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Direct multiplexing of low order aberration modes in a photopolymer-

based holographic element for analog holographic wavefront sensing 

 
Emma Branigan1, Suzanne Martin1, Matthew Sheehan2, Kevin Murphy1 

1. Centre for Industrial and Engineering Optics, School of Physics and Clinical & Optometric 

Sciences, TU Dublin 

2. School of Physics and Clinical & Optometric Sciences, TU Dublin 

ABSTRACT 

 
The fabrication of an analog holographic wavefront sensor, capable of detecting the low order defocus aberration, was 

achieved in an acrylamide-based photopolymer. While other implementations of holographic wavefront sensors have been 

carried out digitally, this process utilises a recording setup consisting only of conventional refractive elements so the cost 

and complexity of holographic optical element (HOE) production could be much reduced. A pair of diffraction spots, 

corresponding to a maximum and minimum amount of defocus, were spatially separated in the detector plane by 

multiplexing two HOEs with different carrier spatial frequencies. For each wavefront with a known aberration that was 

introduced during playback of the hologram, the resulting intensity ratio was measured in the expected pair of diffracted 

spots. A number of HOEs were produced with the diffraction efficiency of the multiplexed elements equalized, for a range 

of diffraction efficiency strengths, some as low as <5%. These HOEs were used to successfully classify four amounts of 

the defocus aberration through the observed intensity ratio. 

Keywords: Wavefront sensing, analog holographic wavefront sensor, holography, adaptive optics, ophthalmology 
 

1. INTRODUCTION 

 
Wavefront sensors (WFS) are devices used in the detection of aberrations or optical anomalies of a wavefront. A common 

example of a WFS is the Shack-Hartmann WFS (SHWFS), comprised of a micro lens array and a detector1. Integration of 

the local slope distribution gives a measure of the aberration present in an incident wavefront2. The SHWFS has become 

the most widely appliedWFS for the detection of both low and higher order ocular aberrations (e.g. defocus, coma) in 

routine human-eye measurements3 and in procedures such as laser refractive surgery4. In operational principle the SHWFS 

is simple and robust but is reliant on costly high-resolution imaging equipment and computationally expensive algorithms 

necessary for highly-accurate wavefront fitting. The bulky nature and price of these instruments typically restrict their use 

to specialist clinics.  

 

It is advantageous to construct a WFS that is highly efficient, cost-effective and applicable in a wide variety of 

environments such as ophthalmology5, optical communications6 and astronnomy7. Analog Holographic Wavefront Sensors 

(AHWFS) have previously been achieved by recording various aberration modes in both dichromated gelatin8 (DCG) and 

silver halide9,10. These implementations of AHWFS were achieved using digital holographic recording techniques by 

producing computer generated holograms of the aberration modes using a Spatial Light Modulator (SLM). Unlike the 

SHWFS, AHWFS are insensitive to both scintillation and local obscuration making them suitable to the turbulent 

environments often faced in many long range or highly discontinuous sensing applications11. When a wavefront containing 

arbitrary aberration modes is incident on the device, they will be optically decomposed into a set of paired diffracted beams 

for each mode. A normalized ratio of intensities at an array of photodetectors will determine the magnitude of the 

aberration12,13, while the angular position can be used to determine the aberration type, at speeds limited only by the 

detector readout. In theory, bandwidth in the megahertz range will be achievable using commercially available and 

inexpensive photodetectors. The design of this WFS omits the need for costly high-resolution imaging equipment and 

greatly reduces the computational overhead required for wavefront fitting. 
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Here we seek to record an AHWFS in an acrylamide-based photopolymer which is self-developing and mass producible14. 

The reproducibility and chemical post-processing and developing of materials such as silver halide and DCG are some of 

the major material challenges that can be avoided when recording multiplexed holographic optical elements (HOE) in 

photopolymers. Typically, DCG’s poor robustness to moisture can cause problems for the recorded holograms shelf life 

and some of the chemicals used in its preparation and processing have a high level of toxicity. Shrinking, swelling and 

distortion of holograms recorded in DCG and silver halide materials can occur during the development process. High 

reproducibility, from one volume hologram to the next, can be achieved in the photopolymer without the need for any 

chemical post-processing step. Good dynamic range of the material will facilitate multiplexing of a number of modes into 

one HOE, allowing many aberrations to be detectable simultaneously. This is beneficial when developing a multi-

functional device that will be applicable in a variety of settings. 

 

The Materials and Methods section describes the preparation of the photopolymer layer used to record the HOEs and the 

optical setups and methodology utilised for the recording and reconstruction of the holograms. The Measurement of the 

Defocus Aberration section details the characteristics of the HOEs recorded and provides results for their use in detecting 

defocus aberration. The Summary and Conclusions section outlines the key achievements and results obtained from the 

AHWFS fabricated as part of this work. 

 

2.  MATERIALS AND METHODS 

 
2.1 Material and sample preparation 

A 10% w/w stock polyvinyl alcohol (PVA) solution and a stock dye solution with a concentration of 1.1mg/cm3 of 

Erythrosine B, both in water, were prepared. Then 2.0ml of triethanolamine, 0.2g of bisacrylamide and 0.8g of acrylamide 

monomers15 were added to 17.5ml of the PVA solution. Finally, 4ml of stock dye solution was added. The mixture was 

stirred continuously until all of the monomers dissolved. 

 

An appropriate volume of photopolymer solution was carefully pipetted out onto a 75 x 25mm glass slide and left to dry 

on a levelled plate for 24-36 hours. A wet volume of 657µL, spread on the slide, gave a dry layer of nominal 65.7 ± 

12.14µm thickness as shown in Figure 1. Some thickness variation, from layer to layer, was observed. This was probably 

due to variations in how level the sample was during drying and local thickness variations introduced during the drying 

process. Once dry, the layer was preserved and protected from changes in humidity and temperature by covering with a 

125µm layer of Lexan 8010 polycarbonate film.  

 

 

Proc. of SPIE Vol. 11860  118600H-2
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 04 Nov 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 
 

 

 
Figure 1. The thickness of a number of samples, measured close to the site of the recorded HOEs. The thickness of the 

photopolymer layer was determined by: total thickness - cover film - slide thickness using a micrometer.  

 

2.2 Holographic recording 

In order to make the HWFS, recording of a volume Bragg HOE, by transmission holography, was carried out at a 

wavelength of 532nm with a Nd:YAG laser. The spatially filtered beam was collimated and directed towards the 

photopolymer sample using a beam splitting system as shown in Figure 2. The photopolymer holographic recording 

material was fixed in place with the covered photopolymer layer facing the surface of the beam splitter. The incident beam 

from the reference arm was reflected back along its path to ensure that it was normal to the surface of the recording 

material. A biconvex refractive lens with a focal length of 150mm (L1) was mounted in the reference arm of the recording 

setup to produce the defocus aberration. An aperture reduced the diameter of the collimated object beam to 4mm to fully 

overlap with the reference beam, producing the interference pattern required to record the appropriate pattern within the 

photopolymer 

 

Two locations along a rail, a distance away from the sample, were chosen to generate a maximum (217mm from the 

sample) and minimum (83mm from the sample) phase delay/advance of the defocus mode. The result was the separate 

recording of a holographic converging lens (L1min) and a holographic diverging lens (L1max) in the photopolymer layer 

with focal lengths of 67mm. This produced an equal and opposite amount, ±15.0D, of defocus aberration for the two 

holographic lenses over a diameter of 4mm. It was necessary to multiplex the hologram as a new recording was required 

to correspond with both limit positions of the refractive lens i.e. for every phase delay associated with the chosen mode of 

wavefront aberration. All optical components were clamped tightly in place to the bench and rail to ensure any vibrational 

disturbance was kept to a minimum. 
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Figure 2a. (left) & 2b. (right) Recording setup to multiplex a HOE with a maximum and minimum amount of the defocus 

aberration at 497 lines/mm (left) and 816 lines/mm (right), where the optical components shown are as follows: SF: spatial 

filter; A1: 1mm aperture; CL: collimating lens; BS: beam splitter; L1: 150mm spherical refractive lens; M1 & M2: planar 

mirrors; A2: 4mm aperture.  

 

Angular multiplexing techniques were employed to separate the diffracted output of the holographic lenses. The object 

beam was first reflected off a plane mirror at an angle of 15.3° (Fig 2a.) to record holographic grating 1 (HG1). The spatial 

frequency range across the horizontal axis of lens element was calculated using geometry and the diffraction grating 

equation (Eq. 1, where d: grating spacing; θ: interbeam angle; m: diffraction order; λ: recording wavelength) as 442-551 

lines/mm, with a carrier spatial frequency of 497 lines/mm. The first mirror was then removed, and a second mirror was 

used to introduce a subsequent grating (HG2) with a spatial frequency range of 763-868 lines/mm and a carrier spatial 

frequency of 816 lines/mm, interfering with the reference beam at an angle of 25.4° (Fig 2b.). The minimum and maximum 

amounts of the defocus aberration were recorded in HG1 and HG2 respectively. As the holographic gratings (HG1 and 

HG2) are volume Bragg gratings diffraction will only occur in the first order once each specific Bragg condition has been 

satisfied.  

2dsinθ = mλ (Equation 1) 

 

An electromechanical shutter controlled the exposure time of the layer to the laser to achieve a desired diffraction 

efficiency (DE). Laser intensity equivalent to 0.28mW/cm2 was delivered to the sample. A short delay (~30s) was 

introduced between the recordings at HG1 and HG2 as M1 was removed from the setup manually and L1 was positioned 

along the rail. In general, a longer exposure time was needed to record HG2 as some of the dynamic range of the 

photopolymer had been depleted during the first recording. It was necessary to bleach the samples with a high UV dose 

after recording, in particular for those with a very low DE, in order to fully polymerise any remaining monomer in the 

layer.  

 

2.3 Hologram reconstruction 

Careful realignment of the sample in the holder was needed to ensure correct reconstruction of the HOE. The sample was 

clamped in place in the same orientation used in recording i.e. with the photopolymer layer facing towards the beam 

splitter. The object arm of the setup was baffled for the purpose of replaying the hologram, so that only the beam in the 

reference arm was incident on the sample. When L1 was moved along the reference arm rail to the minimum position, the 

collimated beam at HG1 was observed at the diffracted angular position corresponding to HG1. This reconstructed the 

object beam and indicated that the incident probe beam was Bragg matched to the recording reference beam for HG1. In 

a perfectly efficient system 100% of the incident light would be diverted into this collimated beam, however it was 

observed that a fraction of the incident beam was always also diffracted into a diverging spot at HG2. At the maximum 

position on the rail, the opposite was true. It was seen that a collimated beam formed in the HG2 location, while some light 

was also present at HG1.  
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Figure 3. Reconstruction of the HOE, where the object beam was baffled and only the reference beam was incident on the 

sample. A photodiode circuit, Arduino Due and a computer serial monitor were used in measuring the diffraction efficiency 

and normalized intensity ratio of each recording.  

 

A silicon PIN photodiode (VEMD5510CF), connected to the analog input of an Arduino Due was used to measure the 

diffraction efficiency of each recording. L1 was moved into the minimum position along the rail and the power was 

measured in the HG1 spot. The diode was moved into the HG2 spot, where the beam filled the entirety of the detector 

area. The power in the transmitted beam was measured in the same way. The diffraction efficiency of the HG1 recording 

was then calculated by Eq. 2. This process was repeated with L1 in the maximum position to measure the efficiency of the 

HG2 recording (Eq. 3).  

 

Diffraction EfficiencyHG1 =  
IHG1

IHG1 + IHG2 + IT
∗  

100

1
 (Equation 2) 

 

Diffraction EfficiencyHG2 =  
IHG2

IHG2 + IHG1 + IT

∗  
100

1
 (Equation 3) 

 

 

A normalized ratio of intensities (Eq. 4) between the HG1 and HG2 spots was used to determine the amount of an 

aberration present in the incident wavefront. In a fixed plane, a detector with an aperture set to 4mm diameter, to match 

the size of the collimated beam, measured the intensity difference between the two spots.  

 

Normalized Intensity Ratio =  
IHG1 – IHG2

IHG1 + IHG2
   (Equation 4) 

 

The  detectable range of the HOE was quantified in dioptres as: 1/focal length of the HOE (in metres). The focal length of 

the holographic lenses (HG1 and HG2) was measured by illuminating the HOE with the collimated beam in the object 

arm, at the Bragg angle for each grating, i.e. at 15.3° for HG1 and at 25.4° for HG2. The focal length of HG1 was measured 

with the photopolymer layer facing into the incident beam. This reconstructed the converging lens that was recorded for 

L1min. The distance between the HOE and the focal spot was measured as 67mm. In order to measure the focal length of 

HG2, the HOE was rotated so that the photopolymer layer was now on the back surface of the slide – facing away from 

the beam. This was necessary to reconstruct the focus of the diverging lens that was recorded for L1max. As before, HG2 

was then illuminated with the collimated beam at the corresponding reconstruction angle and the distance between the 

sample and focus was measured as 67mm also. The sign convention is important here to correctly determine whether the 

amount of defocus present is positive or negative so we express the focal length of the diverging lens as -67mm.  
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Taking the measured focal length for each holographic lens, the total detectable range of the HOE was ±15.0D. For 

wavefronts with an unknown amount of defocus, it was possible to determine the strength of the aberration through the 

above normalized intensity ratio (NIR). In order to classify the aberration, defocus in this case, in terms of the range of the 

HOE the NIR was expressed in dioptres as follows: 

 

Defocus, in dioptres = NIR ∗ 15.0D (Equation 5) 

 

 

3. MEASUREMENT OF THE DEFOCUS ABERRATION 

 
3.1 Diffraction efficiency and normalized intensity ratio measurements 

The reconstructed spots for the multiplexed HOE can be seen in Figure 4. For L1min (Fig. 4a) the collimated beam was 

reconstructed in the corresponding angular position associated with HG1, while the transmitted beam focussed to a point. 

At the diffraction angle corresponding to HG2 a diverging beam was observed, with some noise present. In a perfect 

system, no light would be diffracted into the HG2 position, for the L1min condition, resulting in a normalized intensity ratio 

between HG1 and HG2 of exactly 1. At L1max (Fig. 4b), the collimated beam was reconstructed at the HG2 angular position, 

as expected while HG1 and the transmitted beam were both diverging. This time some unwanted light was diffracted into 

the HG1 spot which, as mentioned, slightly impacted the intensity ratio that was observed between HG2 and HG1.   

 

 

Figure 4a. (left) & 4b. (right) Reconstructed diffraction spots at the output positions for HG1 and HG2, while the probe 

beam has the lens in the (a) minimum and (b) maximum lens positions.  

 

It was possible to measure the DE of each recording, for each individual HOE. During reconstruction of the hologram, a 

photodiode was used to measure the power in both the HG1 and HG2 spots, along with the transmitted beam as discussed 

in section 2.3. It was desirable to try to control the strength and equalize the diffraction efficiencies of the two recordings 

at HG1 and HG2 to achieve an NIR that was as equal and opposite for the L1min and L1max replay conditions, and as close 

to 1 as possible. This was carried out by first recording a number of single element HG1 gratings and measuring the DE 

achieved for recordings at various exposure times. When multiplexing, some of the dynamic range of the material is used 

up during the recording of HG1 so a longer exposure time for HG2 is necessary. For this reason, DE equalization was 

carried out through an iterative process guided by DE measurements of the recorded holograms.  

 

The average diffraction efficiency of HG1 and HG2 was calculated for each sample and are shown in Figure 5. The targeted 

diffraction efficiency ranges were 35-40%; 20-25%; 5-10%; and <5%. An acceptable DE equalization range was calculated 

as 20% of this average. Equalization of DE between HG1 and HG2 was important for ensuring a strong, well-matched 

NIR. Samples 1-18 (Fig. 5) all fell within the targeted range. Sample 19 (Fig. 5d) fell slightly outside of the desired 20% 

by 0.4%, as at very low diffraction efficiencies (<5%) it is increasingly difficult to successfully equalize the two 

holograms within this range. Furthermore, the acceptable range for equalization was very narrow at only ~1%, therefore 

it was decided that sample 19 was included in the data.  
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Figure 5(a-d). The diffraction efficiency of each HOE was measured in both output positions for HG1 and HG2 for samples 

with targeted efficiencies of (a) 35-40%; (b) 20-25%; (c) 5-10%; (d) <5%. The acceptable range for equalization of the 

diffraction efficiency of HG1 and HG2 is shown for each HOE.  

 

A normalized intensity ratio was measured between the spots at HG1 and HG2 at both L1min and L1max. In the L1min case, 

as expected, most of the probe beam was diffracted into the HG1 spot with some proportion of the light being transmitted 

and some being directed into the HG2 spot. Here we would expect an NIR value close to +1. In the L1max case, the opposite 

was expected and the probe beam was observed to be primarily diffracted into the HG2 spot, resulting in an NIR close to 

-1. The NIR of all samples is illustrated in Figure 6 and it can be seen that overall they were equal and opposite. The NIRs 

of samples 1 and 2 had the lowest values at ~0.5. This was probably a result of the relatively large mismatch in DE 

measured previously at HG1 and HG2, which was approximately 10%. An NIR of roughly 0.4 was also detected at the 

HG1 spot of samples 13 and 14, this may be due to low levels of light for these samples. However, in general a strong 

equal and opposite NIR was observed for samples with well-matched diffraction efficiencies. At HG1 an average NIR of 

0.7, with a standard deviation of ± 0.15 was measured. An average NIR of -0.8 ± 0.12 was measured for HG2.  
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Figure 6. The normalized intensity ratio for all samples with targeted diffraction efficiencies of 35-40%, 20-25%, 5-10% 

and <5%.  

 

3.2 Introduction of unknown defocus aberrations 

A number of refractive lenses were chosen, with focal lengths 250mm (L2), 300mm (L3) and 400mm (L4), to introduce 

’unknown’ amounts of defocus onto the HOE. Each lens was positioned, along the rail in the reference arm, at a distance 

(“Lens to sample” - Table 1.) from the sample which ensured that the 4mm diameter of the HOE was perfectly matched. 

An aperture mounted in the reference arm allowed for the sample to be probed with a collimated beam also. A focus was 

formed behind the sample in the HG2 position before beginning to diverge. The distance from the sample to this focus 

was manually measured for each lens. The “Lens to sample” and “Sample to focus” distances were summed and the inverse 

of this sum was taken to express the total optical power in the system (HOE + lens contribution) in dioptres. Equation 6 

was used to solve for the amount of defocus incident on the system, 1/f1, where f2 is the focal length of the HOE itself 

(67mm) and d is the “Lens to sample” distance.  

Total optical power =  
1

f1
+

1

f2
−  

d

f1f2
 (Equation 6) 
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Table 1. The lens to sample and sample to focus distances used to find the total optical power of the system. The amount of 

defocus incident on the sample was calculated for each ‘unknown’ aberration in dioptres.  

Lens focal 

length (mm) 

Lens to sample 

(d) (mm) 

Sample to focus 

(mm) 

Total optical 

power (dioptres) 

Amount of defocus 

(1/f1) (dioptres) 

250 132 ± 0.5 30  2 +6.2 +9.0  0.1 

300 159 ± 0.5 33  2 +5.2 +7.1  0.1 

400 218 ± 0.5 40  2 +3.9 +4.9  0.1 

Collimated beam Inf - 0 0 

 

 
Four nominal amounts of the defocus aberration, +9.0D, +7.1D, +4.9D and 0D were classified, by all 19 HOEs with 

varying diffraction efficiency strengths (Fig. 7) by measuring the normalized intensity ratio produced when incident on 

the HOEs. As can be seen from Figure 7 , for HOEs with a targeted DE of 35-40% and 20-25%, all four aberrations were 

correctly measured to within an error of ~5% (Fig. 8), with most accurate results when identifying +4.9D, with an 

accompanying error of only 2.5%. Percentage error was calculated by taking an average of: (Amount of defocus -  

measured amount of defocus)/total detectable range (30D) x 100. Some positional inaccuracies of L2, L3 and L4 along the 

rail were to be expected, as placement of the lenses was carried out manually, which may have played a role in the higher 

percentage error that was consistently observed when measuring the +9.0D aberration. This issue could be avoided by 

generating the defocus aberration digitally with a spatial light modulator16 or using electro-optomechanical positioning 

apparatus.  

 

It was important to extend the study to include HOEs with low diffraction efficiencies as an indicator of the possible 

number of multiplexed aberration modes achievable. At a diffraction efficiency of 5%, it would be possible to multiplex a 

single HOE with up to 10 times a many 5% efficiency gratings as with a 50% grating, facilitating the simultaneous 

detection of many individual modes of aberration in one sensor. Encouraging success was seen for recordings in the 5-

10% range, where an incident defocus aberration was consistently, correctly measured with a percentage error of 

approximately 5%. For HOEs with a DE <5%, 0D and +4.9D of defocus were correctly measured with a percentage error 

of <5%. Higher amounts of defocus, +7.1D and +9.0D, were measured to within an error of 5-10%. Given the large 

detectable range of 30.0D, the system was highly sensitive to very small changes in the intensity measured at HG1 and 

HG2. Lower measurable levels of light at low DE may account for some of the detection error introduced here. Decreasing 

the range of the system would increase the detection accuracy of the device while simultaneously reducing the sensitivity. 

For example, in applications in ophthalmology, it is expected that a range of  6D would be sufficient for detecting the 

defocus aberration in most of the population. However, for other applications in adaptive optics the wider range of 

detection may be of benefit. 
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Figure 7(a-d). The amount of defocus calculated from NIRs detected by HOEs with varying diffraction efficiency strengths 

for (a) +9.0D; (b) +7.1D; (c) +4.9D; (d) 0D.  

 

 

Figure 8. The percentage error associated with all defocus measurements carried out with HOEs with diffraction efficiencies 

of <5%; 5-10%; 20-25%; and 35-40%. Percentage error was calculated by taking an average of: (Amount of defocus -  

measured amount of defocus)/total detectable range (30D) x 100.  
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4. CONCLUSION 

 
An analog holographic wavefront sensor was fabricated in an acrylamide-based photopolymer layer for the first time by 

using only conventional refractive elements in the recording process. This was achieved for a defocus aberration by 

multiplexing a maximum and minimum phase delay of a lens at two different carrier spatial frequencies (497 and 816 

lines/mm). Good equalization of the diffraction efficiencies of HOEs was achieved to within 20% of the targeted DE for 

chosen ranges of 35-40%, 20-25%, 5-10 and <5%. Further work involving exposure scheduling of the recordings17 will 

help to increase the accuracy of this equalization process. The results for targeted diffraction efficiencies of <5% are 

promising for extending the detection capabilities of the wavefront sensor to multiple aberration modes. It was seen that a 

strong equal and opposite normalized intensity ratio (0.7 to -0.8), between HG1 and HG2, could be achieved for HOEs 

with well-matched diffraction efficiencies. Varying amounts of defocus +9.0D, +7.1D, +4.9D and 0D were successfully 

identified to within ~5%, for HOEs with diffraction efficiencies as low as <5%.  
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