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A B S T R A C T

A high sensitivity temperature sensor based on a singlemode-no-core-singlemode (SNCS) fibre structure and
surrounded with alcohol within a silica capillary is described. In this investigation, no-core fibre (NCF) is used
as the multimode waveguide and alcohol is chosen as the temperature sensitive medium. By packaging the
alcohol solution with a short length of NCF enclosed within a silica capillary, the surrounding temperature can
be detected by monitoring the variations of transmission loss at a specific wavelength. The theoretical analysis
predicts this temperature sensor can provide high sensitivity, and the experimental results support this. The
maximum temperature sensitivity of the sample is 0.49 dB/°C with a potential temperature resolution of 0.02
°C at the operating wavelength of 1545.9 nm. In addition, the repeatability and response time of the sensor of
this investigation are investigated experimentally.

© 2018.

1. Introduction

In recent years, singlemode-multimode-singlemode (SMS) fibre
structures have attracted much research interest, primarily due to sev-
eral advantages, including compact structure, ease of fabrication, and
excellent compatibility with other photonic and optical fibre devices
[1,2]. Relying on multimode interference (MMI) within the multi-
mode waveguide and the resulting self-imaging phenomenon, SMS fi-
bre structures have been widely applied in telecommunications, for
example as wavelength division multiplexers [3], edge filters [4] and
bandpass filters [5]. In addition, SMS fibre structures have also been
successfully developed as optical fibre sensors for a wide variety of
measurements, e.g. temperature [6], strain [7], curvature [8], humidity
[9], refractive index (RI) [10] and magnetic fields [11,12]. SMS fibre
structures can be easily adapted for a wide range of different applica-
tions due to the versatility of their fabrication and the fact that all ver-
sions (variants) rely on a common underlying operation principle i.e.
MMI that exists within the multimode fibre (MMF).

Considerable research effort has been directed towards accurate
temperature measurement over a long period as it is considered an im

⁎ Corresponding author at: Key Laboratory of In-fiber Integrated Optics of Ministry of
Education, College of Science, Harbin Engineering University, Harbin 150001, China.
Email address: pengfei.wang@dit.ie (P. Wang)

portant physical parameter in many fields, and consequently, a wide
variety of temperature sensors have been developed to date. When
compared with traditional electronic temperature sensors e.g. thermo-
couples and thermistors, optical fibre based sensors exhibit a range
of unique advantages including compact size, stability in hostile envi-
ronments, inherent immunity to external electromagnetic interference,
and excellent potential to offer high accuracy measurement (includ-
ing high sensitivity) which is required for applications that involve to
detecting very small temperature changes, for example in biological
and medical diagnostics. Optical fibre temperature sensors have been
predominantly based on fibre grating structures including fibre Bragg
grating (FBG) [13] and long period grating (LPG) [14]. However, fi-
bre grating structures generally offer a relatively low temperature sen-
sitivity of circa 10 pm/oC. Various fibre interferometer based temper-
ature sensors have become increasingly popular due to their excel-
lent sensing performance, for example those based on the Mach-Zehn-
der interferometer (MZI) [15], the Fabry-Perot interferometer (FPI)
[16], the Sagnac interferometer [17] and the Michelson interferome-
ter [18]. However, in most cases, fibre interferometer based optical fi-
bre sensors require a relatively complicated fabrication process which
increases potential fabrication/manufacturing cost. In recent years,
MMI based temperature sensors have attracted much research atten-
tion due to the advantages of potentially low raw material cost and
ease of fabrication compared with other fibre optic sensing configura-
tions. SMS fibre structures can be used in temperature measurement
and this arises from the well-known thermo-optic and thermal expan

https://doi.org/10.1016/j.sna.2018.10.016
0924-4247/ © 2018.
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sion effects which are intrinsic material properties of silica optical
fibre. Being dependent on this property, surrounding temperature
changes produce a significant influence on MMI within MMF section,
and monitoring the resulting spectral shift or intensity variation has
been widely applied as an interrogation method in many reported tem-
perature sensing scenarios [19–23]. However, SMS fibre structures
based temperature sensors have often yielded relatively low inten-
sity-temperature sensitivities (reported as optical transmission inten-
sity per unit temperature) of about 0.0007 dB/oC [21], 0.0508 dB/oC
[22] and 0.063 dB/oC [23], which can be attributed to the inherently
low thermo-optic coefficients of the silica material. Thus, there is a
clear need to develop a temperature sensor based on an SMS fibre
structure that is easily fabricated, low-cost and which can offer higher
measurement sensitivity.

In this paper, an optical fibre temperature sensor is described based
on a singlemode-no-core-singlemode (SNCS) fibre structure sur-
rounded by an alcohol layer. Alcohol was chosen as the temperature
sensitive material to improve the sensing performance of the sensor
due to its relatively high thermos-optic coefficient. The simulation
analysis predicts this compact and simple structure can provide high
sensitivity in terms of optical transmission intensity per unit temper-
ature. The experiments undertaken as part of this investigation fur-
ther support the existence of high sensitivity in this device. This indi-
cates its potential applications in accurate bio-temperature monitoring
as well as many other environment monitoring fields.

2. Principle and theoretical simulation

The schematic configuration of the proposed temperature sensor is
shown in Fig. 1, an SNCS fibre structure is surrounded by alcohol so-
lution within a silica capillary tube, and the two ends of the capillary
tube were sealed using ultraviolet (UV) glue. In this investigation, the
alcohol-immersed SNCS fibre structure is a generic SMS structure,
in which the no-core fibre (NCF) is coupled between two optically
aligned single-mode fibres (SMFs), and the NCF section and the sur-
rounding sealed alcohol solution represent the multimode waveguide
core and the associated cladding, respectively. It is well known that
in an SMS fibre structure, the launched light from the input SMF can
be assumed to be Gaussian with a radial field distribution of E(r,0)
on account of the input SMF’s circular symmetry and the fact that it
supports transmission of only the fundamental mode. When the trans-
mission light is launched into the NCF section, a series of high-or-
der modes are excited and the input field can be decomposed into the
eigenmodes of the linearly polarized (LP) mode of LPnm. However, in
this case only the LP0m modes can be effectively excited due to the
circular symmetry of the input field and the assumption of ideal align-
ment between the SMF and NCF. For an alcohol-immersed NCF, the
excited mode number M of the LP0m can be calculated using:

Fig. 1. Schematic of the sensing head based on an alcohol-immersed SNCS fibre struc-
ture.

where a is the radius of the NCF core, nco and ncl are the RI for the
NCF core and the surrounding alcohol solution, respectively, and λ is
the free space wavelength. By denoting the field profile of LP0m as
φm(r), the input light field E(r,0) of the NCF can be expressed as [24]:

where r is radial distance in the cross section of the fibre, cm is the
excitation coefficient corresponding to the LP0m mode, which can be
calculated by the overlap integral between E(r,0) and φm(r) [25]:

As the light propagates axially within the NCF section, the field at
a propagation distance z can be calculated by [26]:

where βm is the propagation constant of each eigenmode of the NCF.
MMI occurs within the NCF section between these excited high-order
modes. When the light arrives at the output SMF, a portion of light
from the NCF is coupled into the core of the output SMF, while the re-
maining light signal is coupled into the cladding and excites cladding
modes which decay with a short distance. Ultimately, the resultant
output optical intensity can be expressed as [12]:

where I0 is the intensity of the LP01 (fundamental mode) in the SMF,
ηs and ηm is the coupling coefficient of the LP0s and the LP0m mode,
respectively, Δn is the effective refractive index difference between
the two modes and L is the length of the NCF. When the surrounding
RI (outside the NCF) varies, the effective RIs of the different modes
also changes, which influences the MMI and results in changes to the
optical transmission intensity according to Eq. (5) above. Alcohol is
chosen as the cladding material of the NCF because it is a widely
available, can be easily infiltrated into the silica capillary of the de-
vice in this investigation and is a low-cost liquid but with a relatively
high thermo-optic coefficient of -4 × 10−4 RIU/oC (a value confirmed
in the experiments described below) which is two orders of magnitude
higher than the equivalent value of 6.9 × 10-6 RIU/oC for silica fibre
[27]. Utilizing the linear relationship between the RI of the alcohol
solution and temperature, the external temperature can be measured
based on an SNCS fibre structure combined with alcohol. It is worth
noting that the temperature induced thermal expansion of the alcohol
solution causes an extra stress in the silica capillary, however in prac-
tice this additional stress is so small that it can be ignored.

Based on the above theoretical analyses, numerical simulations
have been conducted employing the beam propagation method (BPM)
prior to fabrication of the sensor. The simulation conditions

(1)

(2)

(3)

(4)

(5)
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were based on a mesh size in the X, Y and Z directions of 0.1 μm,
0.1 μm and 1 μm, respectively, and the boundary condition adopted a
perfectly matched layer (PML) condition in the model. The length of
NCF was chosen to be 4 cm which is an effective length to allow the
occurrence of multimode interference (MMI) and this length is con-
sidered an optimal value to offer high temperature sensitivity [10,24].
The calculated optical field intensity distributions within the NCF sec-
tion both before and after the injection of alcohol (the assumed RI
value of the alcohol was 1.363 at 20 °C) at the wavelength of 1550 nm
are presented in Figs. 2(a) and (b) respectively. The regular MMI pat-
tern within the NCF section remains similar when the surrounding
RI changes from 1 (the RI of air) to 1.363. The corresponding simu-
lated transmission spectrum over the wavelength range of 1500 nm to
1600 nm is presented in Fig. 2(c). From Fig. 2(c), it is clear that the
resonant wavelength evolves from dip1 to dip2 accompanied by a clear
wavelength red shift (17.2 nm) and intensity decrease (3.58 dB) after
alcohol is injected into the capillary tube.

Fig. 2. Simulated optical field intensity distribution within an SNCS fibre structure (a)
before injection of alcohol; (b) after injection of alcohol; (c) The corresponding trans-
mission spectrum scanning from 1500 nm to 1600 nm.

To underpin a theoretical prediction for the amplitude change of
the single wavelength dip2 located at 1553 nm, it is necessary to know
how the RI of the alcohol changes with temperature. For this purpose,
the temperature dependence of the RI of the alcohol solution was ex-
perimentally measured and the results are shown in Fig. 3. It is clear
that as the temperature increases, the RI of the alcohol solution ex-
hibits a linear decrease (green line) with a slope value of temperature
dependence circa -0.0004 RIU/°C which is consistent well with the re-
sult reported in [28]. Using this linear relationship, the amplitude of
the 1553 nm dip was calculated at different temperatures. The calcu-
lated results (pink stars in Fig. 3) show that the intensity (in dB) of
the 1553 nm dip is increased when the surrounding temperature in-
creases from 20 °C to 45 °C. The data was fitted using a polynomial
(quadratic) function which yielded a high correlation (fitting) coeffi-
cient of 0.9996. From the results, a maximum intensity-temperature
sensitivity of 0.63 dB/°C was achieved at 20 °C. These simulation re-
sults predict that it is possible to fabricate a practical temperature sen-
sor based on MMI employing an SNCS fibre structure and alcohol so-
lution. Furthermore, it also demonstrates the feasibility of an interro-
gation scheme based on intensity changes at a single operating wave-
length.

3. Experiments and discussion

The NCF used in this experiment was a commercially available
product (Thorlabs FG125LA) which is made of pure silica with a di-
ameter of 125 um, with an RI value of 1.444. A section of NCF with
a length of 4 cm was initially stripped, cleaved, and optically con-
nected between two single-mode fibres (SMF-28) using a standard
fusion splicer (Fujikura 62S) to construct the SNCS fibre structure.
The SNCS fibre structure was placed in the center of a capillary tube,
whose inner diameter was 600 μm and length was 5 cm. Next, the al-
cohol solution was injected into the capillary tube with the help of
capillary force. The concentration of the alcohol used in the experi-
ment was 98%, and its RI was measured as 1.363 at 20 °C using an
Abbe refractometer. Finally, to complete the fabrication process, the
two ends of the capillary tube were sealed using UV curable glue to
avoid alcohol leakage and evaporation. The measured transmission
spectrum of the fabricated SNCS fibre structure is shown in Fig. 4
(blue line). The red line in Fig. 4 represents the transmission spectrum
of the SNCS fibre structure after injection of alcohol. From Fig. 4,
it can be observed that after the injection of alcohol, the interference

Fig. 3. Temperature dependence of refractive index of alcohol and simulated trans-
mission loss (in dB) at single wavelength (1553 nm) when surrounding temperature
changed.
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Fig. 4. Measured transmission spectra of the SNCS fibre structures before and after in-
jection of alcohol.

dip1' moved to a longer wavelength (a change of 14.1 nm). Also, the
intensity of dip1' exhibits a significant decline (increase in loss of
6.381 dB). The observed dip evolution is consistent with the simulated
results presented in Fig. 2(c). The discrepancy that exists between the
simulated and measured results can be attributed to the fact that the
meridional axes of the SMF and NCF are not exactly in ideal cen-
tral alignment [24]. Also there are some inherent approximations in
the BPM simulation, for example only LP0m modes were excited in
the theoretical module. Furthermore, the solidification of the UV glue
may also induce additional perturbation due to the microbend stress.

The experimental setup for temperature measurement using the
proposed temperature sensor is schematically depicted in Fig. 5. The
fabricated sample was placed on a temperature controlled thermoelec-
tric Peltier cooler and fixed using UV glue to ensure that the sample
can feed back surrounding temperature variation precisely and timely.
A stable power supply (TTI EL302RT) was used to control the input
electric current of the thermoelectric Peltier cooler, and the real-time
temperature value on its surface was monitored using a thermocouple
(RS 1313). The input SMF of the sample was connected to a broad-
band light source (BBS, Thorlabs S5FC1005S). The light was trans-
mitted through the sensor and finally recorded by an optical spectrum
analyzer (OSA, Agilent 86142B). The sample and the thermoelectric
Peltier cooler were coved using a simple customized sealing (heat in-
sulation) chamber to ensure more accurate temperature control in the
experiments.

Fig. 5. Schematic diagram of the experimental setup for temperature measurement.

Fig. 6 shows the transmission spectrum evolution as the temper-
ature was increased from 20 °C to 45 °C with an increment of 5 °C.
From Fig. 6, it can be seen that the transmission loss (intensity) of
the interference dip2' (at the wavelength of 1545.9 nm) exhibits an
expected increase (6.97 dB) as the temperature was increased from
20 °C to 45 °C. In addition, there is a small wavelength shift with the
temperature increase, but this is not the focus of this investigation,
as the sensor interrogation is planned to be purely intensity based.
As in the case of the theoretical predictions, a clear relationship be-
tween temperature and transmission loss (in dB) is established. The
dip transmission intensity was plotted (red marks) and fitted (red line)
against temperature in the range of 20 °C to 45 °C in Fig. 7. The qua-
dratic fitting curve exists a favorable relationship (R2 = 0.9942) be-
tween the transmission intensity and temperature, and the maximum
intensity-temperature sensitivity was 0.49 dB/°C when the tempera-
ture was 20 °C. Furthermore, given the limiting 0.3 dB intensity res-
olution of the OSA used in the experiments, the temperature resolu-
tion of the sensor system was calculated to be 0.61 °C. In practice the
potential resolution achievable can be as good as 0.02 dB, for exam-
ple replacing the detection device of OSA by a standard optical power
meter with a higher intensity measurement resolution of 0.01 dB.
Also a dedicated interrogation system with appropriate signal process-
ing e.g. averaging should be applied to reduce the effect of noise.

Fig. 6. Measured transmission spectrum evolution at varying temperature.

Fig. 7. Amplitude (transmission loss) changes as a function of temperature.
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Fig. 7 also includes a direct comparison between the experimental and
theoretical results. As shown in Fig. 7, there exists a good agreement
between the measured results and the theoretical predictions, in that
both fitting curves exhibit similar trends with temperature variation.
The discrepancy between the measured and simulated results can be
attributed to: (1) the thermo-optic and thermal expansion effects of
optical fibre structure itself; (2) the extra stress applied to the struc-
ture due to thermal expansion effect of UV glue and alcohol; (3) some
approximations in the simulation module as mentioned earlier in this
section.

To further demonstrate the improved performance for temperature
sensing due to the filled alcohol, a temperature sensing comparison
experiment based on an SNCS fibre structure with the identical optical
fibres but without surrounding alcohol was performed. The green line
shown in Fig. 7 is the fitting result of the measured amplitude change
(in dB) at a wavelength of 1531.8 nm (which is the central wavelength
of dip1' in Fig. 4) over the temperature range of 20 °C to 45 °C. From
Fig. 7, it is clear that the achieved temperature sensitivity of SNCS fi-
bre structure surrounded with alcohol is more than 300 times higher
than that 0.0015 dB/°C of the SNCS fibre structure without alcohol,
which is due to the high thermos-optic coefficient of alcohol. Based on
the above results, a novel temperature sensor based on an SNCS fibre
structure combined with alcohol by monitoring the amplitude (in dB)
change at a single wavelength proved to be feasible.

In order to characterize the sensor more completely, the repeata-
bility and response time of the proposed temperature sensor have
also been investigated. To demonstrate the repeatability of the pro-
posed fibre-optic temperature sensor, the sensor sample underwent

Fig. 8. Standard deviation of five trials.

temperature cycling between 20 °C to 45 °C which was repeated five
times. The standard deviation from the results of the five trials were
calculated and the results are shown in Fig. 8. From the calculated re-
sults, the highest standard deviation is just 0.038 dB, which demon-
strates the excellent repeatability of the sensor of this investigation.
It is worth noting that the repeatability is significantly affected by
the infiltration process of the alcohol solution. For example, if during
the immersion process the amount of the alcohol solution injected is
not sufficient to fill the space available, this can result in air bubbles
within alcohol in the capillary tube which is found to reduce the re-
peatability. In addition, the UV glue must provide a good seal to pre-
vent leakage and evaporation of the alcohol which can also impact
negatively on the performance of the proposed sensor.

In the case of liquid-assisted temperature sensors, it is also im-
portant to determine response time. A tunable laser (NetTEST), a
photo-detector and an oscilloscope (KEYSIGHT MSO-X 2022 A)
were used to measure the response time of the sensor in this inves-
tigation. To examine the response time for increasing temperature, a
step change in the temperature of the sensor structure is forced by
abruptly attaching the sensor, previously at room temperature (20 °C),
to the Peltier cooler with a set temperature of 45 °C. To examine the
response to a decreasing temperature step, the sensor was abruptly re-
moved from the Peltier cooler at 45 °C, in effect forcing a step de-
crease to the 20 °C room temperature environment. When the tunable
wavelength was set at 1545.9 nm, the real-time output optical inten-
sity variation was recorded using the oscilloscope. The 10% to 90%
point method was used to calculate the response time [29]. Fig. 9(a)
and (b) shows the calculated response times are 3.3 s and 5.4 s, re-
spectively, when the temperature was increased from 20 °C to 45 °C
and decreased from 45 °C to 20 °C. The measured response times are
different in the case of temperature rise and drop scenarios. This can
be attributed to the fact that an ideal and identical temperature step
change, upward and downward are difficult to achieve in practice. The
response time is limited by the thermal capacity of the sample formed
by the alcohol’s volume. Due to the small volume of alcohol used in
the experiment (which was filled in the capillary tube), the response
time of the proposed temperature sensor is within an acceptable range
for many biomedical and environmental applications.

Experimental results have shown that this sensor can work over the
temperature range of 20—45 °C in a highly stable and repeatable man-
ner. The detectable temperature range is limited by the effective work-
ing temperature of the UV gel as well as the large thermal expansion
coefficient of alcohol. Therefore, this sensor structure can access a
higher temperature range if a more appropriate packaging and sealing
material is adopted. In addition, whereas many optical fibre tempera

Fig. 9. Mearured response time of the sample for different temperature changed direction (a) temperature increasing from 20 °C to 45 °C; (b) temperature decreasing from 45 °C to
20 °C.
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ture sensors’ interrogation systems are based on wavelength shift, the
temperature sensor in this investigation is based on intensity modula-
tion. Thus, the OSA and the BBS which were used in the original ex-
periment can be replaced by an optical power meter and a fixed wave-
length LED or a laser light source with an appropriate choice of wave-
length, which greatly reduces the overall cost of the measurement sys-
tem.

4. Conclusion

A highly sensitive temperature sensor based on a single-
mode-no-core-singlemode (SNCS) fibre structure in combination with
alcohol has been described. In this investigation, no-core fibre (NCF)
was used as the multimode waveguide and alcohol was chosen as
the temperature sensitive medium acting effectively as a cladding.
Through packaging alcohol with a short length of NCF within a sealed
silica capillary, the surrounding temperature can be determined by
monitoring the transmission loss at a specific wavelength. The ex-
perimental results show good agreement with the theoretical predic-
tion, and a maximum temperature sensitivity of 0.49 dB/°C has been
achieved experimentally with a potential temperature resolution of
0.02 °C at the operating wavelength of 1545.9 nm. Particularly, by
monitoring the transmission loss change instead of wavelength shift,
the cost of the temperature measurement system is significantly re-
duced. In addition, this temperature sensor has been demonstrated to
have excellent repeatability and rapid response time, which confirms
it can be potentially applied in different temperature monitoring sce-
narios including biomedical and environmental monitoring fields.
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