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ViSQOL: an objective speech quality model
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Abstract

This paper presents an objective speech quality model, ViSQOL, the Virtual Speech Quality Objective Listener. It is a
signal-based, full-reference, intrusive metric that models human speech quality perception using a spectro-temporal
measure of similarity between a reference and a test speech signal. The metric has been particularly designed to be
robust for quality issues associated with Voice over IP (VoIP) transmission. This paper describes the algorithm and
compares the quality predictions with the ITU-T standard metrics PESQ and POLQA for common problems in VoIP:
clock drift, associated time warping, and playout delays. The results indicate that ViSQOL and POLQA significantly
outperform PESQ, with ViSQOL competing well with POLQA. An extensive benchmarking against PESQ, POLQA, and
simpler distance metrics using three speech corpora (NOIZEUS and E4 and the ITU-T P.Sup. 23 database) is also
presented. These experiments benchmark the performance for a wide range of quality impairments, including VoIP
degradations, a variety of background noise types, speech enhancement methods, and SNR levels. The results and
subsequent analysis show that both ViSQOL and POLQA have some performance weaknesses and under-predict
perceived quality in certain VoIP conditions. Both have a wider application and robustness to conditions than PESQ or
more trivial distance metrics. ViSQOL is shown to offer a useful alternative to POLQA in predicting speech quality in
VoIP scenarios.

Keywords: Objective speech quality; POLQA; P.853; PESQ; ViSQOL; NSIM

1 Introduction
Predicting how a user perceives speech quality has
become more important as transmission channels for
human speech communication have evolved from tra-
ditional fixed telephony to Voice over Internet Protocol
(VoIP)-based systems. Packet-based networks have com-
pounded the traditional background noise quality issues
with the addition of new channel-based degradations.
Network monitoring tools can give a good indicator of
the quality of service (QoS), but predicting the quality
of experience (QoE) for the end user of heterogeneous
networked systems is becoming more important as trans-
mission channels for human speech communication have
a greater reliance on VoIP. Accurate reproduction of the
input waveform is not the ultimate goal, as long as the user
perceives the output signal as a high-quality representa-
tion of their expectation of the original signal input.
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1School of Computing, Dublin Institute of Technology, Kevin St, Dublin 8,
Ireland
2Sigmedia, Department of Electronic and Electrical Engineering, Trinity
College Dublin, College Green, Dublin 2, Ireland
Full list of author information is available at the end of the article

Popular VoIP applications, such as Google Hangouts
and Skype, deliver multimedia conferencing over standard
computer or mobile devices rather than dedicated video
conferencing hardware. End-to-end evaluation of the
speech quality delivery has become more complex as the
number of variables impacting the signal has expanded.
For system development and monitoring purposes, qual-
ity needs to be reliably assessed. Subjective testing with
human listeners is the ground truth measurement for
speech quality but is time consuming and expensive to
carry out. Objective measures aim to model this assess-
ment, to give accurate estimates of quality when compared
with subjective tests.
PESQ (Perceptual Evaluation of Speech Quality) [1] and

the more recent POLQA (Perceptual Objective Listen-
ing Quality Assessment) [2], described in ITU standards,
are full-reference measures meaning they allow predic-
tion of speech quality by comparing a reference to a
received signal. PESQ was developed to give an objec-
tive estimate of narrowband speech quality and was later
extended to also address wideband speech quality [3].
The newer POLQA model yields quality estimates for
narrowband, wideband, and super-wideband speech and
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addresses other limitations in PESQ, specifically time
alignment and warped speech. It is slowly gaining more
widespread use, so as yet, there has been limited publi-
cation of its performance outside of its own development
and conformance tests.
This work presents an alternative model, the Virtual

Speech Quality Objective Listener, or ViSQOL, which has
been developed to be a general full-reference objective
speech quality metric with a particular focus on VoIP
degradations. The experiments presented compare the
performance to PESQ and POLQA and benchmarks their
performance over a range of common background noises
and warp, clock drift, and jitter VoIP impairments.
The early development of ViSQOL was presented in a

paper introducing the model’s potential to measure two
common VoIP problems: clockdrift and jitter [4]. Further
work developed the algorithm andmapped themodel out-
put tomean opinion score (MOS) estimates [5]. This work
expands on these experiments and presents a detailed
description of the algorithm and experimental results for
a variety of quality degradations. The model performance
is further evaluated against two more simplistic quality
metrics as well as the ITU standards PESQ and POLQA.
Section 2 provides a background and sets the context

for this research, giving an introduction to subjective
and objective speech quality measurement and related
research. Sections 3 and 4 introduce and then describe
the ViSQOL model architecture. Section 5 describes five
experiments, presents details of the tests undertaken and
datasets used, and discusses the experimental results.
Section 6 summaries the results, and Section 7 concludes
the paper and suggests some areas for further model
testing and development.

2 Background
2.1 Speech quality issues with Voice over IP
There are three factors associated with packet networks
that have a significant impact on perceived speech quality:
delay, jitter (variations in packet arrival times), and packet
loss. All three factors stem from the nature of a packet net-
work, which provides no guarantee that a packet of speech
data will arrive at the receiving end in time, or even that it
will arrive at all [6]. Packet losses can occur both in routers
in the network or at the end point when packets arrive too
late to be played out. To account for these factors and to
ensure a continuous decoding of packets, a jitter buffer is
required at the receiving end. The design trade-off for the
jitter buffer is to keep the buffering delay as short as pos-
sible while minimizing the number of packets that arrive
too late to be used. A large jitter buffer causes an increase
in the overall delay and decreases the packet loss. A high
delay can severely affect the quality and ease of conver-
sation as the wait leads to annoying talker overlap. The
ITU-TRecommendation G.114 [7] states that the one-way

delay should be kept below 150 ms for acceptable conver-
sation quality. In practice somewhat larger delays can be
tolerated, but in general a latency larger than 300 to 400
ms is deemed unacceptable. A smaller buffer decreases
the delay but increases the resulting packet loss. When
a packet loss occurs, some mechanism for filling in the
missing speech must be incorporated. Such solutions are
usually referred to as packet loss concealment (PLC) algo-
rithms, see Kim et al. [8] for a more complete review.
This can be done by simply inserting zeros, repeating
signals, or by some more sophisticated methods utiliz-
ing features of the speech signal, e.g., pitch periods. The
result of inserting zeros or repeating packets is choppy
speech with highly audible discontinuities perceived as
clicks. Pitch-based methods instead try finding periodic
segments to repeat in a smooth periodic manner during
voiced portions of speech. This typically results in high-
quality concealment, even though it may sound robotic
and buzzy during events of high packet loss. An exam-
ple of such a pitch-period-based method is the NetEq [9]
algorithm in WebRTC, an open-source platform for audio
and video communication over the web [10]. NetEq is
continuously adapting the playout timescale by adding or
reducing pitch periods to not only conceal lost segments
but also to reduce built-up delay in the jitter buffer.
Another important aspect which indirectly may affect

the quality is clock drift. Whether the communication
end-points are gateways or other devices, low-frequency
clock drift between the two can cause receiver buffer
overflow or underflow. If the clock drift is not detected
accurately, delay builds up during a call, so clock drift
can have a significant impact on the speech quality.
For example, the transmitter might send packets every
20 ms according to its perception of time, while the
receiver’s perception is that the packets arrive every 20.5
ms. In this case, for every 40th packet, the receiver has
to perform a packet loss concealment to avoid buffer
underflow. The NetEq algorithm’s timescale modification
inherently adjusts for clock drift in a continuous sample-
by-sample fashion and thereby avoids such step-wise
concealment.

2.2 Subjective and objective speech quality assessment
Inherently, the judgement of speech quality for human lis-
teners is subjective. The most reliable method for assess-
ment is via subjective testing with a group of listeners.
The ITU-T has developed a widely used recommendation
(ITU-T Rec. P.800 [11]) defining a procedure for speech
quality subjective tests. The recommendation specifies
several testing paradigms. Themost frequently used is the
Absolute Category Rating (ACR) assessment where lis-
teners rate the quality of speech samples into a scale of
1 to 5 (bad, poor, fair, good, and excellent). The ratings
for all listeners are averaged to a single score known as a
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mean opinion score (MOS).With multiple listeners rating
a common minimal value of four samples per condition
(spoken by two male and two female speakers), subjective
testing is time consuming, expensive, and requires strict
adherence to the methodology to ensure applicability of
results. Subjective testing is impractical for frequent auto-
mated software system regression tests or routine network
monitoring applications.
As a result, objective test methods have been developed

in recent years and remain a topic of active research. This
is often seen as surprising considering telephone commu-
nications have been around for a century. The advent of
VoIP has introduced a range of new technological issues
and related speech quality factors that require the adap-
tation of speech quality models [12]. Objective models
are machine executable and require little human involve-
ment for repeatable automated regression tests to be cre-
ated for VoIP systems. They are useful tools for a wide
audience: VoIP application and codec developers can use
them to benchmark and assess changes or enhancements
to their products; while telecommunications operators
can evaluate speech quality throughout their system life
cycles from planning and development through to imple-
mentation, optimization, monitoring, and maintenance.
They are important tools for a range of research disci-
plines such as human computer interfaces, e.g., speech
or speaker recognition, where knowledge of the quality
of the test data is important in quantifying their system’s
robustness to noise [13]. An extensive review of objective
speech quality models and their applications can be found
in [14].
Objective methods can be classified into two major

categories: parameter-based and signal-based methods.
Parameter-based methods do not test signals over the
channel but instead predict the speech quality through
modeling the channel parameters. The E-model is an
example of a parameter-based model. It is defined by
ITU-T Recommendations G.107 [15] (narrowband ver-
sion) and G.107.1 [16] (wideband version) and is primarily
used for transmission planning purposes in narrowband
and wideband telephone networks.
This work concentrates on the other main category,

namely signal-based methods. They predict quality based
on evaluation of a test speech signal at the output of
the channel. They can be divided into two further sub-
categories, intrusive or non-intrusive. Intrusive signal-
based methods use an original reference and a degraded
signal, which is the output of the system under test.
They identify the audible distortions based on the percep-
tual domain representation of two signals incorporating
human auditory models. Several intrusive models have
been developed during recent years. The ITU-T Recom-
mendation P.861 (PSQM), published in 1996, was a first
attempt to objectively model human listeners and predict

speech quality from subjective listener tests. It was suc-
ceeded in 2001 by P.862, commonly known as PESQ, a
full-reference metric for predicting speech quality. PESQ
has been widely used and was enhanced and extended
over the next decade. It was originally designed and tested
on narrowband signals. It improved on PSQM and the
model handles a range of transmission channel prob-
lems and variations including varied speech levels, codecs,
delays, packet loss, and environmental noise. However, it
has a number of acknowledged shortcomings including
listening levels, loudness loss, effects of delay in conversa-
tional tests, talker echo, and side tones [1]. An extension
to PESQ was developed that adapted the input filters and
MOS mapping to allow wideband signal quality predic-
tion [3].
The newer POLQA algorithm, presented in ITU-T P.863

Recommendation, addresses a number of the limitations
of PESQ as well as improving the overall correlation with
subjective MOS scores. POLQA also implements an ‘ide-
alisation’ of the reference signal. This means that it will
attempt to create a reference signal weighting the percep-
tually salient data before comparing it to the degraded
signal. It allows for predicting overall listening speech
quality in two modes: narrowband (300 to 3,400 Hz) and
superwideband (50 to 14,000 Hz). It should be noted that
in the experiments described in this paper, POLQA was
used in narrowband mode where the specification defines
the estimated MOS listener quality objective output met-
ric (MOS-LQOn, with n signifying narrowband testing)
saturating at 4.5.
In contrast to intrusive methods, the idea of the single-

ended (non-intrusive) signal-based method is to predict
the quality without access to a reference signal. The
result of this comparison can further be modified by
a parametric degradation analysis and integrated into
an assessment of overall quality. The most widely used
non-intrusive models include Auditory Non-Intrusive
QUality Estimation (ANIQUE+) [17] and ITU-T stan-
dard P.563 [18], although it is still an active area of
research [19-22].
For much of the published work on speech quality in

VoIP, PESQ is used as an objective metrics of speech
quality, e.g., [23,24]. PESQ was originally designed with
narrowband telephony in mind and did not specifically
target the most common quality problems encountered
in VoIP systems described in 2.1. POLQA has sought to
address some of the known shortcomings of PESQ, but
only a small number of recent publications, e.g., [25], have
begun to evaluate the performance of POLQA for VoIP
issues. PESQ is still worthy of analysis as recently pub-
lished research continues to use PESQ for VoIP speech
quality assessment, e.g., [26,27].
This paper presents the culmination of work from

the authors [4,5,28] in developing a new objective
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metric of speech quality, called ViSQOL. ViSQOL has
been designed to be particularly sensitive to VoIP
degradation but without sacrificing wider deployabil-
ity. The metric works by examining similarity in time-
frequency representations of the reference and degraded
speech, looking for the manifestation of these VoIP
events. The new metric is compared to both PESQ and
POLQA.

2.3 Benchmark models
Both ITU-T models, PESQ and POLQA, involve a com-
plex series of pre-processing steps to achieve a compari-
son of signals. These deal with factors like loudness levels,
temporal alignments, and delays. They also include a per-
ceptual model that filters the signal using bandpass filters
to mimic the frequency sensitivity and selectivity of the
human ear. For ease of comparison with ViSQOL, block
diagrams of the three models are presented in Figures 1,
2, 3, and 4. The models differ in a variety of ways beyond
the fundamental distance calculations between signals,
including level alignment, voice activity detection, time-
alignment, andmapping from an internal metric to aMOS
estimate. All three are quite complex in their implemen-
tations and more detail on PESQ and POLQA can be
found in the relevant ITU-T standards. Further details on
ViSQOL follows in Section 3.
When dealing with speech quality degradations that

are constrained to background noise or speech enhance-
ment algorithms attempting to counteract noise, simple
SNR distance metrics may suffice. This was shown to
be the case by Hu and Loizou when evaluating speech
enhancement algorithms with a variety of objective qual-
ity metrics [29]. However, these metrics have difficulty
with modern communications networks. Modern codecs
can produce high-quality speech without preserving the
input waveform. Quality measures based on waveform
similarity do not work for these codecs. Comparing sig-
nals in the spectral domain avoids this problem and can
produce results that agree with human judgement. The
two best performing metrics from Hu and Loizou’s study,

the log-likelihood ratio (LLR) and frequency domain
segmental signal-to-noise ratio (fwSNRSeg) [29,30], are
tested along with the specialised speech quality met-
rics, PESQ and POLQA, to illustrate their strengths and
weaknesses.

2.4 Experimental datasets
Subjective databases used for metric calibration and
testing are a key component in objective model develop-
ment. Unfortunately, many datasets are not made pub-
licly available; and those that are frequently used do not
contain a realistic sample of degradation types targeting
a specific application under study, or their limited size
does not allow for statistically significant results. MOS
scores can vary, based on culture and language, or bal-
ance of conditions in a testset, even for tests within the
same laboratory [31]. The coverage of the data in terms
of variety of conditions and range of perceived quality
is usually limited to a range of conditions of interest
for a specific research topic. A number of best prac-
tice procedures have been set out by the ITU, e.g., the
ITU-T P.800 test methodology [11], to ensure statistically
reliable results. These cover details such as the num-
ber of listeners, environmental conditions, speech sam-
ple lengths, and content and help to ensure that MOS
scores are gathered and interpreted correctly. This work
presents results from tests using a combination of exist-
ing databases where available and subjective tests carried
out by the authors for assessing objective model perfor-
mance for a range of VoIP specific and general speech
degradations.

3 Measuring speech quality through spectrogram
similarity

ViSQOLwas inspired by prior work on speech intelligibil-
ity by two of the authors [32,33]. This work used a model
of the auditory periphery [34] to produce auditory nerve
discharge outputs by computationally simulating the mid-
dle and inner ear. Post-processing of the model outputs
yield a neurogram, analogous to a spectrogram with

Figure 1 Block diagram of ViSQOL. High-level block diagram of the ViSQOL algorithm, also summarised in Algorithm 1. Pre-processing includes
signal leveling and production of spectrogram representations of the reference and degraded signal. Similarity comparison: alignment, warp
compensation, and calculating similarity scores between patches from the spectrograms. Quality prediction: patch similarity scores are combined
and translated to an overall objective MOS result. Full reference MATLAB implementation available.



Hines et al. EURASIP Journal on Audio, Speech, andMusic Processing  (2015) 2015:13 Page 5 of 18

Figure 2 Block diagram of PESQ. PESQ carries out level alignment, mimics the resolution of the human ear, and carries out alignment to
compensate for network delays.

time-frequency color intensity representation related to
neural firing activity.
Most speech quality models quantify the degrada-

tion in a signal, i.e., the amount of noise or distortion
in the speech signal compared to a ‘clean’ reference.
ViSQOL focuses on the similarity between a reference and
degraded signal by using a distance metric called the Neu-
rogram Similarity Index Measure or NSIM. NSIM was
developed to evaluate the auditory nerve discharges in a
full-reference way by comparing the neurogram for refer-
ence speech to the neurogram from degraded speech to
predict speech intelligibility. It was inspired and adapted
for use in the auditory domain from an image processing
technique, structural similarity, or SSIM [35], which was
created to predict the loss of image quality due to com-
pression artifacts. Adaptations of SSIM have been used
to predict audio quality [36] and more recently have been
applied in place of simple mean squared error in aeroa-
coustics [37]. Computation of NSIM is described below in
Section 4.2.3.
While speech intelligibility and speech quality are

linked, work by Voiers [38] showed that an amplitude-
distorted signal that had been peak clipped did not impact
intelligibility but seriously affected the quality. This phe-
nomena is well illustrated by examples of vocoded or
robotic speech where the intelligibility can be 100%
but the quality is ranked as bad or poor. In evaluat-
ing the speech intelligibility provided by two hearing aid

algorithms with NSIM, it was noted that while the intel-
ligibility level was the same for both, the NSIM predicted
higher levels of similarity for one algorithm over the other
[39]. This suggested that NSIM may be a good indica-
tor of other factors beyond intelligibility such as speech
quality. It was necessary to evaluate intelligibility after the
auditory periphery when modeling hearing impaired lis-
teners as the signal impairment occurs in the cochlea. This
paper looks at situations where the degradation occurs in
the communication channel, and hence assessing the sig-
nal directly using NSIM on the signal spectrograms rather
than neurograms simplifies the model. This decreased the
computational complexity of the model by two magni-
tudes to an order comparable with other full-reference
metrics such as PESQ and POLQA.

4 Algorithmdescription
ViSQOL is a model of human sensitivity to degrada-
tions in speech quality. It compares a reference signal
with a degraded signal. The output is a prediction of
speech quality perceived by an average individual. The
model has five major processing stages shown in the block
diagram Figure 1: pre-processing; time alignment; pre-
dicting warp; similarity comparison; and a post-process
mapping similarity to objective quality. The algorithm is
also summarized in Algorithm 1. For completeness, the
reader should refer to the referenceMATLAB source code
implementation of the model available for download [40].

Figure 3 Block diagram of POLQA. This is a simplified high-level block diagram of POLQA. POLQA carries out alignment per frame and estimates
the degraded signal sample rate. The main perceptual model (shown in panel titled ‘main’ in this figure and detailed in Figure 4) is executed four
times with different parameters based on whether big distortions are flagged by the first model. Disturbance densities are calculated for each
perceptual model and the integrated model to output a MOS estimate.
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Algorithm 1 Calculate QMOS = VISQOL(x, y)
Require: x
Require: y
Ensure: dBSPL(y) == dBSPL(x)
r ← spectrogram(x)
d ← spectrogram(y)
r ← r − argmin r
d ← d − argmin r
for patch = 1 to length(r) − PATCHSIZE do
if VAD(r(patch)) = TRUE then

refpatches[ ]← r(patch)
refwarppatches[ ]← warp(r(patch))

end if
td[ ]← alignpatches(refpatches[ ] , d)

end for
for all refpatches such that 1 ≤ i ≤ NUMPATCHES do
for all warps such that 1 ≤ wi ≤ NUMWARPS do

for all td such that 1 ≤ ti ≤ NUMPATCHES do
q(i) ← nsim(refpatches(i), d(td(ti))
qwarp(i)←nsim(refwarppatches(wi ), d(td(ti))))

q(i) ← max(q(i), qwarp(i))
end for

end for
end for
Q ← ∑

(q(i))/NUMPATCHES
QMOS ← maptomos(Q)

4.1 Pre-processing
The pre-processing stage scales the degraded signal y(t),
to match the power level of the reference signal x(t).
Short-term Fourier transform (STFT) spectrogram rep-
resentations of the reference and degraded signals are
created using critical bands between 150 and 3,400
Hz for narrowband testing and including five further
bands to 8,000 Hz for wideband. They are denoted r
and d, respectively. A 512 sample, 50% overlap periodic

Hamming window is used for signals with 16-kHz sam-
pling rate and a 256 sample window for 8-kHz sampling
rate to keep frame resolution temporally consistent at
32-ms length with 16-ms spacing. The test spectrograms
are floored to the minimum value in the reference spec-
trogram to level the signals with a 0-dB reference. The
spectrograms are used as inputs to the second stage of the
model, shown in detail on the right-hand side of Figure 1.

4.2 Feature selection and comparison
4.2.1 Time alignment
The reference signal is segmented into patches for com-
parison as illustrated in Figure 5. Each patch is 30 frames
long (480 ms) by 16 or 21 critical frequency bands [41]
(i.e., 150 to 3,400 for narrowband or 50 to 8,000 Hz
for wideband signals). A simple energy threshold voice
activity detector is used on the reference signal to approx-
imately segment the signal into active patches. NSIM is
used to time align the patches to ensure that the patches
are aligned correctly even for conditions with high lev-
els of background noise. Each reference patch is aligned
with the corresponding area from the test spectrogram.
The Neurogram Similarity Index Measure (NSIM) [33]
is used to measure the similarity between the reference
patch and a test spectrogram patch frame by frame, thus
identifying the maximum similarity point for each patch.
This is shown in the bottom pane of Figure 5 where
each line graphs the NSIM similarity score over time
for each patch in the reference signal compared with
the example signal. The NSIM at the maxima are aver-
aged over the patches to yield the metric for the example
signal.

4.2.2 Predictingwarp
NSIM is more sensitive to time warping than a human
listener. The ViSQOL model exploits this by warping the
spectrogram patches temporally. It creates alternative ref-
erence patches 1% and 5% longer and shorter than the

Figure 4 Block diagram of POLQA perceptual model block. The perceptual model calculates distortion indicators. An idealisation is carried out on
the reference signal to remove low levels of noise and optimize timbre of the reference signal prior to the difference calculation for disturbance
density estimation.
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Figure 5 Speech signals with sample patches. The bottom plot shows the NSIM similarity score for each patch from the reference compared frame
by frame across the degraded signal. The NSIM score is the mean of the individual patch scores given in parenthesis. (a) Time offset between
reference and test signal. (b) Patch tested per frame. (c)Maximum NSIM for matching patches for Patch # 1.

original reference. The patches are created using a cubic
two-dimensional interpolation. The comparison stage is
completed by comparing the test patches to the refer-
ence patches and all of the warped reference patches using
NSIM. If a warped version of a patch has a higher similar-
ity score, this score is used for the patch. This is illustrated
in Figure 6.

4.2.3 Similarity comparison
In this work, spectrograms are treated as images to com-
pare similarity. Prior work [32,33] demonstrated that the
structural similarity index (SSIM) [35] could be used to
discriminate between reference and degraded images of
speech to predict intelligibility. SSIM was developed to
evaluate JPEG compression techniques by assessing image
similarity relative to a reference uncompressed image. It
exhibited better discrimination than basic point-to-point
measures, i.e., relative mean squared error (RMSE). SSIM
uses the overall range of pixel intensity for the image
along with a measure of three factors on each individ-
ual pixel comparison. The factors, luminance, contrast,
and structure, give a weighted adjustment to the similarity
measure that looks at the intensity (luminance), vari-
ance (contrast), and cross-correlation (structure) between
a given pixel and those that surround it versus the
reference image. SSIM between two spectrograms, the
reference, r, and the degraded, d, is defined with a

weighted function of intensity, l, contrast, c, and structure,
s, as

S(r, d) = l(r, d)α · c(r, d)β · s(r, d)γ (1)

S(r, d) =
(

2μrμd + C1

μ2
r + μ2

d + C1

)α

·
(

2σrσd + C2

σ 2
r + σ 2

d + C2

)β

×
(

σrd + C3
σrσd + C3

)γ

(2)

Components are weighted with α, β , and γ where all are
set to 1 for the basic version of SSIM. Intensity looks at a
comparison of the mean,μ, values across the two spectro-
grams. The structure uses the standard deviation, σ , and
is equivalent to the correlation coefficient between the
two spectrograms. In discrete form, σrd can be estimated
as

σrd = 1
N − 1

N∑
i=1

(ri − μr)(di − μd). (3)

where r and d are time-frequency matrices summed
across both dimensions. Full details of calculating SSIM
are presented in [35].
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Figure 6 Patch warping. The versions of the reference patch #1 are shown: warped temporally to 0.95 times the length, un-warped (1.0 factor) and
1.05 times warped. These are compared to the degraded signal at the area of maximum similarity and adjacent frames. The highest similarity score
for all warps tested is used for each given patch.

The Neurogram Similarity Index Measure (NSIM) is a
simplified version of SSIM that has been shown to per-
form better for speech signal comparison [33] and is
defined as

Q(r, d) = l(r, d) · s(r, d) = 2μrμd + C1

μ2
r + μ2

d + C1
· σrd + C3
σr .σd + C3

(4)

As with SSIM, each component also contains constant
values C1 = 0.01L and C2 = C3 = (0.03L)2, where L
is the intensity range (as per [35]) of the reference spec-
trogram, which have negligible influence on the results
but are used to avoid instabilities at boundary conditions,
specifically where μ2

r + μ2
d is very close to zero. It was

previously established that for the purposes of neurogram
comparisons for speech intelligibility estimation, the opti-
mal window size was a 3 × 3 pixel square covering three
frequency bands and a 12.8-ms time window [32]. SSIM
was further tuned, and it was established that the contrast
component provided negligible value when comparing
neurograms and that closer fitting to listener test data
occurred using only a luminance and structural compari-
son [33]. Strictly, NSIM has a bounded range −1 ≤ Q ≤ 1
but for spectrograms where the reference is clean speech,
the range can be considered to be 0 ≤ Q ≤ 1. Compar-
ing a signal with itself will yield an NSIM score of 1.When
calculating the overall similarity, the mean NSIM score
for the test patches is returned as the signal similarity
estimate.

4.3 Mapping similarity to objective quality
A mapping function, roughly sigmoid in nature, is used
to translate the NSIM similarity score into a MOS-LQOn
score and mapped in the range 1 to 5. The mean of the
third-order polynomial fitting functions for three of the
ITU-T P. Supplemental 23 databases was used to create
the mapping function. The database contains test results
from a number of research laboratories. Results from
three laboratories were used to train themapping function
(specifically those labeled A, C, and D), and laboratory O
results were kept aside for metric testing and evaluation.
The transfer function, QMOS = f (z), where z maps the
NSIM score, Q, to QMOS is described by

clamp(QMOS, a, b) =
⎧⎨
⎩
m if f (z) ≤ m,
f (z) a < f (z) ≤ n
n if f (z) > n

(5)

where QMOS = az3 + bz2 + cz + d, m = 1, n = 5 and
the coefficients are a = 158.7, b = −373.6, c = 295.5
and d = −75.3. This transfer function is used for all data
tested. A further linear regression fit was applied to the
results from all of the objective metrics tested to map the
objective scores to the subjective test databases used for
evaluation. The correlation statistics are quoted with and
without this regression fit.

4.4 Changes from early model design
An earlier prototype of the ViSQOL model was presented
in prior work [4]. A number of improvements were sub-
sequently applied to the model. Firstly, an investigation
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of cases with mis-aligned patches was undertaken. While
NSIM is computationally more intensive than other align-
ment techniques such as relative mean squared error
(used in [4]), it was found to be more robust [5]. Fur-
ther experimentation found that while this was sufficient
in medium SNR scenarios, RMSE was not robust to SNR
levels less than 5 dB and resulted in mis-alignments. An
example is presented in Figure 7 where a reference patch
containing the utterance ‘days’ is shown along with the
same patch from three degraded versions for the same
speech sample. The RMSE remains constant for all three
while the NSIM score drops in line with the perceptual
MOS scores. Secondly, the warping of patches was lim-
ited to a 1% and 5% warp compared with earlier tests [4].
This was done for efficiency purposes and did not reduce
accuracy.
An efficiency optimization used in the early prototype

was found to reduce the accuracy of the prototype and was
removed. This change was prompted by poor estimation
of packet loss conditions with the earlier model for the
dataset used in Experiment 4 below and is a design change
to the model rather than training with a particular dataset.
Specifically, the earlier model based the quality estima-
tion on the comparison of three patches selected from the

reference signal regardless of signal duration. Removing
this limitation and using a voice activity detector on the
reference signal ensured that all active areas of speech
are evaluated. This change ensured that temporally occur-
ring degradations such as packet loss are captured by the
model.
Finally, the intensity range, L, used by Equation 4 was

set locally per patch for the results published in [5]. This
was found to offset the range of the quality prediction due
to dominance of the C1 and C3 constants in 4. By setting
L globally to the intensity range of the reference spectro-
gram rather than each individual patch, the robustness
of NSIM to MOS-LQO mapping across datasets was
improved.

5 Performance evaluation
The effectiveness of the ViSQOL model is demonstrated
with performance evaluation with five experiments cov-
ering both VoIP specific degradations and general quality
issues. Experiment 1 expands on the results on clock
drift and warp detection presented in [5] and includes a
comparison with subjective listener data. Experiment 2
evaluates the impact of small playout adjustments due to
jitter buffers on objective quality assessment. Experiment
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RMSE=0; NSIM=1.0; MOS=4.5

F
re

q 
(H

z)

5 10 15 20 25 30
150

570

1k

3.4k

(b)
RMSE=0.005; NSIM=0.797; MOS=3.7

F
re

q 
(H

z)

5 10 15 20 25 30
150

570

1k

3.4k

(c)
RMSE=0.005; NSIM=0.696; MOS=3.5

F
re

q 
(H

z)

5 10 15 20 25 30
150

570

1k

3.4k

(d)
RMSE=0.005; NSIM=0.677; MOS=3.3

F
re

q 
(H

z)

5 10 15 20 25 30
150

570

1k

3.4k

frame frame 

frame frame 

Figure 7 NSIM and RMSE comparison. (a) Reference signal and three progressively degraded signals (b) to (d). RMSE scores all degraded signals
equally while NSIM shows them to be progressively worse, as per the MOS results.
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3 builds upon this to further analyze an open question
from [28,42], where POLQA and ViSQOL show inconsis-
tent quality estimations for some combinations of speaker
and playout adjustments. Experiment 4 uses a subjec-
tively labeled database of VoIP degradations to benchmark
model performance for clock drift, packet loss, and jit-
ter. Finally, Experiment 5 presents benchmark tests with
other publicly available speech quality databases to eval-
uate the effectiveness of the model to a wider range of
speech quality issues.

5.1 Experiment 1: clock drift and temporal warping
The first experiment tested the robustness of the three
models to time warping. Packet loss concealment algo-
rithms can effectively mask packet loss by warping speech
samples with small playout adjustments. Here, ten sen-
tences from the IEEE Harvard Speech Corpus were used
as reference speech signals [43]. Time warp distortions of
signals due to low-frequency clock drift between the sig-
nal transmitter and receiver were simulated. The 8-kHz
sampled reference signals were resampled to create time-
warped versions for resampling factors ranging from 0.85
to 1.15. This test corpus was created specifically for these
tests, and a subjective listener test was carried out using
ten subjects (seven males and three females) in a quiet
environment using headphones. They were presented
with 40 warped speech samples and asked to rate them on
a MOS ACR scale. The test comprised four versions each
of the ten sentences and there were ten resampling factors
tested, including a non-resampled factor of 1.
The reference and resampled degraded signal were eval-

uated using PESQ, POLQA, and ViSQOL for each sen-
tence at each resampling factor. The results are presented
in Figure 8. They show the subjective listener test results
in the top plot and predictions from the objective mea-
sures below. The resample factors from 0.85 to 1.15 along
the x-axis are plotted against narrowband mean opinion
scores (MOS-LQSn) for the subjective tests and narrow-
band objectivemean opinion scores (MOS-LQOn) quality
predictions for the three metrics.
The number of subjects and range of test material in

the subjective tests (40 samples with ten listeners) make
detailed analysis of the impact of warp on subjective
speech quality unfeasible. However, the strong trend visi-
ble does allow comparison and comment on the predictive
capabilities of the objective metrics.
The subjective results show a large perceived drop off

in speech quality for warps of 10% to 15%, but the warps
less than 5% seem to suggest a perceptible change but not
a large drop in MOS-LQSn score. There is an apparent
trend indicating that warp factors less than 1 yield a better
quality score than those greater than 1 but further experi-
ments with a range of speakers would be required to rule
out voice variability.

Themost notable results can been highlighted by exam-
ining the plus and minus 5%, 10%, and 15% warp factors.
At 5%, the subjective tests point towards a perceptible
change in quality, but one that does not alter the MOS-
LQSn score to a large extent. ViSQOL predicts a slow drop
in quality between 1% and 5%, and POLQA predicts no
drop. Either result would be preferred to those of PESQ
which predicts a rapid drop to just above 1 MOS-LQOn
for a warp of 5%.
At 10% to 15%, the subjective tests indicate that a

MOS-LQSn of 2 to 3 should be expected and ViSQOL
predicts this trend. However, both POLQA and PESQ
have saturated their scale and predict a minimum MOS-
LQOn score of 1% from 10% warping. Warping of
this scale does cause a noticeable change in the voice
pitch from the reference speech but the gentle decline
in quality scores predicted by ViSQOL is more in
line with listeners’ opinions than those of PESQ and
POLQA.
The use of jitter buffers is ubiquitous in VoIP systems

and often introduces warping to speech. The use of NSIM
for patch alignment combined with estimating the simi-
larity using warp-adjusted patches provides ViSQOL with
a promising warp estimation strategy for speech quality
estimation. Small amounts of warp (around 5% or less)
are critical for VoIP scenarios, where playout adjustments
are commonly employed. Unlike PESQ where small warps
cause large drops in predicted quality, both POLQA and
ViSQOL exhibit a lack of sensitivity for warps up to 5%
that reflect the listener quality experience.

5.2 Experiment 2: playout delay changes
Short network delays are commonly dealt with using per
talkspurt adjustments, i.e., inserting or removing portions
of silence periods, to cope with time alignment in VoIP.
Work by Pocta et al. [42] used sentences from the English
speaking portion of ITU-T P Supplement 23 coded-
speech database [44] to develop a test corpus of realistic
delay adjustment conditions. One hundred samples (96
degraded and four references, two male and two female
speakers) covered a range of 12 realistic delay adjust-
ment conditions. The adjustments were a mix of positive
and negative adjustments summing to zero (adding and
removing silence periods). The conditions comprised two
variants (A and B) with the adjustments applied towards
the beginning or end of the speech sample. The absolute
sum of adjustments ranged from 0 to 66 ms. Thirty listen-
ers participated in the subjective tests, and MOS scores
were averaged for each condition.
Where Experiment 1 investigated time warping, this

experiment investigates a second VoIP factor, playout
delay adjustments. They are investigated and presented
here as isolated factors rather than combined in a single
test. In a real VoIP system, the components would occur



Hines et al. EURASIP Journal on Audio, Speech, andMusic Processing  (2015) 2015:13 Page 11 of 18

1

2

3

4

5

M
O

S
−

LQ
S

1

2

3

4

5

P
E

S
Q

1

2

3

4

5

V
iS

Q
O

L

0.85 0.9 0.95 1 1.05 1.1 1.15
1

2

3

4

5

P
O

LQ
A

Resample Factor

Figure 8 Experiment 1: clock drift and warp test. Subjective MOS-LQS results for listener tests with MOS-LQOn predictions below for each model
comparing ten sentences for each resample factor.

together but as a practical compromise, the analysis is
performed in isolation.
The adjustments used are typical (in extent and magni-

tude) of those introduced by VoIP jitter buffer algorithms
[45]. The subjective test results showed that speaker
voice preference dominated the subjective test results
more than playout delay adjustment duration or location
[42]. By design, full-reference objective metrics, including
ViSQOL, do not qualify speaker voice difference reducing
their correlation with the subjective tests.
The test conditions were compared to the reference

samples for the 12 conditions, and the results for ViSQOL,
PESQ, and POLQA were compared to those from the
subjective tests. These tests and the dominant subjective
factors are discussed in more detail in [28,42].
This database is examined here to investigate whether

realistic playout adjustments that were shown to be

imperceptible from a speech quality perspective are cor-
rectly disregarded by ViSQOL, PESQ, and POLQA.
The per condition results previously reported [42]

showed that there was poor correlation between subjec-
tive and objective scores for all metrics tested but this
was as a result of the playout delay changes not being a
dominant factor in the speech quality. The results were
analyzed for PESQ and POLQA [42] and subsequently for
ViSQOL [28], showing MOS scores grouped by speaker
and variant instead of playout condition. The combined
results from both studies are presented in Figure 9. Look-
ing at the plot of listener test results, the MOS-LQS
is plotted on the y-axis against the speaker/variant on
the x-axis. It is apparent from the 95% confidence inter-
val bars that condition variability was minimal, and that
there was little difference between variants. The domi-
nant factor was the voice quality, i.e., the inherent quality
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Figure 9 Experiment 2: playout adjustments. MOS-LQOn predictions for each model broken down by Speaker and delay location variant.

pleasantness of the talker’s voice, and not related to trans-
mission factors. Hence, as voice quality is not accounted
for by the full-reference metrics, maximum scores should
be expected for all speakers. PESQ exhibited variability
across all tests, indicating that playout delay was impact-
ing the quality predictions. This was clearly shown in
[42]. The results for ViSQOL and POLQA are much more
promising apart from some noticeable deviations e.g., the
Male 1, Variant A (M1A) for ViSQOL; and the Female 1,
Variant B (F1B) for POLQA.

5.3 Experiment 3: playout delay changes II
A follow-up test was carried out to try and establish the
cause of the variability in results from Experiment 2. This
test focused on two speech samples from Experiment 2
where ViSQOL and POLQA predicted quality to be much
lower than was found with subjective testing.
For this experiment, two samples were examined. In the

first, a silent playout adjustment is inserted in a silence
period and in the second, it is inserted within an active
speech segment. The start times for the adjustments are
illustrated in the lower panes of Figure 10. The quality
was measured for each test sentence containing progres-
sively longer delay adjustments. The delay was increased
from 0 to 40 ms in 2-ms increments. The upper panes
present the results with the duration of the inserted

playout adjustment on the x-axis against the predicted
MOS-LQOn from POLQA and ViSQOL on the y-axis.
ViSQOL displays a periodic variation of up to 0.5

MOS for certain adjustment lengths. Conversely, POLQA
remains consistent in the second test (aside from a small
drop of around 0.1 for a 40-ms delay), while in the first
test, delays from 4 up to 14 ms cause a rapid drop in
predicted MOS with a maximum drop in MOS-LQOn
of almost 2.5. These tests highlight the fact that not all
imperceptible signal adjustments are handled correctly by
either model.
The ViSQOL error is down to the spectrogramwindow-

ing and the correct alignment of patches. The problems
highlighted by the examples shownhere occur only in spe-
cific circumstances where the delays are of certain lengths.
Also, as demonstrated by the results in the previous exper-
iment, the problem can be alleviated by a canceling effect
of multiple delay adjustments where positive and negative
adjustments balance out the mis-alignment.
Combined with warping, playout delay adjustments

are a key feature for VoIP quality assessment. Flagging
these two imperceptible temporal adjustments as a qual-
ity issue could mask other factors that actually are per-
ceptible. Although both have limitations, ViSQOL and
POLQA are again performing better than PESQ for these
conditions.
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Figure 10 Experiment 3: progressive playout delays. Above, objective quality predictions for progressively increasing playout delays using two
sample sentences. Below, sample signals with playout delay locations marked.

5.4 Experiment 4: VoIP specific quality test
A VoIP speech quality corpus, referred to in this paper
as the GIPS E4 corpus, contains tests of the wideband
codec iSAC [46] with superwideband references. The
test was a MOS ACR listening assessment, performed
in Native British English. Within these experiments, the
iSACwideband codec was assessed with respect to speech
codec and condition. The processed sentence pairs were
each scored by 25 listeners. The sentences are from
ITU-T Recommendation P.501 [47] which contains two
male and two female (British) English speakers sampled
at 32 kHz.
For these tests, all signals were down-sampled to 8-

kHz narrowband signals. Twenty-seven conditions from
the corpus were tested with four speakers per condi-
tion (two males and two females). Twenty-five listeners
scored each test sample, resulting in 100 votes per con-
dition. The breakdown of conditions was as follows: 10
jitter conditions, 13 packet losses, and four clock drifts.
The conditions cover real time, 20 kbps and 32 kbps
versions of the iSAC codec. Details of the conditions
in the E4 database are summarized in Table 1. While
the corpus supplied test files containing the four speak-
ers’ sentences concatenated together for each condition,
they were separated and tested individually with the
objective measures. This dataset contains examples of
some of the key VoIP quality degradations that ViSQOL
was designed to accurately estimate as jitter, clock drift,
and packet loss cause problems with time-alignment and
signal warping that are specifically handed by the model
design.

The results are presented in Figure 11. The scatter of
conditions highlights that PESQ tended to under-predict
and POLQA tended to over-predict the MOS scores for
the conditions while the ViSQOL estimates were more
tightly clustered. Correlation scores for all metrics are
presented in Table 2.

5.5 Experiment 5: non-VoIP specific quality tests
A final experiment used two publicly available databases
to give an indication of ViSQOL’s more general speech
quality prediction capabilities.
The ITU-T P Supplement 23 (P.Sup23) coded-speech

database was developed for the ITU-T 8 kbit/s codec
(Recommendation G.729) characterization tests [44]. The
conditions are exclusively narrowband speech degrada-
tions but are useful for speech quality benchmarking and
remain actively used for objective VoIP speech quality
models, e.g., [48]. It contains three experimental datasets
with subjective results from tests carried out in four labs.
Experiment 3 in [44] contains four speakers (two males
and two females) for 50 conditions covering a range of
VoIP degradations and was evaluated using ACR. The
reference and degraded PCM speech material and subjec-
tive scores are provided with the database. The English
language data (lab O) is referred to in this paper as the
P.Sup23 database. As stated in Section 4.3, the subjective
results from the other labs (i.e., A, B, and D) were used
in the model design for the similarity score to objective
quality mapping function.
NOIZEUS [49] is a narrowband 8-kHz sampled noisy

speech corpus that was originally developed for evaluation
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Table 1 GIPS E4 database

Cond no. Bitrate Condition Cond no. Bitrate Condition Cond no. Bitrate Condition

1 Real-time Jitter 10 20 kbps Jitter 19 32 kbps Clock drift

2 Real-time Jitter 11 20 kbps Jitter 20 32 kbps Jitter

3 Real-time Packet loss 12 20 kbps Jitter 21 32 kbps Jitter

4 Real-time Packet loss 13 20 kbps Jitter 22 32 kbps Jitter

5 Real-time Packet loss 14 20 kbps Packet loss 23 32 kbps Jitter

6 Real-time Packet loss 15 20 kbps Packet loss 24 32 kbps Packet loss

7 Real-time Packet loss 16 20 kbps Packet loss 25 32 kbps Packet loss

8 20 kbps Clock drift 17 32 kbps Packet loss 26 32 kbps Packet loss

9 20 kbps Clock drift 18 32 kbps Clock drift 27 32 kbps Packet loss
Tests conditions and bitrates using iSAC codec.

of speech enhancement algorithms. Mean opinion scores
(MOSs) for a subset of the corpus were obtained using
the ITU-T Recommendation P.835 [50] methodology for
subjective evaluation. It uses three ratings for each speech
sample: the quality of the speech signal alone on a 5-point
scale; the intrusiveness of the background noise on a 5-
point scale; and the overall signal quality as a MOS ACR.
This method was designed to reduce a listener’s uncer-
tainty as to the source of the quality issue, e.g., is it the
speech signal itself that has been muffled or otherwise
impaired or is it a background noise or a combination of
both. Further work carried out by Hu and Loizou stud-
ied the correlation between objective measures and the

subjective quality of noise-suppressed speech [29] and
compared PESQwith a range of segmental SNR, LPC, and
distance metrics. For the experiments in this paper, only
the overall MOS scores were analyzed. Speech subjected
to enhancement algorithms, as in the NOIZEUS database,
was omitted from the validated scope of POLQA and
PESQ. Although the NOIZEUS dataset was not included
in the validation testing of POLQA, the specification does
not specifically exclude voice enhancement, as was the
case for PESQ [25].
Four noise types from the full NOIZEUS corpus were

tested: babble, car, street, and train. Each noise type was
tested with 13 speech enhancement algorithms plus the
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Figure 11 Experiment 4: scatter results for GIPS E4 VoIP database. Objective measures against subjective MOS scores for VoIP degradations. Plotted
after linear regression fitting.
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Table 2 Statistics for Experiments 4 and 5

E4 NOIZEUS P.Sup23

Pearson Spearman Std. err. Pearson Spearman Std. err. Pearson Spearman Std. err.

Without fit

ViSQOL 0.80 0.74 0.20 0.87 0.74 0.23 0.77 0.64 0.47

PESQ 0.78 0.57 0.18 0.90 0.57 0.20 0.92 0.90 0.29

POLQA 0.81 0.65 0.26 0.77 0.65 0.29 0.96 0.96 0.20

LLR 0.25 0.27 0.20 0.88 0.27 0.22 0.44 0.18 0.65

fwSNRSeg 0.21 0.14 0.21 0.86 0.14 0.24 0.48 0.38 0.64

With linear fit

ViSQOL 0.85 0.77 0.22 0.84 0.86 0.25 0.81 0.70 0.43

PESQ 0.78 0.57 0.26 0.90 0.88 0.20 0.92 0.90 0.29

POLQA 0.81 0.65 0.24 0.77 0.79 0.29 0.96 0.96 0.20

LLR 0.25 0.27 0.40 0.88 0.88 0.22 0.44 0.18 0.65

fwSNRSeg 0.21 0.14 0.40 0.86 0.85 0.24 0.48 0.38 0.64

noisy non-enhanced speech at two SNR levels (5 and 10
dB). This gave a total of 112 conditions (four noise types,
14 enhancement variations and two SNR levels). Thirty-
two listeners rated the overall quality for each condition
with 16 sentences. The MOS scores were averaged for lis-
teners and sentences across each condition. For objective
metric testing, the results were calculated in a corre-
sponding manner, with a mean score for the 16 sentences
calculated per condition.
Hu and Loizou [29] used the NOIZEUS database to

evaluate seven objective speech quality measures. They
also investigated composite measures by combining other
measures in a weightedmanner with PESQ as they did not
expect simple objective measures to correlate highly with
signal/noise distortion and overall quality. The method-
ology in this work follows the same experiment design
and performance evaluation as Hu and Loizou [29]. They
measured Pearson’s correlation coefficient across the 112
conditions for each measure as well as the standard devi-
ation of the error. For predicting overall quality, they
found that PESQ generated the highest correlation of the
metrics tested. Absolute values of Pearson’s correlation
coefficient, |ρ|, can be calculated using

ρ =
∑

i(oi − ō)(si − s̄)√∑
i(oi − ō)2

√∑
i(si − s̄)2

(6)

where i is the condition index, o is the objective metric
score, s is the subjective quality rating (MOS) score, and
ō and s̄ are the mean values of o and s, respectively. The
standard deviation of the error, σ̂e, was also measured as a
secondary test,

σ̂e = σ̂s
√
1 − ρ2 (7)

where σ̂s is the standard deviation of the subjective qual-
ity scores, and s and ρ is the correlation coefficient. The

Spearman rank correlation was also computed, replacing
the quality scores o and s in 6 with their ranks. Hu and
Loizou [29] split their data for training and testing. Sub-
sequent evaluations by Kressner et al. [51] repeated the
experiments using the full dataset of 1,792 speech files,
which is the approach adopted in this study.
The NOIZEUS and P.Sup23 corpora were tested with

ViSQOL, PESQ, POLQA, and two additional simple
objective metrics, LLR and fwSNRSeg (details of which
can be found in [29]). Results were averaged by condition
and compared to the average MOS scores per condition.
Figure 12 shows the results for each objective quality mea-
sure. The scatter shows 112 NOIZEUS conditions and 50
P.Sup23 conditions. The statistical analysis is summarised
in Table 2.
As noted by Hu and Loizou in their tests [29], the

two less complex metrics, LLR and fwSNRSeg, performed
almost as well as PESQ in estimating the quality for the
range of background noises evaluated. While they exhibit
good correlation for the NOIZEUS tests, their correlation
with MOS quality scores for the P.Sup23 and E4 database
is much lower (see Table 2). As these are simple mea-
sures, it is understandable that while they may perform
well for background noise, even if it is not homogeneous,
they perform poorly when quantifying more subtle and
temporally short-quality degradations such as packet loss
or jitter. LLR and fwSNRSeg are simple distance met-
rics and do not perform any signal alignment, only signal
comparison. They have no temporal alignment of signals,
leveling, or other pre-processing steps before compari-
son. They were included in this test to highlight their
limitations for VoIP speech quality conditions, and the
lack of correlation in the Figure 12 scatter plots illus-
trates the performance variability between the difference
datasets.
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Figure 12 Experiment 5: scatter results (NOIZEUS and P.Sup23). Objective measures against subjective MOS scores for noise and other
degradations using NOIZEUS and P.Sup23 Exp 3 (Lab O; English). Plotted after linear regression fitting.

6 Summary and general discussion
ViSQOL shows good correlation with the NOIZEUS
database subjective listener scores. The results demon-
strate ViSQOL’s ability to estimate speech quality in a
range of background noises and also for a range of
speech enhancement conditions. The P.Sup23 tests results
for ViSQOL were noticeably poorer than for the other
datasets, particularly in terms of the rank correlation
and standard error where both PESQ and POLQA per-
form significantly better. Looking at the scatter plot for
ViSQOL in Figure 12, the problem appears to be for lower
quality samples in the MOS range of 2 to 3 where it
fails to differentiate between more severe quality degra-
dations. This may be due to the flat region in the map-
ping function where the raw NSIM results are tightly
clustered.

For comparison, POLQA and PESQ were tested with
the same test material. The results for tests with the
NOIZEUS database are consistent with the performance
of PESQ reported by various other authors [29,51]. Some-
what surprisingly, POLQA did not perform as well as
ViSQOL or PESQ. Examining the scatter plot for POLQA
in Figure 12, the NOIZEUS conditions can be seen to clus-
ter into two groups, with a gap in the range 2 to 2.2 on the
y-axis (MOS-LQOn). Further investigation showed that
this gap was not a distinction based on condition, noise
type, or SNR.
The Pearson correlation between all three models and

the subjective quality scores were similar for the GIPS E4
database. These results had more variability within con-
ditions, and the confidence intervals were larger than for
the conditions tested in the NOIZEUS database. However,
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ViSQOL performed better in Spearman ranking corre-
lation than either PESQ or POLQA for the GIPS E4
and NOIZEUS databases. The conformance test results
carried out during the development of POLQA show
that POLQA performs better than PESQ for all of the
development and test conditions [2] tested during
POLQA development. The results reported here show
POLQA performed better than PESQ for the GIPS E4
tests in Experiment 4 but not the NOIZEUS tests in
Experiment 5.
The correlation between subjective listener tests and

objective predictions for all three models demonstrate an
ability to predict subjective MOS scores when evaluated
with unseen test corpora (Table 2). The PESQ model per-
formed poorly in Experiment 1 testing warping (Figure 8).
POLQA has addressed this design problem and predicts
no degradation in perceived quality for up to 5% warping.
ViSQOL deals with warping in a more gradual way than
POLQA which is more in line with listener quality per-
ceptions. For small, varied, imperceptible playout adjust-
ments, ViSQOL and POLQA perform better than PESQ
which shows a strong susceptibility to temporal alignment
mismatches (Figure 9). For certain playout delay condi-
tions, both ViSQOL and POLQA have shortcomings that
were highlighted. ViSQOL can vary by up to 0.5 MOS for
a range of adjustments and POLQA can by up to 2.5 MOS
in certain conditions (Figure 10).
Overall, ViSQOL is a useful alternative to PESQ or

POLQA as a full-reference speech quality model espe-
cially where VoIP systems are being evaluated. The algo-
rithm design contains a number of properties that help
deal with temporal and warping issues that can mask or
distort the estimation of speech quality.

7 Conclusions
ViSQOL is a simple objective speech quality model based
upon a mean of similarity comparisons between time-
aligned, time-frequency representations of a reference and
a degraded signal. Tests for a variety of conditions and
VoIP-specific issues showed that it performed better than
simple distance metrics and was comparable to the ITU
standards, PESQ and POLQA, for wider datasets. Further
work is planned with wideband speech corpora as well as
for wider usage in general audio quality.
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