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Abstract 

The optical properties of acrylamide-based photopolymer doped with pure silica MFI-

type zeolites are studied by refractometric and spectrophotometric means. Dynamic Light 

Scattering and Transmission Electron Microscopy are used for zeolite characterization 

and laser refractometry and White Light Interferometric profilometry are used for surface 

characterization of the composites. Refractive indices and absorption coefficients of 

composites are determined from their transmittance and reflectance spectra. The 

calculated dispersion curves are further used for deriving the zeolites refractive index and 

porosity and the latter compared to the values of total pore volume obtained from N2-

sorption measurements. The impact of the doping level on the composite’s optical 

properties both on the surface and in the volume are discussed.  

Keywords: optical properties, photopolymer composites, zeolites, porosity, scattering. 

PACS codes: 78.66.Sq, 82.35.Np, 78.67.Bf, 78.20.Ci, 78.20.Bh, 42.70.Jk, 07.60.Hv. 
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1.0 Introduction 

The organic/inorganic nanocomposites are of great interest in advanced material science 

because they combine both the unique properties of the two constituents and may possess new 

properties not characteristic of the original components. In this way nanocomposites material 

exhibiting remarkable optical [1], mechanical [2,3], electrooptical [4], thermal [5] and electrical 

[6] properties can be obtained with a high potential for new applications [7,8]. Recently, 

controllable incorporation of solid nanoparticles such as SiO2 [9,10], TiO2 [11,12] and ZrO2 [13] 

in holographic photopolymers opens up the opportunity for optimization, improvement and 

further development of recording capabilities of widely used photopolymers. It has been shown 

that at optimum values of recording intensity and volume fractions of incorporated nanoparticles 

a redistribution of particles occurs leading to an increase of diffraction efficiency of the recorded 

gratings due to a higher refractive index modulation [9-13]. The main issues arising in these 

hybrid systems are the compatibility between the polymer host and the dopants and the optical 

losses due to scattering that increases with the size of nanoparticles and the difference between 

the nanoparticle refractive index and that of the photopolymer matrix. To overcome these 

difficulties, small particles [13], or particles with organically modified shells [14,15] have been 

used. A different approach has been recently adopted in the Centre of Industrial an Engineering 

Optics at Dublin Institute of Technology where we use zeolites nanocrystals as dopants [16-18]. 

Zeolites are microporous crystalline material with uniform pore size distribution on the  

molecular scale and well defined ordered structure [19]. They are compatible with acrylamide 

photopolymer and layers with good optical quality are easy to produce [17]. Further, because 

their refractive index is relatively close to that of the photopolymer [20] the optical losses are 

acceptably low even in the case of bigger nanoparticles. An additional advantage of using zeolites 

as dopants is related to the possibility of controlling the pore shapes and sizes, hydrophilicity, 

hydrophobicity and overall particle size [21]. However, for optimizing the performance of zeolite 

nanocomposites, accurate knowledge of their properties is required. Understanding and predicting 

the influence of porosity and optical properties of each phase on the effective optical properties of 

the zeolite nanocomposites will benefit all applications, in particular holographic sensor design 

[22]. Moreover, it will be a clear advantage to develop a method for characterizing the refractive 

index of the zeolites when they are already incorporated in the photopolymer matrix because it is 

well known that the zeolite properties are strongly influenced by the possibility of zeolite pores to 

host different atoms.  

In this paper we report studies of the  effective optical properties of photopolymer 

nanocomposites consisting of an acrylamide–based photopolymer matrix embedded with pure 
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silica MFI-type (Si-MFI) zeolites in different weight concentrations. Laser refractometry utilizing 

the method of the disappearing diffraction pattern [23,24] operated at three wavelengths and 

White Light Interferometric Profilometry were used for surface characterization of the 

composites. Transmittance and reflectance spectra of nanocomposites were used for 

determination of the effective refractive indices and absorption coefficients of studied samples. 

The calculated optical properties were further used for determination of zeolite density and 

refractive index by the developed calculation procedure.  

 

2.0. Experimental details 

 

2.1 preparation and characterisation of pure silica MFI-type zeolite nanoparticles  

Pure silica MFI particles (Si-MFI) with an average size of 70 nm were synthesized from a 

pre-hydrolyzed precursor solution having the following chemical composition: 7TPAOH: 

25SiO2: 1504H2O: 100EtOH (the numbers are oxide ratios). The silica source used for 

preparation of the above solution was  tetraethoxy silane (TEOS, Aldrich, 95 %) and the organic 

template was  tetrapropylammonium hydroxide (TPAOH, Aldrich, 1M aqueous solution). After 

hydrothermal treatment of the precursor solution at 90°C for 48 hours,  the Si-MFI crystals were 

purified in three steps of high-speed centrifugation (25000 rpm for 1 h) and redispersed in 

distilled water under ultrasonication. The nanocrystals were stabilized in the solution with a  solid 

content of 5.0 wt.% and a pH of 9.5 and further  used for doping of the acrylamide-based 

photopolymer. Figure 1 presents Dynamic Light Scattering measurements of the prepared 

zeolites.  
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Figure 1. Dynamic Light scattering measurements of colloidal solution of Si-MFI zeolites (the 

mean hydrodynamic diameter is 70 nm) 
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It is seen that the mean hydrodynamic diameter of particles is 70 nm and the size dispersion is 

relatively low (the width of the half maximum is 15 nm). The size of the zeolite crystals is also 

confirmed by Transmission Electron Microscopy using a Philips CM 200 FEG operated at 200 

kV. From the TEM image presented in figure 2 it can be seen that the particles are almost 

spherical in shape with physical size close to the hydrodynamic diameter. 

 

 
Figure 2. TEM images of pure silica MFI-type zeolites obtained at 200kV (the scale bar is 20 

nm).

 

2.2.  preparation and surface characterization of photopolymer nanocomposites 

The photopolymer nanocomposite consists of a soft photopolymer matrix containing pure 

silica MFI-type (Si-MFI) zeolite nanoparticles. The standard photopolymer solution developed in 

Centre for Industrial and Engineering Optics-Dublin Institute of Technology [25] is used as a 

matrix. It consists of  9 ml stock solution of polyvinyl alcohol (20 w/w%), 2 ml triethanolamine, 

0.6 g acrylamide, 0.2 g N,N-methylene bisacrylamide  and 4 ml Erythrosin B dye of 1.1mM dye 

stock solution. The Si-MFI zeolites (5.0 wt.% H2O colloidal solution) are added in concentrations 

from 0 to 7.0 wt.%. In order to obtain equal thicknesses of differently doped layers, distilled 

water is added to obtain a total volume of 50 ml. Amounts of 0.15 ml of the well mixed solution 

were gravity settled on  levelled BK7 optical glass substrates with diameter of 2 cm, so the upper 

sides of the layers were open to the air. The thickness of the layers after drying for 24 h in 

darkness under normal laboratory conditions (t o = (21 - 23) oC and RH = (40 - 60) %) was 30 ± 

3μm. The dry layers were then exposed simultaneously to a UV and visible light (LV202 

Megaelectronics) with intensity 2.5 mW/cm2 for 30 min to achieve complete 

photopolymerisation. 
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The surface morphology of the nanocomposites was studied using a White Light 

Interferometric (WLI) surface profiler, MicroXAM S/N 8038, with vertical and lateral resolution 

of 1 nm and 1 μm, respectively. Figure 3 presents the surface images for undoped and 1, 3, 5 and 

7 wt.% doped layers. The surface morphology for undoped layers is flat. With addition of 

nanoparticles it becomes roughened. It is seen that Si-MFI zeolites are distributed randomly on 

the surface and that there is a correlation between the doping level and height and density of 

particles on the surface. The increase of zeolite concentration in the layers leads to increase of 

peak heights and a decrease of the distance between  them. Additional measurements of the 

surface roughness presented in figure 3(f) showed that root-mean-squared (rms) roughness 

increases from about 1 nm in the case of undoped layer to 7 nm for 7 wt% doped samples.  

 
Figure 3. Surface profiles of undoped (a) and 1 wt% (b), 3wt% (c), 5 wt% (d) and 7 wt% (e) Si-

MFI doped layers obtained using White Light Interferometric Surface profiler. Rms roughness as 

a function of doping level (f). 

 

3.0 Results and discussions 

 

3.1. Surface refractive index 

Surface refractive indices of the layers, ns, were measured at three wavelengths (406, 656 

and 1320 nm) using a modified laser refractometer described in detail elsewhere [23,24]. Briefly 
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this refractometer is similar to the Abbe refractometer but one of the prisms is replaced by a 

diffraction grating [23,24]. In this case the value of the critical angle is determined as the angle at 

which the diffraction pattern disappears. The determination of refractive index of the layer is 

straightforward when the critical angle, refractive index and refracting angle of the prism are 

known. The error in ns was estimated to be ±1.10-3. It was determined by the accuracy with which 

the critical angle was measured and confirmed experimentally by measuring the refractive index 

of distilled water and comparing the obtained value with literature data [24]. Despite the fact that 

the penetration depth of the method has been estimated to be around 1μm [26] we use the term 

“surface refractive index” to distinguish these values from the volume values determined by 

spectrophotometric measurements.  

Figure 4 presents the dependences of surface refractive index on zeolite concentration 

measured at three wavelengths.  It is seen that the decrease in ns with doping level is similar for 

the three wavelengths - 0.008 for 406 nm and 506 nm and 0.006 for 1320 nm.  
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1.48

1.49

1.50

1.51
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Si-MFI concentration [wt.%]

 406 nm
 656 nm
 1320 nm

 
Figure 4. Surface refractive index as a function of Si-MFI concentration measured by laser 

refractometry at designated wavelengths: 406nm (■), 656nm (●) and 1320nm (▲).  

 

Bearing in mind that the zeolite refractive indices (1.2-1.4 [20,27]) are less than that of the 

photopolymer (about 1.50 [28]) the observed decrease of ns with increasing dopant concentration 

can be expected. However, if we regard the surface layer as an effective medium with different 

amounts of voids, its refractive index can be expected to decrease with increasing the voids (i.e 

roughness). Therefore it is difficult to draw a conclusion about the impact of doping level on the 

composite refractive index if only surface measurements are considered.  
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3.2. Volume refractive index 

The next step in our investigation was determination of volume refractive index. We do 

not expect the surface roughness to have noticeable influence on the measured parameters 

because the contribution of the modified surface layer with thickness of about 50 nm (in the case 

of the highest zeolite concentration) is insignificant when the thickness of the investigated layer is 

about 30 μm.  

Volume refractive indices of the photopolymer nanocomposites were determined by 

measuring transmittance, T and  reflectances Rf and Rb from front (air) side and back (substrate) 

side of the layers, respectively using a high precision UV-VIS-NIR spectrophotometer, CARY 5E 

(VARIAN), with an accuracy of 0.1% in T and 0.5% in R. The simultaneous determination of 

refractive index, n, extinction coefficient, k and thickness, d of the layers was performed by 

minimization of the goal function F consisting of discrepancies between measured (“meas”) and 

calculated (“calc”) spectra:   

 

( ) ( ) ( )222
m bmeasbcalcfmeasfcalceascalc RRRRTTF −+−+−=    (1) 

 

F was minimized at each wavelength λ in the spectral range from 400-800 nm by a Nelder-Mead 

simplex method [29] using a dense grid of initial values of n, k and d.  

In calculating T and R of the samples we assumed that the multiple transmitted and 

reflected waves at each boundary are incoherent and do not interfere with each other. In this case 

instead of summing their amplitudes we summed their intensities. Then T and R of a film 

positioned between two media (air and substrate) can be expressed by: 
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where α=4πk/λ is the absorption coefficient in [cm-1], taf and tfs are the transmitted intensities at 

air/film and film/substrates boundaries respectively and raf  and rfs are the respective reflected 

intensities, that are functions of refractive indices of the two surrounding media-n0 and nsub, and 

of the complex refractive index of the layer n =n+ik:  
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In eq. 3 the symbol (*) denotes the complex conjugate. The calculation of Rb is performed by 

substitution of n0 by nsub in the expression for raf  and nsub by n0 in the expression for rfs (eq.3). 

The validation of this approach has been performed by high resolution measurements of T and R 

in the transparent range of the sample (λ > 600 nm) using very small wavelength steps (0.1 nm). 

The obtained spectra were free from interference peaks. If the multiple reflected and transmitted 

waves from upper and lower boundaries of the layer were coherent they would interfere and 

maxima and minima should appear in the measured spectra at wavelengths satisfying the 

condition [30]: 

λmnd =2 ,      (4) 

where n and d are refractive index and thickness of the layer and m is an integer for maxima and a  

half-integer for minima. Simple estimations using eq. 4 showed that for n=1.45 and d=30 μm the 

wavelength separation for two consecutive maxima positioned around 800 nm (m=109 and 110) 

is 7.3 nm. Considering both that the measured spectra are interference free and that the  

wavelength resolution is sufficient to resolve peaks that are expected to be 7 nm apart, we can 

assume that the multiple reflected and transmitted waves do not interfere.  

Figure 5 presents dispersion curves of refractive index and absorption coefficients for 

Si-MFI doped photopolymer calculated by minimization of the goal function F (eq.1). The errors 

in calculated values originating from errors in measured parameters (T and R) [31] are also 

shown. It is seen that the doping results in a decrease in n and an increase in α. As in the case of 

ns, considering that refractive index of zeolites is less than that of photopolymer, the decrease in n 

is expected.  
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Figure 5. Dispersion curves of refractive index (a) and absorption coefficients (b) for Si-MFI 

doped photopolymer calculated by minimization of the goal function F (eq. 1). 

 

The comparison between figure 4 and figure 5 shows that refractive index on the surface is higher 

than that in the volume and that the influence of doping is more pronounced in the volume 

(doping level of 7wt% leads to decrease in volume n by 0.05 but only by 0.008 in the surface 

refractive index). A possible reason for higher ns could be that the zeolites are differently 

distributed through the volume and the surface layer is poorer in particles compared to the rest of 

the layer. But the difference between ns and n exists for both doped and undoped layers. This 

leads us to assume that the most probable reason is that the surface dries faster than the volume 

and as a result the amount of residual water within is smaller leading to higher density and 

refractive index, respectively. Concerning the weaker influence of doping on the surface 

compared to the volume, we believe that the most probable reason is that some reactions take 

place on the surface. We expect that complementary confocal Raman spectroscopy investigations 

of the nanocomposite surface and volume which are in progress in our group will clarify further 

the reasons of different influence of particles on the surface  and on the volume. 

From figure 5(b) it is seen that absorption coefficient increases with doping level. The 

observed peak around 500 nm coincides with the peak in dye absorption, so we can assume that it 

is due to a small residual amount of dye in the layer. However, the general  trend of slight 

increase in the optical losses is most probably due to the scattering rather than to absorption. To 

check this assumption we measured the diffuse reflectance of nanocomposites layers using an 

integrating sphere and a Spectralon® diffuse reflectance standard. The results are  presented in 

Figure 6. For comparison the diffuse reflectance of the bare glass substrate is also shown.  
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Figure 6. Diffuse reflectance of the Si-MFI doped photopolymers 

 

The curves show  similar trends - the reflectance increases both with decreasing wavelength and 

increasing doping level. The comparison with the spectrum of bare glass substrate shows that 

generally the layers are of good optical quality - the scattering is relatively small  (about 0.5%) 

even for high concentration of the dopants.  

 

3.3. Determination of zeolites' refractive index 

For determination of zeolites’ refractive index we used the Bruggeman effective medium 

theory [32]. The idea of all effective medium approximations is to regard the nanocomposites as a 

medium with effective properties that depend on the properties of the phases present and their 

volume fractions. In the case of two components medium (photopolymer and zeolite 

nanoparticles) the Bruggeman approximation has the form: 

 

1;0
22

=+=
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−

+
+

−
zp

ez

ez
z

ep

ep
p ffff

εε
εε

εε
εε

,   (5) 

 

where fp and fz are the respective volume fractions of photopolymer and zeolite particles and εp,  εz 

and εe are the respective dielectric constants (ε=n2) of photopolymer, nanoparticles and effective 

media. The two parameters εp and εe of eq.5 are already determined (εp and εe being the squared 

refractive index of undoped and differently doped samples, respectively) but there are still two 

unknown parameters (εz and fz) and only one equation. Instead of using eq.5 at one wavelength we 

can use a system of similar equations at each wavelength in the spectral range 400-800 nm (for 
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example if the step is 5 nm the number of equations will be 81). However, in this case due to the 

expected dispersion of nz (nz is not a constant in the investigated spectral range) the number of 

unknowns also increases (the number of unknowns will be 82). To overcome this problem we 

used the Wemple-Di Domenico dispersion equation [33] for describing refractive index of the 

zeolites: 

 

22
0

02 1)(
EE

EEEn d
zz

−
+==ε ,     (6) 

 

where E0 and Ed are the so-called effective and dispersion energy, respectively and E is the light 

energy. In this way we limited the number of unknown to three (fz,  E0 and Ed) keeping the same 

number of equations. The unknown parameters are determined through minimization of the goal 

function G (Eq. 7) using a non-linear subspace trust region method combining the interior-

reflective Newton method with a preconditioned conjugate gradients method [34]: 
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where εz as a function of E0 and Ed (eq. 6) is used in eq. 7. For accurate and unambiguous 

minimization one needs proper initial values for the unknown parameters. Because such 

information is not available we used the following approach. The minimization procedure was 

run using a wide grid of initial values for the unknown parameters (E0, Ed = 2 - 18 and fz = 0 - 0.7) 

and the error function Err of the minimization was calculated as the residual value of the goal 

function at each solution: 

 

∑
=

=
81

1

2
0 ),,(

i
dz EEfGErr .     (8) 

 

The dependence of  Err on E0 and Ed and its contour plot are shown in figure 7(a) and  7(b). It is 

seen that Err has a minimum value in the range Ed =7-10 eV and E0 = 11.5-14 eV. In the next 

step we used these values as initial values and ran the minimization procedure again but using a  

narrower grid of initial values. 
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Figure 7. Three-dimensional (a) and contour (b) plots of the minimization error Err, calculated 

from eq. 8, as a function of E0 and Ed.  

 

The contour plot of error (eq.8) for the second minimization is shown in figure 8. It is seen that 

the solution with minimal errors can be found in the narrower range - Ed ~ 9.5 eV and  E0 ~ 11.9 

eV. Note that the value of Err decreases by more than a factor of two when a finer grid of initial 

values is used.  
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Figure 8. Contour plot of the error Err of minimization run with a narrow grid of initial values 

chosen from the area with lower error from the previous minimization. 
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In the final step the minimization was run with initial values of Ed = 9.5 eV,  E0 = 11.9 eV and 

fz=0.01-0.7 and the final solution was chosen as the solution with minimal error. The Err value 

for the final solution was less than 10-7. 

Figure 9 presents the comparison between the calculated refractive index of Si-MFI 

zeolites (using the procedure described above) and the refractive index of amorphous SiO2 [35]. 

The obtained values are in a good agreement with values obtained in the literature [27]. 
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Figure 9. Comparison between refractive indices of pure silica MFI-type zeolites calculated using 

Bruggeman effective media approximation and the refractive index of amorphous silica [35] 

 

If one regards the zeolites as an effective medium consisting of two phases – air and amorphous 

silica one can calculate the volume fraction of the two phases using the Bruggeman effective 

media approximation (Eq. 5). Further, when the volume fractions of air and silica are known one 

can determine the density of zeolites using literature data for silica density. The density of the 

zeolites phase ρz can be expressed as: 
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=    (9) 

 

where ma, ρa, Va  and mb, ρb, Vb  are the mass, density and volume of air and silica respectively 

and φa and φb are their volume fractions. The calculations give a value of 0.19 for φa  and 0.81 for 

φb  leading to a  value of zeolite density of 1.78 g/cm3 when the value of 2.2 g/cm3 is used for 

SiO2 density. We should note here that the theoretical calculation of MFI zeolites density based 
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on the frame work density leads to value of 1.76 g/cm3 [36] which is in excellent agreement with 

the value calculated from refractive index data. Further considering that the densities of zeolites 

and silica are 1.78 g/cm3 and 2.20 g/cm3, respectively then  1g of each substance occupied 0.56 

cm3 and 0.45 cm3. This means that the pore volume in zeolites can be estimated to be 0.11 cm3/g. 

To validate the porosity values obtained by optical means N2-sorption measurements (figure 10) 

have been conducted on thin layers prepared from zeolites using spin-coating deposition 

technique. 
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Figure 10. Nitrogen adsorption isotherms on Si-MFI zeolite thin films (open symbols denote 

desorption) 

 

The rise of sorption at p/p0 <0.05 corresponds to the filling of the micropores belonging to the 

zeolitic structures [37]. The small increase of amount adsorbed at relative pressure  p/p0 = 0.3-0.4 

indicates the presence of mesopores. The hysteresis loop at p/p0 > 0.6 is related to the capillary 

condensation in the inter-particle voids [37]. Using the calculation procedure described in detail 

elsewhere [37] a value of micropore volume of 0.12 cm3/g was obtained. This value is in an 

excellent agreement with the value calculated from refractive index measurements (0.11 cm3/g) 

when zeolites are considered as an effective medium consisting of SiO2 and pores. Furthermore, 

this agreement showed that the pores of  Si-MFI zeolite remain empty after the nanoparticles are 

added to the photopolymer mixture. This is consistent with the fact that the size of the pores is 

relatively small [36] and none of the organic components of the photopolymer are small enough 

to penetrate the openings and with the fact that the Si-MFI is hydrophobic [21] and the openings 

would not be filled with the water used as a solvent for the photopolymer.  
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The fact that the pores of the zeolites remain empty can be regarded as an advantage that favors 

the application of Si-MFI nanocomposites as medium for holographic recording. Otherwise, if the 

water enter the zeolites pores the zeolites refractive index would increase due to the replacement 

of air (n=1) with water (n=1.33). Consequently, when a redistribution of the nanoparticles is 

achieved, the refractive index modulation (the difference between the refractive index in areas 

rich of nanoparticles and areas with little or no nanoparticles present) will be smaller for the 

nanocomposites containing nanoparticles filled with water when compared with the 

nanocomposites containing empty pores nanoparticles. In the case of the filled with water 

nanoparticles in order to obtain the same difference in refractive index more zeolites should be 

incorporated in the photopolymer. This can lead to an increase of the optical losses due to 

scattering and may finally results in poor optical quality of the layers. 

 

 

 

Conclusions 

The optical properties (refractive index and absorption coefficient) of pure silica MFI doped 

acrylamide-based photopolymer were determined using refractometric and spectrophotometric 

measurements. It is found that the doping results in a decrease in refractive index both on the 

surface and in volume of the nanocomposites. The influence of doping is more pronounced in the 

volume of the composite than on the surface. A doping level of 7wt% leads to a decrease in 

refractive index of 0.05 (3.5 %) in the volume and 0.008 (0.5 %) on the surface. The observed 

increase in calculated absorption coefficients has been related to the optical losses due to 

scattering confirmed by diffuse reflectance measurements and root-mean-squared (rms) 

roughness measurements. The relatively small values of rms roughness (1nm for an undoped 

layer and 7 nm for a 7wt% doped layer) along with the small increase of diffuse reflectance for 

doped samples (0.5% in the case of heavily doped composites)  indicate good optical quality of 

the nanocomposites.  

A calculation procedure for deriving the zeolites refractive index and porosity/density has been  

developed. The Bruggeman effective media approximation is used both for zeolites refractive 

index calculation, regarding the nanocomposites as an effective medium  of polymer and zeolites 

and for zeolite porosity determination when  zeolites are regarded as an effective medium 

consisting of  silica and pores. The microporosity of silica MFI zeolites  calculated by optical 

means (0.11 cm3/g) is in very good agreement with the micro pore volume calculated from N2 

sorption measurements (0.12 cm3/g). The calculated density of Si-MFI zeolites (1.78 g/cm3) 
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agrees very well with the theoretically calculated density based on framework density (1.76 

g/cm3). 
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