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Diffusion and Fractional Diffusion based Models
for Multiple Light Scattering and Image Analysis

Jonathan M Blackledge, Fellow, IET, Fellow, IoP, Fellow, RSS

Abstract— This paper considers a fractional light diffusion
model as an approach to characterizing the case when interme-
diate scattering processes are present, i.e. the scattering regime
is neither strong nor weak. In order to introduce the basis
for this approach, we revisit the elements of formal scattering
theory and the classical diffusion problem in terms of solutions
to the inhomogeneous wave and diffusion equations respectively.
We then address the significance of these equations in terms
of a random walk model for multiple scattering. This leads to
the proposition of a fractional diffusion equation for modelling
intermediate strength scattering that is based on a generalization
of the diffusion equation to fractional form. It is shown how, by
induction, the fractional diffusion equation can be justified in
terms of the generalization of a random walk model to fractional
form as characterized by the Hurst exponent. Image processing
and analysis methods are proposed that are based on diffusion
and fractional diffusion models and some application examples
given.

Index Terms— Multiple Scattering, Optical Diffusion, Frac-
tional Optical Diffusion, Random Walk Processes, Intermediate
Strength Scattering, Image Processing and Analysis

I. I NTRODUCTION

T HE use of formal scattering methods for modelling the
interaction of light with an inhomogeneous medium to-

gether with associated inverse scattering models is well known
(e.g. [1]). In applications associated with the processing and
analysis of an image, the aim is to develop a model that
maps the object plane to the image plane. If the scattering
is ‘weak’ (i.e. based on single scattering events) and the
scattered wavefield is measured in the far field, then the map
is determined by the Fourier transform which, for a clear
aperture, yields the fundamental imaging equation [2]

I(x, y) = p(x, y)⊗2 f(x, y) + n(x, y)

for an image I where p is the point spread function (a
characteristic of the imaging system),f is the object function
and ⊗2 denotes the two-dimensional convolution operation,
i.e.

p(x, y)⊗2 f(x, y) =
∫ ∫

p(x− x′, y − y′)f(x′, y′)dx′dy′

The noisen is taken to be a stochastic function which at
best, can be characterized by a probability density function

Manuscript received June 1, 2007. This work was supported by Microsharp
Corporation Limited.

Jonathan Blackledge is Professor of Information and Communications
Technology, Applied Signal Processing Research Group, Department of
Electronic and Electrical Engineering, Loughborough University, England and
Professor of Computer Science, Department of Computer Science, Univer-
sity of the Western Cape, Cape Town, Republic of South Africa (e-mail:
jon.blackledge@btconnect.com).

Pr[n(x, y)] that conforms to a physically significant statistical
model. The functionn is taken to include a range of per-
turbations to the scattered field that is recorded in the image
plane. Within the context of the weak scattering approximation
used to derive the fundamental imaging equation, this includes
multiple scattering.

The object functionf(x, y) is related to a three-dimensional
scattering functionγ(r) where r is the three-dimensional
spatial vector. In the far field, the weak scattered wavefield
us is (ignoring scaling factors) given by the Fourier transform
of the scattering function [3]

us(k) ∼ F̂3[γ(r)]

where F̂3 denotes the three-dimensional Fourier transform
operator andk is the spatial frequency vector. The inverse
scattering problem is then compounded in the inversion of
this result, i.e. the inverse Fourier transform. This weak
scattering result can be interpreted in terms of single scattering
events generated by a scattering function consisting of an
ensemble of localized point-like scatterers, for example. When
multiple is present, this simple result is not sufficient to
model the scattered field which must be modified to take
into account double, triple, quadruple etc. scattering events.
This yields results that make the objective of ‘engineering’
a practically viable imaging and image processing model for
various applications rather intractable. In such cases, it can be
of value to develop a stochastic model for the scattered field
whereby, instead of relating the scattering function to some
object function which is then mapped onto the image plane,
we attempt to generate a model for the probability density
function of a multiple scattered wavefield in order to account
for the statistical distribution of the intensity field obtained
in the image plane. This involves an approach in which the
resultant scattered wavefield (i.e. the wave amplitude) is taken
to be a consequence of a random walk where each node in
the random walk is taken to be a scattering event.

There is a fundamental connection between a random walk
model for describing Brownian motion, for example, and the
process of diffusion as defined by the diffusion equation. This
‘connectivity’ provides an approach for interpreting strong
scattering in terms of a diffusive process. But formal scat-
tering methods (including multiple scattering) are based on
considering solutions to the (inhomogeneous) wave equation.
Now, the essential difference between the wave equation and
the diffusion equation is with regard to the order of the
time differential. By ‘fractionalizing’ the time differential and
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considering a fractional diffusion equation of the type [4](
∇2 +

1
Dq

∂q

∂tq

)
u(r, t) = 0

where D is the fractional diffusivity, we consider the role
that the fractional exponentq plays in terms of characterizing
an image from a fully diffusive (strong scattering) model
when q = 1 to a propagative (weak scattering) model when
q = 2. In order to introduce this idea, we review, by way of
a short tutorial, the principal formal solutions to the forward
and inverse scattering problem in terms of solutions to the
inhomogeneous wave equation for both deterministic and
random media. We then address the properties and solutions
to the (inhomogeneous) diffusion equation and discuss the
basis for using this equation to model the propagation of
light through an optical diffuser. This provides an inverse
solution to the optical diffusion problem that can be cast in
terms of appropriate finite impulse response filters, the first
order solution providing the well known ‘high emphasis filter’
[5], [6]. The principles associated with random phase walk
models are addressed and the rationale for generalizing some
well known results to fractional form considered. Forward
and inverse solutions to the fractional diffusion equation are
derived and, in the latter case, used to propose of a new metric
for segmenting a digital image under the assumption that
it has been formed from a fractional diffusive (intermediate
scattering) process.

II. FORMAL SCATTERING METHODS FORSCALAR

WAVEFIELDS

Formal scattering methods for scalar electromagnetic wave-
fields interacting with (non-conductive) dielectric media are
based on the inhomogeneous Helmholtz equation [7] which
can be derived quite generally from the (inhomogeneous) time
dependent wave equation(

∇2 − 1
c2

∂2

∂t2

)
U(r, t) = 0

by letting
1
c2

=
1
c2
0

(1 + γ)

where γ is a dimensionless quantity (the scattering func-
tion) and c0 is a constant (wave speed). WithU(r, t) =
u(r, ω) exp(iωt) we have

(∇2 + k2)u(r, k) = −k2γ(r)u(r, k)

where
k =

ω

c0
.

In electromagnetism,u is the scalar electric field,c0 is the
speed of light and the scattering function,γ = εr − 1 where
εr(r) is the relative permittivity1, is taken to be of compact
support [8], [9], i.e.

γ(r) ∃ ∀ r ∈ V

1The relative permeability is assumed to be constant.

The general (Green’s function) solution to this equation at
a pointr0 is [10], [11]

u(r0, k) = k2

∫
V

gγud3r +
∮
S

(g∇u− u∇g) · n̂d2r

whereg is the ‘outgoing’ free space Green’s function given
by

g(r | r0, k) =
exp(ik | r− r0 |)

4π | r− r0 |

which is the solution to the equation (whereδ3 is the three-
dimensional delta function)

(∇2 + k2)g(r | r0, k) = −δ3(r− r0)

and n̂ is the unit vector perpendicular to the surface element
dr of a closed surfaceS. To compute the surface integral, a
condition for the behaviour ofu on the surfaceS of γ must
be chosen. Consider the case where the incident wavefieldui

is a simple plane wave of unit amplitude

exp(ik · r)

satisfying the homogeneous wave equation

(∇2 + k2)ui(r, k) = 0.

By choosing the conditionu(r, k) = ui(r, k) on the surface
of γ, we obtain the result

u(r0, k) = k2

∫
V

gγud3r +
∮
S

(g∇ui − ui∇g) · n̂d2r.

Now, using Green’s theorem to convert the surface integral
back into a volume integral, we have∮

S

(g∇ui − ui∇g) · n̂d2r =
∫
V

(g∇2ui − ui∇2g)d3r.

Noting that

∇2ui = −k2ui

and that

∇2g = −δ3 − k2g

we obtain∫
V

(g∇2ui − ui∇2g)d3r =
∫
V

δ3uid
3r = ui.

Hence, by choosing the fieldu to be equal to the incident
wavefieldui on the surface ofγ, we obtain a solution of the
form

u = ui + us

where

us = k2

∫
V

gγud3r.

The functionus is the scattered wavefield.
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A. The Born Approximation

From the last result it is clear that in order to compute the
scattered fieldus, we must defineu inside the volume integral.
Unlike the surface integral, a boundary condition will not help
here because it is not sufficient to specify the behaviour ofu
at a boundary. In this case, the behaviour ofu throughoutV
needs to be known. In general, it is not possible to do this
(i.e. to compute the scattered wavefield exactly) and we are
forced to choose a model foru inside V that is compatible
with a particular physical problem in the same way that an
appropriate set of boundary conditions are required to evaluate
the surface integral. The simplest model for the internal field
is based on assuming thatu behaves likeui for r ∈ V . The
scattered field is then given by

us(r0, k) = k2

∫
V

g(r | r0, k)γ(r)ui(r, k)d3r.

This assumption provides an approximate solution for the
scattered field and is known as the Born approximation [7]
after Max Born who was amongst the first to introduced
the approximation in the study of (non-relativistic) quantum
scattering when the basic wave equation is the Schrödinger
equation2 [12]

(∇2 + k2)u(r, k) = γ(r)u(r, k)

whereγ is a scattering potential (not necesserily of compact
support).

There is another way of deriving this result that is instructive
and helps to obtain a criteria for the validity of this approx-
imation which will be considered shortly. We start with the
inhomogeneous Helmholtz equation

(∇2 + k2)u = −k2γu

and consider a solution foru in terms of a sum of the incident
and scattered fields, i.e.

u = ui + us.

The wave equation then becomes

(∇2 + k2)us + (∇2 + k2)ui = −k2γ(ui + us).

If the incident field satisfies

(∇2 + k2)ui = 0,

then
(∇2 + k2)us = −k2γ(ui + us).

Assuming thatus << ui, then

ui + us ' ui

and we obtain

(∇2 + k2)us ' −k2γui.

2For k2 = 2mE/~2 where m is the mass of a partical,E is its non-
relativistic energy and~ is Planck’s constant.

Solving for us using the Green’s function and homogeneous
boundary conditions (i.e.us = 0 on S and∇us = 0 on S)
we get

us =
∮
S

(g∇us − us∇g) · n̂d2r + k2

∫
V

gγuid
3r

= k2

∫
V

gγuid
3r.

1) Validity of the Born Approximation:In general, the Born
approximation requires thatus is ‘small’ or ‘weak’ compared
to ui. What do we mean by the term ‘weak’ and how can we
quantify it? One way to answer this question is to compute
an appropriate measure for both the incident and scattered
fields and compare the two results. Consider the case where
we compute the root mean square modulus (i.e. the`2 norm)
of each field. We then require∫

V

| us(r0, k) |2 d3r0

 1
2

<<

∫
V

| ui(r0, k) |2 d3r0

 1
2

or
‖us‖
‖ui‖

<< 1 (1)

Essentially, this condition means that the overall intensity of
us in V is small compared to that ofui in V . Let us now look
in more detail at the nature of this condition. Ideally, what we
want is a version of the condition that can be cast in terms of
a set of physical parameters (such as the wavelength and the
physical extent ofγ for example). The Born scattered field at
r0 is given by

us(r0, k) = k2

∫
V

g(r | r0, k)γ(r)ui(r, k)d3r.

By taking the`2 norm of this equation we can write

‖us(r0, k)‖ = ‖k2

∫
V

g(r | r0, k)γ(r)ui(r, k)d3r‖

≤ k2‖ui(r0, k)‖ × ‖
∫
V

g(r | r0, k)γ(r)d3r‖.

Using this result, the condition required for the Born approx-
imation to hold, i.e. condition (1), can be written as

k2‖
∫
V

g(r | r0, k)γ(r)d3r‖ << 1, r0 ∈ V. (2)

Here, the norm involves integration over the spatial variable
r0 in the scattering volumeV . To emphasize this we write
r0 ∈ V .

Condition (2) can be written as

I(r0) << 1

where

I(r0) = k2‖
∫
V

g(r | r0, k)γ(r)d3r‖
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≤ k2

∫
V

| g(r | r0, k) |2 d3r

 1
2

∫
V

| γ(r) |2 d3r

 1
2

.

Substituting the expression for the three-dimensional Green’s
function into the above expression, we have

I(r0) ≤ k2

 1
16π2

∫
V

1
| r− r0 |2

d3r
∫
V

| γ(r) |2 d3r

 1
2

.

A relatively simple calculation can now be performed if we
considerγ to be a sphere of volumeV and radiusR and
resort to calculating its least upper bound which occurs when
r0 = 0. Using spherical polar coordinates(r, θ, φ), we have

sup
∫
V

1
| r− r0 |2

d3r =
∫
V

1
r2

d3r =

2π∫
0

1∫
−1

R∫
0

drd(cos θ)dφ

= 4πR

where sup denotes the superior value. Using this result, we
can write

sup I(r0) ≤ k2

 R

4π

∫
V

| γ(r) |2 d3r

 1
2

and noting that

V =
∫
V

d3r =
4
3
πR3

we obtain
sup I(r0) ≤

1√
3
k2R2γ̄

where

γ̄ =

√∫
| γ |2 d3r∫

d3r
.

Hence, the condition for the Born approximation to apply
becomes (ignoring

√
3)

k2R2γ̄ << 1

or
γ̄ <<

1
k2R2

.

This condition demonstrates that in principle, large values of
γ can occur so long as its root mean square value over the
volumeV is small compared to1/k2R2. In scattering theory,
γ is said to be a ‘weak scatterer’. Note that whenk or R
approach zero, this condition is easy to satisfy and that Born
scattering is more likely to occur in situations when

λ

R
>> 1

whereλ is the wavelength (noting thatk = 2π/λ). If

λ

R
∼ 1

then the value of̄γ must be small for Born scattering to
occur. We assume that the scattered field is, on average, weak
compared to the incident field. We may consider the term

‘weak’, to imply that the total energy associated withus inside
the inhomogeneityγ is small compared toui outside the
scatterer.

2) Asymptotic Born Scattering:By measuringus, we can
attempt to invert the relevant integral equation and hence
recover or reconstructγ. This is an inverse scattering problem.
The simplest type of inverse scattering problem occurs when
a Born scattered wavefield is measured in the far field or
Fraunhofer zone and the Green’s function has the from

g(r | r0, k) =
1

4πr0
exp(ikr0) exp(−ikn̂0 · r),

r

r0
<< 1

wherer =| r |, r0 =| r0 | and n̂0 = r0/r0. Thus, when the
incident field is a (unit) plane wave

ui = exp(ikn̂i · r)

wheren̂i points in the direction of the incident field, the Born
scattered field is given by

us(n̂0, n̂i, k)

=
k2

4πr0
exp(ikr0)

∫
V

exp[−ik(n̂0 − n̂i) · r]γ(r)d3r.

From this result, it is clear, that the functionγ can be recovered
from us by three-dimensional Fourier inversion. Observe that
when n̂0 = n̂i

us =
k2

4πr0
exp(ikr0)

∫
V

γ(r)d3r.

This is called the forward-scattered field. In terms of Fourier
analysis, it represents the zero frequency or DC level of the
spectrum ofγ. Another special case arises whenn̂s = −n̂i.
The scattered field that is produced in this case is called the
back-scattered field and is given by

us(n̂0, k) =
k2

4πr0
exp(ikr0)

∫
V

exp(−2ikn̂0 · r)γ(r)d3r.

B. The Born Series

Let us now consider a natural extension to the Born approx-
imation which is based on generating a series solution to the
problem in which

u(r0, k) = ui(r0, k) + us(r0, k)

where

us(r0, k) = k2

∫
V

g(r | r0, k)γ(r)u(r, k)d3r.

We have seen that the Born approximation to this equation is
given by consideringu ∼ ui, r ∈ V which is valid provided
‖us‖ << ‖ui‖. We then obtain an approximate solutionu1

say of the form

u1(r0, k) = ui(r0, k) + k2

∫
V

g(r | r0, k)γ(r)ui(r, k)d3r.
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This result can be considered to be the first approximation to
a series solution, in which the second approximationu2 say
is given by

u2(r0, k) = ui(r0, k) + k2

∫
V

g(r | r0, k)γ(r)u1(r, k)d3r

and the third approximationu3 is given by

u3(r0, k) = ui(r0, k) + k2

∫
V

g(r | r0, k)γ(r)u2(r, k)d3r

and so on. In general, we can consider the iteration

un+1(r0, k) = ui(r0, k) + k2

∫
V

g(r | r0, k)γ(r)un(r, k)d3r

n = 0, 1, 2, 3, ..

whereu0 = ui.
In principle, if this series converges, then it must converge

to the solution. To investigate its convergence, it is convenient
to use operator notation and write

un+1 = ui + Îun

where Î is the integral operator

Î = k2

∫
V

d3rgγ.

At each iterationn we can consider the solution to be given
by

un = u + εn

whereεn is the error associated with the solution at iteration
n andu is the exact solution so that a necessary condition for
convergence is thatεn → 0 asn →∞. Now,

u + εn+1 = ui + Î(u + εn) = ui + Îu + Îεn

and therefore we can write

εn+1 = Îεn

sinceu = ui + Îu. Thus

ε1 = Îε0; ε2 = Îε1 = Î(Îε0); ε3 = Îε2 = Î[Î(Îε0)]; ...

or
εn = Înε0

from which it follows that

‖εn‖ = ‖Înε0‖ ≤ ‖În‖ × ‖ε0‖ ≤ ‖Î‖n‖ε0‖.

The condition for convergence therefore becomes

lim
n→∞

‖Î‖n = 0.

This is only possible if

‖Î‖ < 1

or

k2‖
∫
V

g(r | r0, k)γ(r)d3r‖ < 1.

Comparing this result with condition (2) and the analysis of
this condition given before, then

γ̄ <
1

k2R2

must be satisfied for the series to converge whereR is the
radius of a sphere of volumeV .

This series solution, which can be written out as

u(r0, k) = ui(r0, k) + k2

∫
V

g(r | r0, k)γ(r)ui(r, k)d3r+

k4

∫
V

g(r | r0, k)γ(r)

∫
V

g(r1 | r, k)γ(r1)ui(r1, k)d3r1

 d3r

+...

= ui(r0, k) + k2

∫
V

d3rg(r | r0, k)γ(r)ui(r, k)

+k4

∫
V

∫
V

d3rd3r1g(r | r0, k)γ(r)g(r1 | r, k)γ(r1)ui(r1, k)

+...

is an example of a Neumann series solution to a Fredholm
integral equation and is known as the Born series. Note that
the scattered field can be written in the form

us(r, k) = k2g(r, k)⊗3 γ(r)ui(r, k)

+k4g(r, k)⊗3 γ(r)[g(r)⊗3 γ(r)ui(r, k)]

+...

where⊗3 denotes the three-dimensional convolution integral
over V which can be interpreted as follows:

u(r0, k) =incident wavefield
+

wavefield generated by single scattering events
+

wavefield generated by double scattering events
+

wavefield generated by triple scattering events
+
...

Each term in this series expresses the effects due to single,
double and triple etc. scattering, i.e. the wavefields generated
by an increasing number of interactions.

For an incident plane wave, each term in the Born series
includes scaling by1r , 1

r2 , 1
r3 etc. so that multiple-scattering

gets ‘weaker by the term’. This is due to the form of the
Green’s function in three-dimensions which scales as1/r,
the intensity of the field being1/r2 - the inverse square law.
Thus, if the scattering function is characterized by a number
of scattering ‘sites’ (i.e. isolated positions in space where, for
example,γ is non-zero and of compact support) then provided
the distance between these sites is large, the effect of multiple
scattering will be insignificant. However, if these sites are close
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together where the effect of the multiple scattering wavefield
falling off as 1/r2, 1/r3 etc. is not appreciable, then multiple
scattering events will contribute significantly to the scattered
field. Hence, one way to interpret the meaning of ‘weak’ and
‘strong’ scattering is in terms of the ‘density’ of scattering
sites over the volumeV being low or high respectively. For
λ ∼ R where R is the characteristic size of the scatterer,
the Born approximation holds provided the root mean square
of the scattering function over the volume is much less than
1 which is a quantification of the principle that the density
of isolated scattering sites from which we can suppose the
scattering function is composed, is low.

Another important feature of the Born series for Helmholtz
scattering is that the terms are scaled byk2, k4, k6, etc. Thus,
for a fixedk << 1 (long wavelength waves),

us(r0, k) = k2

∫
V

g(r | r0, k)γ(r)ui(r, k)d3r

and

us(r0, k) = k2

∫
V

γ(r)d3r
4π | r− r0 |

, k → 0

which describes a very weak (static) field.

C. Inverse Scattering

Inverse scattering aims to reconstruct the scattering function
from measurements of the scattered field. The practicability
of solving inverse scattering problems analytically and im-
plementing them experimentally varies considerably from one
application to another. Thus, an inversion method is usualy
based on the approximation that has been applied to solve the
forward scattering problem for a given inhomogeneous wave
equation.

1) Inverse Scattering for Single Scattering Processes:
Under the Born approximation, the scattered field is given by

us(r, k) = k2g(r, k)⊗3 γ(r)ui(r, k)

and it is clear that the inverse solution is compounded in the
deconvolution ofus to recoverγ. This problem assumes that
the scattered field is measured in the near field which is not
always of practical value.

In the far, the scattering amplitude is given by

A(n̂0, n̂i, k) = k2

∫
V

exp[−ik(n̂0 − n̂i) · r]γ(r)d3r.

The inverse solution to this problem is therefore compounded
in the inverse Fourier transform which provides that essential
‘link’ between the application of the Born approximation
in the far field and the Fourier transform. This ‘link’ is
essential in imaging science and is why the Fourier transform
plays such an essential role. Inverse solutions under the Born
approximation are in effect the same as implementing Fourier
based reconstruction methods in imaging science, at least when
the data collected is the result of a scattering event. However,
when the scattering processes involved are not as weak as they
should be to support application of the Born approximation,
Fourier based image reconstructions can become distorted.

There is however, a technique for inverting a wavefield that is
the result of multiple Born scattering known as the Jost-Kohn
method first published in 1952 [14]. A brief overview of this
method follows.

2) Inverse Scattering for Multiple Scattering Processes:
Using operator notation, the Born series can be written as

u = ui + Îiγ + Îi(γÎγ) + Ii[γÎ(γÎγ)] + ...

where γ is either the scattering potential (for Schrödinger
scattering) ork2γ (for Helmholtz scattering) and

Îi =
∫

d3ruig, Î =
∫

d3rg.

Now, let εU = u− ui and

γ =
∞∑

j=1

εjγj .

Then
εU = Îi[εγ1 + ε2γ2 + ε3γ3 + ...]

+Îi[(εγ1 + ε2γ2 + ε3γ3 + ...)Î(εγ1 + ε2γ2 + ε3γ3 + ...)]

+Îi{(εγ1 + ε2γ2 + ε3γ3 + ...)Î[(εγ1 + ε2γ2 + ε3γ3 + ...)

Î(εγ1 + ε2γ2 + ε3γ3 + ...)]}+ ...

Equating terms with common coefficientsε, ε2 etc. we have
For j = 1 :

U = Îiγ1; γ1 = Î−1
i U.

For j = 2 :

0 = Îiγ2 + Îi(γ1Îγ1); γ2 = −Î−1
i [Îi(γ1Îγ1)]

and so on. By computing the functionsγj using this iterative
method, the scattering functionγ is obtained by summingγj

for ε = 1. This approach provides a formal exact inverse
scattering solution but it is not unconditional, i.e. the inverse
solution is only applicable when the Born series converges to
the exact scattering solution and thus when

‖
∫
V

g(r | r0, k)γ(r)d3r‖ < 1.

Note that forj = 1, the solution forγ1 is that obtained under
the Born approximation.

3) Exact Inverse Scattering Solutions:Unconditional or ex-
act solutions to the inverse scattering problem are usually rare
and/or of little practical significance due to the incompatibility
of the solution with the experimental conditions under which
the data is obtained (e.g. near field .v. far field) and/or the
ill-conditioned nature of the solution, i.e. a solution that is
unacceptably sensitive to data error. An example of such an
exact inverse scattering ‘transform’ follows: Given that

(u− ui) = k2g ⊗3 γu,

then for an arbitrary functionq

q ⊗3 (u− ui) = k2q ⊗3 (g ⊗3 γu).

Taking the Laplacian of this equation, we have

∇2[q ⊗3 (u− ui)] = k2∇2(q ⊗3 g ⊗3 γu)
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= k2∇2(q ⊗3 g)⊗3 γu = −k2δ3 ⊗3 γu = −k2γu

provided
∇2(q ⊗3 g) = −δ3.

But
∇2(q ⊗3 g)

= q ⊗3 ∇2g = q ⊗3 (−k2g − δ3) = −k2q ⊗3 g − q = −δ3

and hence
q = δ3 − k2q ⊗3 g

so that

∇2[q⊗3 (u−ui)] = ∇2[δ3⊗3 (u−ui)−k2q⊗3 g⊗3 (u−ui)]

= ∇2[(u− ui)− k2q ⊗3 g ⊗3 (u− ui)] = −k2γu.

Thus,

γ =
1
u
∇2

[
q ⊗3 g ⊗3 (u− ui)−

1
k2

(u− ui)
]

whereq is given by the solution to

∇2(q ⊗3 g) = −δ3

or
q ⊗3 g =

1
4πr

so that

γ =
1
u
∇2

[
1

4πr
⊗3 (u− ui)−

1
k2

(u− ui)
]

.

Finally since,u = ui + us, we can write

γ =
1

ui + us
∇2

[
1

4πr
⊗3 us −

1
k2

us)
]

=
u∗

| u |2
∇2

[
1

4πr
⊗3 us −

1
k2

us)
]

, | u |> 0. (4)

Note that this result reduces to the inhomogeneous Helmholtz
equation since, given that(∇2 + k2)ui = 0,

γ =
1
u
∇2

[
1

4πr
⊗3 (u− ui)−

1
k2

(u− ui)
]

=
1
u

[
−δ3 ⊗3 (u− ui)−

1
k2

(∇2u−∇2ui)
]

=
1
u

[
−(u− ui)−

1
k2
∇2u +

1
k2
∇2ui)

]
=

1
k2u

[
−(∇2u + k2u) +∇2ui + k2ui

]
= − 1

k2u
(∇2 + k2)u.

Equation (4) assumes thatu is measured in the near field and
that the measurements are complete, neither of which may
be practicable. Further, equation (4) is ill-conditioned with
regard to errors in the computation of∇2us and | u |. The
condition| u |> 0 implies that the amplitude of the sum of the
incident and scattered wavefields is always greater than zero.
Near-zero values of| u | that are in error will therefore be
‘amplified’ in the computation ofγ. The derivation of equation
(4) therefore needs to be modified in terms of the application
of an appropriate regularisation method which lies beyond the
scope of this publication.

D. Scattering from Random Media

Analysis of scattering from a random medium ideally
requires a model for the physical behaviour of the random
variable(s) that is derived from basic principles. Ideally, this
involves modelling the scattered field in terms of its interaction
with an ensemble of ‘scattering sites’ based on an assumed
stochastic process. If the density of these scattering sites is
low enough so that multiple scattering is minimal, then we
can apply Born scattering to develop a model for the intensity
of a wavefield interacting with a random Born scatterer.

In the far field, the Born scattered field (i.e. the scattering
amplitude) is given by the Fourier transform of the scattering
function. If this function is knowna priori, then the scat-
tering amplitude can be determined. This is an example of
a deterministic model. If the scattering function is stochastic
(i.e. a randomly distributed scatterer) such that it can only
be quantified in terms of a statistical distribution (i.e. the
probability density function (PDF) - denoted by Pr) then we
can simulate the (Born) scattered field by designing a random
number generator that outputs deviates that conform to this
distribution. The Fourier transform of this stochastic field then
provides the Born scattering amplitude. Thus, given a three
dimensional Helmholtz scattering functionγ(r), r ∈ V with
Pr[γ(r)] known a priori, the scattering amplitudeA is given
by

A(N̂, k) = k2

∫
V

exp(−ikN̂ · r)γ(r)d3r

whereN̂ = n̂s − n̂i andγ(r) is a stochastic function whose
deviates conform to the PDFPr[γ(r)].

If we consider the object functionf (i.e. a two-dimensional
map of the three-dimensional scattering function) to be a
stochastic function, then we can model this function in terms
of a random distribution of amplitudes using an appropriate
random number generator. A coherent image of this function
is then given by (e.g. [1], [2], [5], [6])

I(x, y) =| p(x, y)⊗2 f(x, y) |2

and an incoherent image by

I(x, y) =| p(x, y) |2 ⊗2 | f(x, y) |2

wherep is the point spread function for a coherent image and
| p |2 is the intensity point spread function for an incoherent
image. An example of simulating such images is given in
Figure 1 which is based on the application of a zero mean
Gaussian distributed random field for the object functionf
and point spread functions for a square aperture. There is a
striking difference between these images. The coherent image
yields ‘speckle’ which is a feature of all coherent images and
is due to the ‘phase mixing’ of the functionsp andf associated
with the convolution operation given above.

The intensity of the scattering amplitude is given by

I(N̂, k) =| A(N̂, k) |2= A(N̂, k)A∗(N̂, k)

= k4

∫
V

exp(−ikN̂ · r)γ(r)d3r
∫
V

exp(ikN̂ · r′)γ∗(r′)d3r′.
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Using the autocorrelation theorem, we have

I(N̂, k) = k4

∫
V

exp(−ikN̂ · r)Γ(r)d3r

whereΓ is the autocorrelation function given by

Γ(r) =
∫
V

γ(r′)γ∗(r′ + r)d3r′.

Fig. 1. Simulation of the coherent (bottom-left) and incoherent (bottom-
right) images associated with light scattering from a random medium imaged
through a square aperture with coherent (top-left) and incoherent (top-right)
point spread functions whose absolute values are shown using a logarithmic
grey-scale.

This result allows us to evaluate the intensity of the Born
scattered amplitude by computing the Fourier transform of
the autocorrelation function of the scattering function which
is taken to be composed of a number of scatterers distributed
at random throughoutV . This requires the autocorrelation
function to be defined for a particular type of random scat-
terer. Thus, a random medium can be characterized via its
autocorrelation function by measuring the scattered intensity
and inverse Fourier transforming the result.

From the autocorrelation theorem, the characteristics of the
autocorrelation function can be formulated by considering its
expected spectral properties since

Γ(r) ⇐⇒| γ̃(k) |2

where γ̃ is the Fourier transform ofγ, k is the spatial
frequency vector and⇐⇒ denotes the transformation from
real spacer to Fourier spacek. Hence, in order to evaluate
the most likely form of the autocorrelation function we can
consider the properties of the power spectrum of the scattering
function. If this function is ‘white’ noise, for example (i.e.

its Power Spectral Density Function or PSDF is a constant),
then the autocorrelation function is a delta function whose
Fourier transform is a constant. However, in practice, we can
expect that few scattering functions have a PSDF characterized
by white noise, rather, the PSDF will tend to decay as the
frequency increases. We can consider a model for the PSDF
based on the Gaussian function

| γ̃(k) |2= γ̃2
0 exp

(
−k2

k2
0

)
,

for example, wherẽγ0 = γ̃(0), k =| k | and k0 is the
standard deviation which is a measure of the correlation
length. This form yields an autocorrelation function which is
of the same type, i.e. a Gaussian function. If the geometry of
the scattering function is self-affine, then we can model the
scattering function as a random scattering fractal whose PSDF
is characterized by [15]

| γ̃(k) |2∼ 1
k2q

whereq > 0, the autocorrelation function being characterized
by

Γ(r) ∼ 1
r3−q

.

Other issues in determining the nature of the autocorrelation
function are related to the physical conditions imposed on the
stochastic characteristics of the scatterer.

The method discussed above can be used to model the
(Born) scattered intensity from a random medium which
requires an estimate of the autocorrelation of the scattering
function to be known. However, this approach assumes that the
density of scattering sites from which the scatterer is composed
is low so that the Born approximation is valid. When the
density of scattering sites increases and multiple scattering
is present, the problem become progressively intractable. One
approach to overcoming this problem is to resort to a purely
stochastic approach which involves developing a statistical
model, not for the scattering function, but for the scattered
field itself which is discussed later.

III. T HE DIFFUSION EQUATION

The homogeneous diffusion equation [7]

∇2u(r, t) = σ
∂

∂t
u(r, t), σ =

1
D

where D is the ‘Diffusivity’, differs in many aspects from
the scalar wave equation. The most important single feature is
the asymmetry of the diffusion equation with respect to time.
For the wave equation, ifu(r, t) is a solution, so isu(r,−t).
However, ifu(r, t) is a solution of

∇2u = σ
∂u

∂t

the function u(r,−t) is not; it is a solution of the quite
different equation,

∇2u(r,−t) = −σ
∂

∂t
u(r,−t).

Thus, unlike the wave equation, the diffusion equation differ-
entiates between past and future. This is because the diffusing
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field u represents the behaviour of some average property of an
ensemble (e.g. of particles) which cannot in general go back to
an original state. Causality must therefore be considered in the
solution to the diffusion equation. This in turn leads to the use
of the one-sided Laplace transform (i.e. a causal transform) for
solving the equation with respect tot (compared to the Fourier
transform - a non-causal transform - used to solve the wave
equation with respect tot).

A. Green’s Function for the Diffusion Equation

To obtain a general solution to the diffusion equation, we
need to evaluate the Green’s functionG for the diffusion
equation subject to the causality condition

G(r | r0, t | t0) = 0 if t < t0.

This can be accomplished for one-, two- and three-dimension
simultaneously [13]. WithR =| r − r0 | and τ = t − t0 we
require the solution of the equation(

∇2 − σ
∂

∂τ

)
G(R, τ) = −δn(R)δ(τ), τ > 0

wheren is 1, 2 or 3 depending on the number of dimensions.
One way of solving this equation is to first take the Laplace
transform with respect toτ , then solve forG (in Laplace
space) and inverse Laplace transform. This requires an initial
condition to be specified (the value ofG at τ = 0). Another
way to solve this equation is to take its Fourier transform with
respect toR, solve forG (in Fourier space) and then inverse
Fourier transform. Here, we adopt the latter approach. Let

G(R, τ) =
1

(2π)n

∞∫
−∞

G̃(k, τ) exp(ik ·R)dnk

and

δn(R) =
1

(2π)n

∞∫
−∞

exp(ik ·R)dnk.

Then the equation forG reduces to

σ
∂G̃

∂τ
+ k2G̃ = δ(τ)

which has the solution

G̃ =
1
σ

exp(−k2τ/σ)H(τ)

whereH(τ) is the step function

H(τ) =

{
1, τ > 0;
0, τ < 0.

Hence, the Green’s functions are given by

G(R, τ) =
1

σ(2π)n
H(τ)

∞∫
−∞

exp(ik ·R) exp(−k2τ/σ)dnk

=
1

σ(2π)n
H(τ)

 ∞∫
−∞

exp(ikxRx) exp(−k2
xτ/σ)dkx

 ...

By rearranging the exponent in the integral, it becomes pos-
sible to evaluate each integral exactly. Thus, with

ikxRx − k2
x

τ

σ
= −

(
kx

√
τ

σ
− i

Rx

2

√
σ

τ

)2

−
(

σR2
x

4τ

)
= − τ

σ
ξ2 −

(
σR2

x

4τ

)
where

ξ = kx − i
σRx

2τ
,

the integral overkx becomes
∞∫

−∞

exp
[
−

( τ

σ
ξ2

)
−

(
σRx

4τ

)]
dξ

= e−(σR2
x/4τ)

∞∫
−∞

e−(τξ2/σ)dξ =
√

πσ

τ
exp

[
−

(
σR2

x

4τ

)]
with similar results for the integrals overky andkz giving the
result

G(R, τ) =
1
σ

( σ

4πτ

)n
2

exp
[
−

(
σR2

4τ

)]
H(τ).

The functionG satisfies an important property which is valid
for all n: ∫ ∞

−∞
G(R, τ)dnr =

1
σ

, τ > 0.

This is the expression for the conservation of the Green’s
function associated with the diffusion equation. For example,
if we consider the diffusion of heat, then if at a timet0 and at a
point in spacer0 a source of heat is introduced instantaneously
(i.e. a heat impulse), then the heat diffuses out through the
medium characterized byσ in such a way that the total heat
energy is unchanged.

B. Green’s Function Solution to the Diffusion Equation

Working in three dimensions, let us consider the general
solution to the equation(

∇2 − σ
∂

∂t

)
u(r, t) = −f(r, t)

wheref is a source function of compact support(r ∈ V ) and
define the Green’s function as the solution to the equation(

∇2 − σ
∂

∂t

)
G(r | r0, t | t0) = −δ3(r− r0)δ(t− t0)

It is convenient to first take the Laplace transform of these
equations with respect toτ = t− t0 to obtain

∇2ū− σ[−u0 + pū] = −f̄

and
∇2Ḡ + σ[−G0 + pḠ] = −δ3

where

ū(r, p) =

∞∫
0

u(r, τ) exp(−pτ)dτ,
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Ḡ(r | r0, p) =

∞∫
0

G(r | r0, τ) exp(−pτ)dτ,

f̄(r, p) =

∞∫
0

f(r, τ) exp(−pτ)dτ.

u0 ≡ u(r, τ = 0) and G0 ≡ G(r | r0, τ = 0) = 0.

Pre-multiplying the equation for̄u by Ḡ and the equation for
Ḡ by ū, subtracting the two results and integrating overV we
obtain∫
V

(Ḡ∇2ū−ū∇2Ḡ)d3r+σ

∫
V

u0Ḡd3r = −
∫
V

f̄ Ḡd3r+ū(r0, p).

Using Green’s theorem and rearranging the result gives

ū(r0, p) =
∫
V

f̄(r, p)Ḡ(r | r0, p)d3r+σ

∫
V

u0(r)Ḡ(r | r, p)d3r

+
∮
S

(ḡ∇ū− ū∇ḡ) · nd2r.

Finally, taking the inverse Laplace transform and using the
convolution theorem for Laplace transforms, we can write

u(r0, τ) =

τ∫
0

∫
V

f(r, τ ′)G(r | r0, τ − τ ′)d3rdτ ′

+σ

∫
V

u0(r)G(r | r0, τ)d3r

+

τ∫
0

∮
S

[G(r | r0, τ
′)∇u(r, τ − τ ′)

−u(r, τ ′)∇G(r | r0, τ − τ ′)] · n̂d2rdτ ′.

The first two terms are convolutions of the Green’s function
with the source function and the initial fieldu(r, τ = 0)
respectively.

By way of a simple example, suppose we consider the
source term to be zero and the volume of interest is the infinite
domain, so that the surface integral is zero. Then we have

u(r0, τ) = σ

∫
V

u0(r)G(r | r0, τ)d3r.

In one dimension, this reduces to

u(x0, τ) =
√

σ

4πτ

∞∫
−∞

exp
[
−σ(x0 − x)2

4τ

]
u0(x) dx, τ > 0.

Observe that the fieldu at a time t > 0 is given by the
convolution of the field at timet = 0 with the (Gaussian)
function √

σ

4πt
exp

(
−σx2

4t

)
.

In two-dimensions, the equivalent result is

u(x, y, t) =
σ

4πt
exp

[
−

(
σ(x2 + y2)

4t

)]
⊗2 u0(x, y). (5)

IV. D ERIVATION OF THE DIFFUSION EQUATION FOR THE

INTENSITY OF L IGHT

Consider the three-dimensional homogeneous time depen-
dent wave equation

∇2u− 1
c2

∂2

∂t2
u = 0

wherec is taken to be a constant (light speed). Let

u(x, y, z, t) = φ(x, y, z, t) exp(iωt)

where it is assumed that fieldφ varies significantly slowly in
time compared withexp(iωt) and note that

u∗(x, y, z, t) = φ∗(x, y, z, t) exp(−iωt)

is also a solution to the wave equation. Differentiating

∇2u = exp(iωt)∇2φ,

and
∂2

∂t2
u = exp(iωt)

(
∂2

∂t2
φ + 2iω

∂φ

∂t
− ω2φ

)
' exp(iωt)

(
2iω

∂φ

∂t
− ω2φ

)
when ∣∣∣∣∂2φ

∂t2

∣∣∣∣ << 2ω

∣∣∣∣∂φ

∂t

∣∣∣∣ .

Under this condition, the wave equation reduces to

(∇2 + k2)φ =
2ik

c

∂φ

∂t

wherek = ω/c. However, sinceu∗ is also a solution,

(∇2 + k2)φ∗ = −2ik

c

∂φ∗

∂t

and thus,

φ∗∇2φ− φ∇2φ∗ =
2ik

c

(
φ∗

∂φ

∂t
+ φ

∂φ∗

∂t

)
which can be written in the form

∇2I − 2∇ · (φ∇φ∗) =
2ik

c

∂I

∂t

whereI = φφ∗ =| φ |2. Let φ be given by

φ(r, t) = A(r, t) exp(ikn̂ · r)

where n̂ is a unit vector andA is the amplitude function.
Differentiating, and noting thatI = A2, we obtain

n̂ · ∇A =
2
c

∂A

∂t
or (

∂

∂x
+

∂

∂y
+

∂

∂z

)
A(x, y, z, t) =

2
c

∂

∂t
A(x, y, z, t)

which is the unconditional continuity equation for the ampli-
tudeA of a wavefield

u(r, t) = A(r, t) exp[i(kn̂ · r + ωt)]

whereA varies slowly with time.
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The equation

∇2I − 2∇ · (φ∇φ∗) =
2ik

c

∂I

∂t

is valid for k = k0−iκ (i.e. ω = ω0−iκc) and so, by equating
the real and imaginary parts, we have

D∇2I + 2Re[∇ · (φ∇φ∗)] =
∂I

∂t

and

Im[∇ · (φ∇φ∗)] = −k0

c

∂I

∂t

respectively whereD = c/2κ, so that under the condition

Re[∇ · (φ∇φ∗)] = 0

we obtain

D∇2I =
∂I

∂t
.

This is the diffusion equation for the intensity of lightI. The
condition required to obtain this result can be justified by
applying a boundary condition on the surfaceS of a volume
V over which the equation is taken to conform. Using the
divergence theorem

Re
∫
V

∇ · (φ∇φ∗)d3r = Re
∮
S

φ∇φ∗ · n̂d2r

=
∮
S

(φr∇φr + φi∇φi) · n̂d2r.

Now, if

φr(r, t)∇φr(r, t) = −φi(r, t)∇φi(r, t), r ∈ S

then the surface integral is zero and

D∇2I(r, t) =
∂

∂t
I(r, t), r ∈ V.

This boundary condition can be written as

∇φr

∇φi
= −tanθ

where θ is the phase of the fieldφ which implies that the
amplitudeA of φ is constant on the boundary (i.e.A(r, t) =
A0, r ∈ S, ∀t), since

∇A0 cos θ(r, t)
∇A0 sin θ(r, t)

= −A0 sin θ(r, t)∇θ(r, t)
A0 cos θ(r, t)∇θ(r, t)

= −tanθ(r, t), r ∈ S.

Suppose we record the intensityI of a light field in the
xy-plane for a fixed value ofz. Then forz = z0 say,

I(x, y, t) ≡ I(x, y, z0, t)

so that
∂

∂t
I(x, y, t) = D∇2I(x, y, t).

Let this two-dimensional diffusion equation be subject to the
initial condition

I(x, y, 0) = I0(x, y).

Then, at any timet > 0, it can be assumed that light diffusion
is responsible for blurring the imageI0 and that as time
increases, the image becomes progressively more (Gaussian)
blurred. By comparing this model with equation (5) it is clear
that

I(x, y, t) =
1

4πDt
exp

[
−

(
(x2 + y2)

4Dt

)]
⊗2 I0(x, y).

This result can, for example, be used to model the diffusion of
light through an optical diffuser. An example of such an effect
is given in Figure 2 which shows a light source (the ceiling
light of a steam room) imaged through air and then through
steam. Steam effects light by scattering it a large number
of times through the complex of small water droplets from
which (low temperature) steam is composed. The high degree
of multiple scattering that takes place allows us to model the
transmission of light through steam in terms of a ‘diffusive’
rather than a ‘propagative’ process. The initial conditionI0

denotes the initial image which is, in effect, and with regard
to Figure 2, the image of the light source obtained in air.

Fig. 2. Image of an optical source (left) and the same source imaged through
steam (right).

As observed in Figure 2, the details associated with the
light source are blurred through the convolution of the object
functionI0 with the Gaussian point spread function, a function
that is characteristic of diffusion processes in general.

V. DE-DIFFUSION

The problem is to findI0 from I at some timet > 0.
Consider the case in which we record the diffused imageI at
a time t = T . The Taylor series forI at t = 0 may then be
written as

I(x, y, 0) = I(x, y, T )− T

[
∂

∂t
I(x, y, t)

]
t=T

+
T 2

2!

[
∂2

∂t2
I(x, y, t)

]
t=T

+ ...

For T << 1, we can approximate this function be neglecting
all terms after the second term. Using the diffusion equation,
we then obtain

I(x, y, 0) ' I(x, y, T )− T

[
∂

∂t
I(x, y, t)

]
t=T

= I(x, y, T )−DT∇2I(x, y, T ).
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Now, since
I(x, y, 0) = I0(x, y)

we have

I0(x, y) = I(x, y, T )−DT∇2I(x, y, T ).

A. The High Emphasis Filter

The high emphasis filter [6] is based on computing an output
imageI0 from the input imageI via application of the result

I0(x, y) = I(x, y)−∇2I(x, y)

which is the case whenDT = 1.
This filter can be implemented by computing the digital

Laplacian in order to design an appropriate Finite Impulse
Response (FIR) filter [3]. Applying a centre differencing
scheme, i.e.

∇2Iij = I(i+1)j + I(i−1)j + Ii(j+1) + Ii(j−1) − 4Iij

we have

I0
ij = Iij−∇2Iij = 5Iij−I(i+1)j−I(i−1)j−Ii(j+1)−Ii(j−1).

where
I0
ij ≡ I0(i, j).

The digital Laplacian is a shift invariant linear operation.
Applying this operation to a digital imageIij is the same
as convolving the image with the two-dimensional array (the
FIR filter)  0 1 0

1 −4 1
0 1 0

 .

Hence, computingI0
ij is the same as convolvingIij with the

FIR filter  0 −1 0
−1 5 −1
0 −1 0

 .

An example of the application of this filter is given in Figure
3. Given the simplicity of the process (i.e. application of a
3 × 3 FIR filter), the method provides an effective image
enhancement technique providing the degradation of the image
conforms to a light diffusion (strong scattering) model.

B. General Solution

If we record an image at a timet = T then by Taylor
expandingI at t = 0 we can write

I(x, y, 0) = I(x, y, T ) +
∞∑

n=1

(−1)n

n!
Tn

[
∂n

∂tn
I(x, y, t)

]
t=T

The high emphasis filter derived earlier is obtained by neglect-
ing terms in the series above forn > 1 giving an approximate
solution for the de-diffused imageI0. If we include all the
terms in this series, then an exact solution forI0 can be

Fig. 3. Original image (left) - rings of Saturn - and an enhanced image
(right) using the high emphasis filter.

obtained. This can be done by noting that (from the diffusion
equation)

∂2I

∂t2
= D∇2 ∂I

∂t
= D2∇4I

∂3I

∂t3
= D∇2 ∂2I

∂t2
= D3∇6I

and so on. In general we can write[
∂n

∂tn
I(x, y, t)

]
t=T

= Dn∇2nI(x, y, T ).

Substituting this result into the series forI0 given above, we
get

I0(x, y) = I(x, y, T ) +
∞∑

n=1

(−1)n

n!
(DT )n∇2nI(x, y, T )

and forDT = 1

I0 = I −∇2I +
1
2!
∇4I − 1

3!
∇6I + ...

From this result, we can design FIR filters for the higher
order terms. Since

∇2Iij = I(i+1)j + I(i−1)j + Ii(j+1) + Ii(j−1) − 4Iij = Jij

then

∇4Iij = ∇2Jij = J(i+1)j +J(i−1)j +Ji(j+1) +Ji(j−1)−4Jij

= I(i+2)j + Iij + I(i+1)(j+1) + I(i+1)(j−1) − 4I(i+1)j

+Iij + I(i−2)j + I(i−1)(j+1) + I(i−1)(j−1) − 4I(i−1)j

+I(i+1)(j+1) + I(i−1)(j+1) + Ii(j+2) + Iij − 4Ii(j+1)

+I(i+1)(j−1) + I(i−1)(j−1) + Iij + Ii(j−2) − 4Ii(j−1)

−4I(i+1)j − 4I(i−1)j − 4Ii(j+1) + 4Ii(j−1) + 16Iij

= 20Iij + I(i+2)j + 2I(i+1)(j+1) + 2I(i+1)(j−1) − 8I(i+1)j

+I(i−2)j + 2I(i−1)(j+1) + 2I(i−1)(j−1) − 8I(i−1)j + Ii(j+2)
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−8Ii(j+1) + Ii(j−2) − 8Ii(j−1).

In terms of a convolution kernel, the result above can be
written as 

0 0 1 0 0
0 2 −8 2 0
1 −8 20 −8 1
0 2 −8 2 0
0 0 1 0 0

 .

Hence, given the convolution kernel associated with the first
order solutionI−∇2I, the convolution kernel associated with
the second order solutionI −∇2I + 1

2∇
4I is given by

0 0 0 0 0
0 0 −1 0 0
0 −1 5 −1 0
0 0 −1 0 0
0 0 0 0 0

 +


0 0 1

2 0 0
0 1 −4 1 0
1
2 −4 10 −4 1

2
0 1 −4 1 0
0 0 1

2 0 0



=
1
2


0 0 1 0 0
0 2 −10 2 0
1 −10 30 −10 1
0 2 −10 2 0
0 0 1 0 0


To compute the convolution kernel associated with the third
order solutionf − ∇2f + 1

2∇
4f − 1

6∇
6f , we use the same

method as above to evaluate∇6Iij to obtain

1
6



0 0 0 −1 0 0 0
0 0 −3 15 −3 0 0
0 −3 24 −87 24 −3 0
−1 15 −87 202 −87 15 −1
0 −3 24 −87 24 −3 0
0 0 −3 15 −3 0 0
0 0 0 −1 0 0 0


An example of the application of these filters is given in Figure
4 which shows the result of diffusing a image by applying a
Gaussian low-pass filter and then restoring the image using the
first (high emphasis) and second order FIR filter given above.

VI. FRACTIONAL DIFFUSION

A. Random Walk Processes

The purpose of revisiting random walk processes is that
it provides a useful conceptual reference for introducing
fractional diffusion and an appreciation of the use of the
fractional diffusion equation, an equation that arises through
the generalisation of coherent and incoherent random walk
processes into a single model.

In the Nineteenth Century, the Scottish botanist, Robert
Brown, discovered (observing through a microscope) the
motion exhibited by small particles (pollen grains) that is
immersed in a liquid. Each particle follows a random walk
as a result of the elastic collisions it has with ensembles of
liquid molecules which are them selves in a state of random
motion. Brownian motion is the basis of modelling all kinds
of statistical fluctuations, most prominently in the field of

Fig. 4. Original 256×256 image (top-left) - M83 galaxy; result after applying
a Gaussian low-pass filter (top-right); output after application of the first order
(high emphasis) FIR filter (bottom-left); output after application of the second
order FIR filter (bottom-right).

gambling. However, it was many years after Brown’s discovery
that work was undertaken to provide a quantitative description
associated with this motion. The first work of its type was
undertaken by Albert Einstein and published in 1905. The
basic idea is to consider a random walk in which the mean
value of each step isa but where there is no correlation in
the direction of the walk from one step to the next. That is,
the direction taken by the walker from one step to next can
be in any direction described by an angle between0 and 2π
radians - for a walk in the plane. The angle that is taken at
each step is entirely random and all angles are taken to be
equally likely. Thus, the PDF of angles between0 and2π is
given by

Pr[θ] =

{
1
2π , 0 ≤ θ ≤ 2π;
0, otherwise.

If we consider the random walk to take place in the complex
plane, then aftern steps, the position of the walker will be
determined by a resultant amplitudeA and angleΘ given by
the sum of all the steps taken, i.e.

A exp(iΘ) = a exp(iθ1) + a exp(iθ2) + ... + a exp(iθn)

= a
n∑

m=1

exp(iθm).

The problem is to obtain a scaling relationship betweenA and
n. The trick to finding this relationship is to analyse the result
of taking the square modulus ofA exp(iΘ). This provides an
expression for the intensityI given by

I = a2

∣∣∣∣∣
n∑

m=1

exp(iθm)

∣∣∣∣∣
2
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= a2
n∑

m=1

exp(iθm)
n∑

m=1

exp(−iθm)

= a2

n +
n∑

j=1,j 6=k

exp(iθj)
n∑

k=1

exp(−iθk)

 .

Now, in a typical term

exp(iθj) exp(−iθk) = cos(θj − θk) + i sin(θi − θk)

of the double summation, the functionscos(θj − θk) and
sin(θj − θk) have random values between±1. Consequently,
as n becomes larger and larger, the double sum will reduces
to zero since more and more of these terms cancel each other
out. This insight is the basis for stating that forn >> 1

I = na2

and the resulting amplitude is therefore given by

A =
√

na.

Thus,A is proportional to the square root of the number of
steps taken and if each step is taken over a mean time period,
then we obtain the result

A(t) = a
√

t.

Clearly, if each step in the walk is in the same direction,
then the resulting amplitude after a timet will be at. This
is a deterministic result. However, with a random walk, the
interpretation of the above result is thata

√
t is the amplitude

associated with the most likely position that the random walker
will be after timet. If we imagine many random walkers, each
starting out on their ‘journey’ from the origin of the (complex)
plane att = 0, record the distances from the origin of this
plane after a set period of timet, then the PDF ofA will
have a maximum value - the ‘mode’ of the distribution - that
occurs ata

√
t. In the case of a non-random walk, the PDF

will consist of a unit spike that occurs atat.
In the (classical) kinetic theory of matter (including gases,

liquids, plasmas and some solids), we considera to be the
average distance a particle travels before it randomly collides
and scatters off another particle. The scattering process is
taken to be entirely elastic, i.e. the interaction does not affect
the particle in any way other than to change the direction in
which it travels. Thus,a represents themean free pathof a
particle. The mean free path is a measure how far a particle can
travel before scattering with another particle which in turn, is
related to the number of particle per unit volume - the density
of a gas, for example. If we imagine a particle ‘diffusing’
through an ensemble of particles, then the mean free path
is a measure of the ‘diffusivity’ of the medium in which
the process of diffusion takes place. This is a feature of all
classical diffusion processes which can be formulated in terms
of the diffusion equation with diffusivityD. The dimensions of
diffusivity are length2/time and must be interpreted in terms
of a characteristic distance of the process which varies with
the square root of time.

Suppose we now consider the three-dimensional diffusion
of light to be based on a three-dimensional random walk.

Each scattering event is taken to be a point of the random
walk in which a ray of light changes its direction randomly
(any direction between 0 and4π radians). The light field is
taken to be composed of a complex of rays, each of which
propagates through the diffuser in a way that is incoherent and
uncorrelated in time. If this is the case, then the propagation of
light can be considered to analogous to a process of (classical)
diffusion and instead of modelling the process in terms of the
(inhomogeneous) wave equation(

∇2 − 1
c2(r)

∂2

∂t2

)
u(r, t) = 0

with intensity given byI(r, t) =| u(r, t) |2 we can consider
the intensity to be given by the solution of the homogeneous
diffusion equation(

∇2 − 1
D

∂

∂t

)
I(r, t) = 0

with initial condition I(r, t) = I0(r) at t = 0. This assumes
that the diffusivity D is constant throughout the diffuser
which in turn assumes that Pr[c(r)] for a random scattering
model (based on a solution to the wave equation) is the same
throughout the diffuser and thus, the autocorrelation function
Γ(r) required to compute the intensity.

Although the discussion above has been presented for the
case of light, the principle remains the same for the case of any
form of electromagnetic wavefield, for example, or indeed for
the propagation/diffusion of information in general. Thus, for
some random walk process whose macroscopic characteristic
are defined by a fieldu, if the process is diffusive, then the
field u is characterised by the operator

∇2 − 1
D

∂

∂t

and, if the process is propagative, then it is characterised by
the operator

∇2 − 1
c2

∂2

∂t2
.

In multiple wave scattering theory, we consider a wavefront
travelling through space and scattering from a site that changes
the direction of propagation. The mean free path is taken to
be the average number of wavelengths taken by the wavefront
to propagate from one interaction to another as described by
the free space Green’s function. After scattering from many
sites, the wavefront can be considered to have diffused through
the ‘diffuser’. Here, the mean free path is a measure of the
density of scattering sites, which in turn, is a measure of the
diffusivity of the material - an optical diffuser for example.

B. Hurst Processes

We have considered random processes that characterise fully
coherent (propagative) and fully incoherent (diffusive) behav-
iour and through the physical interpretation of such processes
we have related them to differential operators associated with
the corresponding macroscopic behaviour. For a random walk
model in the plane,A(t) = at for a coherent walk and
A(t) = a

√
t for an incoherent walk. What would be the

result if the walk is neither coherent or incoherent but partially
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coherent/incoherent? In other words, suppose the random walk
exhibited a bias with regard to the distribution of angles used to
change the direction. What would be the effect on the scaling
law

√
t? Intuitively, one expects that as the distribution of

angles reduces, the corresponding walk becomes more and
more coherent, exhibiting longer and longer time correlations
until the process conforms to the scaling lawt. Conceptually,
scaling models associated with the intermediate case(s) should
be based on a generalisation of the scaling laws

√
t and t

to the form tH where 0.5 ≤ H < 1. This reasoning is the
basis for generalising the random walk processes considered
so far, the exponentH being known as the Hurst exponent or
‘dimension’.

H E Hurst (1900-1978) was an English civil engineer who
designed dams and worked on the Nile river dam projects in
the 1920s and 1930s. He studied the Nile so extensively that
some Egyptians reportedly nicknamed him ‘the father of the
Nile.’ The Nile river posed an interesting problem for Hurst
as a hydrologist. When designing a dam, hydrologists need
to estimate the necessary storage capacity of the resulting
reservoir. An influx of water occurs through various natural
sources (rainfall, river overflows etc.) and a regulated amount
needs to be released for primarily agricultural purposes, for
example, the storage capacity of a reservoir being based on
the net water flow. Hydrologists usually begin by assuming
that the water influx is random, a perfectly reasonable as-
sumption when dealing with a complex ecosystem. Hurst,
however, had studied the 847-year record that the Egyptians
had kept of the Nile river overflows, from 622 to 1469. He
noticed that large overflows tended to be followed by large
overflows until abruptly, the system would then change to low
overflows, which also tended to be followed by low overflows.
There appeared to be cycles, but with no predictable period.
Standard statistical analysis of the day revealed no significant
correlations between observations, so Hurst developed his own
methodology.

Hurst was aware of Einstein’s (1905) work on Brownian
motion (the erratic path followed by a particle suspended in
a fluid) who observed that the distanceR the particle covers
increased with the square root of time, i.e.

R(t) ∝
√

t

whereR is the range (equivalent to the amplitude for a walk in
the complex plane) covered in timet. It results, from the fact
that increments are identically and independently distributed
random variables. Hurst’s idea was to use this property to test
the Nile River’s overflows for randomness. His method was
as follows: Begin with a time seriesxi (with i = 1, 2, ..., n)
which in Hurst’s case was annual discharges of the Nile River.
Next, create the adjusted series,yi = xi − x̄ (where x̄ is the
mean ofxi). Cumulate this time series to give

Yi =
i∑

j=1

yj

such that the start and end of the series are both zero and
there is some curve in between. (The final value,Yn has to
be zero if the mean is zero.) Then, define the range to be the

maximum minus the minimum value of this time series,

Rn = max(Yi)−min(Yi).

This adjusted range,Rn is the distance the systems travels for
the time indexn, i.e. the distance covered by a random walker
if the data setyi were the set of steps. Einstein’s equation
Rn = a

√
n will apply provided that the time seriesxi is

independent for increasing values ofn. However, Einstein’s
equation only applies to series that are in Brownian motion.
Hurst’s contribution was to generalize this equation to

(R/S)n = anH

whereS is the standard deviation for the samen observations
anda is a constant. We define a Hurst process to be a process
with a (fairly) constantH value. The quotientR/S is referred
to as the ‘rescaled range’ because it has zero mean and is
expressed in terms of local standard deviations. In general,
the value ofR/S increases according to a power law value
equal toH known as the Hurst exponent.

Rescaling the adjusted range was a major innovation. Hurst
originally performed this operation to enable him to compare
diverse phenomenon. Rescaling, fortunately, also allows us to
compare time periods many years apart in a range of time
series. It is the relative change and not the change itself that
is of interest. Rescaled range analysis can also describe time
series that have no characteristic scale. By considering the
logarithmic version of Hurst’s equation, i.e.

log(R/S)n = loga + Hlog(n)

it is clear that the Hurst exponent can be estimated by plotting
log(R/S)n against thelog(n) and solving for the gradient
with a least squares fit, for example. If the system were
independently distributed, thenH = 0.5. Hurst found that the
exponent for the Nile River wasH = 0.91, i.e. the rescaled
range increases at a faster rate than the square root of time.
This meant that the system was covering more distance than
a random process would and therefore the annual discharges
of the Nile had to be correlated.

It is important to appreciate that this method makes no prior
assumptions about any underlying distributions, it simply tells
us how the system is scaling with respect to time. So how
do we interpret the Hurst exponent? We know thatH = 0.5
is consistent with an independently distributed system. The
range0.5 < H ≤ 1, implies a persistent time series, and a
persistent time series is characterized by positive correlations.
Theoretically, what happens today will ultimately have a
lasting effect on the future. The range0 < H ≤ 0.5 indicates
anti-persistence which means that the time series covers less
ground than a random process. In other words, there are
negative correlations. For a system to cover less distance, it
must reverse itself more often than a random process.

Hurst analysed all the data he could including rainfall,
sunspots, mud sediments, tree rings and others. In all cases,
Hurst foundH to be greater than0.5. He was intrigued thatH
often took a value of about0.7 and Hurst suspected that some
universal phenomenon was taking place. He carried out some
experiments using numbered cards. The values of the cards
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were chosen to simulate a probability density function with
finite moments, i.e.0,±1,±3,±5,±7and±9. He first verified
that the time series generated by summing the shuffled cards
gaveH = 0.5. To simulate a bias random walk, he carried out
the following steps.

1) Shuffle the deck and cut it once, noting the number, say
n.

2) Replace the card and re-shuffle the deck.
3) Deal out 2 hands of 26 cards, A and B.
4) Replace the lowestn cards of deck B with the highest

n cards of deck A, thus biasing deck B to the leveln.
5) Place a joker in deck B and shuffle.
6) Use deck B as a time series generator until the joker is

cut, then create a new biased hand.

Hurst undertook 1000 trials of 100 hands and calculated
H = 0.72. We can think of the process as follows: we first
bias each hand, which is determined by a random cut of
the pack; then, we generate the time series itself, which is
another series of random cuts; then, the joker appears, which
again occurs at random. Despite all of these random events
H = 0.72 would always appear. This is called the ‘joker
effect’. The joker effect, as described above, demonstrates a
tendency for data of a certain magnitude to be followed by
more data of approximately the same magnitude, but only for
a fixed and random length of time. A natural example of this
phenomenon is in weather systems. Good weather and bad
weather tend to come in waves or cycles (as in a heat wave
for example). This does not mean that weather is periodic,
which it is clearly not. We use the term ‘non-periodic cycle’
to describe cycles of this kind (with no fixed period). Thus,
Hurst processes exhibit trends that persist until the equivalent
of the joker comes along to change that bias in magnitude
and/or direction. In other words rescaled range analysis can
be used to characterise a time series that contains within it,
many different short-lived trends or biases (both in size and
direction). The process continues in this way giving a constant
Hurst exponent, sometimes with flat episodes that correspond
to the average periods of the non-periodic cycles, depending
on the distribution of actual periods.

The generalisation of Einstein’s equationA(t) = a
√

t by
Hurst to the formA(t) = atH , 0 < H ≤ 1 was necessary in
order for Hurst to analyse the apparent random behaviour of
the annual rise and fall of the Nile river for which Einstein’s
model was inadequate. In considering this generalisation,
Hurst paved the way for an appreciation that most natural
stochastic phenomena which, at first site, appear random, have
certain trends that can be identified over a given period of
time. In other words, many natural random patterns have a
bias to them that leads to time correlations in their stochastic
behaviour, a behaviour that is not an inherent characteristic of
a random walk model and fully diffusive processes in general.

C. The Fractional Diffusion Equation

Given that incoherent random walks, whereA(t) = a
√

t,
describe processes whose macroscopic behaviour is charac-
terised by the diffusion equation, then, by induction, Hurst
processes, whereA(t) = atH , H ∈ (0, 1], should be

characterised by generalizing the diffusion operator

∇2 − σ
∂

∂t

to the fractional form

∇2 − σq ∂q

∂tq

whereq ∈ [1, 2] and Dq = 1/σq is the fractional diffusivity.
Fractional diffusive processes can therefore be interpreted
as intermediate between diffusive processes proper (random
phase walks withH = 0.5; diffusive processes withq = 1)
and ‘propagative process’ (coherent phase walks forH =
1; propagative processes withq = 2). For non-stationary
processes, we consider the operator

∇2 − σq(t) ∂q(t)

∂tq(t)
.

It should be noted that the fractional diffusion operator given
above is the result of a phenomenology. It is no more (and
no less) than a generalisation of a well known differential
operator to fractional form which follows from a physical
analysis of a fully incoherent random process and it gener-
alisation to fractional form in terms of the Hurst exponent.
Unlike the diffusion operator (which is based on accepted
and experimentally verifiable physical laws - Fourier’s law of
thermal condition, for example) this approach to introducing
a fractional differential operator is based on postulation alone.
It is therefore similar to certain other operators, a notable
example being Schrödinger’s operator in quantum mechanics,
i.e.

~2

2m
∇2 − i~

∂

∂t
.

In order to work with fractional derivatives, it is necessary to
briefly review the fractional calculus which for completeness,
is provided in Appendix I.

D. Solution to the Fractional Diffusion Equation

Consider the fractional diffusion equation for the intensity
I of a wavefield given by

Dq∇2I(r, t) =
∂q

∂tq
I(r, t)

whereD is the fractional diffusivity andI0(r) = I(r, t = 0)
(the initial condition). Forq = 1, the solution to this equation
in the infinite domain (see Section III) for dimensionsn = 1, 2
and3 is (with σ = 1/D)

I(r0, τ) = σ

∫
I0(r)G(r | r0, τ)dnr.

where

G(R, τ) =
1
σ

( σ

4πτ

)n
2

exp
[
−

(
σR2

4τ

)]
H(τ).

which is the solution to(
∇2 − σ

∂

∂t

)
G(R, τ) = −δn(R)δ(τ).
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For the fractional diffusion equation, we consider the same
basic solution but where the Green’s function is given by the
solution of(

∇2 − σq ∂q

∂tq

)
G(R, τ) = −δn(R)δ(τ)

where σq = 1/Dq. Using the Fourier based operator for a
fractional derivative (see Appendix I), we can transform this
equation into the form

(∇2 + Ω2
q)g(r | r0, ω) = −δn(r− r0)

where

g(r | r0, ω) =

∞∫
−∞

G(r | r0, τ) exp(iωτ)dτ,

Ω2
q = −iωσ, Ωq = ±i(iωσ)q/2.

Note that forq = 2, this equation becomes

(∇2 + k2)g(r | r0, ω) = δn(r− r0)

wherek = ±ωσ. This equation defines the Green’s function
for the time independent wave operator inn dimensions, the
‘out going’ Green’s functions being given by [19], [20]
n = 1 :

g(r | r0, k) =
i

2k
exp(ik | r − r0 |);

n = 2 :
g(r | r0, k) =

i

4
H0(k | r− r0 |)

' 1√
8π

exp(iπ/4)
exp(ik | r− r0 |)√

k | r− r0 |
, k | r− r0 |>> 1

whereH0 is the Hankel function, and
n = 3 :

g(r | r0, k) =
1

4π | r− r0 |
exp(ik | r− r0 |), n = 3.

Generalizing these results, forq ∈ [1, 2], by writing the
exponential function in its series form, withR =| r− r0 | we
have, forΩq = i(iωσ)q/2,

n = 1:

G(R, τ) =
1
2π

∞∫
−∞

i

2Ωq
exp(iΩqR) exp(iωτ)dω

=
1
2π

∞∫
−∞

dωi
exp(iωτ)
2(iωσ)q/2

(
1−R(iωσ)q/2 +

R2

2!
(iωσ)q − ...

)

=
1

2σq/2

1
τ1−(q/2)

− 1
2
Rδ(τ)

+
∞∑

n=1

(−1)n+1

2(n + 1)!
Rn+1σnq/2δqn/2(τ);

n = 2:

G(R, τ) =
1
2π

∞∫
−∞

dω exp(iωτ)
exp(iπ/4)√

8π

exp[−(iωσ)q/2R]√
iR(iωσ)q/4

=
1√
8πR

1
2π

∞∫
−∞

dω exp(iωτ)...

...

(
1

(iωσ)q/4
− (iωσ)q/4R +

1
2!

(iωσ)3q/4R2 − ...

)

=
1√
8πR

1
σq/4τ1−q/4

−
√

R

8π
σq/4δq/4(τ)

+
1√
8π

∞∑
n=1

(−1)n+1

(n + 1)!
R(2n+1)/2σ3nq/4δ3nq/4(τ);

n = 3:

G(R, τ) =
1
2π

∞∫
−∞

dω exp(iωτ)
exp[−(iωσ)q/2R]

4πR

=
1

4πR

1
2π

∞∫
−∞

dω exp(iωτ)[1−(iωσ)q/2R+
1
2!

(iωσ)qR2−...]

=
δ(τ)
4πR

− 1
4π

σq/2δq/2(τ)

+
1
4π

∞∑
n=1

(−1)n+1

(n + 1)!
Rnσ(n+1)q/2δ(n+1)q/2.

These are the Green’s functions for the fractional diffusion
equation in one-, two- and three-dimensions. Simplification of
these infinite sums can be addressed be considering suitable
asymptotics, the most significant of which (for arbitrary values
of R) is the case when the (fractional) diffusivityD is large.
In particular, we note that asσ → 0,

G(R, τ) =
1

2σq/2τ1−(q/2)
− 1

2
Rδ(τ), n = 1;

G(R, τ) =
1√

8πRσq/4τ1−(q/4)
, n = 2;

G(R, τ) =
δ(τ)
4πR

, n = 3.

Thus, in two-dimensions, we can consider a solution to the
fractional diffusion equation(

Dq∇2 − ∂q

∂tq

)
I(r, t) = 0, I(r, t = 0) = I0(r)

of the form (for t0 = 0 and at timet = T )

I(x, y) =
1

2
√

2π

1
(DT )1−q/4

1
(x2 + y2)

1
4
⊗⊗I0(x, y),

D →∞

which should be compared to the solution to the two-
dimensional diffusion equation, i.e.

I(x, y) =
1

4πDT
exp

[
−

(
x2 + y2)

4DT

)]
⊗2 I0(x, y).

Observe that when the diffusivity is large and the diffusion
time t = T is small such thatDT = 1, the difference between
an image obtained by a full two-dimensional diffuser and a
fractional diffuser is compounded in the difference between
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the convolution of the initial image with (ignoring scaling)
the functionsexp(−R2/4) and 1/

√
R. Compared with the

Gaussian, the functionR−1/2 decays more rapidly and hence
will have broader spectral characteristics leading to an output
that is less blurred than that produced by the convolution of the
input with a Gaussian which, in the context of the fractional
diffusion model introduced, is to be expected.

E. Optical Fractional Diffusers

Optical diffusers are used in a range of applications includ-
ing the de-pixelation of Liquid Crystal Displays (LCDs) which
becomes especially important when the LCD is composed of
relatively few elements and is viewed at close range, e.g.
LCD goggles. A common technique is to produce a thin
film that is composed of a randomly distributed complex of
scatterers (micro-spheroids whose relative permittivity is a
weak perturbation of the body of the film) that is over-layed
onto the LCD. The goal is to produce a diffuser that ‘manages’
the light in such a way that it de-pixelates the LCD while
minimizing the angular distribution of light. This requires the
manufacture of a fractional optical diffuser, an example of
which is given in Figure 5 which shows the effect of a ‘light
management film’ manufactured by Microsharp Corporation
Limited (http://www.microsharp.co.uk).

Fig. 5. Illustration of the application of a fractional optical diffuser to a
low resolution LCD. The effect of the diffuser is to eliminate the pixelation
(central area) generated by the regular LCD lattice (edges) while minimizing
the angular field of view.

VII. F RACTIONAL DE-DIFFUSION

Let I0 be represented as a Taylor series at some timeT > 0,
i.e.

I(r, 0) = I(r, T )+T

[
∂

∂t
I(r, t)

]
t=T

−T 2

2!

[
∂2

∂t2
I(r, t)

]
t=T

+...

Now, since
∂u

∂t
=

∂1−q

∂t1−q

∂q

∂tq
u

then from the fractional diffusion equation

∂u

∂t
= Dq ∂1−q

∂t1−q
∇2u

and
∂2

∂t2
u

=
∂

∂t

(
∂u

∂t

)
=

∂

∂t

(
Dq ∂1−q

∂t1−q
∇2u

)
= Dq ∂1−q

∂t1−q
∇2 ∂u

∂t

= Dq ∂1−q

∂t1−q
∇2

(
Dq ∂1−q

∂t1−q
∇2u

)
= D2q ∂1−q

∂t1−q

(
∂1−q

∂t1−q
∇4u

)
so that in general,

∂nu

∂tn
= Dnq ∂n(1−q)

∂tn(1−q)
∇2nu.

Now, since (see Appendix I)

∂−q

∂t−q
I(r, t) =

1
Γ(q)t1−q

⊗ I(r, t)

we can write the Taylor series for the field att = 0 in terms
of the field att = T as

I(r, 0) = I(r, T ) +
TDq

Γ(q)

[
∂

∂t

(
1

t1−q
⊗∇2I(r, t)

)]
t=T

− T 2D2q

2!Γ(2q)

[
∂2

∂t2

(
1

t1−2q
⊗∇4I(r, t)

)]
t=T

+
T 3D3q

3!Γ(3q)

[
∂3

∂t3

(
1

t1−3q
⊗∇6I(r, t)

)]
t=T

− ...

For the case whenT << 1,

I(r, 0) = I(r, T ) +
TDq

Γ(q)

[
∂

∂t

(
1

t1−q
⊗∇2I(r, t)

)]
t=T

and under the condition that[
∂

∂t

(
1

t1−q
⊗ I(r, t)

)]
t=T

= I(r, T )

we can write

I(r, 0) = I(r, T ) +
TDq

Γ(q)
∇2I(r, T ).

Thus, for an imageI(x, y) recorded in the image plane at
z = 0 say, after the imageI0 has been fractionally diffused
over a period of timeT , we have

I0(x, y) = I(x, y) +
TDq

Γ(q)
∇2I(x, y).
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VIII. I MAGE SEGMENTATION METRIC

The result above provides us with an approach to estimating
q given I andI0 as follows: Let

P (x, y) =| I0(x, y)−I(x, y) |, and Q(x, y) =| ∇2I(x, y) |

then withR(x, y) = P (x, y)/Q(x, y),

〈R(x, y)〉 =
TDq

Γ(q)

where

〈R(x, y)〉 =
∫ ∫

R(x, y)dxdy∫ ∫
dxdy

.

Hence,
lnT − ln Γ(q) + q lnD = M

whereM is the metric (i.e. a measure ofq) given by

M = ln〈R〉 ≤ ln
(
〈P 〉
〈Q〉

)
This metric can be used effectively as a quality control
measure for the manufacture of fractional optical diffusers
(see Figure 5). For an imageI which has been formed by
the fractional diffusion of a uniform light source in whichI0

is a constant,

I − I0 =
TDq

Γ(q)
∇2(I − I0)

and withJ = I − I0,

M = ln
(

〈J(x, y)〉
〈| ∇2J(x, y) |〉

)
which can be applied on a moving windowW basis in order
to segment an image formed through short time fractional
diffusion with variableq, the computation of〈I〉(x,y)∈W (the
moving average filter) and〈| ∇2I |〉(x,y)∈W (moving average
of the second order edge detector) being relatively simple.

IX. CONCLUSIONS

The use of a fully diffusive process for modelling strong
(multiple) scattering has been considered and then extended
to model intermediate scattering by generalizing the diffusion
equation to fractional orderq ∈ (1, 2). The rationale for this
approach follows that of a random walk model in which
diffusive processes characterized by at

1
2 scaling law and

propagative processes characterized by at1 scaling law are
generalized to a scaling law of the formtH where 1

2 < H < 1
is the Hurst exponent.

The homogeneous diffusion equation provides a series solu-
tion to the inverse problem in which a Gaussian blurred image
can be restored using appropriate FIR filters that depend on
the order of the solution that is considered (i.e. the number of
terms in the Taylor series). This approach has been extended
to include fractional diffusion as defined by the equation (for
an imageI)

Dq∇2I(x, y, t) =
∂q

∂tq
I(x, y, t)

whereD is the fractional diffusivity andI0(x, y) = I(x, y, t =
0). By computing the appropriate Green’s function for this

equation, we have shown that the point spread function of
the imageI is determined byR−1/2, D >> 1. An FIR
filter (a fractional high emphasis filter) has been designed
which scales asTDq/Γ(q) compared withTD for the fully
diffusive case whenT << 1. This has provided the basis for
the proposition of a new algorithm for segmenting an image
into regions of similarity based on a measure of the parameter
q (the metricM ) in contrast to those algorithms published in,
[15] for example.

APPENDIX I
OVERVIEW OF FRACTIONAL CALCULUS

In a famous letter from l’Hospital to Leibnitz written in
1695, l’Hospital asked the following question: ‘Given that
dnf/dtn exists for all integer n, what if n be12 ’. The reply
from Leibnitz was all the more interesting: ‘It will lead to a
paradox ... From this paradox, one day useful consequences
will be drawn’.

Fractional calculus (e.g. [21], [22], [23] and [24]) has
been studied for many years by some of the great names of
mathematics since the development of (integer) calculus in
the late seventeenth century. Relatively few papers and books
exist on such a naturally important subject. However, a study
of the works in this area of mathematics clearly show that the
ideas used to define a fractional differential and a fractional
integral are based on definitions which are in effect, little more
than generalizations of results obtained using integer calculus.
The classical fractional integral operators are the Riemann-
Liouville transform [21]

Îqf(t) =
1

Γ(q)

t∫
−∞

f(τ)
(t− τ)1−q

dτ, q > 0

and the Weyl transform

Îqf(t) =
1

Γ(q)

∞∫
t

f(τ)
(t− τ)1−q

dτ, q > 0

where

Γ(q) =

∞∫
0

tq−1 exp(−t)dt.

For integer values ofq (i.e. whenq = n wheren is a non-
negative integer), the Riemann-Liouville transform reduces
to the standard Riemann integral. This transform is just a
(causal) convolution of the functionf(t) with tq−1/Γ(q).
For fractional differentiation, we can perform a fractional
integration of appropriate order and then differentiate to an
appropriate integer order. The reason for this is that direct
fractional differentiation can lead to divergent integrals. Thus,
the fractional differential operator̂Dq for q > 0 is given by

D̂qf(t) ≡ dq

dtq
f(t) =

dn

dtn
[În−qf(t)].

Another (conventional) approach to defining a fractional dif-
ferential operator is based on using the formula fornth order
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differentiation obtained by considering the definitions for the
first, second, third etc. differentials using backward and then
generalising the formula by replacingn with q. This approach
provides us with the result [21]

D̂qf(t) = lim
N→∞

 (t/N)−q

Γ(−q)

N−1∑
j=0

Γ(j − q)
Γ(j + 1)

f

(
t− j

t

N

) .

A review of this result shows that forq = 1, this is a point
process but for other values it is not, i.e. the evaluation of a
fractional differential operator depends on the history of the
function in question. Thus, unlike an integer differential oper-
ator, a fractional differential operator has ‘memory’. Although
the memory of this process fades, it does not do so quickly
enough to allow truncation of the series in order to retain
acceptable accuracy. The concept of memory association can
also be seen from the result

D̂qf(t) =
dn

dtn
[În−qf(t)]

where

Îq−nf(t) =
1

Γ(n− q)

t∫
−∞

f(τ)
(t− τ)1+q−n

dτ, n− q > 0

in which the value ofÎq−nf(t) at a point t depends on
the behaviour off(t) from −∞ to t via a convolution with
the kerneltn−q/Γ(q). The convolution process is of course
dependent on the history of the functionf(t) for a given kernel
and thus, in this context, we can consider a fractional derivative
defined via the result above to have memory.

A. The Laplace Transform and the Half Integrator

It informative at this point to consider the application of
the Laplace transform to identify an ideal integrator and then
a half integrator. The Laplace transform is given by

L̂[f(t)] ≡ F (p) =

∞∫
0

f(t) exp(−pt)dt

and from this result we can derive the transform of a derivative
given by

L̂[f ′(t)] = pF (p)− f(0)

and the transform of an integral given by

L̂

 t∫
0

f(τ)dτ

 =
1
p
F (p).

Now, suppose we have a standard time invariant linear system
whose input isf(t) and whose output is given by

s(t) = f(t)⊗ g(t)

where the convolution is causal, i.e.

s(t) =

t∫
0

f(τ)g(t− τ)dτ.

Suppose we let

g(t) = H(t) =

{
1, t > 0;
0, t < 0.

Then,G(p) = 1/p and the system becomes an ideal integrator:

s(t) = f(t)⊗H(t) =

t∫
0

f(t− τ)dτ =

t∫
0

f(τ)dτ.

Now, consider the case when we have a time invariant linear
system with an impulse response function by given by

g(t) =
H(t)√

t
=

{
| t |−1/2, t > 0;
0, t < 0.

The output of this system isf ⊗ g and the output of such a
system with inputf ⊗ g is f ⊗ g ⊗ g. Now

g(t)⊗ g(t) =

t∫
0

dτ
√

τ
√

t− τ
=

√
t∫

0

2xdx

x
√

t− x2

= 2
[
sin−1

(
x√
t

)]√t

0

= π.

Hence,
H(t)√

πt
⊗ H(t)√

πt
= H(t)

and the system defined by the impulse response function
H(t)/

√
πt represents a ‘half-integrator’ with a Laplace trans-

form given by

L̂

[
H(t)√

πt

]
=

1
√

p
.

This result provides an approach to working with fractional
integrators and/or differentiators using the Laplace transform.
Fractional differential and integral operators can be defined
and used in a similar manner to those associated with con-
ventional or integer order calculus and we now provide an
overview of such operators.

B. Operators of Integer Order

The following operators are all well-defined, at least with
respect to all test functionsu(t) say which are (i) infinitely
differentiable and (ii) of compact support (i.e. vanish outside
some finite interval).

Integral Operator:

Îu(t) ≡ Î1u(t) =

t∫
−∞

u(τ)dτ.

Differential Operator:

D̂u(t) ≡ D̂1u(t) = u′(t).

Identify Operator:

Î0u(t) = u(t) = D̂0u(t).
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Now,

Î[D̂u](t) =

t∫
−∞

u′(τ)dτ = u(t)

and

D̂[Îu](t) =
d

dt

t∫
−∞

u(τ)dτ = u(t)

so that
Î1D̂1 = D̂1Î1 = Î0.

For n (integer) order:

Înu(t) =

t∫
−∞

dτn−1...

τ2∫
−∞

dτ1

τ1∫
−∞

u(τ)dτ,

D̂nu(t) = u(n)(t)

and
În[D̂nu](t) = u(t) = D̂n[Înu](t).

C. Convolution Representation

Consider the function

tq−1
+ (t) ≡| t |q−1 H(t) =

{
| t |q−1, t > 0;
0, t < 0.

which, for any q > 0 defines a function that is locally
integrable. We can then define an integral of ordern in terms
of a convolution as

Înu(t) =
(

u⊗ 1
(n− 1)!

tn−1
+

)
(t)

=
1

(n− 1)!

t∫
−∞

(t− τ)n−1u(τ)dτ

=
1

(n− 1)!

t∫
−∞

τn−1u(t− τ)dτ

In particular,

Î1u(t) = (u⊗H)(t) =

t∫
−∞

u(τ)dτ.

These are classical (absolutely convergent) integrals and the
identity operator admits a formal convolution representation,
using the delta function, i.e.

Î0u(t) =

∞∫
−∞

δ(τ)u(t− τ)dτ

where
δ(t) = D̂H(t).

Similarly,

D̂nu(t) ≡ Î−nu(t) =

∞∫
−∞

δ(n)(τ)u(t− τ)dτ = u(n)(t).

On the basis of the material discussed above, we can now
formally extend the integral operator to fractional order and
consider the operator

Îqu(t) =
1

Γ(q)

∞∫
−∞

u(τ)tq−1
+ (t− τ)dτ

=
1

Γ(q)

t∫
−∞

u(τ)tq−1
+ (t− τ)dτ

where

Γ(q) =

∞∫
0

tq−1 exp(−t)dt, q > 0

with the fundamental property that

Γ(q + 1) = qΓ(q).

Here, Iq is an operator representing a time invariant linear
system with impulse response functiontq−1

+ (t) and transfer
function 1/pq. For the cascade connection ofIq1 andIq2 we
have

Îq1 [Îq2u(t)] = Îq1+q2u(t).

This classical convolution integral representation holds for all
real q > 0 (and formally forq = 0, with the delta function
playing the role of an impulse function and with a transfer
function equal to the constant 1).

D. Fractional Differentiation

For 0 < q < 1, if we define the (Riemann-Liouville )
derivative of orderq as

D̂qu(t) ≡ d

dt
[Î1−qu](t) =

1
Γ(1− q)

d

dt

t∫
−∞

(t− τ)−qu(τ)dτ,

then,

D̂qu(t) =
1

Γ(1− q)

t∫
−∞

(t− τ)−qu′(τ)dτ ≡ Î1−qu′(t).

Hence,
Îq[D̂qu] = Îq[Î1−qu′] = Î1u′ = u

and D̂q is the formal inverse of the operator̂Iq. Given any
q > 0, we can always writeλ = n− 1 + q and then define

D̂λu(t) =
1

Γ(1− q)
dn

dtn

t∫
−∞

u(τ)(t− τ)−qdτ.

Dq is an operator representing a time invariant linear system
consisting of a cascade combination of an ideal differentiator
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and a fractional integrator of order1− q. For Dλ we replace
the single ideal differentiator byn such that

D̂0u(t) =
1

Γ(1)
d

dt

t∫
−∞

u(τ)dτ = u(t) ≡
∞∫

−∞

u(τ)δ(t− τ)dτ

and

D̂nu(t) =
1

Γ(1)
dn+1

dtn+1

t∫
−∞

u(τ)dτ

= u(n)(t) ≡
∞∫

−∞

u(τ)δ(n)(t− τ)dτ.

In addition to the conventional and classical definitions of
fractional derivatives and integrals, more general definitions
are available including the Erdélyi-Kober fractional integral
[25]

t−p−q+1

Γ(q)

t∫
0

τp−1

(t− τ)1−q
f(τ)dτ, q > 0, p > 0

which is a generalisation of the Riemann-Liouville fractional
integral and the integral

tp

Γ(q)

∞∫
t

τ−q−p

(τ − t)1−q
f(τ)dτ, q > 0, p > 0

which is a generalization of the Weyl integral. Further de-
finitions exist based on the application of hypergeometric
functions and operators involving other special functions such
as the Maijer G-function and the Fox H-function [26]. More-
over, all such operators leading to a fractional integral of the
Riemann-Liouville type and the Weyl type to have the general
forms (through induction)

Îqf(t) = tq−1

t∫
−∞

Φ
(τ

t

)
τ−qf(τ)dτ

and

Îqf(t) = t−q

∞∫
t

Φ
(

t

τ

)
τ q−1f(τ)dτ

respectively, where the kernelΦ is an arbitrary continuous
function so that the integrals above make sense in sufficiently
large functional spaces. Although there are a number of
approaches that can be used to define a fractional differen-
tial/integral, there is one particular definition, which in terms
of its ‘ease of use’ and wide ranging applications, is of
significant value and is based on the Fourier transform, i.e.

dq

dtq
f(t) =

1
2π

∞∫
−∞

(iω)qF (ω) exp(iωt)dω

where F (ω) is the Fourier transform off(t). When q =
1, 2, 3..., this definition reduces to a well known result that
is trivial to derive in which, for example, the ‘filter’iω (for

the case whenq = 1) is referred to as a ‘differentiator’.
When q < 0, we have a definition for the fractional integral
where, in the case ofq = −1, for example, the filter(iω)−1

is an ‘integrator’. Whenq = 0 we just havef(t) expressed
in terms of its Fourier transformF (ω). This Fourier based
definition of a fractional derivative can be extended further to
include a definition for a ‘fractional Laplacian’∇q where for
n dimensions

∇q ≡ − 1
(2π)n

∫
dnkkq exp(ik · r), k =| k |

andr is ann-dimensional vector. This is the fractional Riesz
operator. It is designed to provide a result that is compatible
with the case ofq = 2 for n > 1, i.e.∇2 ⇐⇒ −k2 (which is
the reason for introducing the negative sign). Another equally
valid generalization is

∇q ≡ 1
(2π)n

∫
dnk(ik)q exp(ik · r), k =| k |

which introduces aq dependent phase factor ofπq/2 into the
operator.

E. Fractional Dynamics

Mathematical modelling using (time dependent) fractional
Partial Differential Equations (PDEs) is generally known as
fractional dynamics [27], [28]. A number of works have shown
a close relationship between fractional diffusion equations of
the type (wherep is the space-time dependent PDF andσ is
the generalized coefficient of diffusion)

∇2p− σ
∂q

∂tq
p = 0, 0 < q ≤ 1

and

∇qp− σ
∂

∂t
p = 0, 0 < q ≤ 2

and continuous time random walks with either temporal or
spatial scale invariance (fractal walks). Fractional diffusion
equations of this type have been shown to produce a frame-
work for the description of anomalous diffusion phenomena
and Ĺevy-type behaviour. In addition, certain classes of frac-
tional differential equations are known to yield Lévy-type
distributions. For example, the normalized one-sided Lévy-
type PDF

p(x) =
aq

Γ(q)
exp(−a/x)

x1+q
, a > 0, x > 0

is a solution of the fractional integral equation

x2qp(x) = aq Î−qp(x)

where

Î−qp(x) =
1

Γ(q)

x∫
0

p(y)
(x− y)1−q

dy, q > 0.

Another example involves the solution to the anomalous
diffusion equation

∇qp− τ
∂

∂t
p = 0, 0 < q ≤ 2.
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Fourier transforming this equation and using the fractional
Riesz operator defined previously, we have

∂

∂t
P (k, t) = −1

τ
kqP (k, t)

which has the general solution

P (k, t) = exp(−t | k |q /τ), t > 0.

which is the characteristic function of a Lévy distribution.
This analysis can be extended further by considering a fractal
based generalization of the Fokker-Planck-Kolmogorov (FPK)
equation [29]

∂q

∂tq
p(x, t) =

∂β

∂xβ
[s(x)p(x, t)]

wheres is an arbitrary function and0 < q ≤ 1, 0 < β ≤ 2.
This equation is referred to as the fractal FPK equation; the
standard FPK equation is of course recovered forq = 1 and
β = 2. The characteristic function associated withp(x, t) is
given by

P (k, t) = exp(−akβtq)

wherea is a constant which again, is a characteristic of a Lévy
distribution. Finally,d-dimensional fractional master equations
of the type [30], [31]

∂q

∂tq
p(r, t) =

∑
s

w(r− s)p(s, t), 0 < q ≤ 1

can be used to model non-equilibrium phase transitions where
p denotes the probability of finding the diffusing entity at a
position r ∈ Rd at time t (assuming that it was at the origin
r = 0 at time t = 0) andw are the fractional transition rates
which measure the propensity for a displacementr in units of
1/(time)q. These equations conform to the general theory of
continuous time random walks and provide models for random
walks of fractal time.
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