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Wideband Reconfigurable Rolled
Planar Monopole Antenna

Giuseppe Ruvio, Member, IEEE, Max J. Ammann, Member, IEEE, and Zhi Ning Chen, Senior Member, IEEE

Abstract—A novel technique to reconfigure the frequency range
of a planar monopole antenna is presented. By adjusting the degree
of spiral tightness, a shift of the well-matched operating frequency
range is achieved. The proposed antenna is capable of covering the
frequencies in the range from 2.9 to 15 GHz, depending on the de-
gree of spiral tightness. The antenna yields a high-efficiency across
the full operating bandwidth. Radiation patterns show good omni-
directional features in all primary cuts and remain relatively stable
with the change of antenna configuration, so that it is a remark-
able candidate for indoor or mobile applications where a large fre-
quency range and omnidirectional radiation are required.

Index Terms—Antennas, band-notching, monopolar antennas,
reconfigurable antennas.

I. INTRODUCTION

I N the last decade, the research community has dedicated a
great deal of effort to reconfigurable antennas for efficient

use of the electromagnetic spectrum [1]. One the more suc-
cessful techniques of reconfigurability is based on RF micro-
electromechanical systems (MEMS). These have been shown
to be a useful component in the design of reconfigurable multi-
band antennas where the feed network of a patch array is recon-
figured [2]. However, this technology presents numerous prob-
lems which limit its applications. For instance, the dc biasing
circuit requires very high voltage and the switching speed is
also very low. Moreover, MEMS comprise costly sealed pack-
aging, which is not easily integrated with a planar antenna. Ap-
plications where continuous electronic tuning is required are
also incompatible with this solution as MEMS are only bistatic
switches. In 1991, a novel idea of electronic tuning was intro-
duced using integrated FET components in a microstrip slot an-
tenna as 1-port reactive devices [3]. By changing the bias volt-
ages, the reactance of the FET varied and the length of the slot
was tuned electronically. A 10% tuning of the center frequency
was achieved with negligible changes in the radiation pattern
but many problems arose from the effects of the reactive cir-
cuits for feed line matching. Since then many different semicon-
ductor-based solutions such as varactors and PIN diodes have
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been proposed and some difficulties overcome [4]. In 2006, a
new technique to reconfigure a dual-band slot antenna achieving
a frequency ratio, ranging from 1.3 to 2.67 was proposed [5],
[6]. The use of varactors enabled tuning of the effective slot
length while the radiation pattern and polarization purity for
both bands remained consistent across the entire tunable fre-
quency range. A novel reconfigurable patch antenna which em-
ploys switchable slots to provide circular-polarization diversity
has been reported [7]. Two orthogonal slots were incorporated
into the patch and two PIN diodes were utilized to switch the
slots on or off. Right-hand and left-hand circular polarizations
were generated by diode switching.

One of the major drawbacks of PIN diodes is that the bias cur-
rent can influence the reconfigurable antenna efficiency [8]. A
drop in radiation efficiency was observed for some values of the
PIN diode bias current. A tradeoff between the dc consumption
of the diodes and the antenna gain was demonstrated. Moreover,
even though PIN diodes and varactors present faster switching
speeds, high tunability, reduced cost, and better integrability
with monolithic millimeter-wave integrated circuits (MMIC)
compared to MEMS, they have limited power handling and
can introduce intermodulation interference due to nonlinear be-
havior. Recently, an innovative reconfigurable antenna concept
with significant practical relevance was reported [9]. It is based
on dynamic definition of metal-like conductive plasma channels
in high-resolution silicon fabrication technology that are acti-
vated by the injection of dc current. These dynamically defined
plasma reconfigurable antennas enable frequency hopping,
beam shaping and steering without the complexity of RF-feed
structures. However, they present a complex PIN diode biasing
circuit that introduces nonlinearities into the system. Also the
antenna efficiency is strongly influenced by several factors (i.e.,
wafer size, solid-state plasma density, thermal considerations
and packaging), which considerably limit its performance.

The technique presented in this paper to modify the struc-
ture of the antenna and reconfigure band-notches and working
bandwidths is simple and innovative. The antenna comprises
a planar monopole-fed rolled horizontal element, whose spi-
rals can be mechanically adjusted in order to tune the capaci-
tive coupling between them. Multiple bandwidths are obtained
within the UWB frequency range and above. Rolled monopole
antennas have been investigated and demonstrated to enhance
the impedance bandwidth performance [10], [11]. Moreover,
beveling and using an offset feed point reshapes the base of the
antenna and these have been demonstrated to be a successful
bandwidth enhancement technique [12], [13]. A very high effi-
ciency and good omnidirectional radiation patterns are achieved
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Fig. 1. Geometry of the antenna and the four configurations investigated. g =
100 mm, fg = 1:3 mm, x = 6:3 mm, w1 = 30 mm, w2 = 9 mm.

throughout the operating spectrum. Compared to other existing
solutions to realize reconfigurable antennas, the antenna pre-
sented in this paper offers several advantages. First of all, the
efficiency of the antenna is very high throughout the working
spectrum and is not affected by dielectric loading of the mechan-
ical parts that tune its structure. Moreover, due to its simple de-
sign and the absence of semiconductor circuit elements, higher
power handling is possible compared to other reconfigurable an-
tennas [14]. In the same way, because nonlinear elements are
not present, intermodulation is not as critical an issue, as it is for
most of the reconfigurable antennas in the literature. Continuous
tuning is also feasible with this technology. The use of IEEE
802.11a WLAN in the frequency-band 5.15–5.825 GHz has in-
creased. Therefore, antennas providing a reject notch-function
are becoming necessary to reduce WLAN interference effects.
This antenna is able to notch out this band when is tuned to
11 mm, whereas all the other configurations investigated cover
this part of the spectrum. This feature is applicable over different
bandwidths. Not only can the proposed antenna reconfigure its
operating bands but also parts of the spectrum can be notched
out in the same manner.

II. ANTENNA STRUCTURE AND WORKING PRINCIPLES

The antenna presented in this paper comprises an adjustable
rolled horizontal element attached to a vertical planar section,
which is connected to the feed point as shown in Fig. 1. The base
of the radiating element is appropriately shaped to enhance the
match by the insertion of a double asymmetrical bevel and an
offset feed point. The optimum geometry for the double asym-
metrical bevel at the base of the radiator was obtained by fi-
nite integration time domain method, so that is given by the
sum of mm and mm. The asymmetrical feed
introduces extra modes and broadens the bandwidth, while the
bevels improve the match at the higher frequencies. The input
signal is launched into the antenna through a 50- coaxial cable
located below the horizontal square ground plane of dimension
100 100 mm. The optimum feedgap between the ground
plane and plate tip, was found to be 1.3 mm. The distance from
the tip of the beveled plate to the first planar half-cylinder of ra-
dius is 6.3 mm. All parts of the radiating element are made
of 0.2-mm-thick brass sheet. The different configurations of the
cylinder investigated have radii equal to , and

Fig. 2. Mechanical layout proposed.

mm as shown in Fig. 1. The radii of the other half-cylinders
are related to according to the rule

– –

– –

The total length of the rolled section remains the same in all the
configurations and is equal to mm. The total height of
the antenna above the groundplane is given by .
In Fig. 2, a mechanical layout for the proposed antenna is
proposed. In particular, a motorized design for the control of
the rolling/unrolling mechanism has been proposed. Special
care has been taken to keep the mechanical elements (such
as spacers, spindle, spindle mounts, toothed-belts, and motor)
as RF-transparent as possible. For this reason the motor is
located below the groundplane in a shielded box measuring
60 6 8 mm. This configuration has a minimal effect on
simulations. Moreover, motors that present very low electro-
magnetic interference are available [15]. Also linearity between
load and speed and load and current are important features that
commercial motors offer. Foam spacers have been introduced
to keep a constant distance between spires when the monopole
rolls in or out. RF transparent extruded polystyrene thermal
insulation material is available in different shapes and sizes
under the trademark name of Styrofoam [16]. At frequencies up
to 400 MHz, the relative permittivity is 1.02 with a typical loss
tangent of 0.0002. The spindle that enables the rolling/unrolling
action and the two spindle-mounts are made of Polystyrene
(PS). This material offers in its pure solid form is a hard plastic
material with limited flexibility. It can be cast into molds
with fine detail. It is economical and is used for producing
economical plastic model assembly kits where certain rigidity
is desired . Also its electrical properties suit the application
presented in this paper. Polystyrene presents a dielectric con-
stant equal to 2.5 and a dissipation factor of 0.00005 in the
frequency range where the antenna presented operates. The
mechanical rolling action is very simple. The spindle is driven
by the stepper motor below the groundplane, by a combination
of geared PS cogwheels and nylon toothed-belts, symmetrically
placed beside the antenna. Four slots are cut out from each
side of the monopole corresponding to teeth located on the
spindle. This way the spindle is locked to the monopole and
governs the spiral tightness. In order to reconfigure the antenna
in all the configurations investigated, a rotation of the spindle
corresponding to an angle of 288 is required.
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Fig. 3. 10-dB bandwidths for the four configurations investigated whenW is
tuned.

All simulations have taken the effects of the motor shield
and plastic parts into account. No significant differences were
seen either in terms of radiation patterns, total efficiency, or
impedance bandwidth with respect to the model without me-
chanical parts. Four prototypes were built (one per configura-
tion investigated) to observe the effects of the mechanical parts
in the design. In particular, a PS spindle with the diameter of
2 mm has been inserted, around which the monopole rolls. The
four small horizontal rectangular slots on each side of the planar
element have a dimension of 2 1 mm. Additionally, two PS
spindle-mounts and the motor-shielding brass box have been
prototyped. The insertion of these mechanical parts has not in-
troduced significant changes in the performance of the antenna
itself.

III. RESULTS AND DISCUSSIONS

A. Tuning the Structure

Numerical analysis for the structure was made using the fi-
nite integration time domain method, CST Microwave Studio.
Unfortunately, the structure is highly resonant and presents dif-
ficulties for the mesh grid composition as the thickness of the
rolled metal sheet is about at the lower edge frequency.
These reasons justify some discrepancy between numerical and
experimental results. However, simulations were able to predict
the general trend of the parameters investigated. The antenna has
been simulated for different values of the total width of the
radiating element ( , see Fig. 1). The parameter
is varied but the proportion between and 2 is kept constant
in order to maintain the offset feed point in its optimized posi-
tion. This parameter is crucial as it shifts up or downward the
resonances of the structure as shown in Fig. 3. From simulation,
it was found that the resonances of the antenna and the 10-dB
bandwidths can be controlled by adjusting the parameter . In
particular, the results for mm and mm is con-
venient as the uncovered 10-dB return loss areas are drastically
reduced, therefore, mm was used for the experimental
work.

Fig. 4. (a) Simulated return loss and 10-dB bandwidths. (b) Measured return
loss and 10-dB bandwidths.

B. Impedance Bandwidth Characteristics

The four different configurations of the antenna presented
are investigated in terms of impedance bandwidth and radia-
tion patterns both numerically and experimentally. The 10-dB
return loss bands are displayed in Fig. 4(a)–(b). An effective
frequency reconfigurable antenna is realized by adjusting the
degree of tightness of the rolled element, where, by rolling in
and out the radiation element, different 10-dB return loss band-
widths can be covered. In fact, the rearrangement of the spiral
has a significant effect on the capacitive coupling between close
segments of the rolled antenna as it regulates whether sections
of the roll overlaps or not. This mechanical tuning directly af-
fects the impedance of the antenna and its resonances. It can be
seen from Fig. 4(b) that a very large band (3–15 GHz) can be
covered simply by changing from one configuration to another.

C. Radiation Characteristics

The radiation pattern is illustrated in Figs. 5–7, which are
normalized to maximum gain. Three plane cuts of the radia-
tion pattern at 6 GHz are shown for the four configurations in-
vestigated: , ( -plane), , ( -plane) and

( -plane) cuts for , and mm,
respectively. All the measured radiation patterns are reported
against the simulated component in 10-dB/division scaled plots.
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Fig. 5. (a) Radiation patterns at 6 GHz. xy-cut, r1 = 9:5 mm. (b) Radiation
patterns at 6 GHz.xy-cut, r1 = 10mm. (c) Radiation patterns at 6 GHz.xy-cut,
r1 = 10:5 mm. (d) Radiation patterns at 6 GHz. xy-cut, r1 = 11 mm.

Moreover, each radiation pattern cut is presented together with
the simulated co- and cross-polar component. The cross-polar-
ization purity performance is poor but remains stable as the

Fig. 6. (a) Radiation patterns at 6 GHz. xz-cut, r1 = 9:5 mm. (b) Radiation
patterns at 6 GHz. xz-cut, r1 = 10mm. (c) Radiation patterns at 6 GHz. xz-cut,
r1 = 10:5 mm. (d) Radiation patterns at 6 GHz. xz-cut, r1 = 11 mm.

monopole rolls in or out, however for mobile applications this
is not a relevant issue. An overall good agreement is obtained
for all the cuts and configurations investigated except for the

Authorized licensed use limited to: DUBLIN INSTITUTE OF TECHNOLOGY. Downloaded on April 24, 2009 at 10:02 from IEEE Xplore.  Restrictions apply.
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Fig. 7. (a) Radiation patterns at 6 GHz. yz-cut, r1 = 9:5 mm. (b) Radiation
patterns at 6 GHz. yz-cut, r1 = 10mm. (c) Radiation patterns at 6 GHz. yz-cut,
r1 = 10:5 mm. (d) Radiation patterns at 6 GHz. yz-cut, r1 = 11 mm.

copolar -cut for mm. The antenna maintains good
omnidirectionality as the structure is rearranged apart from the
case for mm. Fig. 5(a) shows a 25-dB deep null in

Fig. 8. Current distribution on the radiator (seen from above) for the four con-
figurations investigated at 3, 6, 9, and 12 GHz.

the radiation pattern, for this particular value of , at around
. This behavior vanishes as the monopole is rolled less

tightly as shown in Fig. 5(b)–(d). Very little differences occur in
terms of omnidirectionality of the radiation pattern as the an-
tenna rolls in and out as it can be observed in Fig. 5(b)–(d). The
largest cylinder of the antenna acts as a cavity, in which the most
significant mechanical change takes place. The rolled planar an-
tenna introduces a parasitic capacitance due to the strong mu-
tual coupling between the adjacent layers and inductance due to
the spiral cross section. Changing the configuration the antenna
changes the parasitic capacitance and inductance so that the res-
onance frequencies vary. This avoids significant alterations of
the pattern as the configuration of the spiral changes. The
cuts for mm also display some distortion, which is
reduced when the radius increases. These cuts show a very
different behavior compared to a planar monopole. Deep nulls
typical of monopoles at zenith are not present for the proposed
structure. This gives an indication about the operating mode of
the antenna. Indeed, it is believed that the radiating element

Authorized licensed use limited to: DUBLIN INSTITUTE OF TECHNOLOGY. Downloaded on April 24, 2009 at 10:02 from IEEE Xplore.  Restrictions apply.
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works in a hybrid mode; a combination of the monopolar and
transmission-line or patch mode [17]. The latter is due to the
parts of the radiator, which are horizontal with respect to the
ground plane. However, the dominant fundamental mode is a
transmission-line (patch) one. In fact, through simulations of
the far field at low frequencies, a strong distribution of the elec-
tric field points in the axis; this is typical of a patch radia-
tion. Also the current distribution in Fig. 8 supports this thesis.
It shows the current distribution on the rolled monopole seen
from above ( axis) at 3, 6, 9, and 12 GHz for the four configu-
rations investigated. The strongest current concentrations have
been marked. For the configuration with mm and par-
tially when mm, the current distribution presents a
maximum in the most internal spire of the roll across the en-
tire bandwidth considered. However, as the contribution to the
far field of the strong current distribution in the inner spirals is
limited because shielded by more external spirals, the dominant
role is played by the horizontal currents on the upper part of the
radiator. Moreover, from the configuration with mm
and mm at 12-GHz currents result asymmetrically dis-
tributed on the most internal spiral as marked in Fig. 8. When
the roll opens up the current distribution gets more equally dis-
tributed throughout the radiator until a new strong concentration
is obtained in the gap between the roll and groundplane when

mm. In fact, for this last configuration a strong capac-
itive coupling takes place in the gap before mentioned. Those
currents influence the far field heavily. As the distance between
the most external cylinder and the ground plane is reduced, nulls
in the -cut are largely reduced.

The off-center feeding generates an unbalanced current on
the antenna structure. As it is marked in Fig. 8 current distri-
bution at the lower edge of the antenna appears asymmetrical.
This phenomenon is more evident at higher frequency (9 and
12 GHz) and when the structure is more loose ( –
mm). However, its effects do not affect heavily the pattern in the

-plane, where the antenna presents omnidirectional features.
On the other hand, the -cut appears strongly asymmetric as
a strong -component of the far field is supported by an unbal-
anced current in that direction on the radiator and reflected on
the ground plane. Indeed, from Fig. 7(a)–(d) a maximum in the
pattern is traceable between and . Fig. 9 shows
the electric field intensity in the -cross section for the four
configurations investigated at 3, 6, 9, and 12 GHz, respectively.
From this, it is evident that the four configuration investigated
represent different steps between two conditions of equilibrium.
In the first the monopole is tightly rolled and most of the energy
is retained within the most internal spirals with minor effects on
the far field. Then the monopole gradually opens up and most
of the energy is transferred to the gap between the most external
cylinder and the ground plane with strong consequences in the
far field.

The behavior of the gain and the total efficiency is plotted
on Fig. 10 for the four configurations investigated and at three
frequencies: 3, 5, and 7 GHz. The maximum gain was found
to be between 7.5 and 8.5 dBi in the broadside direction for
between 10.0 and 11.0 mm. The patterns are broad beamwidth

Fig. 9. Field intensity on the yz cross section for the four configurations inves-
tigated at 3, 6, 9, and 12 GHz.

Fig. 10. Gain (dBi) and total efficiency for the four configurations at 3, 5, and
7 GHz, respectively.

and have high radiation efficiency. The efficiency results were
obtained by simulation but they are important to understand the
radiation properties of the proposed antenna. It is evident that
significant changes occur in terms of gain and efficiency, for the
configuration represented by mm. In fact, for this case,
the antenna is tightly rolled, so that the effective dimensions
are reduced and the Q-factor increased as the structure becomes
more resonant.

IV. CONCLUSION

A novel reconfigurable antenna has been introduced. By
adjusting the degree of spiral tightness in the rolled planar
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monopole type antenna, a shift in the resonant frequencies has
been obtained by revolving in and out the planar adjustable
section of the proposed antenna. Four different typical config-
urations have been analyzed in terms of impedance bandwidth
and radiation properties. The study has shown that the proposed
antenna is capable of covering a range from 2.2 to 15 GHz.
Radiation patterns have shown good omnidirectionality in the
H-cut and acceptable gain across the operating bands.
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