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ABSTRACT: Footbridges with low natural frequency are susceptible to excessive vibration serviceability problems if the 

pedestrian pacing frequency matches the bridge natural frequency. Much research has been done into describing the response of 

a footbridge to single pedestrian loading. However, many pedestrians carry additional mass such as shopping bags and 

backpacks, and this has generally not been accounted for in previous research. This work examines this problem using an 

experimental bridge excited with many single pedestrian events, both with and without additional mass. The vertical 

acceleration response is measured and compared to moving force, moving mass, and moving spring-mass-damper models. The 

influence of the additional mass on the results is assessed. It is shown that current theoretical models do not provide an accurate 

description of the walking forces applied by a pedestrian traversing an excessively vibrating structure. When a pedestrian carries 

additional mass the response of the footbridge increases however the theoretical models overestimate this increase. 

KEY WORDS: Pedestrian; Bridge; Vibration; Mass; Modal; Finite element; Experiment. 

1 INTRODUCTION 

1.1 Background 

With improved design techniques, modern footbridges have 

become increasingly slender and often have a low vertical 

natural frequency. Pedestrian pacing occurs at a frequency of 

about 2 Hz and if this is similar to the footbridge natural 

frequency, vibration problems can result. The mass of the 

pedestrian is also an important component of the excitation 

imparted to the bridge. Further, many pedestrians also carry 

additional mass, especially in a city environment (such as 

commuters or shoppers, for example). 

In the assessment of footbridge vibrations, the mass used in 

pedestrian excitation models is commonly understood to be 

the body mass of the pedestrian. Additional carried mass has 

not been generally included in the literature [1]. It has been 

noted [2] that a pedestrian carrying a loaded backpack will 

adjust their gait to reduce the energy cost of walking and 

make it more comfortable. The response of a lively footbridge 

to a pedestrian carrying mass is examined in this paper.  

1.2 Approach of this work 

This work examines the influence of additional mass on 

footbridge excitation using physical testing and numerical 

models. A timber footbridge with low natural frequency is 

constructed and experimental modal analysis is carried out to 

determine its dynamic properties. A range of pedestrian 

loading scenarios are measured. The midspan acceleration 

response under different pedestrians, both with and without 

mass, is measured.  

The numerical models typically employed to estimate 

pedestrian excitation are a moving force, moving mass, and a 

moving spring mass damper model. These models are 

calibrated to the test conditions and used to predict the 

measured responses. 

1.3 Bridge structure test specimen 

A timber footbridge deck is used for the physical testing, as 

shown in Figure 1. It is designed to have a vertical 

fundamental natural frequency within a range which is 

sensitive to pedestrian-induced vibrations. The bridge is 

simply-supported, 8 m long, and 0.7 m wide. It has a mass of 

14.14 kg/m and a flexural stiffness of 422 kNm
2
. Transverse 

bridging pieces are used at 1 m centres to ensure load sharing 

across the cross-section. The plywood skin is glued to the 

joists and bridge pieces to ensure full composite action. 

 

 

(a) experimental set up; 

 

(b) cross-section through bridge deck; 

Figure 1. Laboratory testing arrangement. 
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2 EXPERIMENTAL MODAL ANALYSIS 

2.1 Overview of testing 

An experimental modal analysis (EMA) is performed on the 

bridge structure to determine its natural frequencies and their 

associated damping ratios and mode shapes. The EMA 

involves simultaneously measuring an input force, f(t), and the 

resulting output response, x(t). The input force is applied 

using an instrumented impact hammer. This excitation method 

is chosen in order to overcome the effects of mass loading 

which is a critical consideration in the testing of lightweight 

structures [3].  

This paper examines the mid-span response of the model 

footbridge. As a result, the odd-numbered modes of vibration 

are of most interest. However, an accelerometer is mounted at 

quarter span to identify the second mode of vibration also. 

The impact application and the response measurement are 

located centrally in the cross-section so that torsional modes 

are not excited insofar as is possible. 

The bridge structure was impacted at three locations along 

the span; the mid-span and the two quarter-spans (Figure 2) 

and the resulting acceleration response measured. This results 

in a time-domain description of the behaviour of the structure. 

However the frequency-domain behaviour provides a more 

convenient description from which modal parameters may be 

extracted. Data is transformed between the time and frequency 

domain using the Fast Fourier Transform (FFT). 

 

 

Figure 2. Location of accelerometers and impacts. 

A sample period of 25 seconds is measured to allow the 

vibrations to decay. However, as the structure is very lightly 

damped, the transient response does not always decay to zero 

within the sampling period. To minimise the effects of 

leakage in the transformed data a window (or weighting 

function) is applied to the measured data. For impact 

excitation a force window is applied to the input force and an 

exponential window to the output response [4], [5]. 

2.2 Estimation of Frequency Response Function 

The transducers used to measure the input and output 

inevitably contain unwanted noise and so averaging is 

required to minimize its effect on the measurements. The 

power spectrum of the recorded signal is used for averaging. 

The Frequency Response Functions (FRFs), H(ω), for impact 

testing have been estimated in terms of the cross- and auto-

power spectra by Dossing [4] and Ramsey [6] using: 
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where GFX(ω) is the cross spectral density between the input 

f(t) and the output x(t), and is given by: 

 ( ) ( ) ( )FXG F Xω ω ω∗=  (2) 

GXX(ω) is the auto power spectral density of the output x(t): 

 ( ) ( ) ( )XXG X Xω ω ω∗=  (3) 

In the above, F(ω) is the Fourier spectrum of the input f(t), 

X(ω) is the Fourier spectrum of the output, and a superscript 

asterisk denotes the complex conjugate. Equation (1) then 

yields a complex-valued function of frequency from which the 

magnitude and phase of the response is calculated [5]. 

The coherence, γ
2
(ω), is a measure of the noise in the 

system and is defined as [4]: 
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where 20 ( ) 1γ ω≤ ≤  and GFF(ω) is the auto power spectral 

density of the input f(t) and is given by: 

 ( ) ( ) ( )FFG F Fω ω ω∗=  (5) 

Ramsey [6] described the coherence in a system as a measure 

of the ‘causality’, that is the proportion of the measured 

response that is caused totally by the measured input. A 

coherence of 1 implies that there is no noise in the 

measurements (and so they are ‘perfect’) whereas a coherence 

of 0 implies the measurement is pure noise. Of course, in 

practice perfect measurements are not possible and so 

coherence will typically be under unity. According to Dossing 

[4] the coherence will be less than 1 if the location and 

direction in which the impact is applied is ‘scattered’, 

meaning that if the impact is not in the same location and 

direction each time some variations in results may be 

expected. The coherence is also expected to be less than 1 

where there is an anti-resonance (i.e. where the signal-to-noise 

is ratio is poor) or the impact point is close to a node point for 

a particular mode of vibration. 

2.3 FRF of unloaded bridge 

Using the procedure described, the estimates for the FRF and 

coherence for each excitation point are determined. The 

averaged results are shown in Figure 3. Resonant points can 

be identified by a peak in the FRF magnitude or a value of +/- 

90° for the phase. The coherence for each point is low at the 

lower frequencies for each of the excitation points since the 

accelerometers have difficulty in recording low frequency 

signals. The response of the bridge to low frequency 

excitation is very small. Therefore the signal recorded by the 

accelerometers at low frequencies is small in comparison to 

the noise and so a low coherence value is expected. The 

magnitude of the response at location 2 (mid-span) (shown in 

Figure 3(d)) is small in comparison to the other three peaks. 

This is because point 2 is a node point for the second mode. 

Each of the excitation points is a node point for the fourth 

mode and so its response is not distinguishable.  

The recorded resonant peaks are widely spaced and so 

locally the FRF is dominated by a single mode. Therefore 

each peak in the FRF plot can be approximately analysed as 

the frequency response of a single-degree-of-freedom system. 

Hence, the modal parameters for the structure are extracted 

from the FRF magnitude plot of Figure 3(a) and shown in 

Table 1. Further, the mode shapes can be found from the FRF 

magnitude and phase plots and are shown in Figure 4. 

 



 
Figure 3. Results of experimental modal analysis (refer to Figure 2 for location numbering). 

 

Table 1. Dynamic properties of the test structure. 

Mode Natural 

Frequency (Hz) 

Magnitude 

|H(ω)| 

Phase 

∠[H(ω)] 

Damping 

Ratio 

1 4.24 0.0647 -90° 0.0133 

2 16.32 0.17260 -90° 0.0092 

3 35.64 0.07208 -90° 0.0105 

4 

5 

n/a 

91.6 

n/a 

0.01971 

n/a 

-90° 

n/a 

0.0128 

 

The number of mode shapes that can be measured is a 

function of the number of excitation points on the bridge 

when a roving output test is used in EMA. In this test set up 

three impact points were specified and so three mode shapes 

are determined from the FRF plots. The magnitude of the 

mode shape is determined from the magnitude of the FRF and 

the direction from the phase. 

 

Figure 4. Normalised mode shapes:  

Measured – Mode 1 ( ); Mode 2 ( ); Mode 3( ); 

Theoretical – Mode 1 ( ); Mode 2 ( ); Mode 3( ). 

2.4 Experimental modal analysis with added mass 

Due to the low mass of the bridge, the ratio of pedestrian mass 

to the mass of the test structure is quite large (e.g. 0.71 for an 

80 kg pedestrian). Therefore the presence of the pedestrian on 

the bridge will affect the modal parameters and so further 

investigations are carried out on these variations. In particular, 

the variation of the modal parameters as the pedestrian 

traverses the bridge is of interest. However, this form of EMA 

is beyond the scope of the present research.  

The modal parameters of the structure are determined for 

two mass scenarios: (a) an 80 kg pedestrian; and (b) an 80 kg 

inert mass. Both masses are located at mid-span. The driving-

point FRF for point 1 (quarter-span) with mass at mid-span is 

found for both scenarios and the results shown in Figure 5. 

 

Figure 5. Frequency response functions at point 2 for 

pedestrian and inert 80 kg masses at mid-span. 
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By comparison with the unloaded bridge, it can be seen 

from Figure 5 that the natural frequencies are reduced by the 

presence of the additional mass as might be expected. 

Interestingly, there is an additional mode (possibly torsional) 

with natural frequency at 14.56 Hz for the inert mass. 

Using the single-mode approximation described previously, 

the damping is assessed for each scenario and the results 

given in Table 2 (along with those for the unloaded bridge 

from Table 1 for reference). A slight increase in damping is 

noted for the inert mass. However, under the pedestrian 

loading, a significant increase in damping of the first mode is 

evident. This agrees with the findings of Ellis and Ji [7] who 

suggested the use of a spring-mass-damper model in 

theoretical analyses to represent human-structure interaction. 

Table 2. Damping ratios for bridge loaded with pedestrian and 

inert 80 kg masses at mid-span. 

Mode Unloaded 

bridge 

Pedestrian 

mass 80 kg 

Inert mass  

80 kg 

1 0.0133 0.0320 0.0162 

2 0.0092 0.0112 0.0301 

3 0.0105 * 0.0097 

4 

5 

n/a 

0.0128 

n/a 

0.0194 

n/a 

** 

* Very heavily damped 

** No frequency response function peak 

3 THEORETICAL MODELLING 

3.1 Pedestrian vertical load model 

A typical vertical pedestrian force is shown in Figure 6. It is 

represented by the first harmonic of its Fourier series [8], [9], 

shown in Figure 6, and given as follows: 

 ( ) ( )1 sin 2
P p

P t m g r f tπ = +   (6) 

In which, mP is the pedestrian mass, g is the acceleration due 

to gravity, fp is the pacing frequency, and r is the 

dimensionless dynamic force component from Fanning et al 

[10], given by: 

 0.25 0.1
p

r f= −  (7) 

 

Figure 6. Typical vertical ground reaction force and 

approximated model force. 

3.2 Pedestrian-bridge systems models 

The pedestrian-bridge system models used are shown in 

Figure 7. They increase in complexity from the moving force 

model to the rarely-used spring-mass-damper (SMD) model. 

The moving force model has been commonly used in 

analysing the pedestrian loading on footbridges [1]. The 

moving mass model has been used by a few authors, whilst 

the SMD model is rarely used [11].  

The moving force model (Figure 7(a)) does not account for 

any shift in modal properties due to the presence of the 

pedestrian, as are internal effects due to the pedestrian mass. 

These deficiencies are overcome with the moving mass model 

(Figure 7 (b)) which potentially accounts for both changes in 

modal properties and inertia of the pedestrian mass. However, 

the moving mass model assumes equal deflection of the centre 

of mass of the pedestrian and the bridge surface. This is 

evidently not correct, as is evident from human location 

studies [12]. The SMD model of Figure 7(c) accounts for the 

difference in deflection between the bridge surface and the 

pedestrian centre of mass by linking the two through a Kelvin-

Voight material model representing the human body. 

 

 

(a) Moving pulsating force model; 

 

(b) Moving mass with pulsating force model; 

 

(c) Moving spring-mass-damper with pulsating force model; 

Figure 7. Pedestrian-bridge system models. 

3.3 Modal superposition models 
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response for each of the three models of Figure 7. However 
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the modal superposition method cannot account for any 

changes in modal properties due to the presence of the 

pedestrian on the bridge. This may be important when the 

ratio of pedestrian to bridge mass is significant.  

The solution for each of the N modes is found through 

summation of the equivalent generalized coordinates, q, 

single-degree-of-freedom model solutions. In this work 10 

modes have been used to establish the response. For the 

moving force (MF) model these are given by [13]:

 

 ( ) ( )2
2 1 sin 2P

j j j j j j p j

j

m g
q q q r f t vt

M
ξ ω ω π φ + + = + && &  (8) 

In which 
jM , 

jξ , and 
jω  are the modal mass, damping ratio; 

and circular natural frequency for mode j respectively. The 

pedestrian position at time t is vt assuming constant velocity v 

and the mode shape is described by ( )
j

xφ . The equation of 

motion for mode j under the moving mass (MM) model is: 
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Finally, the equation of motion for the mode j of the bridge 

under the SMD model is [13]: 
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where y is the coordinate describing the motion of the centre 

of pedestrian mass which has its own equation of motion: 

 
( ) ( ) 0

1,....,

P P P P j j P j j
m y c y k y c q vt k q vt

j N

φ φ+ + − − =

=

&& & &

 (11) 

For the simply supported beam used in this work the modal 

mass is 2mL  where m is the mass per metre of the beam of 

length L. The mode shape is given by ( ) sin
j

x j x Lφ π= . 

3.4 Finite element models 

Finite element models are developed for each of the three 

pedestrian loading models based on the work of Filho [14], 

Lin and Trethewey [15], and Majumder and Manohar [16]. 

For each of these models, the beam is discretized into 10 1-

dimensional Euler-Bernoulli beam elements and solved using 

the Newmark β method assuming consistent mass and 

Rayleigh proportional damping. 

The finite element models have the advantage that changes 

in modal properties are accounted for as the pedestrian 

traverses the bridge. However, the discretization of the bridge 

means that the solution is approximate. However, just as the 

modal superposition is truncated, it is not expected that much 

error will results from the use of 10 elements. 

4 PEDESTRIAN-INDUCED VIBRATION RESULTS 

4.1 Sample result 

A typical measurement is shown in Figure 68 along with its 

calibrated finite element (FE) spring-mass damper model. The 

response of the bridge is described by a 1 second root-mean-

square (RMS) mid-span vertical acceleration. The measured 

RMS accelerations differ most from the FE SMD model 

results as the pedestrian reaches mid-span and the response is 

at its greatest. The sharp peaks in the measured response are 

due to the heel strike phase of the pedestrian’s walking force. 

This is highest when the pedestrian walks ‘downhill’, towards 

mid-span, since the heel has further to travel, prior to making 

contact with the bridge deck, than it does on a level walking 

surface. Thus, these heel strike peaks are highest before the 

pedestrian reaches mid-span and are smaller thereafter. 

 

 

Figure 8. Acceleration response of the bridge to a 64 kg 

pedestrian with 1.8 Hz pacing frequency. 

4.2 Test descriptions 

A series of walking tests were conducted and the vertical 

acceleration response of the footbridge at mid-span was 

measured. Two male pedestrians traversed the footbridge at a 

controlled pacing frequency regulated using a metronome. 

The first pedestrian, Ped1, with mass 80 kg traversed the 

bridge with pacing frequencies ranging from 1.8-2.2 Hz in 

increments of 0.1 Hz, while Ped2 with mass 64 kg, traversed 

the bridge with pacing frequencies of 1.8 Hz and 2.0 Hz. A 

mass of 16 kg was added to Ped2 to bring his total mass to 80 

kg and the tests repeated.  

The numerical models previously described are calibrated 

using the EMA results. The phase of the pedestrian walking 

force is estimated based on the free-vibration response (e.g. 

Figure 68). For the SMD models, the spring stiffness and 

damping is first estimated using population means (see [13]) 

but then calibrated to give the best-match results. 

4.3 Experimental and theoretical results 

The complete set of experimental and numerical model results 

is given in Table 3. The measured results are an average of 2 

runs for Ped1
 
and 3 runs for Ped2. 

The theoretical accelerations for the 64 kg pedestrian 

carrying an additional 16 kg are different to that of the 80 kg 

pedestrian because the test subjects each walked with a 

different velocity to maintain the required pacing frequency.

0 1 2 3 4 5 6

-2

-1

0

1

2

 

 

Time (s)

A
c
c
e
le

ra
ti
o
n
 R

e
s
p
o
n
s
e
 (

m
/s

2
)

Measured

1 sec RMS

FE SMD

1 sec RMS

Modelled

0.849 m/s2

Measured

0.550 m/s2



Table 3. Measured and numerical 1-second RMS mid-span vertical acceleration responses (m/s
2
). 

Pedestrian fp (Hz) Measured FE MF FE MM FE SMD MA MF MA MM MA SMD 

80 kg 

1.8 0.492 0.813 1.209 0.837 0.811 0.815 0.823 

1.9 0.622 0.963 1.567 0.901 0.963 0.965 0.875 

2.0 0.695 1.151 2.192 0.953 1.150 1.153 0.937 

2.1 0.739 1.417 3.292 1.078 1.416 1.421 1.070 

2.2 0.733 1.694 5.300 1.269 1.688 1.702 1.237 

64 kg 
1.8 0.550 0.650 0.871 0.849 0.649 0.652 0.828 

2.0 0.587 0.917 1.399 1.000 0.918 0.919 0.987 

64 + 16 kg 
1.8 0.579 0.803 1.182 0.841 0.801 0.805 0.825 

2.0 0.634 1.147 2.142 0.956 1.148 1.149 0.936 

 

From Table 3 it can be seen that each of the theoretical 

models overestimates the measured acceleration response of 

the footbridge. Interestingly the least fidelity model, the 

moving force model, yields the closest match to the measured 

responses. Further, the theoretical models are more accurate in 

predicting the response for Ped2 than for Ped1. The measured 

accelerations for Ped2 carrying additional mass is much lower 

than the theoretical predictions.  

The unknown stiffness and damping parameters of the SMD 

models are calibrated to give the best match to the measured 

data. Typically a low value of stiffness gives the best match. 

As a result, in most cases the SMD model is closest to the 

measured accelerations. 

5 SUMMARY AND CONCLUSIONS 

5.1 Summary 

The effect of additional mass carried by pedestrians is 

assessed. Experimental modal analysis is used to determine 

the properties of the bridge unloaded, loaded with an 80 kg 

pedestrian, and loaded with an 80 kg inert mass. The masses 

are found to have a considerable effect on the dynamic 

properties of the structure. In particular, under the pedestrian, 

the first-mode damping is found to increase significantly. 

Acceleration responses are measured for a range of pedestrian 

loading scenarios, including the carrying of additional mass. It 

is found that the pedestrian carrying additional mass does not 

have the same response as a pedestrian of same total mass. 

The measured results are compared to predictions from a 

range of numerical models and are found to be consistently 

lower than the theoretical predictions. The moving force 

model is found to give reasonable match to the measurements. 

5.2 Conclusions 

During the execution of the tests, both pedestrian test subjects 

remarked on the difficulty in maintaining a controlled pacing 

frequency on such a lively structure. The ‘unpredictability’ of 

the response forced them to alter their gait in order to maintain 

a controlled pacing frequency while traversing the bridge. The 

theoretical models do not account for such adaption of stride 

and this is certainly a source of error. However, the deflection 

of the test structure is unrealistic for a publicly accessible 

bridge. It is envisaged that a pedestrian would either slow 

down, or stop completely if vibrations of such an excessive 

response occurred thus reducing the vibration of the structure. 
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