the boundary
and over the extent of the cone) and wherekx, ky are the
spatial frequency components in thex− and y− directions
respectively. The e-beam is taken to be a ‘pencil line beam’
(one pixel wide) emitted from the point of the cone with
uniform intensity along its extent. The coefficientsB, I, R
and D are assumed constant with values:B = 4π, I = 4π,
R = 4π and D = 1. The velocity potentialu is computed
using the Successive-over-Relaxation method [9] compounded
in the following result (whereω = 1.1 is the relaxation
parameter)

uk+1
i,j = uk

i,j +
ω

4
(uk

i+1,j + uk+1
i−1,j + uk

i,j+1 + uk+1
i,j−1 − 4uk

i,j)

Fig. 1. Plasma density profile generated by an electron beam without airflow
(above) and with an airflow (below) from right to left over a ‘smoothed cone’.
The beam is taken to be of uniform intensity and emitted from the ‘point’ of
the cone ‘travelling’ to the right.

for i = 1, 2, ..., N and j = 1, 2, ...,M with conditionsuij =
0 on the boundary and over the extent of the cone,u1,j =
u0 ∀j, uN,j = u0 ∀j, ui,M = u0 ∀i, ui,1 = u0 ∀i /∈ C
where C is the extent of the cone at the extreme left-hand
edge of the grid (withu0 = 1).

The extent of the plasma screen that forms over the bound-
ary of the cone to provide a radar screen is quite noticeable
when air flow is present, an extent that is strongly determined
by the magnitude of the recombination coefficient and air flow
for a given beam energy and coefficient of ionization. Actual
values forR along withI, D and the beam profileB (which
will not be uniform as in the idealized simulation presented
here) and the flow rate will depend on the operating conditions
that apply. These include the vehicle velocity, the plasma
medium, additives (readily ionizable or reactive species), the
electron beam energy, its diameter and profile, details that
remain classified. However, typical parameters include an
electron beam energy of 100keV, a (Gaussian) beam diameter
of less than 5mm with a loss of 1keV per cm for an aerospace
vehicle travelling at up to 100ms−1 operating in a plasma
medium of air (over a range of atmospheric pressures) and
with additives such as water vapour. Applications include
the plasma screening of in-coming missiles, for example,
against close proximity anti-missile systems that use radar for
targeting and control.

VI. SUMMARY AND CONCLUSIONS

The idea of using a weakly ionized plasma to screen an
aerospace vehicle is not new but interest in this effect and
appraisal of the applications to which it can be practically
applied are likely to grow. This paper has developed a model
for the radar signal generated with and without a plasma
screen and illustrates that, for a weakly ionized plasma,
the effect of such a screen is compounded in the function
exp(−σ0tε0) where t is the two-way travel time,σ0 is the
average conductivity of the plasma andε0 is the permittivity
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of free space. For a weakly ionized plasma, the conductivity is
determined by the number density of electrons and qualitative
results have been developed to estimate the number density
of a plasma screen enveloping a moving vehicle. A numerical
procedure to simulate the number density of a plasma has
been developed and an example provided for the case when
an e-beam induced plasma is generated from the front of
a (sub-sonic) missile. This simulation is based on assuming
cascade ionization with loss mechanisms due to diffusion and
recombination. The simulator is not suitable for the super-
sonic case when the airflow cannot by determined by the
solution to Laplace’s equation for the velocity potential. In this
case, it may be expected that the plasma is partially distributed
along the shock wave that is formed and thus, depending on
the exact configuration of the aerospace vehicle, could provide
a more extensive plasma screen. This will be the subject of a
future publication.
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