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Abstract. In this paper we present an estimation algorithm for Bayesian
multiplex exponential random graphs (BmERGMs) under missing net-
work data. Social actors are often connected with more than one type of
relation, thus forming a multiplex network. It is important to consider
these multiplex structures simultaneously when analyzing a multiplex
network. The importance of proper models of multiplex network struc-
tures is even more pronounced under the issue of missing network data.
The proposed algorithm is able to estimate BmERGMs under missing
data and can be used to obtain proper multiple imputations for multi-
plex network structures. It is an extension of Bayesian exponential ran-
dom graphs (BERGMs) as implemented in the Bergm package in R. We
demonstrate the algorithm on a well known example, with and without
artificially simulated missing data.

Keywords: Social Networks · Missing Data · Multiple Imputation ·
ERGM · Bayesian Computation · Multiplex Networks.

1 Introduction

In recent years, it is becoming more and more apparent that the understanding
of social structure often requires to take more than just one type of social re-
lation into account, so called multiplex networks. Notable examples include the
important interrelations between friendships and advice seeking behavior [17],
the importance of antipathi-ties in the maintenance of friendship group struc-
tures [18], and the relationships between joined drug use, sexual relations, and
co-visitation of social venues [5]. However, increasing the number of network
items collected from the participants is likely to increase missing data. First,
social network data collection is often time intensive and adding more items is
likely to increase drop out. Second, social network data is by nature interper-
sonal and thus often sensitive data, thus more likely to not be fully reported by
participants. While missing data is a problem for all (social) sciences, network
models suffer particularly under missing data, because of the strong dependen-
cies within the data. Non-response by one participant does not only mean we
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know less about this participant, but we also know less about the social network
of all other participants, after all, the missing participant could have nominated
any of the other participants thus potentially changing the network structure
drastically.

Statistical tools have been developed to handle missing social network data,
both to obtain more reliable model estimates [6, 16, 9, 10], as well as reliable de-
scriptive statistics [11]. In this paper we propose an extension of this work to the
context of multiplex exponential random graph models (mERGMs). We advance
the literature twofold, first, by proposing an estimation procedure for Bayesian
mERGMs, and second by proving proper multiple imputation of missing multi-
plex network data.

2 Bayesian Multiplex ERGMs

2.1 Bayesian inference for ERGMs

The exponential random graph model family (ERGMs; [12]) is most commonly
used to analyze cross-sectional network data. ERGMs model an observed net-
work, or graph, as a function of sufficient network statistics (primarily counts
of subgraph configurations, e.g., number of ties, number of reciprocated ties or
number of transitive triplets). A network graph is expressed as a random n× n
adjacency matrix Y with Yij = 1 when there is tie from node i to node j and
Yij = 0 when there is no tie. Usually, edges connecting a node with itself are
not allowed (Yii = 0). Networks can be directed or undirected (Yij = Yji). Let
Y denote the set of all possible networks on n nodes and let y be a realization of
Y ∈ Y. Then, in Bayesian ERGMs (BERGMs) the posterior probability of the
parameters conditional on the data is given by

p(θ|y) =
exp [θT s(y)]

z(θ)

p(θ)

p(y)
, (1)

with θ being a vector of model parameters, s(y) a vector of corresponding suffi-
cient network statistics, z(θ) the normalizing constant, p(θ) the prior distribution
of the parameters and p(y) is the marginal probability. See Lusher et al. for an
introduction to ERGMs [12].

2.2 Multiplexity

Multiplex networks are structures with multiple different types of relations on
the same set of nodes. Multiplex networks can thus be expressed as a random
n×n×m adjacency array or cube Y with Yijm = 1 when there is tie from node
i to node j on network m and Yijm = 0 when there is no such tie on network
m. Each layer m of the multiplex network can be either directed or undirected.
Multiplex ERGMs were first introduced by Pattison and Wasserman [14] and
later extended by Wang [20]. Multiplexity increases the complexity of network
models by an additional factor, while a single layer directed network has 2n×n−n
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possible configurations (e.g., a network of 20 nodes has ∼ 2.5 × 10114 possible
configurations), this number increases exponentially to the number of layers,
2(n×n−n)×m (e.g., a multiplex network of 20 nodes with 2 layers has ∼ 6.1×10228

possible configurations).

2.3 Posterior Parameter Estimation for BmERGMs

The MCMC estimation algorithm of the posterior p(θ|y) is an extension of the
approximate exchange algorithm introduced by Caimo and Friel [1] and currently
implemented in the Bergm package in R [3]. The algorithm samples from the
following distribution:

p(θ′, y′, θ|y) ∝ p(y|θ) p(θ) ε(θ′|θ) p(y′|θ′), (2)

with p(y′|θ′) being the likelihood on which the simulated data y′ are defined
and belongs to the same exponential family of densities as p(y|θ), ε(θ′|θ) is any
arbitrary proposal distribution for the parameter θ′. This proposal distribution
is set to be a normal centred at θ.

At each MCMC iteration, the exchange algorithm consists of three main
steps: First, proposing a Gibbs update of θ′. Followed by a Gibbs update of
y′, a drawn from p(·|θ′) with an MCMC algorithm [8]. Third an exchange, or
swap, from the current state θ to the proposed new parameter θ′ is taken. This
deterministic proposal is accepted with the following probability:

min

(
1,
qθ(y

′) p(θ′) ε(θ|θ′) qθ′(y)

qθ(y) p(θ) ε(θ′|θ) qθ′(y′)
× z(θ) z(θ′)

z(θ′) z(θ)

)
(3)

where qθ and qθ′ indicate the unnormalized likelihoods for parameters θ and θ′,
respectively. The intractable normalizing constants cancel each other out in this
equation, thus avoiding the problem of calculating them.

Concretely, the algorithm is implemented in the following way:

Algorithm 1 Approximate exchange algorithm for BmERGMs

Initialise θ
for i = 1, . . . , N do

Generate θ′ from ε(·|θ)
loop

for m = 1, . . . ,M do
Simulate one (or a few) tie swap y′m from p(·|θ′, y′)

end for
end loop
Update θ → θ′ with the log of the probability:

min

(
0, [θ − θ′]T [s(y′)− s(y)] + log

[
p(θ′)

p(θ)

])
(4)

end for
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The key change to the regular Bergm algorithm is in the network simulation
loop which is here sampling from a multiplex network space. Instead of directly
simulating a new multiplex network y′ with the proposed parameter θ′, the
simulation is done iteratively for each of the M layers of ties by proposing one
(or a few) tie swap on each layer, conditional on the proposed parameter vector θ′

and on the current state of y′, thus including all tie swaps simulated on all layers
of the network in this and previous iterations. This is repeated until convergence
is reached and a sample is drawn from p(·|θ′). Adaptive procedures such as the
adaptive direction sampling [1, 19] or the delayed rejection sampling [2] can be
adopted.

2.4 Cross Network Effects

Currently three fundamental dyadic cross network effects are implemented for
the algorithm. These effects are: 1) co-occurrence, 2) entrainment, and 3) cross
network reciprocity. Co-occurrence expresses the tendency of edges on one layer
to occur with edges on another layer in an undirected graph and entrainment
is its directed counterpart. The corresponding sufficient statistic can thus be
calculated similarly for both:

sco|ent(y) =
∑
i<j

yij1yij2. (5)

Cross network reciprocity models the co-occurrence of outgoing ties of one
type with incoming ties of another type on the same dyad.

scross−recip.(y) =
∑
i<j

yij1yji2. (6)

3 Missing Data Imputation

The proposed missing data augmentation procedure is an extension of the work
by Koskinen et al. [9]. In short, every time a new θ′ is accepted in the algorithm
outlined above, the missing network data is imputed conditional on the observed
data and θ′. The imputation follows a similar simulation procedure as the pa-
rameter estimation. However, only tie-swaps for missing ties are proposed. The
obtained multiplex network y∗ is then used as the starting point for the next
iteration and treated as new baseline. Thus equation (4) optimizes [s(y′)−s(y∗)],
and not [s(y′)− s(y)].

The imputed networks y∗ can be retained after the estimation of the posterior
p(θ|y) and used for additional analyses, because they constitute proper multiple
imputations of y, assuming a well fitting model.

This algorithm has been shown to provide reliable estimates of p(θ|y) [9],
and low biases in descriptive statistics [11] in the single-layer network setting.
However, if y is a multiplex network, it is important to impute missing data
with a multiplex network model to guarantee that the observed relationships
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Algorithm 2 Approximate exchange algorithm for BmERGMs under missing
data

Use naive imputation obtain starting values for s(y∗)
Initialise θ
for i = 1, . . . , N do

Generate θ′ from ε(·|θ)
loop

for m = 1, . . . ,M do
Simulate one (or a few) tie swap y′m from p(·|θ′, y′)

end for
end loop
Update θ → θ′ with the log of the probability:

min

(
0, [θ − θ′]T [s(y′)− s(y∗)] + log

[
p(θ′)

p(θ)

])
(7)

if θ′ ∈ p(θ|y) then
loop

for m = 1, . . . ,M do
Simulate one (or a few) tie swap of missing ties y∗m from p(·|θ′, y∗)

end for
end loop

end if
end for

between the layers are maintained in the imputation process. Thus, this algo-
rithms provides an important advancement in the treatment of missing network
data.

4 Illustration - Florentine Families

As a simple illustration we present Padgett’s network of the Florentine bank-
ing families, a classical example of network analysis [13]. The network consists
of 16 nodes (the banking families), their business relations, and their martial
connections (fig. 1). We present only a simple model for the multiplex graph
for illustrative purposes. The within network layer effects are similar for both
business and marriage network. The model consists of a set of parameters for
edges (modeling the density), geometrically weighted degree (GWDEGREE -
modeling the degree distribution) and geometrically weighted edgewise shared
partners (GWESP - modeling triadic closure) [7, 15]. Additionally, the model
includes a parameter for the co-occurrence of ties between the layers.

Missing data was created by randomly selecting three (∼20%) of the fami-
lies and setting their outgoing and incoming ties and no-ties for both layers to
missing. The posterior distributions for the complete data model as well as for
the missing data model are presented jointly in fig. 2. The missing data augmen-
tation algorithm performs well in approximating the posterior of the full data
model.
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Fig. 1. Business and marriage relations of the 16 Florentine families

5 Discussion

In this paper, we present a Bayesian computational algorithm for the estimation
of multiplex exponential random graphs under missing data. The code imple-
menting the methodology is currently available on GitHub and in future will
be part of the Bergm package in R. It is thus far the only implementation of
multiplex random graphs in R. Currenly, Bergm, and by extension the proposed
algorithm, are heavily reliant on the ergm package. Unfortunately, ergm does
not facilitate estimation of multiplex ERGMs, which limits the availability of
cross network effects. The proposed algorithm can be easily adapted to estimate
Bayesian (multiplex) exponential random network models [4], an extension of
the ERG-family models where also nodal attributes are random and dependent
on the connectivity structure of the network. The estimation of this joint net-
work and attribute distribution can be implemented similarly to the estimation
of the multiplex structure.
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Fig. 2. Posterior Distributions of BmERGM for complete and missing data
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