2011

Di-Tert Butyl Chlorosilane

Gráinne Hargaden  
*Technological University Dublin*, grainne.hargaden@tudublin.ie

Timothy O'Sullivan  
*University College Cork*, tim.osullivan@ucc.ie

Follow this and additional works at: [https://arrow.tudublin.ie/scschcpsart](https://arrow.tudublin.ie/scschcpsart)

Part of the Chemistry Commons

**Recommended Citation**


This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.
Di-tert-butylchlorosilane

\((t-Bu)\text{}_{2}\text{SiClH}\)

[56310-18-0] \hspace{1cm} \text{C}_{4}\text{H}_{19}\text{ClSi} \hspace{1cm} \text{MW 178.775}

Physical Data: bp 82-85 °C/45 mmHg; flash point 39 °C – closed cup; \(d\). 0.880 g/cm\(^3\)

Form: clear, colourless liquid

Preparative Methods: Can be prepared by the chlorination of di-tert butylchlorosilane, or by treatment of silicon tetrachloride with \(t\)-BuLi. \{Dexheimer, 1975 \#78\} \{Doyle, 1975 \#77\}

Purification: Distillation

Handling, Storage and Precautions: Moisture sensitive; avoid strong oxidizing agents and strong bases; flammable; causes burns; avoid inhalation of vapour or mist; use in a fume hood.

**Intramolecular reducing agent**

Considerable study of alkoxysilanes as intramolecular hydrogen transfer agents has been undertaken (eq X).\{Curran, 1995 \#80\} \{Curran, 1995 \#45\} The di-tert-butyloxysilanes, prepared from di-tert-butylchlorosilane and the requisite alcohol, are especially effective and are generally more stable to column chromatography.
These alkoxy silanes are particularly useful for making five-membered rings via a 5-endo-trigonal radical cyclisation from a selenide precursor (eq X).{Clive, 1995 #48}{Clive, 1996 #42} It was observed that the (di-tert-butyl)silyl group may be difficult to cleave in the absence of an adjacent oxygen function.

This approach has been further developed to encompass polycyclic compounds.{Clive, 2001 #28} The reaction proceed by a sequential 5-exo-diagonal cyclization, followed by 1,5-hydrogen transfer and then a final 5-endo-trigonal cyclization. This methodology has been applied to the synthesis of optically pure products when a single enantiomer of the chiral alcohol is used as the initial substrate.{Clive, 2001 #27} Additionally, alkyl iodides can be substituted in place of the selenide precursors.{Martinez-Grau, 1997 #38}{Martinez-Grau, 1995 #81}

The (di-tert-butyl)silyl group has also proved effective for the conversion of cis-2,5-disubstituted THF derivatives to the corresponding of trans-2,5-disubstituted rings.{Donohoe, 2008 #9} Activation of the hydroxyl group followed by a 1,2-hydride shift
generates the oxonium ion at the C-2 position. The di-tert-butyloxysilane then delivers the hydride stereospecifically to form the *trans*-disubstituted product. This motif is found in many natural-product targets and a similar approach been successfully applied to the synthesis of (+)-Sylvaticin. {Donohoe, 2009 #5}

Silicon-Hydride

Di-tert-butyloxysilane has been used in a number of synthetic sequences which involve a silicon-hydride transfer as the key step.

Treatment of a γ–iodoallylic alcohol with NaH and *t*-Bu₂SiClH afforded the corresponding silylated alcohol which was then exposed to UV irradiation in the presence of 10% hexabutylditin in a so-called UniMolecular Chain Transfer (UMCT) reaction of silicon hydrides to afford the silicon iodide (eq xx). {Martinez-Grau, 1997 #38}
Di-tert-butylchlorosilane has also found application in the Rhodium-catalyzed Si-H insertion of carbenoids, formed by the decomposition of α-diazoesters (eq xx). The chlorosilanes generated can be readily converted to alkoxy silanes by treatment with an alcohol and a base. In a study of a range of chlorosilanes by Landais, it was found that the bulky t-Bu₂SiClH was found to be the most reactive in this process.

{Andrey, 1993 #54}
{Andrey, 1995 #46}
{Landais, 1997 #40}

**Selective protecting group**

Silyl groups have been widely employed as protecting groups for alcohols. Where a choice exists, typical silylation conditions lead to selective protection of the less-hindered hydroxy group. In contrast, di-tert-butylichlorosilane can be used for the one-pot silylation of the internal hydroxy group of a 1,2-alkanediol. {Tanino, 1998 #34} The observed selectivity arises from the kinetically controlled ring cleavage of the cyclic silyl ether intermediate where lithium complexes preferentially at the less hindered oxygen. Selectivity was noted to increase when \( N,N,N',N' \)-tetramethylethylenediamine (TMEDA) was present in the reaction mixture.

\[
\begin{align*}
1. \text{n-BuLi} \\
2. \text{t-Bu₂SiClH} \\
3. \text{n-BuLi, TMEDA} \\
R = \text{C}_4\text{H}_9 (78\%) \\
R = \text{c-C}_6\text{H}_{11} (93\%) \\
R = \text{BnOCH}_2 (79\%) \\
R = \text{C}_6\text{H}_5 (87\%)
\end{align*}
\]

\[
\text{R} \quad \text{OH} \quad \text{OH} \quad \text{OH} \quad \text{OH} \\
\text{R} \quad \text{OH} \quad \text{OH} \quad \text{OH} \quad \text{OH} \\
\text{R} \quad \text{OH} \quad \text{OH} \quad \text{OH} \quad \text{OH} \\
\text{R} \quad \text{OH} \quad \text{OH} \quad \text{OH} \quad \text{OH}
\]
Silyl ether protecting groups are of interest in the synthesis of compounds containing vinyl ether groups, such as in the plasmalogens, where other protecting groups strategies invariably lead to decomposition. {Van, 2007 #12}

![Chemical structure](image)

**Protection of diols**

Di-tert-butyldichlorosilane has been used in the preparation of di-tert-butylsilyl ditriflate, a highly effective reagent for the protection of a wide range of 1,2-, 1,3- and 1,4-diols under mild conditions (X) {Corey, 1982 #69}

\[
t\text{-Bu}_2\text{SiCl} + 2\text{CF}_3\text{SO}_3\text{H} \rightarrow t\text{-Bu}_2\text{Si(OSO}_3\text{CF}_3)_2 + \text{H}_2 + \text{HCl}
\]

![Chemical structures](image)

**Preparation of alkynylsilanes**

Alkynylsilanes are versatile synthetic intermediates which display interesting reactivity. {Molander, 2002 #23} {Mukherjee, 2009 #3} Such groups allow for the introduction of allene substituents at the C3 position of 2,3-epoxyalcohols. {Tanino, 2000 #30} The regioselectivity is dependent on the configuration of the epoxide moiety with cis-epoxides proceeding by 5-exo type cyclization while trans-epoxides undergo a 6-endo
cyclization. The allenylsilane intermediates are readily converted to the corresponding allenes with TBAF in 1-methyl-2-pyrrolidione (NMP).

Hydrosilylation of alkynes

Di-tert-butylechlorosilane has been utilised in the preparation of (E)-di-tert-butyl-(1-heptenyl)silanol by hydrosilylation of 1-heptyne and hydrolysis of the intermediate chlorosilanes (eq xx). {Denmark, 2006 #14}

Internal controlling groups

Di-tert-butylsilyl ethers have been used as a means of controlling the regioselectivity and stereoselectivity in certain reaction. The ability of silyl groups to stabilise carbocations at the β-position has been exploited in the diastereoselective synthesis of cyclic polyols. {Tanino, 1997 #36} The di-tert-butylsilyl ether group undergoes regio- and stereoselective migration in the presence of of lithium and 4,4'-di-tert-butylbiphenyl (DBB) followed by cyclisation under
basic conditions to form the allylsilane. Epoxidation of the double bond occurs primarily on the face opposite to the bulky \( t \)-butyl group. Ring-opening induced by \( \text{SiO}_2 \) leads to a \( \beta \)-silyl cationic intermediate and stereoselective introduction of the hydroxy group via neighbouring-group participation.

By linking reactive dienes and dienopiles with silaketal tether, the course of the intramolecular Diels-Alder reaction can be controlled with a high degree of stereoselectivity and with regiochemistry opposite to that predicted by bond polarization models.\cite{Gillard, 1991 #61} The cyclisation proceeds in a ‘head-to-tail’ manner and the methyl group on the diene strongly favours an endo cyclisation due to steric factors imposed in the transition state. The \( \text{di-}t \text{-} \text{ert} \)-butylsilyl group was found more thermally stable than related alkylsilyls.

**Applications in PET imaging**

Di-\( \text{tert} \)-butylchlorosilane has been utilised in the synthesis of silicon-based building blocks for \( ^{18}\text{F} \)-radiolabeling of peptides for application in PET imaging. \cite{Mu, 2008 #8}
Nucleophilic substitution of di-tert-butylchlorosilane with \{4-[2-(tetrahydro-2H-pyran-2-yloxy)ethyl]phenyl\}lithium proceeded in 74% yield, the product of which was further modified to afford the $^{18}$F-radiolabeled compound. (eq. X)

\[
\begin{align*}
\text{Br} & \quad \text{THPO} \quad \text{t-Bu} \quad \text{SiClH} \\
\text{THPO} & \quad \text{t-Bu} \quad \text{Si} \quad \text{H} \\
\end{align*}
\]

74%

The lithiated derivative of di-tert-butylchlorosilane has been utilized in the synthesis of 3’-silylated thymidine derivatives for application in PET imaging. (eq. X) {James, 2010 #2}

\[
\begin{align*}
\text{H} & \quad \text{t-Bu} \\
\text{t-Bu} & \quad \text{Si} \\
\text{N} & \quad \text{N} \\
\text{O} & \\
\text{T} & \\
\end{align*}
\]

(XX)

Formation of organometallic complexes

Di-tert-butylchlorosilane has been used in the preparation of a range of organometallic complexes, many through an oxidative addition process to Iridium, Manganese and Molybdenum. {Handwerker, 1992 #58} {Koloski, 1994 #53} {Zarate, 1995 #47} {Driess, 1996 #44}

\[
\begin{align*}
\text{t-Bu}_2\text{SiClH} & \quad \text{NH}_3 \quad \text{Et}_2\text{O} \\
& \quad \text{t-BuSiNH}_2 \\
\text{Al} \quad \text{i-Bu}_3 & \quad \text{hexane reflux} \\
& \quad 1/2[\text{i-Bu}_2\text{AlN(H)Si} \quad \text{t-Bu}_3]_2 \\
\end{align*}
\]

(XX)

They have also been utilised in the synthesis of aluminium amides (eq xx) and metallasiloxanes containing Si-O-Sn linkages (eq xx). {Choquette, 1992 #60} {Beckmann, 1998 #33}
\[
\text{t-Bu}_2\text{SiClH} + (\text{t-Bu}_2\text{SnO})_3 \xrightarrow{\text{CDCl}_3, \text{reflux}} \begin{array}{c}
\text{t-Bu} \swarrow \text{Si} \nearrow \text{t-Bu} \\
\text{t-Bu} \searrow \text{O} \nearrow \text{t-Bu} \\
\text{t-Bu} \swarrow \text{Sn} \nearrow \text{t-Bu} \\
\text{t-Bu} \searrow \text{O} \nearrow \text{Sn} \swarrow \text{O} \nearrow \text{Sn} \searrow \text{t-Bu}
\end{array} \\
+ \begin{array}{c}
\text{t-Bu} \swarrow \text{O} \nearrow \text{Si} \swarrow \text{O} \nearrow \text{Sn} \\
\text{t-Bu} \searrow \text{t-Bu} \\
\text{t-Bu} \swarrow \text{t-Bu} \\
\text{t-Bu} \searrow \text{t-Bu} \\
\text{t-Bu} \swarrow \text{t-Bu} \\
\text{t-Bu} \searrow \text{t-Bu}
\end{array} + \text{t-BuSnCl}_2
\] (XX)

References

Contributors