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Barley for
Brewing:

Characteristic
Changes during

Malting, Brewing
and Applications

of its
By-Products

Mahesh Gupta, Nissreen Abu-Ghannam, and
Eimear Gallaghar

ABSTRACT: Barley is the basic raw material for brewing. Its chemical composition, brewing, and technological in-
dices are highly determinative for the beer quality and the economical efficiency of the brewing process. Barley is
rich in protein, carbohydrates, dietary fibers, minerals, and vitamins. The presence of nonstarch polysaccharides
as mixed linkage (1-3),(1-4)-�-D-glucans and arabinoxylans together with the enzymes are responsible for barley
modification. Malting is a complex process that involves many enzymes; important ones are �-amylase, �-amylase,
�-glucosidase, and limit dextrinase. During the process of malting and brewing, the by-products left after separation
of the wort are rich in protein, fibers, arabinoxylans, and �-glucan. This review summarizes and integrates barley
grain with respect to nutritional, functional, and compositional changes that take place during malting and brew-
ing. It also explores in-depth the several by-products obtained after brewing and their potential for various food
applications. Barley brewing by-products offer an opportunity for cereal-based baked and extruded products with
acceptable sensory and nutritional characteristics.

Importance of Barley Grain
Barley (Hordeum vulgare, vulgare L.) is a highly adaptable ce-

real grain that is produced in climates ranging from sub-Arctic
to subtropical. It ranks 5th among all crops in dry matter pro-
duction in the world today (129 million metric tons, 2002 to
2005 mean). Historically, barley has been an important food
source in many parts of the world, including the Middle East,
North Africa, and northern and eastern Europe (mainly Iran, Mo-
rocco, Ethiopia, Finland, England, Germany, Denmark, Russia,
and Poland), and in Asia (Japan, India, Tibet, and Korea) (Chatter-
jee and Abrol 1977; Newman and Newman 2006). At present,
only 2% of barley is used for human food (Baik and Ullrich 2008).
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Barley grain is an excellent source of soluble and insoluble di-
etary fiber (DF) and other bioactive constituents, such as vitamin
E (including toco-tri-enols), B-complex vitamins, minerals, and
phenolic compounds. β-Glucans, the major fiber constituents
of barley, have been implicated in lowering plasma cholesterol,
improving lipid metabolism, and reducing glycemic index. The
effectiveness of barley β-glucans in food products for lowering
blood cholesterol has been documented in a number of studies
(Newman and others 1989; Behall and others 2004). Barley is a
rich source of tocols, including tocophenols and toco-tri-enols,
which are known to reduce serum low-density lipoprotein choles-
terol through their antioxidant action (Qureshi and others 1986).
Whole grains are known for their fiber content, and therefore
lower energy density, and as a source of vitamins and mineral
components, both of which may increase satiety and reduce en-
ergy intake (Slavin 2003). In Western countries, pearled barley,
whole, flaked, or ground is used in breakfast cereals, stews, soups,
porridge, bakery flour blends, and baby foods. In Middle Eastern
and North African countries, barley is pearled and ground, and
used in soups, flat bread, and porridge (Bhatty 1993). Newman
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and Newman (2006) have presented a recent concise review of
the history of barley foods. Barley flour, prepared from pearled
grain through hammer milling or roller milling, can easily be in-
corporated into wheat-based products, including bread, cakes,
cookies, noodles, and extruded snack foods (Newman and New-
man 1991). Newman and others (1990) prepared barley flour
muffins of acceptable quality, which were only slightly inferior
in volume, density, and moisture to wheat flour muffins. Some
cookie and brownie recipes can also be substituted with 100%
barley flour and maintain acceptable quality and flavor. Reg-
ular and waxy barley flours were successfully extruded in the
production of expanded snack foods or cereals using a modi-
fied laboratory single-screw extruder (Baik and others 2004). In
modern time, barley is used in the production of alcoholic bev-
erages, in particular beer. Recently, however, interest in barley as
a food grain is reviving due to heightened consumer awareness
of good nutrition and increased interest in foods and food ingre-
dients enriched in DF (Izydorczyk and Dexter 2008). Recently,
barley has gained popularity due to the functional properties of its
bioactive compounds in barley-based different healthy food prod-
ucts. Germination is a process in which physical modification of
endosperm is carried out to increase the bioactive compounds
(Madhujith and Shahidi 2007). Worldwide, the greatest use of
barley is for malting purposes, most specifically for the brewing
industry. However, in recent years, there has been a growing in-
terest in incorporating barley into the human diet because it is
wholesome, readily available, and relatively inexpensive (Keenan
and others 2007).

Characteristics of Malting Barley Grain
Barley grain that is clean, bright yellow-white, plump, thin-

hulled, medium-hard, and uniform in size is generally suitable
for food uses and preferred for pearling (Pomeranz 1974). Grain
hardness is an important characteristic of barley because it de-
termines the pearling and subsequent end-use quality of barley.
Malting barley varieties are usually soft, whereas nonmalting va-
rieties are usually hard. Psota and others (2007) also reported
significant relationships between hardness of barley grain as as-
sessed using the particle size index and hot water extract of
malt as well as the malt quality index of barley malt. Other
structural and compositional characteristics of barley endosperm
could contribute to grain hardness, including proteins, starch, β-
glucan, and their interactions, and packing during grain filling
(Henry 1988). Generally, sound barley grain has a bright light-
yellow or off-white color. Discolored barley grain often develops
undesirable flavors when malted and has poor germination en-
ergy and vigor (Li and others 2003). The grain color of barley can
vary from light yellow to purple, violet, blue, and black, which is
mainly caused by the level of anthocyanins in the hull, pericarp,
and/or aleurone layer. Highly colored types are also receiving
attention for applications in functional foods due to their antiox-
idant properties (Satue-Gracia and others 1997; Nam and others
2006; Philpott and others 2006). However, most of the barley
that is produced possesses bright, light yellow grain color, which
is generally preferred for malting, brewing, and food purposes.

Whole barley grain consists of about 65% to 68% starch, 10%
to 17% protein, 4% to 9% β-glucan, 2% to 3% free lipids, and
1.5% to 2.5% minerals (Czuchajowska and others 1998; Izydor-
czyk and others 2000; Quinde and others 2004). Total DF ranges
from 11% to 34% and soluble DF from 3% to 20% (Fastnaught
2001). Pearling reduces the contents of insoluble fiber, protein,
ash, and free lipids (Quinde and others 2004). On the other hand,
hulled barley is preferred to hull-less barley for malting and brew-
ing because of the contribution of the hull to beer flavor and as a
filtering aid during brewing (Burger and La-Berge 1985). The amy-

lose content of barley starch varies from 0% to 5% in waxy, 20%
to 30% in normal, and up to 45% in high-amylose barley (Bhatty
and Rossnagel 1997). Mixed linked (1-3), (1-4)-β-D-glucans con-
stitute approximately 75% of the barley endosperm cell walls
together with 20% arabinoxylans and protein. Both β-glucans
and arabinoxylans determine wort viscosity and beer filtration
rates (Stewart and others 2000), and form a barrier for hydrolytic
enzymes attacking starch and protein within the cell walls caus-
ing potential health benefits such as prevention of constipation,
reduction in risk of colorectal cancer (Bingham 1990; Faivre and
Bonithon-Kopp 1999), lowering of blood cholesterol, and con-
trolling diabetes management (Gallagher and others 1993; Frost
and others 1999). Barley endosperm protein is rich in prolamin
storage proteins (hordeins) and has moderate nutritional qual-
ity (Newman and McGuire 1985). High-lysine barley mutants,
which contain 2% to 3% greater lysine than normal lysine types
could provide high-quality, protein-enriched barley grains for the
human diet (high lysine content of 5% to 6% compared to 3% as
normal ones) (Ullrich and Eslick 1978).

A large number of parameters have been proposed to de-
fine malting quality. It is also a fact that the texture of the en-
dosperm influences the malt modification process by affecting
water uptake and consequently enzyme synthesis and movement
within the endosperm (Chandra and others 1999). Andersson
and others (1999) studied the variation and correlation between
chemical and physical characteristics of barley samples including
kernel hardness, but found only a low correlation between kernel
hardness and physical and chemical grain properties. One an-
other factor as potential influence of sulfur (S) on barley malting
quality has so far received little attention. Sulfur deficiency has
been shown to affect the composition of proteins in barley grain,
with depletion in the S-rich B hordein and the high-molecular-
weight (HMW) D hordein and an increase in the S-poor C hordein
(Shewry 1993). The malting of hull-less barley, however, presents
a number of challenges due to differences in chemical and phys-
ical characteristics.

Malting and Mashing of Barley Grain
Barley is the primary cereal used in the production of malt in

the world. Two types of barley are frequently used for the malt-
ing process: 6- and 2-row. Two-row barley produces malt with a
large extract, lighter color, and less enzyme content than the 6-
row type (Broderick 1977). From the different quality parameters
reported in the literature, hot-water extract (HWE), kernel size
fractions, kernel weight, β-glucan and protein contents, malting
losses, friability, α-amylase activity, viscosity, and soluble nitro-
gen ratio (SNR) are common assays used to test the quality of
barley mutant (Fox and others 2003). In addition, fast hydration
and germination are necessary traits of barley for good malting
quality (Ulonska and Baumer 1976; Briggs 1998). During malt-
ing, barley undergoes an incomplete natural germination process
that involves a series of enzyme degradations of barley kernel en-
dosperm. As a result of this enzyme degradation, endosperm cell
walls are degraded, and starch granules are released from the ma-
trix of the endosperm in which they are embedded. These struc-
tural changes and biochemical degradations of the endosperm
components are referred to as endosperm modification (Gunkel
and others 2002). Malting is defined as the controlled germi-
nation of cereals, to ensure a given physical and biochemical
change within the grain, which is then stabilized by grain drying.
Three process steps are necessary to ensure that these changes
occur: (1) steeping, to ensure good absorption of water by the
grain (from 12% to at least 40% of moisture); (2) germination,
to maintain embryo growth, enzyme synthesis and a limited en-
dosperm breakdown; and (3) kilning, to ensure product stability.
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Different kernel properties have been identified as factors af-
fecting water uptake during steeping of barley, for example, en-
dosperm structure, starch content, protein content, and cell wall
properties (Ogushi and others 2002). Loosely packed endosperm
gives soft (mealy) structure and facilitates better moisture and en-
zyme movements in the endosperm. Thus, a mealy endosperm
is more easily degraded by hydrolytic enzymes during malting
(Swanston and others 1995). On the other hand, starch gran-
ule size and distribution, amylose, amylopectin, β-glucan, and
arabinoxylan content have also been proposed as factors in af-
fecting the hardness of the endosperm (Dombrink and Knutson
1997; Tohno-Oka and others 2004). As a result of the malting
process, there is an increase in enzyme activity, soluble protein,
and breakdown of starch into simple sugars, along with devel-
opment of the typical color and flavor (Hoseney 1994). The final
moisture content of malt is approximately 35 to 40 g/kg, being
a highly hygroscopic product. Mashing is a key step in the beer
production process. During mashing, enzymatic degradation of
the polysaccharides present in the malt takes place. Fermentable
carbohydrates are produced from the degradation of the polysac-
charide starch. Such carbohydrates are converted into alcohol
in the fermentation step of the beer manufacturing. Nonstarch
polysaccharides also degrade during mashing into smaller chain
carbohydrates. Different enzymes catalyze all the involved re-
actions. Because the activity of the different enzymes is highly
dependent on temperature, the manipulation of such variable is
the main control mechanism for the mashing process (Hardwick
1995).

Various Factors Affecting Brewing Process of Barley
Grain

Properties of antioxidants
Antioxidants are not evenly distributed in barley grains. Sa-

lomonsson and others (1980) indicated that p-coumaric acid
was present in the lowest amount in the center of the barley
kernel and rapidly increased toward the outer layers, such as
lignified husk (Maillard and Berset 1995), whereas Goupy and
others (1999) have indicated that phenolic acids were mainly
present in the aleurone layer and endosperm. The content of fer-
ulic acid is highest in the cell walls of the aleurone layer, which
is rich in arabinoxylans. Maillard and Berset (1995) have sepa-
rated and identified trans-ferulic acid, trans-p-coumaric acid, and
cis-ferulic acid from barley and malt. The natural antioxidants
in cereals may act as free radical scavengers, reducing agents,
potential complexes of pro-oxidant metals, and singlet oxygen
quenchers (Zielinski 2002). Moreover, many of the natural antiox-
idants present in barley exhibit a wide range of biological effects,
including antibacterial, antiviral, anti-inflammatory, anti-allergic,
and antithrombotic effects, and may also be involved in vasodila-
tory actions (Cook and Sammon 1996). Polyphenols identified
in barley include anthocyanins, flavonols, phenolic acids, cate-
chins, and proanthocyanidins (Goupy and others 1999). There
are more than 50 proanthocyanidins reported in barley, and they
include oligomeric and polymeric flavan-3-ol, catechin (c), and
gallocatechin (gc). The most abundant proanthocyanidins in bar-
ley are dimeric proanthocyanin B3 and procyanidin B3. Major
trimers include T1 (gc–gc–c), T2 (gc–c–c), T3 (c–gc–c), and T4
or procyanidins C2 (c–c–c) (Friedrich and others 2000). Pheno-
lic compounds in cereal grains exist in the free, soluble esters or
conjugates, and insoluble-bound forms (Adom and Liu 2002). An-
tioxidants are generally thought to play a significant role in malt-
ing and brewing due to their ability to delay or prevent oxidation
reactions and oxygen free radical reactions. Antioxidants such as
sulfites, formaldehyde, or ascorbate, can be added into the brew-

ing process to improve beer flavor stability. About 80% of pheno-
lic compounds present in beer are derived from barley malt, and
the remaining come from hops (Goupy and others 1999). Those
phenolic compounds in malting barley include polyphenols (ben-
zoic and cinnamic acid derivatives), flavonoids, proanthocyani-
dins, tannins, and amino phenolic compounds (Hernanz and
others 2001; Bonoli and others 2004), all of which are known to
inhibit nonenzymatic lipid peroxidation and widely recognized
as having important antioxidant and antiradical properties. There-
fore, the presence of the natural antioxidants in malting barley
and screening of malting barley variety with the highest level of
radical scavengers seems very important to produce beers with
high levels of antioxidant activity (Maillard and others 1996).

Arabinoxylans and β-glucan content
Arabinoxylans (AX) consist of a linear-chain backbone of β-D-

xylopyranosyl (Xylp) residues linked through (1-4) glycosidic link-
ages. α-L-Arabinofuranosyl (Araf) residues are attached to some
of the Xylp residues at O-3, O-4, and/or at both O-2, 3 posi-
tions, resulting in 4 structural elements in the molecular structure
of arabinoxylans: monosubstituted Xylp at O-2 or O-3, disubsti-
tuted Xylp at O-2, 3, and unsubstituted Xylp (Figure 1; Gruppen
and others 1993; Izydorczyk and Biliaderis 1995; Vinkx and oth-
ers 1995). A unique feature of arabinoxylans is the presence of
hydroxycinnamic acids and ferulic and p-coumaric acids, ester-
ified to O-5 of Araf linked to O-3 of the xylose residues (Smith
and Hartley 1983). The content of arabinoxylans in barley also
depends on genetic and environmental factors (Fleury and oth-
ers 1997; Izydorczyk and others 2000; Holtekjølen and others
2007) but appears to be less variable than that of β-glucans.
Compared to other grains, the amount of arabinoxylans in barley
is similar to that in wheat (5.8%), but higher than in oats (2.7%
to 3.5%), sorghum (1.8%), or rice (2.6%) (Izydorczyk and Bili-
aderis 2007). Fleury and others (1997) reported that the amount
of arabinoxylans in the hull-less barley (3.37% to 4.30%) was
significantly lower than in the 2- or 6-rowed (5.41% to 6.42%)
covered barley, and linked the differences to the absence of hulls
in the former. Six-rowed barley cultivars generally contain slightly
higher levels of arabinoxylans than 2-rowed cultivars (Fleury and
others 1997). The presence of the waxy gene in barley does not
affect the content of arabinoxylans to the same extent as that of β-
glucans. In view of the importance of nonstarch polysaccharides
in the malting of barley and in subsequent steps in the brewing
process, including the possible influence of residual cell walls
on the rate of wort separation during mashing process (Han and
Schwarz 1996). But undermodified malts, the fact that arabinoxy-
lans cannot be degraded sufficiently, may cause many problems
such as low extract yield, high wort viscosity, decrease of filtration
rate, and haze formation in brewing (Coote and Kirsop 1976). It
has been found that other large molecules such as AX, proteins,
and polyphenols were also associated with reduced beer filtra-
tion, in particular microfiltration. In fact, it has been reported
that the amount of AX in commercial beer is approximately 10
times greater than that of β-glucan (Schwarz and Han 1995). The
enzymes that degrade AX are often produced late in the germina-
tion process (Banik and others 1997), and high levels of AX can
survive through the brewing into the final beer. Some AX are sol-
ubilized from the cell walls but are not extensively degraded by
endogenous enzymes during malting (Voragen and others 1987).
Malt extracts can contain high levels of AX and cause difficulties
associated with the filtration of viscous extracts may significantly
deteriorate the performance of the brewing processes (Bamforth
1985).

Mixed linkage (1-3,1-4)-β-D-glucans, commonly known as β-
glucans, are linear homopolymers of D-glucopyranosyl (Glcp)
residues linked mostly via 2 or 3 consecutive β-(1-4) linkages
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Figure 1 --- Structural elements
present in arabinoxylans: (A)
unsubstituted Xylp, (B)
monosubstituted Xylp at O-2, (C)
monosubstituted Xylp at O-3 with
ferulic acid residue esterified, and (D)
disubstituted Xylp at O-2,3 (from
Izydorczyk and Dexter 2008).

Figure 2 --- General molecular
structure of β-glucans and hydrolysis
products obtained upon digestion of
β-glucans with lichenase (from
Izydorczyk and Dexter 2008).

(Figure 2) that are separated by a single β-(1-3) linkage (Cui
and others 2000). The changes of both (1-3, 1-4)-β-D-glucan
(referred to as β-glucan) content and (1-3, 1-4)-β-D-glucan-
4-glucanohydrolase (referred to as β-glucanase, E.C.3.2.1.73)
activity in barley during malting are important for malt pro-
ducers, which is closely associated with malt yield and quality.
β-Glucanase is a cell wall polysaccharide, which accounts for
approximately 70% (w/w) of the endosperm cell in barley (For-
rest and Wainwright 1977; Jeraci and Lewis 1989). Compared to
other grains, barley contains a relatively high concentration of
β-glucan, a viscous and fermentable DF, therefore may be highly
satiating (Marciani and others 2001). In the brewing industry,
a high content of β-glucan in barley may lead to insufficient
degradation of cell walls, which in turn hinders the diffusion of
enzymes, germination, and the mobilization of kernel reserves,
and hence reduces malt extract. Residual β-glucan may also lead
to highly viscous wort, giving rise to a filtration problem in the
brewery, and it may participate in maturing of beer, causing chill
haze (Bamforth 1982). The degradation of endosperm cell walls
and subsequent changes in β-glucan levels during malting are, to
a great extent, related to β-glucanase activity, which depolymer-

izes β-glucan (Etokakpan 1993). Therefore, better malting perfor-
mance is expected to be associated with lower levels of β-glucan
in grains and higher levels of β-glucanase in malt. Historically,
reduced beer filtration efficiency has been mainly attributed to
β-glucan in the brewing process. β-Glucan may increase the
viscosity of beer by forming gels, consisting primarily of HMW
β-glucan molecules (Home and others 1999). Barley has gained
popularity due to the functional properties most likely antioxidant
and radical scavenging activity due to its bioactive compounds
such as β-glucan, arabinoxylan, oligosaccharides, tocols, and
phenolic compounds (Baik and Ullrich 2008).

Protein in barley grain
Proteins are among barley components that are essential for

the quality of malt and beer. First, high-protein contents decrease
available carbohydrates, with a negative influence on the brew-
ing process (Peltonen and others 1994; Fox and others 2002)
and second, proteolysis (protease hydrolysis producing amino
acids and peptides from hordeins) during malting and mashing
is necessary for yeast metabolism (Moll 1979). Finally, soluble
proteins are important in beer head retention and stability. The
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protein content in barley grains represents, approximately, 8% to
15% of its total mass. Hordeins are the most abundant proteins
(40% to 50%) found in a barley grain (Osman and others 2002).
In addition to hordeins, other proteins have been identified, in-
cluding albumins, glutelins (globulins), friabilin, enzymes, and
serpins (Finnie and others 2002; Fox and others 2002; Osman
and others 2003; Boren and others 2004). Barley hordeins are di-
vided into 5 groups based on their electrophoretic mobilities and
amino acid compositions: the B and C hordeins (70% to 80% and
10% to 20% of the hordein fraction, respectively) and D, Z, and
γ hordeins (less than 5% of the total hordein fraction) (Shewry
1993; Tatham and Shewry 1995). The B hordeins can be sub-
divided into B1, B2, and B3 subtypes (Skerritt and Janes 1992).
Furthermore, a distinction is made between the sulfur-rich (B and
γ hordeins), the sulfur-poor (C hordeins), and HMW prolamins (D
hordeins) (Shewry 1993; Tatham and Shewry 1995). It has been
hypothesized by Moonen and others (1987) that in barley, HMW
subunits form a backbone, which binds low-molecular-weight
(LMW) subunits through disulfide bridges to form a gel-like ag-
gregate. The majority of beer protein lies in the 10 to 40 kDa
size range (Leiper and others 2003). Mostly, the origin of HMW
protein is malted barley (Hughes and Baxter 2001). Some beer
proteins appear to have no function in beer except their contri-
bution to mouthfeel, flavor, texture, body, color, and nutritional
value (Leiper and others 2003; Osman and others 2003). Protein
Z, LTP1 (lipid transfer protein), and other proteins present in beer
have been associated with foam formation and/or stabilization
(Evans and Sheehan 2002; Perrocheau and others 2005). Protein
Z has also been related to beer haze (Curioni and others 1995).
During malting, barley proteins are in part degraded to amino
acids and small peptides by a range of proteolytic enzymes (Bax-
ter 1981; Enari and Sopanen 1986; Jones 2005a, 2005b). Brewer’s
spent grain (BSG), the main by-product of the brewing industry, is
rich in proteins and DF (Mussatto and others 2006). Identification
of protein in the malt and beer samples by polyacrylamide gel
electrophoresis or high-performance liquid chromatography has
become a routine laboratory test in grain segration in malt houses
and in barley breeding programs.

Hydrolysis of starch
Rapid hydrolysis of starch to the fermentable carbohydrates glu-

cose, maltose, and maltotriose is an important aspect of brewing.
Starch hydrolysis is carried out by the malt enzymes α-amylase,
β-amylase, limit dextrinase, and α-glucosidase (Manners 1985).
Limit dextrinase is responsible for hydrolyzing the (1→6)-α-
glucosidic branch points in LMW branched dextrins formed by
the action of α- and β-amylase on starch components (Manners
and others 1970). Starch granules can be encapsulated by a rigid
protein matrix or by cell walls (Weurding and others 2001). α-
Amylase can solubilize both amorphous and crystalline regions
(Lauro and others 1993) of starch granules attacking the (α-4)-
linkages of starch producing oligosaccharides. β-Amylase also
attacks (α-4)-linkages from the nonreducing ends of amylose and
amylopectin molecules (Bamforth and Quain 1989; Lewis and
Young 1995). A range of fermentable sugars is produced from the
action of these enzymes on starch during the mashing process.
These include glucose, sucrose, fructose, and mainly maltose and
also some LMW dextrins (Slack and Wainwright 1980; Lauro and
others 1993). Starch α-amylolysis depends also on the particle
size of starch granules (Colonna and others 1988). Large starch
granules gelatinize earlier than small ones at high temperatures,
despite the fact that the small granules have a slightly lower gela-
tinization enthalpy and a higher surface-to-volume ratio than the
large granules, and hence one would expected them to gelatinize
earlier than the large ones (Soulaka and Morrison 1985; Morri-
son and others 1994). The rate of hydrolysis may be influenced by

both the surface features and internal structure of starch granules
(Li and others 2003). Fermented wort and beer, however, contains
appreciable levels of branched dextrin (Enevoldsen and Schmidt
1973) and suggesting that there is limited hydrolysis by limit dex-
trinase during the mashing process. Results to date suggest that
the enzyme is readily solubilized from malt, but most of it is in
an inactive form that requires “activation” to release, in full, the
enzymic activity (MacGregor and others 1994a, 1994b; Sissons
1996). Other enzymes in the grist, such as limit dextrinase, may
also contribute to the fermentable sugar profile. These enzyme
activities are profoundly influenced by such a high mashing tem-
perature as 65 ◦C. β-Amylase, in particular, is rapidly denatured
at temperatures above 55 ◦C. α-Amylase is rather more stable and
remains active for over an hour at 65 ◦C (Muller 1991).

Role of Enzymes in Malting and Brewing of Barley Grain
The conversion of barley into beer represents mankind’s old-

est and most complex example of applied enzymology. Indeed,
historically some of the most significant advances in enzymology
have been linked to the world of brewing, such as Eduard Buch-
ner’s extraction of enzymes from brewing yeast (Buchner 1897)
and Adrian Brown’s kinetic analysis of invertase (Brown 1902).
In determining the factors that a bearing on the quality of beer,
brewers have learned not only how the endogenous enzymes
contribute to issues such as fermentability, filterability, foam, clar-
ity, flavor, so on, but also how to take advantage of exogenous
enzymes. There are 3 primary “enzyme reactor” stages in the con-
version of barley to beer (Bamforth 2006): barley kernel, mash
tun, and the yeast cell. Only in one of these, the mash tun, is
considered a “typical” enzyme reactor and has been extensively
researched (Boulton and Quain 2001).

More than 40 endopeptidases have been identified in malt,
broadly classified into cysteine-, metallo-, aspartic-, and serine-
proteinases (Jones 2005a). There are also exo-peptidases clas-
sifiable into carboxypeptidases (Mikola and others 1971) and
amino peptidases (Sopanen and Mikola 1975). A substantive rea-
son for the limited action of the endo-peptidases in mashing is
the presence of inhibitor proteins (Jones 2005b). Principal among
such inhibitors are lipid transfer proteins that block the cysteine-
proteinases (Jones 2005b). Jones and Budde (2005) suggest that
32% of the soluble protein in malt is already in the ungerminated
barley form, 46% is released in malting and the rest solubilized in
mashing. It was shown that over the pH range 5 to 6.6, the prote-
olytic activity of malt can vary more than 7-fold (Jones and Budde
2003). Various factors may come together in causing the release
of the enzyme in an active form during malting (Buttimer and
Briggs 2000). It was recently suggested that serine-proteinases
have a key role to play here (Schmitt and Marinac 2008). The
least investigated of the endogenous starch-degrading enzymes
in malted barley is α-glucosidase, although it has been claimed to
be 2nd only to α-amylase for its importance in starch degradation
during malting (Sun and Henson 1991). However, the enzyme is
thermolabile and likely to be of limited significance during mash-
ing (Muslin and others 2000). Low-calorie beers, so-called Light,
are the biggest selling style of beers and the exaggerated scares
about “bad carbs” in beer (Bamforth 2005) led to the advent of
“low carb beers.” For such products, glucoamylase and pullu-
lanase are of great utility in dealing with the dextrins surviving
because of the limited action of limit dextrinase (Goode and oth-
ers 2005).

By-Products Obtained during Malting and Brewing
The brewing industry generates relatively large amounts of by-

products and wastes spent grain, spent hops, and yeast being
the most common. However, as most of these are agricultural
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Figure 3 --- Schematic representation of the process to ob-
tain BSG from natural barley (from Mussatto and others
2006).

products, they can be readily recycled and reused. Thus, com-
pared to other industries, the brewing industry tends to be more
environmentally friendly (Ishiwaki and others 2000). Spent grain
is the most abundant brewing by-product, corresponding to ap-
proximately 85% of total by-products generated (Reinold 1997).
According to Townsley (1979) spent grain accounts, on average,
for 31% of the original malt weight, representing approximately

20 kg per 100 L of beer produced (Reinold 1997). BSG is avail-
able at low or no cost throughout the year and is produced in
large quantities not only by large but also small breweries. In
the brewery, malted barley is milled, mixed with water in the
mash tun, and the temperature of mash slowly increased from
37 to 78 ◦C to promote enzymatic hydrolysis of malt constituents
(Figure 3). This enzymatic conversion stage (mashing) produces
a sweet liquid known as wort. The insoluble, undergraded part
the malted barley grain is allowed to settle to form a bed in
the mash tun and the sweet wort filtered through it (lautering)
(Linko and others 1998; Dragone and others 2002). Figure 3 is a
schematic representation of the process resulting in the produc-
tion of brewers’ spent grain from barley grain. BSG may consist
of the residues from malted barley, or those from malted barley
and adjuncts (nonmalt sources of fermentable sugars), such as
wheat, rice, or maize added during mashing (Reinold 1997). The
chemical composition of BSG varies according to barley variety,
harvest time, malting and mashing conditions, and the quality
and type of adjuncts added in the brewing process (Huige 1994;
Santos and others 2003); but in general, BSG is considered as a
lignocellulosic material rich in protein and fiber, which account
for around 20% and 70% of its composition, respectively. Micro-
scopic examination shows the presence of numerous fibrous tis-
sues from the surface layers of the original barley grain (Figure 4).
The main components of these fibrous tissues are arabinoxylan,
lignin (a polyphenolic macromolecule), and cellulose (a linear
homopolymer of glucose units). Analyses of BSG by Santos and
others (2003) indicated that besides fiber, 24.2% protein, 3.9%
lipid, and 3.4% ash are present in oven-dried BSG. The protein,
apparent starch, nonstarch polysaccharide composition fraction
is different in BSG from pilot scale trials of malting barley of
different varieties. Protein and fiber are highly concentrated in
spent grain because most of the barley starch is removed during
mashing (Kissel and Prentice 1979).

Minerals, vitamins, and amino acids are also found in BSG.
The mineral elements include calcium, cobalt, copper, iron, mag-
nesium, manganese, phosphorus, potassium, selenium, sodium,
and sulfur, all in concentrations lower than 0.5% each (Pomer-
anz and Dikeman 1976; Huige 1994). The vitamins include
(in ppm): biotin (0.1), choline (1800), folic acid (0.2), niacin

Figure 4 --- Scanning electron microscopy of BSG particles. (A) Magnification 100-fold and (B) magnification 300-fold
(from Mussatto and others 2006).
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(44), pantothenic acid (8.5), riboflavin (1.5), thiamine (0.7), and
pyridoxine (0.7); protein-bound amino acids include leucine, va-
line, alanine, serine, glycine, glutamic acid, and aspartic acid in
the largest amounts, and tyrosine, proline, threonine, arginine,
and lysine in smaller amounts. Cystine, histidine, isoleucine, me-
thionine, phenylalanine, and tryptophan also present in minor
quantity (Huige 1994).

Novel Food Applications of the By-Products of Malting
and Brewing of Barley

BSG can be employed either as a wet residue, shortly after
separation from the wort at lautering, or as a dried material
(Townsley 1979; Ozturk and others 2002). According to Huige
(1994), BSG is an excellent feed ingredient for ruminants because
it can be combined with inexpensive nitrogen sources, such as
urea, to provide all the essential amino acids. In addition to its
high nutritional value, BSG is reported to promote increased milk
production without affecting animal fertility (Sawadogo and oth-
ers 1989; Belibasakis and Tsirgogianni 1996a, 1996b; Reinold
1997). When BSG was incorporated into the diet of cows, milk
yield, milk total solid content, and milk fat yield were increased.
At the same time, blood plasma concentrations of glucose, total
protein, albumin, urea, triglycerides, cholesterol, phospholipids,
sodium, potassium, calcium, phosphorus, and magnesium were
not affected (Belibasakis and Tsirgogianni 1996a, 1996b). Kaur
and Saxena (2004) evaluated BSG as a replacement for rice bran
in a fish diet and observed that fish fed with a diet containing
rice bran and 30% BSG had a superior body weight gain when
compared with fish fed with rice bran only.

Food applications
BSG, the residue left after separation of the wort during the

brewing process (Santos and others 2003), is rich in cellulose
and noncellulosic polysaccharides, mainly arabinoxylans (Man-
dalari and others 2005) as well as protein and β-glucan (Mussatto
and others 2006). Approximately, 3.4 million metric ton of spent
grains from the brewing industry are produced in the European
Union every year (Eurostat data 2005). These plant-derived waste
co-products are known to contain significant amounts of valuable
components, which remain unexploited waste in the current pro-
cesses. Because of its high moisture and fermentable sugar con-
tent, BSG becomes an environmental problem after a short time
(7–10 d). It has a strong potential for being recycled and used as
a cheap source of fiber that may provide a number of benefits
when incorporated into human diets such as for the prevention
of certain diseases including cancer, gastrointestinal disorders,
diabetics, and coronary heart disease (Aman and others 1994;
Jacobs and others 1998). Because of its relatively low cost and
high nutritive value, BSG has been evaluated for the manufacture
of flakes, whole wheat bread, biscuits, and aperitif snacks. How-
ever, BSG is too granular for direct addition to food and must first
be converted to flour (Hassona 1993; Miranda and others 1994a,
1994b; Ozturk and others 2002). A high-protein flour prepared
from BSG was successfully incorporated into a number of bakery
products, including breads, muffins, cookies, mixed grain cere-
als, fruit and vegetable loaves, cakes, waffles, pancakes, tortillas,
snacks, doughnuts, and brownies (Townsley 1979; Huige 1994).
Nevertheless, there are some limitations in the use of flour as a
protein additive or as a partial replacement for presently used
flours, due to its color and flavor. BSG is brownish in color when
moist and thus can only be used in off-white products, such as
light-colored cookies, cakes, bread, or spaghetti that are made
entirely from whole meal flour. Moreover, because of alterations
in the flavor and physical properties (for example, texture) of the
final products, only relatively small quantities (5% and 10%) can
be incorporated (Townsley 1979; Hassona 1993; Miranda and

Table 1 --- Properties of BSG flour in foods.

1. Ease of blending
2. Calorie content is approximately half that of most cereal flours

(27.0 MJ/kg)a

3. High water absorption capacity
4. Provides valuable minerals such as Ca, P, Fe, Cu, Zn, and Mg
5. Low fat absorption (beneficial for batters and coating)
6. Uniform tan color, bland flavor, and mildly roasted aroma
7. High fiber content as arabinoxylans (21.8%)b

8. High protein content (24%)b

Data from Huige (1994).
aData from Okamoto and others (2002).
bData from Kanauchi and others (2001).

others 1994a, 1994b). Prentice and D’Appolonia (1977) made
high fiber bread containing BSG and evaluated its consumer ac-
ceptance. The results of their study showed that incorporation
of BSG increase the nutritional and consumer acceptance level.
In another study, BSG was finely milled and heat-treated at 45,
100 or 150 ◦C and replaced white flour in a conventional bread
formula at 5%, 10%, and 15% levels. Bread containing heat-
treated (45 ◦C) BSG, at 5% and 10% flour replacement levels
was accepted favorably (Hassona 1993). Some properties of BSG
flour in foods are shown in Table 1. The ingestion of BSG or
derived products provides benefits for health, and is associated
with increased fecal weight, accelerated transit time, increased
cholesterol and fat excretion, and decrease in gallstones (Fast-
naught 2001). Incorporation of spent grain in rat diets prevented
an increase in plasma total lipids as well as of cholesterol (Has-
sona 1993; Ishiwaki and others 2000).

BSG has been converted to a new protein-rich fibrous food-
stuff by separating the husk fraction by milling and sieving. The
product, germinated barley foodstuff (GBF), contains the aleu-
rone layer, scutellum, and germ fractions of germinated barley,
and is composed mainly of noncellulosic polysaccharides and
glutamine-rich protein and is low in lignin (Kanauchi and Agata
1997). GBF feeding is considered a potentially new attractive pre-
biotic treatment in patients with ulcerative colitis (Kanauchi and
others 2001; Bamba and others 2002). Furthermore, GBF has a
high water-holding capacity compared with other water-insoluble
DF sources, and this feature might contribute to a conspicuously
high stool-forming ability in the colon (improvement of bowel
movement) (Bamba and others 2002). GBF also appears to be
safe and well tolerated. On the whole, BSG is a cheap source
of protein and fiber that may provide a number of benefits when
incorporated in human diets. For this reason, it is a potentially im-
portant food ingredient, especially in developing countries where
poor malnutrition exists.

The incorporation of BSG into food products as a source of
DF has been addressed in the literature such as its incorpora-
tion into flour-mixed breads (Prentice and D’Appolonia 1977;
Finley and Hanamoto 1980; Kawka and others 1999), cookies
(Kissel and Prentice 1979; Ozturk and others 2002), and ani-
mal and fish feed (Batajoo and Shaver 1994; Dung and others
2002). There is a growing interest to increase the DF content
of extruded products by supplementing with wheat bran, corn
bran, oat bran, wheat fiber, sugar beet fiber, and β-glucans (Lue
and others 1991; Gaosong and Vasanthan 2000; Mendonca and
others 2000; Martianez-Tomea and others 2004; Yanniotis and
others 2007). These types of products are potentially healthier,
due to the increased fiber, and can be used as a prophylactic
product. The extrusion cooking of high-fiber cereal product un-
der low temperature and shear conditions affects digestibility of
starch, DF components, and phytate in the human stomach and
small intestine (Sandberg and others 1986). Thus, BSG could be
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a cheap source of protein and fiber that may provide a number
of benefits when incorporated in human diets (Mussatto and oth-
ers 2006). However, reference searches indicate that very little
attention on the incorporation of BSG into extruded products has
been published. Extrusion is a continuous cooking and shaping
(forming) process designed to give unique physical and chemi-
cal functionality to food materials. Raw food ingredients undergo
many order–disorder transitions, such as breakdown of starch
granules, protein denaturation, and complex formation between
lipids and amylose during extrusion. Extrusion-processing also
controls the water activity of ingredients. It is therefore useful in
producing shelf-stable foods and, more important, in producing
a variety of items like snack foods and breakfast cereals. BSG is
rich in complex carbohydrates and protein so it can be used for
the extrusion processing to make various snacks.

Other applications
BSG is rich in polysaccharides and also in associated proteins

and minerals and thus is a substrate of high biotechnological
value. In this respect, several possible applications of BSG in
biotechnological processes have been evaluated. BSG has been
successfully used as a substrate for cultivating species of Pleuro-
tus, Agrocybe, and Lentinus (Schildbach and others 1992). BSG
had good biological efficiency and high nutritional value as a
substrate for Pleurotus ostreatus, especially when water-rinsed
BSG was used (Wang and others 2001). It has been proposed
that BSG favors the growth of these mushrooms not only due
to its high protein content (Townsley 1979), but also to its high
moisture content and physical properties such as particle size,
volume weight, specific density, porosity, and water holding ca-
pacity (Wang and others 2001).

Cereal brans with compositions and physical structures com-
parable with BSG have been used extensively as substrates for the
production of commercial enzymes in so-called koji or solid-state
fermentations (Chou and Rwan 1995; Aikat and Bhattacharyya
2000; Sangeetha and others 2004). For this reason, BSG has also
been evaluated as an alternative substrate for enzyme produc-
tion. BSG is an efficient substrate for xylanase production by a
Streptomyces isolate from Brazilian cerrado soil (Nascimento and
others 2002), and for the production of xylanase and feruloyl es-
terase by Streptomyces avermitilis (Bartolome and others 2002,
2003). α-Amylase production by Bacillus subtilis (Duvnjak and
others 1983) and Bacillus licheniformis (Okita and others 1985)
cultivated on BSG has also been reported.

The reuse of BSG in the brewing process could be attractive
from the point of view of brewery economics. Roberts (1976)
showed that a BSG extract (a spent grain pressing concentrate)
was effective as an antifoaming agent in the fermenter; in ad-
dition, hop utilization was improved and the properties of the
final beer were not affected when the BSG extract was added.
Addition of untreated BSG to wort enhanced the fermentation
performance of yeast (Kado and others 1999), but the flavor and
taste of the resulting beer was not satisfactory. However, addi-
tion of a neutralized acid extract of BSG to wort enhanced yeast
performance and produced beer of quality equal to that of beer
fermented without spent grain. BSG sequentially pretreated with
HCl and NaOH solutions has been evaluated as a carrier for im-
mobilizing brewer’s yeast (Saccharomyces uvarum) (Branyik and
others 2001, 2002, 2004a, 2004b).

The cell walls of the barley grain residues in BSG are rich in
cellulose and noncellulosic polysaccharides, in particular arabi-
noxylans, but also some residual (1-3, 1-4)-β-glucan. The cell
wall polysaccharides can be degraded into their corresponding
constituents by hydrolytic procedures (hydrothermal, enzymatic,
or acidic). Upon hydrolysis, cellulose yields glucose and the non-
cellulosic polysaccharides xylose, mannose, galactose, and ara-

binose, as well as acetic and hydroxycinnamic acids (Palmqvist
and Hahn-Hagerdal 2000; Mussatto and Roberto 2004) and some
of these products are of industrial significance as precursors of
food-grade chemicals or as energy sources in microbial fermen-
tations. Hydrothermal hydrolysis (autohydrolysis by acetic acid
released from its esterified form on the arabinoxylans) treatment
of BSG with water at 150 ◦C for 60 and 120 min gave a wide va-
riety of arabino-oligoxylosides with different structural features.
The arabino-furanosyl side-branches on the xylan backbone are
readily hydrolyzed and are easily removed by this treatment. The
higher thermal sensitivity of the arabinose components compared
to xylose, leads to release of large amounts of free arabinose
when the temperature of the process is increased; and to major
amounts of xylo-oligosaccharides. Hydroxycinnamic acids (fer-
ulic and p-coumaric acids) present in BSG have potential uses
in the food industry (Bartolome and Gomez-Cordoves 1999; Bar-
tolome and others 2003). Bartolome and others (1997) used an
esterase from Aspergillus niger to release ferulic acid from BSG
and observed that 3.3% of the total ferulic acid was released, but
in the presence of a xylanase from Trichoderma viride increased
the extraction up to 30% (Bartolome and others 2003).

Future Considerations
Barley is one of the most ancient crops, and it has evolved

through domestication to today as a major world crop based on
acreage and production. It has great potential to reclaim some of
its prominence as a food grain, largely due to its high nutritional
value. Starch is a unique component of barley grain that gives
physical properties to food products, but barley also contains high
contents of protein and β-glucan. However, because human con-
sumption of barley and barley-containing food products has been
insignificant as compared to other cereal grains, the development
of new processes and food products has been neglected and there
has been little effort to define quality requirements for food uses.
The significance of β-glucan and tocols for human nutrition is
well known, but little is known about the functional properties of
β-glucan for making food products. Some of the traits preferred
for specific food applications are known through investigations
on incorporating barley into wheat-based food products. On the
other hand, the functional properties of β-glucans in food pro-
cessing and end-use quality, with the exception of malting and
brewing are little known. Much of the more recent interest in the
use of β-glucans in food systems has stemmed from their use as
a functional DF. Innovative ways are being developed to bring
DF into new appealing high-fiber products that contribute to the
recommended DF intake (Natl. Academy of Sciences 2002). The
development of new techniques to use this agro-industrial by-
product is of great interest due to the large volumes of spent grain
produced. More research is required to understand how the gel
protein is disaggregated during malting and how the aggregates
form during mashing.

Increasing efforts are being directed towards the re-use of
agro-industrial by-products, from both economic and environ-
mental standpoints. Brewer’s spent grain (BSG) is an abundant
by-product that can be obtained from brewing companies world-
wide. However, in spite of all the possible applications described,
its use is still limited, being basically used as animal feed or
simply as a land fill. BSG can be considered as an attractive
adjunct for human food. BSG has been used, for example, to
make protein-enriched breads, which could be very useful in
the poorer regions of the world where food is scarce. On the
other hand, considering that carbohydrates are the major com-
ponents, more attention should be paid to its conversion into
soluble and fermentable sugars. Currently, a number of added-
value bioproducts such as organic acids, amino acids, vitamins,
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ethanol, butanediol, among others, are produced by fermentation
using glucose or xylose as substrates. But there is little informa-
tion about the residual barley proteins present in BSG and their
interactions with other BSG polymers. A consequential benefit of
the use of industrial by-products such as BSG is as raw materials
in various food applications. In addition, from an environmental
viewpoint, the elimination of industrial by-products represents a
solution to disposal and pollution problems.
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