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ABSTRACT 

Elevated endogenous JNK activity and resistance to Fas receptor-mediated apoptosis have recently 

been implicated in progression of prostate cancer and can promote resistance to apoptosis in 

response to chemotherapeutic drugs. In addition, JNK has been demonstrated to promote 

transformation of epithelial cells by increasing both proliferation and survival. Although numerous 

studies have reported a role for JNK in promoting Fas receptor-mediated apoptosis, there is a 

paucity in the literature studying the antiapoptotic function of JNK during Fas receptor-mediated 

apoptosis. Consequently, we have used the recently described specific JNK inhibitor SP600125 and 

RNA interference to inhibit endogenous JNK activity in the prostate carcinoma cell line DU 145. We 

demonstrated that endogenous JNK activity increased the expression of a kinase, HIPK3, that has 

previously been implicated in multidrug resistance in a number of tumors. HIPK3 has also been 

reported to phosphorylate FADD. The interaction between FADD and caspase-8 was inhibited, but 

abrogation of JNK activity or HIPK3 expression was found to restore this interaction and increased 

the sensitivity of DU 145 cells to Fas receptor-mediated apoptosis. In conclusion, we present novel 

evidence that JNK regulates the expression of HIPK3 in prostate cancer cells, and this contributes to 

increased resistance to Fas receptor-mediated apoptosis by reducing the interaction between FADD 

and caspase-8. 

 

INTRODUCTION 

The Fas receptor is a member of the tumor necrosis factor superfamily of receptors and is expressed 

in many tissues (1). Ligation of Fas receptor with Fas ligand or Fas-activating antibodies results in Fas 

receptor clustering at the plasma membrane, recruitment, and activation of caspase-8 via the 

adapter protein FADD and subsequent cleavage of a number of downstream targets, culminating in 

apoptosis (2). Fas-mediated apoptosis is believed to be a mechanism by which the immune system 

destroys defective cells or cells expressing abnormal surface proteins (3). In addition, various anti-

cancer drugs are dependent on Fas receptor activation in order to induce apoptosis (4, 5). As a 

result, there is a selective pressure on tumor cells to inhibit Fas receptor-mediated apoptosis, and 

resistance to Fas is a common event during cancer progression. 
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Prostate cancer is the most prevalent cancer in men and is a leading cause of death in elderly males 

(6). Current chemotherapeutic regimens do not increase long term survival in patients with prostate 

cancer (7), and this has been linked to an increased resistance to Fas receptor-mediated apoptosis 

(8). Hormone-refractory prostate cancer usually displays increased malignancy, proliferation, and 

metastatic potential over androgen-sensitive tumors and can survive in the absence of androgen. 

Transformation of prostate epithelial cells from a preneoplastic state into an intraepithelial 

neoplasm requires a number of sequential genetic alterations (9). Some of these aberrations in 

protein function increase the resistance of prostate cancer cells to apoptosis, whereas others 

decrease the dependence of prostate cancer cells on growth factors for survival and proliferation. 

One protein that has been implicated in transformation and progression in numerous tumors 

including prostate cancer (10), breast cancer (11), and lung cancer (12) is a stress-activated protein 

kinase called JNK.1 Overexpression of JNK conferred a partially transformed phenotype on 

fibroblasts by regulating the response of these cells to survival and proliferative signals (13). It also 

greatly enhanced the transformation potential of Ras (14) and BCR-Abl (15). Elevated endogenous 

JNK activity has been reported to correlate with drug resistance in cancer (16). Antisense strategies 

designed to reduce JNK expression have been shown to reduce prostate tumor burden and also 

sensitize these tumors to systemic therapy using chemotherapeutic drugs (17). 

 

In this study, we investigate the role of endogenous JNK activity in Fas receptor-mediated apoptosis 

in prostate cancer. In contrast with our recent publications, where we show that prolonged 

overactivation of JNK is proapoptotic in prostate cancer cells (18, 19), we demonstrate here that 

endogenous JNK activity can promote survival in DU 145 prostate cancer cells. We show that 

inhibition of endogenous JNK activity decreases the expression of the Fas/FADD-interacting kinase 

HIPK3 (FIST/PKY/DYRK6). The interaction between FADD and caspase-8 is defective in DU 145 cells, 

but incubation with SP600125 restores the affinity of FADD for caspase-8 and restores the ability of 

DU 145 cells to undergo Fas receptor-mediated apoptosis. 

 

MATERIALS AND METHODS 

Cell Lines and Reagents—DU 145, PC-3, and Jurkat T cells were obtained from American Type 

Culture Collection (ATCC, Manassas, VA). PPC-1 and ALVA 31 cells were a gift of Gary and Heidi Miller 

(University of Colorado). DU 145 cells were cultured in Dulbecco's modified Eagle's medium 

(Invitrogen) supplemented with 5% fetal calf serum and 4 mM L-glutamine (all from Sigma). PC-3, 

PPC-1, and ALVA 31 cells were grown in Dulbecco's modified Eagle's medium supplemented with 

10% fetal calf serum and 4 mM L-glutamine. Jurkat T cells were cultured in RPMI 1640 supplemented 

with 10% fetal calf serum, 4 mM L-glutamine, and 10 IU ml–1 penicillin/streptomycin. Cells were 

cultured in a humidified atmosphere with 5% CO2 at 37 °C and routinely subcultured every 2–3 days. 

Unless otherwise stated, cells were grown to 75% confluence before treatment with various drugs 

and inhibitors. 
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The probes used for the apoptosis assays were annexin V-FITC (IQ Products), propidium iodide 

(Sigma), and JC-1 (Molecular Probes). The primary antibodies used in this study were rabbit anti-c-

Jun (Calbiochem); mouse anti-actin clone AC-15 (Sigma); mouse anti-phospho-JNK (Thr183/Tyr185) 

clone G9, mouse anti-caspase-8 clone IC12, and rabbit anti-caspase-3 (Cell Signaling Technology); 

rabbit anti-JNK and rabbit anti-protein kinase Cζ (anti-PKCζ) (Santa Cruz Biotechnology, Inc., Santa 

Cruz, CA); rabbit anti-BID (BioSource International); mouse anti-poly(ADP-ribose) polymerase 

(PharMingen); mouse anti-FADD clone IF7 and rabbit anti-ERK2 (Upstate Biotechnology); and rabbit 

anti-rat HIPK3 (a gift of Jorma Palvimo, University of Helsinki, Finland). All peroxidase-conjugated 

secondary antibodies were from DAKO (Denmark). Rabbit anti-FADD (Upstate Biotechnology) was 

used for immunoprecipitations and protein G-agarose slurry was purchased from Pierce. The Fas-

activating mouse anti-Fas IgM (clone CH11) was obtained from Upstate Biotechnology. The JNK 

inhibitor SP600125, the Mek1 inhibitor U0126, the p38 inhibitor SB203580, the PKCζ 

pseudosubstrate inhibitor, and the caspase inhibitors Z-IETD-fmk and Z-LEHD-fmk were from 

Calbiochem. Small interfering RNA oligonucleotides and control oligonucleotides were purchased 

from Dharmacon, and oligofectamine was purchased from Invitrogen. Primers used to amplify mRNA 

by reverse transcriptase-PCR were designed using GeneFisher software and were purchased from 

MWG. Other reagents required for reverse transcriptase-PCR were bought from Promega, λ-

phosphatase was purchased from New England Biolabs, and all other chemicals were purchased 

from Sigma. 

 

Apoptosis Assays—Annexin V-FITC and propidium iodide were used to detect apoptosis by flow 

cytometry as described previously (20). Unless otherwise indicated, cells were incubated with 200 ng 

ml–1 anti-Fas IgM for 24 h. Cells were preincubated for 1 h with 0.5% Me2SO in the presence or 

absence of SP600125. Caspase inhibitors were added to cells 10 min prior to treating with anti-Fas 

IgM. Cells were analyzed on a FACScan flow cytometer (BD Biosciences). Cell Quest software (BD 

Biosciences) was used to analyze the data. Mitochondrial membrane depolarization can be 

measured in intact cells using the fluorescent cationic cell-permeable probe JC-1 (21). DU 145 cells 

were incubated for 24 h with SP600125 and anti-Fas IgM as described above and incubated with JC-1 

probe as described previously (21). Cells were analyzed by flow cytometry, and a decrease in FL-2 

fluorescence is indicative of mitochondrial membrane depolarization. 

 

SDS-PAGE and Western Blot Analysis—Cells were treated as described in the figure legends. The cells 

were then harvested and lysed in radioimmune precipitation buffer (50 mM Tris, pH 7.4; 150 mM 

NaCl; 1 mM each NaF, NaVO4, and EGTA; 1% Nonidet P-40; 0.25% sodium deoxycholate; 0.2 mM 4-

(2-aminoethyl)-benzenesulfonyl fluoride; 1 μg ml–1 each antipain, aprotinin, and chymostatin; 0.1 

μg ml–1 leupeptin; 4 μg ml–1 pepstatin) for 20 min on ice. The lysates were centrifuged at 20,000 × g 

for 15 min to remove insoluble debris, and protein concentrations were determined. At least 30 μg 

of protein was loaded into each lane of an SDS-polyacrylamide gel. Electrophoresis of the samples 

and transfer to a nitrocellulose membrane were carried out. Staining of the membrane with the 

various antibodies was performed using the manufacturer's recommended protocol. 

 



J Biol Chem. 2004 Apr 23;279(17):17090-100. 
PubMed ID: 14766760 

4 
 

λ-Phosphatase Treatment of Cell Lysates—λ-Phosphatase treatment was carried out on DU 145 cell 

lysates as described previously (22). Briefly, 30 μg of protein was diluted in 10 μl of 1× phosphatase 

buffer (50 mM Tris-HCl, pH 7.5, 0.1 mM Na2EDTA, 5 mM dithiothreitol, 0.01% Brij 35, 2 mM MnCl2) 

with or without 1 μl of λ-phosphatase and incubated at 30 °C for 1 h. Samples were diluted in SDS-

PAGE loading dye, and Western blot analysis was carried out as described earlier. 

 

Cell Cycle Analysis—DU 145 cells were treated with 50 μM SP600125, 8 mM hydroxyurea, and 2 μg 

ml–1 nocodazole for 24 h. At least 200,000 DU 145 cells were washed in phosphate-buffered 

saline/EDTA and fixed in ice-cold 70% ethanol overnight at –20 °C. Cells were resuspended in 

phosphate-buffered saline/EDTA with 40 μg ml–1 propidium iodide and 200 μgml–1 DNase-free 

RNase A (Sigma) in the dark for 30 min, and DNA content of cells was analyzed on a FACScan flow 

cytometer. 

 

RNA Interference—Cells were transfected with target or control siRNA (see Table I for sequences) 

using oligofectamine following the manufacturer's protocol exactly. Expression of HIPK3 was 

determined every day after transfection, and 4–5 days after transfection was found to be optimal for 

silencing HIPK3 in DU 145 cells. RNA and protein were extracted, taken on day 4, and apoptosis 

assays were begun on day 4 and completed by day 5. 

 

TABLE I 

Target sequences for RNA interference 

 

Reverse Transcriptase-PCR—RNA was extracted from 100,000 DU 145 cells using Trizol reagent, and 

0.5 μg was converted to cDNA using Moloney murine leukemia virus reverse transcriptase. Primers 

were subsequently used to amplify target sequences (Table II) using PCR, and DNA bands were 

visualized using agarose gel electrophoresis. 

 

TABLE II 

Primers for PCR 
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Immunoprecipitation of FADD—A minimum of 500 μg of protein was used per sample. DU 145 cells 

were treated and harvested as described in the figure legends. The cells were lysed gently using lysis 

buffer (10 mM Tris, pH 7.5; 50 mM NaCl; 10 mM sodium pyrophosphate; 50 mM NaF; 1 mM NaVO4; 

1% Nonidet P-40; 0.2 mM phenylmethylsulfonyl fluoride; 5 μg ml–1 each antipain, aprotinin, and 

chymostatin; 0.5 μg ml–1 leupeptin; 20 μg ml–1 pepstatin) and centrifuged at 20,000 × g for 15 min 

to remove insoluble material. Total cell protein was diluted to 1 μg ml–1 in phosphate-buffered 

saline and incubated with 10 μg μl–1 rabbit anti-FADD overnight at 4 °C. Protein G-agarose-

conjugated beads (Pierce) were prepared according to the manufacturer's recommended 

instructions and incubated with the samples for a further 2 h at 4 °C. FADD was immunoprecipitated 

by centrifugation at 1,000 × g for 3 min. The beads were washed four times in phosphate-buffered 

saline and boiled in SDS-PAGE loading buffer for 5 min. The agarose beads were precipitated out of 

solution by centrifugation at 20,000 × g for 2 min, and the sample was loaded onto an SDS-

polyacrylamide gel and analyzed by Western blot. 

 

RESULTS 

SP600125 Inhibits Endogenous JNK Activity in DU 145 Prostate Carcinoma Cells—Increased JNK 

activity, in particular JNK2, has been implicated in promoting proliferation and drug resistance in 

prostate cancer (10). Administering antisense directed against JNK1 and JNK2 inhibited prostate 

tumor growth significantly by increasing the susceptibility of cells to apoptosis (16) and was found to 

sensitize prostate cancer cells to cytotoxic drugs (23). JNK can activate the transcription factor c-Jun 

by phosphorylating two key residues, Ser63 and Ser73. Once phosphorylated, active c-Jun can alter 

the expression of a number of genes, including itself. We used the specific JNK inhibitor SP600125 

(24) to inhibit JNK activity in DU 145 prostate carcinoma cells. JNK activity was assessed by analyzing 

the extent of normal c-Jun expression and phosphorylation in DU 145 cells incubated with and 

without 50 μM SP600125. In addition, the effects of SP600125 on the high levels of JNK activity that 

accompanies incubation with anisomycin were also analyzed. We found that c-Jun expression was 

reduced when incubated with 50 μM SP600125 for 4 h. Furthermore, anisomycin-mediated 
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phosphorylation of c-Jun was partially inhibited in cells pretreated with 50 μM SP600125 for 4 h. 

These data suggested that 50 μM SP600125 inhibits endogenous JNK activity in resting DU 145 cells 

and can also reduce the activity of JNK following treatment with anisomycin (Fig. 1A). The upstream 

JNK kinase MKK4 can be inhibited when high concentrations of SP600125 are used (24). We 

investigated whether MKK4 was significantly inhibited in DU 145 cells using 50 μM SP600125 and 

found that phosphorylation of JNK at Thr183 and Tyr185 by anisomycin was not affected in cells co-

incubated with 50 μM SP600125. This suggests that inhibition of the JNK signaling pathway by 

SP600125 in DU 145 cells is due entirely to inhibition of JNK activity and not through inhibiting other 

upstream kinases in the JNK cascade (Fig. 1B). 

 

SP600125 Sensitizes DU 145 Prostate Carcinoma Cells to Fas-mediated Apoptosis—We used 50 μM 

SP600125 to decrease the endogenous activity of JNK in DU 145 prostate carcinoma cells and 

observed a concomitant increase in the sensitivity of these cells to Fas receptor-mediated apoptosis 

(Fig. 1C). This was also evident for PC-3 prostate carcinoma cells (data not shown). This suggests that 

JNK increases the resistance to Fas receptor-mediated apoptosis in resting prostate carcinoma cells. 

Treatment with the caspase-8-specific inhibitor Z-IETD-fmk completely abrogated apoptosis, 

demonstrating that apoptosis in response to SP600125 and anti-Fas IgM was entirely dependent on 

caspase-8 activity (Fig. 1C). This result agrees with the current theory that caspase-8 is the apical 

caspase in the Fas receptor pathway and is absolutely required for the subsequent caspase cascade 

and apoptosis following Fas receptor engagement with Fas ligand. In contrast, inhibition of caspase-

9 activity with the specific inhibitor Z-LEHD-fmk did not completely abrogate apoptosis in response 

to treatment with SP600125 and anti-Fas IgM. Therefore, mitochondrial amplification of caspase-9 

activity may accelerate, but it is not absolutely required for apoptosis in response to SP600125 and 

anti-Fas IgM (Fig. 1C). 

 

It has been reported that lower concentrations of SP600125 can inhibit JNK activity in some cells 

(24). We incubated DU 145 cells with 25 and 50 μM SP600125 and analyzed JNK activity through c-

Jun expression. Although 50 μM SP600125 effectively reduces c-Jun expression, we found that 25 

μM SP600125 was insufficient for decreasing JNK activity in DU 145 cells (Fig. 1D). In addition, 25 μM 

SP600125 did not significantly increase sensitivity of cells to Fas receptor-mediated apoptosis (Fig. 

1E). These data suggest that 50 μM is the minimum concentration of SP600125 that inhibits JNK 

activity in DU 145 prostate cancer cells. 

 

JNK Activity Inversely Correlates with Sensitivity to Fas Receptor-mediated Apoptosis in Prostate 

Cancer Cell Lines— Antisense strategies against JNK have proved effective in animal models of 

prostate cancer, suggesting that JNK activity plays a role in prostate tumor progression (17). We 

analyzed levels of phosphorylated JNK in four prostate cancer cell lines; DU 145 cells and PC3 cells 

were originally isolated from prostate cancer metastases, whereas PPC-1 and ALVA 31 cells 

originated from primary tumors. We found that DU 145 cells, PC3 cells, and PPC-1 cells all express 

high levels of phosphorylated JNK in comparison with ALVA 31 cells. Total JNK levels were similar in 

all cell lines studied (Fig. 1A). Although DU 145, PC3, and PPC-1 cells all express significantly more c-
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Jun than ALVA 31 cells, this is most striking in DU 145 cells (Fig. 2B). When we compared these data 

with the sensitivity of cells to Fas receptor-mediated apoptosis, we found that elevated endogenous 

JNK activity correlated with resistance to Fas receptor-mediated apoptosis in prostate carcinoma cell 

lines (Fig. 2C). Only ALVA 31 cells were found to be sensitive to apoptosis induced by anti-Fas IgM. 

 

Endogenous JNK Activity Increases the Resistance of DU 145 Cells to Fas-mediated Apoptosis by 

Inhibiting Caspase-8 Activation by Fas Receptor—Our data suggest that elevated JNK activity 

prevents Fas receptor-mediated apoptosis in prostate cancer cell lines. In order to gain further 

insight into this novel antiapoptotic function of JNK, we analyzed the major events that occur 

following incubation with SP600125 and anti-Fas IgM in DU 145 cells. We found that caspase-8 is 

only cleaved and activated when FADD and caspase-8 are recruited together to the death-inducing 

signaling complex (DISC) following Fas receptor engagement with anti-Fas IgM. Detectable cleavage 

products of caspase-8 were only evident in cells coincubated with both SP600125 and anti-Fas IgM 

(Fig. 3A). As a result, the recruitment and cleavage of caspase-8 in the DISC is defective in resting DU 

145 cells, and inhibition of JNK activity can increase the cleavage of caspase-8 in response to anti-Fas 

IgM. We also analyzed events downstream of caspase-8 activation during Fas receptor-mediated 

apoptosis and observed cleavage and activation of Bid only in DU 145 cells incubated with both 

SP600125 and anti-Fas IgM (Fig. 3B). In addition, we only detected mitochondrial membrane 

depolarization and caspase-3 cleavage products in response to anti-Fas IgM when endogenous JNK 

activity had been decreased (Fig. 3, C and D). These results suggested that inhibition of JNK using 

SP600125 facilitated DU 145 cells to undergo Fas-mediated apoptosis primarily by enhancing either 

recruitment of or subsequent cleavage of caspase-8 at the DISC. 

 

FADD Phosphorylation Is Regulated by Endogenous JNK in DU 145 Cells—A number of proteins are 

recruited to the cytoplasmic domain of Fas receptor oligomers. These include FADD, RIP, RAIDD, and 

DAXX, which function primarily as adapter proteins, and caspase-2, caspase-8, caspase-10, FLIP, and 

ASK1, which initiate various proteolytic and kinase cascades in cells (25). We did not observe any 

significant alterations in expression of Fas receptor, Fas ligand, FADD, caspase-8, DAXX, or FLIP in 

response to SP600125 treatment (data not shown). However, although FADD migrated as a double 

band in untreated and anti-Fas IgM-treated cells, incubation with SP600125 reduced the expression 

of the upper band (Fig. 4A). In addition, we found that SP600125 could reduce this double band in 

the prostate carcinoma cell lines PC-3, ALVA 31, and PPC-1 (data not shown). Incubation of protein 

extracts with λ-phosphatase reduced the expression of the upper band, confirming that this mobility 

shift was due to dephosphorylation of FADD (Fig. 4B). 

 

Recently, it has been demonstrated that ERK can regulate FADD phosphorylation in leukemia cells. 

The authors demonstrated that inhibition of ERK activity using CI-1040 reduced FADD 

phosphorylation over a 72-h period and concomitantly increased the sensitivity of these cells to Fas 

receptor-mediated apoptosis (26). We also observed a decrease in FADD phosphorylation and a 

concomitant increase in the sensitivity of cells to Fas receptor-mediated apoptosis. However, 

induction of apoptosis is more rapid in our system and is evident after 24 h. We analyzed the extent 
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of FADD phosphorylation after 1-, 8-, and 24-h incubation with SP600125. We found that although 

FADD dephosphorylation was not immediate, it preceded induction of apoptosis and began to 

decrease significantly after 8 h (Fig. 4C). We were concerned that SP600125 may also inhibit ERK 

activity and consequently reduce the extent of FADD phosphorylation in DU 145 cells. Therefore, we 

inhibited ERK activity using the Mek inhibitor U0126 and p38 activity using the p38 inhibitor 

SB203580. We found that FADD phosphorylation in DU 145 cells was not dependent on either ERK 

activity or p38 activity (Fig. 4D). Next we wished to determine whether increased JNK activity could 

also increase the levels of FADD phosphorylation. However, 250 ng ml–1 anisomycin did not increase 

the levels of FADD phosphorylation in DU 145 cells (Fig. 4E). This suggests that either JNK-dependent 

FADD phosphorylation is already at a maximum level or that different signal transduction pathways 

are activated during endogenous JNK activity and anisomycin-induced JNK activity. 

 

JNK Does Not Regulate Cell Cycle Progression in DU 145 Cells—FADD phosphorylation has previously 

been described and correlates with cell cycle progression. Cells arrested in the G1 phase of the cell 

cycle display predominantly unphosphorylated FADD, whereas cells arrested during mitosis display 

predominantly phosphorylated FADD (27). In addition, JNK has previously been implicated in cell 

cycle progression during DNA synthesis (28), and it was possible that JNK regulated FADD 

phosphorylation by arresting DU 145 cells in the G1 phase or S phase. We confirmed that 

phosphorylation of FADD is regulated by cell cycle-dependent kinase in DU 145 cells using 8 mM 

hydroxyurea to arrest cells during G1 phase and 2 μg ml–1 nocodazole to arrest cells during mitosis 

(Fig. 5A). However, incubation with SP600125 did not arrest DU 145 cells in the S phase of the cell 

cycle (Fig. 5, B and C). In addition, the rate of proliferation of cells incubated with SP600125 was not 

significantly altered compared with untreated DU 145 cells (data not shown). These data suggest 

that JNK does not regulate FADD phosphorylation in DU 145 cells by regulating cell cycle 

progression. 

 

PKCζ Is Not Responsible for FADD Phosphorylation in DU 145 Cells—Our data suggested that JNK 

directly regulated the activity of a kinase responsible for phosphorylating FADD. A number of FADD-

interacting kinases have been identified (29), and one kinase that has been shown to associate with 

and phosphorylate FADD in vivo is PKCζ, an atypical member of the PKC family (30). We observed 

that the expression of PKCζ was increased in the Fas-resistant prostate cancer cell lines DU 145 and 

PC-3 when compared with the Fas-sensitive PPC-1 and ALVA 31 prostate cancer cell lines (Fig. 6A). 

Moreover, we noted that FADD phosphorylation was more extensive in DU 145 cells and PC-3 cells 

than in PPC-1 and ALVA 31 cells (data not shown). However, the extent of FADD phosphorylation 

was not found to change when DU 145 cells were incubated with a pseudosubstrate inhibitor of 

PKCζ (Fig. 6B). Phosphorylation of ERK in response to PKCζ activity was significantly decreased using 

15 and 20 μM PKCζ pseudosubstrate inhibitor (Fig. 6C), confirming that effective concentrations of 

the inhibitor were used. We also incubated cells with the general PKC inhibitors chelerythrine 

chloride (Fig. 6D) and Ro-32-0432 (Fig. 6E), but again we did not observe any decrease in FADD 

phosphorylation. Together, these data suggest that PKC isoforms are not required for FADD 

phosphorylation in DU 145 cells. 
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HIPK3 Phosphorylates FADD and Increases the Resistance of DU 145 Cells to Fas-mediated 

Apoptosis—The other protein kinase reported to phosphorylate FADD is HIPK3, a 170-kDa kinase 

that can regulate DISC formation in vivo (31). The expression of HIPK3 was found to be elevated in 

Fas-resistant DU 145 and PC-3 cells in comparison with more sensitive PPC-1 and ALVA 31 prostate 

carcinoma cells (Fig. 7A). Little is known about the function of HIPK3 in cells, and we used RNA 

interference to reduce the expression of HIPK3 in DU 145 cells as outlined under “Materials and 

Methods” (Fig. 7B). The extent of FADD phosphorylation was significantly reduced in cells incubated 

with HIPK3 RNA antisense oligonucleotides when compared with control RNA (Fig. 7C). In addition, 

we found that inhibition of HIPK3 expression increased the sensitivity of DU 145 cells to Fas 

receptor-mediated apoptosis when compared with control RNA (Fig. 7D). 

 

SP600125 Decreases Expression of HIPK3 by Regulating Transcription of HIPK3 mRNA—Our data 

suggested that HIPK3 was responsible for phosphorylating FADD in DU 145 cells, and elevated 

expression of HIPK3 was associated with increased resistance to Fas receptor-mediated apoptosis. 

We also demonstrated that JNK activity was necessary for phosphorylation of FADD by HIPK3. 

However, the mechanism by which JNK regulates HIPK3 activity was not clear. JNK has been 

demonstrated to regulate activity of proteins through direct phosphorylation and regulating gene 

expression. We found that incubation of DU 145 cells with 50 μM SP600125 decreased the 

expression of HIPK3 mRNA (Fig. 8A) and also decreased the expression of HIPK3 protein (Fig. 8B). 

Therefore, JNK can regulate the activity of HIPK3 by altering the rate of transcription at the HIPK3 

gene locus. 

 

JNK Activity Inhibits the Interaction between FADD and Caspase-8 in DU 145 Cells—In order to 

understand the mechanism employed by HIPK3 to inhibit Fas receptor-mediated apoptosis, we 

immunoprecipitated FADD from DU 145 cell lysates and probed for caspase-8 expression. Although 

caspase-8 is believed to associate with FADD in unstimulated cells, we did not detect any interaction 

between FADD and caspase-8 in resting DU 145 cells. No interaction between FADD and caspase-8 

was evident even after 24-h stimulation with 200 ng ml–1 anti-Fas IgM, and co-incubation with 

SP600125 and anti-Fas IgM for 24 h was required for caspase-8 association with FADD (Fig. 8C). This 

suggests that JNK interferes with FADD and caspase-8 binding in DU 145 cells by up-regulating the 

expression of HIPK3. 

 

JNK RNAi Reduces FIST and HIPK3 Expression and Decreases the Extent of FADD Phosphorylation in 

DU 145 Cells— Several reports have suggested that targets of JNK are often phosphorylated 

preferentially by either JNK1 or JNK2. We used RNAi to selectively inhibit JNK1 or JNK2 expression in 

DU 145 cells, and siRNA sequences outlined in Table I were found to inhibit expression of JNK1 and 

JNK2 by 70–90% (Fig. 9A). New primers were designed to discriminate between HIPK3 and FIST by 

reverse transcriptase-PCR. Incubation of DU 145 cells with both JNK1 and JNK2 siRNA significantly 

reduced the expression of both HIPK3 and FIST mRNA (Fig. 9B). We did not observe any decrease in 

HIPK3 or FIST expression when cells were incubated with either JNK1 or JNK2 RNAi alone, suggesting 

that JNK1 and JNK2 have redundant roles in regulating HIPK3 expression (data not shown). FADD 
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phosphorylation was also dramatically reduced in cells incubated with JNK1 and JNK2 siRNA, but not 

when incubated with either JNK1 or JNK2 siRNA alone, further underscoring the redundant roles 

played by JNK1 and JNK2 in regulating HIPK3 expression (Fig. 9C). 

c-Jun Is Required for HIPK3 Expression and FADD Phosphorylation in DU 145 Cells—To date, two 

splice variants of HIPK3 have been identified, HIPK3 and FIST. They share >95% homology with each 

other and only differ by the presence of an extra exon in HIPK3. However, transcription is regulated 

at different promoters in humans located 50,000 bases apart on chromosome 11. The principle 

transcription factor for JNK, c-Jun, is an integral part of the AP-1 transcription factor complex. We 

identified two putative AP-1 binding sites close to the TATA box at each promoter region. Therefore, 

we hypothesized that HIPK3 expression is regulated by JNK through the transcription factor c-Jun. 

We used RNAi to reduce c-Jun expression in DU 145 cells (Fig. 10A) and observed a concomitant 

decrease in expression of both HIPK3 and FIST (Fig. 10B) and FADD phosphorylation (Fig. 10C) when 

compared with control oligonucleotides. 

 

DISCUSSION 

The role of JNK in both survival and apoptosis has been well documented (32, 33). Recent studies 

have demonstrated that JNK activation in individual cells is usually an “all or none” response to initial 

signals. In contrast, when analyzing JNK activation in a population of cells such as by Western blot, a 

graded response is usually observed. This simply represents the percentage of cells expressing active 

JNK at the time of lysis, and it appears that the length of time that JNK is activated in a particular cell 

is the most important factor that determines the fate of that cell (34, 35). However, much work is 

required to identify the exact mechanisms employed by JNK in response to different stimuli. 

 

In this study, we focus on the relationship between endogenous JNK activity and Fas receptor-

mediated apoptosis. We have identified a previously undescribed role of endogenous JNK activity in 

preventing Fas receptor-mediated apoptosis. Inhibition of JNK activity using SP600125 enhanced the 

rate of Fas receptor-mediated apoptosis in DU 145 cells. We have shown that DU 145 cells, PC3 cells, 

and PPC-1 cells have elevated endogenous JNK activity and are resistant to Fas receptor-mediated 

apoptosis. Endogenous JNK activity is much lower in ALVA 31 cells, a prostate cancer cell line 

originally isolated from a well differentiated tumor. Unlike the other prostate cancer cell lines, ALVA 

31 cells were found to be sensitive to Fas receptor-mediated apoptosis, and inhibition of JNK activity 

using SP600125 could increase the sensitivity of DU 145 cells and PC3 cells to Fas receptor-mediated 

apoptosis. 

 

In previous studies, we found that inhibition of JNK expression using antisense actually inhibited Fas 

receptor-mediated apoptosis over 24 h when DU 145 cells were treated with both camptothecin and 

anti-Fas IgM (18). These results are contradictory to our current observations; however, this is 

believed to be as a direct result of the sensitivity of the apoptosis assays used in both studies. In our 

previous study, we used propidium iodide uptake and morphology as indicators of apoptosis. These 

assays are generally less sensitive than currently available assays and only detect cells undergoing 
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final events in the apoptosis program. When we used these assays as indicators of apoptosis 

following incubation with SP600125 and anti-Fas IgM, we did not observe any increase in apoptosis 

after 24 h, and significant increases only began after 48 h post-treatment (data not shown). In 

contrast, annexin V-FITC and JC1 are used to determine the extent of Fas receptor-mediated 

apoptosis in this study. These assays detect early events during Fas receptor-mediated apoptosis, 

and we detected significant increases in apoptosis after 24 h post-treatment using these assays. 

Therefore, it appears that the kinetics of Fas receptor-mediated apoptosis are different whether 

cells are sensitized with camptothecin or with SP600125. 

 

We discovered that FADD phosphorylation was dependent on JNK activity in prostate cancer cells, 

and inhibition of JNK using SP600125 or RNAi prevented FADD phosphorylation. Two kinases that 

have been demonstrated to inhibit FADD phosphorylation and formation of the DISC following Fas 

receptor engagement with Fas ligand are PKCζ and HIPK3. PKCζ interacts with and phosphorylates 

FADD in hematopoietic cells, and it has been found that overexpression of PKCζ abrogates Fas 

receptor-mediated apoptosis by interfering with effective DISC formation (30). Overexpression of 

PAR-4, the cellular inhibitor of PKCζ activity, has been shown to sensitize prostate cancer cell lines to 

Fas-mediated apoptosis, and this may implicate PKCζ in the resistance of DU 145 cells to treatment 

with anti-Fas IgM (36). JNK1 activity has been reported to decrease the expression of PAR-4 in 

epithelial cells (37), and this may lead to an increase in the activity of PKCζ. In addition, increases in 

PKCζ expression have been reported during prostate cancer progression (38). Although we 

confirmed that the expression of PKCζ is elevated in DU 145 cells, we did not observe any decrease 

in the phosphorylation of FADD when we incubated cells with the PKCζ pseudosubstrate inhibitor. In 

addition, no increase in the sensitivity of cells to anti-Fas IgM was detected, and these data suggest 

that PKCζ does not phosphorylate FADD and regulate Fas receptor-mediated apoptosis in DU 145 

cells. 

 

A second FADD-interacting kinase called HIPK3 was first identified as a putative multidrug-resistant 

protein from studies of cancer cells (39, 40). The gene coding for HIPK3 was cloned in 1997 and was 

found to share significant homology with two other kinases, HIPK1 and HIPK2 (39). HIPK1 

phosphorylates and promotes DAXX redistribution within the nucleus (41). HIPK2 has been reported 

to interact with TRADD, an adapter protein for a subset of the tumor necrosis factor receptor 

superfamily (42). Overexpression studies demonstrated that a splice variant of HIPK3 called FIST 

interacts with and phosphorylates FADD, another adapter protein for a subset of the tumor necrosis 

factor receptor superfamily (31). Common death receptor targets suggest that a principle role of this 

kinase family is in regulating various aspects of death receptor signaling. 

 

We found that HIPK3 was expressed at higher levels in the Fas-resistant prostate cancer cell lines DU 

145 and PC-3. RNA interference reduced the expression of HIPK3 in DU 145 cells, and this was 

accompanied by a decrease in the extent of FADD phosphorylation. This resulted in an increase in 

the sensitivity of cells to Fas-mediated apoptosis. HIPK3 was significantly reduced in cells treated 

with SP600125 and also RNAi targeted against JNK1 and JNK2. These novel findings suggest that 
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increased endogenous JNK activity during prostate cancer progression causes an increase in the 

expression of HIPK3 and appears to be a key event in increasing the resistance of prostate cancer 

cells to Fas receptor-mediated apoptosis. 

 

Two splice variants of HIPK3 have been described, HIPK3 and FIST, and these are under the control 

of two different promoters. We identified two putative AP-1 binding sites on each promoter within 

200 bases of the TATA box in humans. The major component of the AP-1 transcription factor 

complex, c-Jun, is regulated by JNK. We found that inhibition of c-Jun expression reduced the 

expression of HIPK3 and FIST in DU 145 cells and also reduced FADD phosphorylation. Therefore, our 

data suggest that endogenous JNK activity increases expression of HIPK3 and FIST and that this is 

dependent on c-Jun expression. Furthermore, we have shown that RNAi targeting HIPK3 and FIST 

reduces the extent of FADD phosphorylation and increases the sensitivity of these cells to Fas 

receptor-mediated apoptosis. 

 

The association of FADD and caspase-8 was found to be defective in normal DU 145 cells, and 

interaction between these two proteins was only restored after co-incubation with SP600125 and 

anti-Fas IgM. Previous reports have implicated FADD phosphorylation with sensitivity to Fas 

receptor-mediated apoptosis. Overexpression of the FADD kinase PKCζ can inhibit the interaction 

between FADD and caspase-8 (30). Inhibition of ERK activity has been demonstrated to reduce FADD 

phosphorylation and increase the sensitivity of cells to Fas receptor-mediated apoptosis (26). In 

addition, FADD phosphorylation and Fas receptor-mediated apoptosis appear to be regulated by cell 

cycle progression in certain cell lines (43, 44). Although it has previously been reported that FADD 

phosphorylation does not affect Fas receptor-mediated apoptosis (27), these studies were 

performed using cell lines overexpressing wild type and mutant FADD and thus may not correlate 

with endogenous expression of FADD in cells. 

 

Targets of JNK have previously been identified that either promote or inhibit Fas-mediated apoptosis 

at two key stages (Fig. 11). JNK can phosphorylate and alter the activity of a number of Bcl-2 family 

members, and this in turn modulates the sensitivity of the mitochondrion to apoptotic signals. JNK 

may also modulate early events during Fas-mediated apoptosis such as decreasing PAR-4 expression 

(36, 37) and enhancing the clustering of Fas receptor in response to Fas ligand (45). Our results have 

illuminated another target of JNK in Fas receptor-mediated apoptosis. By regulating HIPK3 

expression and FADD phosphorylation through the transcription factor c-Jun, JNK can regulate the 

interaction between FADD and caspase-8 and increases the threshold of Fas receptor activation 

required to promote apoptosis in prostate cancer cells. However, HIPK3 is not the sole mechanism 

that increases resistance of DU 145 cells to Fas-mediated apoptosis. Bcl-2 family members and 

HSP27 may regulate other components of the Fas apoptotic pathway. These mechanisms are 

semiredundant and act independently to increase the threshold of Fas receptor activation required 

for apoptosis induction. As a consequence, it is likely that any therapy directed against Fas receptor 

for prostate cancer will target multiple inhibitory effects in order to maximize apoptosis and reduce 

the tumor burden in patients. 
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FIGURE LEGENDS 

FIG. 1. 

Inhibition of endogenous JNK activity with SP600125 sensitizes DU 145 prostate carcinoma cells to 

Fas-mediated apoptosis. A, JNK was activated with 250 ng ml–1 anisomycin in the presence or 

absence of 50 μM SP600125. Western blotting was used to determine the expression and 

phosphorylation of c-Jun in DU 145 cell lysates after 4 h of treatment. β-Actin was also probed to 

demonstrate equal protein loading in the lanes. B, JNK phosphorylation at Thr183 and Tyr185 was 

assessed by Western blot in cells incubated with 250 ng ml–1 anisomycin in the presence and 

absence of 50 μM SP600125 for 4 h. Total JNK expression was also analyzed to determine equal 

protein loading. C, DU 145 cells were incubated for 1 h with 50 μM SP600125 as outlined under 

“Materials and Methods” before the addition of 200 ng ml–1 α-Fas IgM agonistic antibody. Cells 

were stained 24 h after adding α-Fas IgM with annexin V-FITC and propidium iodide to visualize the 

extent of apoptosis. 25 μM caspase-8 inhibitor Z-IETD-fmk and caspase-9 inhibitor Z-LEHD-fmk were 

added 10 min before α-Fas IgM where indicated, and the error bars represent the S.D. of three 

independent experiments. D, DU 145 cells were incubated with 25 or 50 μM SP600125 or a Me2SO 

control for 4 h. Expression of c-Jun was determined by Western blot, and β-actin was also probed to 

demonstrate equal protein loading. E, DU 145 cells were incubated for 1 h with 25 or 50 μM 

SP600125 and subsequently treated with 200 ng ml–1 α-Fas IgM for 24 h. Apoptosis of annexin V-

FITC and propidium iodide-stained cells was determined by flow cytometry. 

FIG. 2. 

Endogenous JNK activity correlates with resistance to Fas receptor-mediated apoptosis in DU 145 

cells. A, the expression of JNK phosphorylated at Thr183 and Tyr185 was determined in DU 145 cells, 

PC-3 cells, PPC-1 cells, and ALVA 31 cells. Total JNK expression was also analyzed to ensure equal 

protein loading. B, total c-Jun expression was analyzed in the four prostate cancer cell lines: DU 145, 

PC-3, PPC-1, and ALVA 31. β-Actin was also probed to verify equal protein loading. C, DU 145, PC-3, 

PPC-1, and ALVA 31 cells were incubated with 200 or 400 ng ml–1 Fas or left untreated. Cells were 

stained with annexin V-FITC and propidium iodide after 24 h, and apoptosis was determined using 

flow cytometry. 

FIG. 3. 

SP600125 sensitizes DU 145 cells to Fas-induced apoptosis upstream of caspase-8 activation. A, 

expression of procaspase-8 (55/57 kDa) and the large caspase-8 active subunit (18 kDa) were 

analyzed by Western blot in lysates from DU 145 cells treated with 50 μM SP600125 and 200 ng ml–

1 anti-Fas IgM for 24 h. Untreated and Fas-treated Jurkat cells were used as a positive control for 

caspase-8 cleavage products, and actin was also probed to demonstrate equal protein loading. B, the 

cleavage of BID (22 kDa) into the proapoptotic tBID (15 kDa) was analyzed in DU 145 cells treated 

with 50 μM SP600125 and 200 ng ml–1 anti-Fas IgM for 24 h. Untreated and Fas-treated Jurkat T 

cells were used as a positive control for BID cleavage following Fas receptor activation. β-Actin was 

probed for equal protein loading. C, mitochondrial membrane depolarization was assessed in DU 

145 cells treated for 24 h with 50 μM SP600125 and 200 ng ml–1 anti-Fas IgM using the cationic 
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probe JC-1. A decrease in FL-2 fluorescence indicates depolarization of the mitochondrial membrane 

in the cells. Percentages refer to the population of cells with depolarized mitochondria in each 

sample, and data are representative of three independent experiments. D, Western blot analysis of 

procaspase 3 expression and cleavage in DU 145 cells treated for 24 h with 50 μM SP600125 and 200 

ng ml–1 anti-Fas IgM. Fas-treated Jurkat cells were used as a positive control for procaspase 3 

cleavage products. Procaspase 3 (35 kDa) and various cleavage products including active caspase 

subunits are evident. β-Actin was also probed to ensure equal protein loading. 

FIG. 4. 

SP600125 inhibits FADD phosphorylation in DU 145 cells. A, Western blot analysis of FADD in DU 145 

cell lysates following treatment for 24 h with SP600125 and anti-Fas IgM as described earlier. The 

doublet band present in untreated and anti-Fas IgM-treated cells represents unphosphorylated and 

Ser194-phosphorylated FADD. Actin was also probed to ensure equal protein loading. B, λ-

phosphatase treatment of DU 145 cells was performed as described under “Materials and Methods.” 

The extent of FADD phosphorylation in untreated and λ-phosphatase-treated cell lysates was 

subsequently analyzed by Western blot. Actin was also probed to demonstrate equal protein 

loading. C, FADD phosphorylation was determined in DU 145 cells incubated with 50 μM SP600125 

for 1, 8, and 24 h as indicated. β-Actin was also probed to determine equal protein loading. D, DU 

145 cells were incubated with 50 μM SP600125, 10 μM U0126, 10 μM SB203580, or an Me2SO 

control for 8 h. Protein was extracted from cells, and Western blot analysis was used to determine 

the expression of c-Jun and the extent of FADD phosphorylation. β-Actin expression was also 

determined to verify equal protein loading. E, DU 145 cells were incubated with 250 ng ml–1 

anisomycin for 24 h, and protein extracts were taken to determine the extent of FADD 

phosphorylation. β-Actin expression confirms equal protein loading. 

FIG. 5. 

SP600125 does not arrest cell cycle progression in DU 145 cells. A, effects of the cell cycle inhibitors 

hydroxyurea and nocodazole on FADD phosphorylation are investigated in DU 145 cells. Actin was 

probed to verify equal protein loading. B, cell cycle analysis in DU 145 cells incubated with 50 μM 

SP600125, 8 mM hydroxyurea, and 2 μg ml–1 nocodazole for 24 h. Propidium iodide was used to 

assess the DNA content of cells by flow cytometry as described under “Materials and Methods.” C, 

bar chart representing DNA content and cell cycle phase for DU 145 cells incubated with SP600125, 

hydroxyurea, and nocodazole. Error bars, S.D. after three independent experiments. 

FIG. 6. 

PKCζ does not phosphorylate FADD in DU 145 cells. A, total expression of PKCζ was investigated in 

four prostate cancer cell lines by Western blot. Equal loading was verified by probing for poly-(ADP-

ribose) polymerase. B, DU 145 cells were incubated with 20, 15, and 10 μM PKCζ pseudosubstrate 

inhibitor for 24 h, and the extent of FADD phosphorylation was subsequently determined by 

Western blot. Cells were also incubated with 50 μM SP600125 for comparative purposes, and actin 

demonstrated equal protein loading. C, expression of phosphorylated ERK was determined for the 

cell lysates used above to verify that effective concentrations of PKCζ pseudosubstrate inhibitor 

were used. Equal protein loading was verified by analyzing total expression of ERK2. D, DU 145 cells 

were incubated with 20 μM PKC inhibitor chelerythrine chloride or 50 μM SP600125 for 24 h. FADD 
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phosphorylation was subsequently determined in protein extracts by Western blot. β-Actin was used 

as a control to ensure equal protein loading. E, DU 145 cells were incubated with 10, 5, or 1 μM Ro-

32-0432 or left untreated where indicated. FADD phosphorylation was determined by Western blot, 

and β-actin was used to determine equal protein loading. Cells treated with 50 μM SP600125 were 

also probed for comparative purposes. 

FIG. 7. 

HIPK3 phosphorylates FADD and increases the resistance of DU 145 cells to Fas-mediated apoptosis. 

A, total expression of HIPK3 was determined in the four prostate cancer cell lines. Expression of 

HIPK3 was found to be highest in DU 145 cells. Actin was also probed to verify equal protein loading. 

RNA interference was used to decrease the expression of HIPK3 mRNA over 4 days (B), and a 

decrease in FADD phosphorylation was also observed in DU 145 cells in comparison with control 

oligonucleotides (C). GAPDH (B) and actin (C) were also probed to demonstrate equal loading. D, DU 

145 cells were incubated with control or HIPK3 small interfering RNA for 4 days and subsequently 

treated with 200 ng ml–1 anti-Fas IgM for 24 h. Apoptosis was measured using annexin V-FITC and 

propidium iodide staining as described under “Materials and Methods.” The error bars represent the 

S.D. for three independent experiments. 

FIG. 8. 

SP600125 decreases expression of HIPK3 in DU 145 cells and increases the affinity of FADD for 

caspase-8. A, reverse transcriptase-PCR analysis of HIPK3 expression in DU 145 cells incubated with 

or without 50 μM SP600125 for 24 h. Expression of GAPDH was also determined to demonstrate 

equal loading of cDNA. B, Western blot analysis of HIPK3 expression in DU 145 cells following 24-h 

incubation with SP600125. Actin was also probed for equal protein loading. C, immunoprecipitation 

of FADD from DU 145 cell lysates incubated with 50 μM SP600125 for 24 h and 200 ng ml–1 for 1, 6, 

and 24 h where indicated. Caspase-8 and FADD expression were subsequently analyzed by Western 

blot. 

FIG. 9. 

RNAi inhibition of JNK expression reduces HIPK3 expression and FADD phosphorylation in DU 145 

cells. A, DU 145 cells were inhibited with siRNA targeting JNK1, JNK2, both JNK1 and JNK2, or control 

siRNA for 48 h. Expression of JNK1 and JNK2 was subsequently determined using reverse 

transcriptase-PCR. GAPDH was used as an equal loading control. B, HIPK3 and FIST expression were 

determined in DU 145 cells incubated with JNK1 and JNK2 siRNA oligonucleotides or control 

oligonucleotides for 48 h. GAPDH expression was also analyzed to verify equal loading of samples. C, 

FADD phosphorylation was determined after incubation with JNK1, JNK2, JNK1 and JNK2, or control 

siRNA oligonucleotides for 48 h. Cells incubated with 50 μM SP600125 for 24 h were used for 

comparative purposes. β-Actin was used to verify equal protein loading between samples. 

FIG. 10. 

Inhibition of c-Jun expression using RNAi reduces HIPK3 expression and FADD phosphorylation in DU 

145 cells. A, c-Jun expression was determined in DU 145 cells incubated with SMARTPool™ c-Jun 

siRNA or control siRNA for 24 and 48 h. β-Actin was also probed to verify equal protein loading. B, 

HIPK3 and FIST expression was determined by reverse transcriptase PCR in DU 145 cells incubated 
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with c-Jun or control siRNA where indicated. GAPDH was also probed to visualize equal loading. C, 

FADD phosphorylation was determined in DU 145 cells incubated with c-Jun or control siRNA for 24 

and 48 h by Western blot. β-Actin was used to determine equal protein loading. 

FIG. 11. 

Targets of JNK during Fas receptor-mediated apoptosis. A, endogenous JNK activation promotes 

survival by phosphorylation of Bcl-2 family members and altering the activity of PKCζ and HIPK3. B, 

stress signals induce prolonged JNK activation and proapoptotic targets of JNK include increased 

processing of Bid; increased expression of Bim, DP5, Fas receptor, and Fas ligand; and tyrosine 

phosphorylation of Fas receptor by epidermal growth factor receptor (45). 

 

Footnotes 

1 The abbreviations used are: JNK, c-Jun N-terminal kinase; PKC, protein kinase C; Z-, 

benzyloxycarbonyl-; fmk, fluoromethyl ketone; FITC, fluorescein isothiocyanate; DISC, death-

inducing signaling complex; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; siRNA, small 

interfering RNA; ERK, extracellular signal-regulated kinase. 
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publication of this article were defrayed in part by the payment of page charges. This article must 

therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to 
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