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Abstract 

The most common primary brain tumor in adults is glioblastoma. These tumors are highly invasive 
and aggressive with a mean survival time of nine to twelve months from diagnosis to death. Current 
treatment modalities are unable to significantly prolong survival in patients diagnosed with 
glioblastoma. As such, glioma is an attractive target for developing novel therapeutic approaches 
utilizing gene therapy. This review will examine the available preclinical models for glioma including 
xenographs, syngeneic and genetic models. Several promising therapeutic targets are currently being 
pursued in pre-clinical investigations. These targets will be reviewed by mechanism of action, i.e., 
conditional cytotoxic, targeted toxins, oncolytic viruses, tumor suppressors/oncogenes, and immune 
stimulatory approaches. Preclinical gene therapy paradigms aim to determine which strategies will 
provide rapid tumor regression and long-term protection from recurrence. While a wide range of 
potential targets are being investigated preclinically, only the most efficacious are further transitioned 
into clinical trial paradigms. Clinical trials reported to date are summarized including results from 
conditionally cytotoxic, targeted toxins, oncolytic viruses and oncogene targeting approaches. 
Clinical trial results have not been as robust as preclinical models predicted, this could be due to the 
limitations of the GBM models employed. Once this is addressed, and we develop effective gene 
therapies in models that better replicate the clinical scenario, gene therapy will provide a powerful 
approach to treat and manage brain tumors. 

Keywords 

Glioma; gene therapy; dendritic cells; CD4T cells; CD8T cells; immunotherapy; cytokines; Flt3L; 
HSV1-TK 

A. INTRODUCTION 

Malignant brain tumors constitute one of the most devastating forms of human cancer. 
Approximately 40% of all primary brain tumors arise from transformed glial cells and are 
therefore classified as gliomas. Astrocytomas are a hetereogeneous group of tumors, which 
range from low grade to high grade anaplastic lesions, including the most aggressive variant, 
gliomblastoma multiforme (GBM). GBM is a progressive tumor, acquiring genetic mutations 
as it becomes increasingly aggressive. While primary GBM arises and progresses rapidly to 
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death, secondary GBM develops over time evolving by mutation from lower grade tumor types 
into GBM. After surgical resection, the incidence of GBM recurrence is high and the mutations 
found in recurrent GBM differ from those in the primary lesion. Recently, a small fraction of 
cells found in freshly resected human gliomas have been identified that are CD133+ with stem 
cell-like properties and these appear to be responsible for the majority of neoplastic tumor 
growth [Galli et al., 2004; Singh et al., 2004; Tunici et al., 2004; Yuan et al., 2004]. The standard 
treatment for GBM include surgical debulking of the tumor mass which is accessible to the 
neurosurgeon, surgical biopsy for pathological diagnosis, chemotherapy and radio-therapy 
[Castro et al., 2003]. In spite of advances in all these treatment modalities, mean survival after 
diagnosis and surgical resection alone is approximately six months, with only 7-8% of the 
patients surviving for up to two years. Radiation and chemotherapy post-surgery can extend 
the survival time of these patients for up to nine months to a year [Shand et al., 1999; Burton 
et al., 2000; Beauchesne 2002; Castro et al., 2003]. Interestingly, recent evidence suggests that 
subpopulations of glioma patients may exist, based on their survival time post-treatment. 
Characterization of these patients using gene expression profiling revealed long-term survival 
differences after conventional treatments that far surpass all expectations, even after using the 
most modern and aggressive forms of treatment available to date [Rich et al., 2005]. The better 
surviving gliomas displayed a more differentiated phenotype defined by overexpression of 
genes involved in neurogenesis [Freije et al., 2004]. 

Due to the highly invasive nature of GBM, it is impossible for the most skilled neurosurgeon 
to remove all the tumor mass, usually leaving behind tumor remnants which cause the 
recurrences leading to the death of the patient (for a recent review of treatments targeting 
invasion see [Lefranc et al., 2005]). Furthermore, in some instances, the tumor is located in 
areas of the brain which makes total resection impossible, due to side effects such as 
neurological deficits and immediate morbidity. Also, increasing the field or dose of radiation 
therapy will yield unacceptable tissue damage, necrosis, edema and long term neurological 
deficits. 

Due to the limitations of current treatment modalities, efforts are being directed at improving 
chemotherapeutic agents and more efficient delivery techniques which will improve the 
diffusion of the drugs through the blood brain barrier and the tumor mass. In addition, novel 
treatment modalities based on the delivery and expression of therapeutic genes which can 
induce tumor cell death, inhibit tumor angiogenesis, and induce an effective immune response 
against the GBM are being very actively pursued. In this review we will cover gene therapy 
approaches which harness the effects of cytotoxic tumor cell death, caused by either conditional 
cytotoxic genes, or direct cytotoxic approaches using toxins, in combination with immune 
stimulatory approaches to induce the generation of an effective systemic immune response 
against the tumor. These techniques in combination with current treatment modalities will 
greatly improve the prognosis and extend the lifespan of patients affected with this devastating 
form of brain cancer. 

B. MODELS OF GLIOMA 

The study of tumorigenesis and the evaluation of new therapies requires accurate and 
reproducible brain tumor animal models, which reduce the exposure of patients to non 
efficacious or unsafe drugs. Ideally, models of glioma should exhibit key features of the human 
disease state including glial differentiation of tumor cells, diffuse infiltration, neovascular 
proliferation, regional necrosis, and resemble progression kinetics and anti-tumor immune 
responses [Kleihues et al., 1970; Maher et al., 2001]. 

In vivo tumor models developed after intracranial or subcutaneous implantation of glioma cell 
lines in rodents are widely used in cancer therapy research. The advantages of these glioma 
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models are their highly efficient gliomagenesis, reproducible growth rates and an accurate 
knowledge of the site of the tumor. Some of the most widely used rat brain tumor models 
include 9L gliosarcoma, C6 glioma, CNS-1 glioma, F98 glioma, RG2 glioma and RT-2 induced 
glioma [Barth 1998]. CNS-1, F98 and RG2 glioma cells are excellent sources for brain tumor 
models, due to their glial phenotype, reproducible in vivo growth rates and histological features 
that closely resemble human glioma, being nonimmunogenic in syngeneic rats [Kruse et al., 
1994] [Tzeng et al., 1991]. 

Mouse glioma models are also available for brain cancer research. Human glioma xenografts, 
including SF-295, U-251, D54 and U87, or rat glioma xenografts, such as C6 cells, implanted 
in immunocompromised mice or rats are extensively used. However, the impairment of 
immune-mediated events that occur during tumorigenesis and anti-cancer therapies limits their 
usefulness. Syngeneic mouse models, including GL26 cell [Albright et al., 1975] and GL261 
[Akbasak et al., 1991] cell lines, which are nonimmunogenic when injected into C57BL6 mice 
have shown to be useful for studying the response of brain tumors to immunotherapy [Akbasak 
et al., 1991]. A recent syngeneic glioma cell line derived from spontaneous tumor in a 
transgenic animal called 4C8, shows histological features of human gliomas and constitutes a 
promising animal model for anti-cancer therapy experimentation [Weiner et al., 1999]. 

To more accurately represent the spontaneous development of glioma, genetically engineered 
mouse models have also been generated by modifying genes known to be altered in human 
gliomas. Genetic glioma models have advantages over cell implantation models, in that they 
mimic molecular and histological features of human brain tumors, as well as the tumorigenic 
process itself [Lampson 2001]. Although cell implantation allows probing site-specific effects 
and offers an easy and reliable model to test therapies, genetic glioma models simulate the 
interactions between the tumor and the surrounding brain tissue as well as the time course of 
gliomagenesis and progression [Lampson 2001]. 

Different approaches have been used to develop genetic models of glioma. Germline deletion 
of the tumor suppressor genes p53 or NF1 were found to increase the susceptibility to 
astrocytoma and glioblastoma in mice [Reilly et al., 2000]. Deletion of INK4A and ARF, 
concomitant with the somatic transfer of the receptor tyrosine kinase PDGF into astrocytes and 
CNS progenitor cells enhances the appearance of mixed oligoastrocytomas and 
oligodendrogliomas, respectively [Dai et al., 2001]. These reports, not only served as a source 
of new brain tumor animal models, but also, support the idea that disregulation of the cell cycle 
has a predominant role in carcinogenesis. In fact, transgenic mice overexpressing the 
oncogenes v-src and v12H-Ras under the control of the GFAP promoter develop astrocytomas 
which progression kinetics and histological features resemble the human tumors 
[Weissenberger et al., 1997] [Ding et al., 2001; Begemann et al., 2002]. 

C. TARGETS FOR GENE THERAPY OF GLIOMA 

Preclinical progress using animal models has led to the characterization of potential gene 
therapeutic approaches for glioma. Conditional cytotoxic approaches introduce noncytotoxic 
enzymes into the glioma which upon prodrug administration convert the prodrugs into toxic 
compounds capable of killing tumors. Anti-angiogenic paradigms are designed to prevent the 
vascularization of tumors which is required for growth and metastasis. Immune stimulatory 
approaches seek to use the patient's own immune system to target and destroy tumors; this 
approach ideally also would involve induction of immunological memory to protect against 
disease recurrence. Targeted toxin strategies utilize receptors specifically overexpressed on 
glioma cells to target the toxins directly into tumor cells, specifically destroying these cells. 
Also, tumor suppressor and oncogenes are targets for gene therapy and utilize the genetic 
abnormalities of the tumor as a therapeutic target. Substantial progress characterizing potential 
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treatments preclinically has occurred in all five target areas and will be summarized in 
subsequent sections. 

1. Replication-Deficient Vectors Encoding Conditional Cytotoxic Genes to Treat Brain 
Tumors 

In targeting brain tumors with conditionally cytotoxic therapies the goal is to achieve highly 
specific destruction of tumor cells without toxicity to normal tissue or induction of a systemic 
immune response against healthy tissues/organs. Conditionally cytotoxic gene therapy delivers 
an enzyme into tumor cells which is non-cytotoxic until the administration of a likewise, non- 
cytotoxic prodrug. Upon prodrug administration, the therapeutic enzyme converts the 
noncytotoxic prodrug into a toxic metabolite able to induce cell death. 

Initial investigations sought to exploit prodrug activation using endogenous enzymes expressed 
at higher levels in tumor cells [Connors et al., 1966; Cobb et al., 1969], however; clinical 
application was limited since such enzymes were expressed in normal cells and only a small 
number of human cancers had high enough levels of activating enzymes to elicit efficacy in 
cancer therapy. To overcome these problems, identification of non-mammalian enzyme/ 
prodrug combinations was undertaken. Use of viruses to specifically target enzymes to tumors 
has produced promising results in vitro and in vivo. 

For therapy to be successful the enzyme must be expressed exclusively within the tumor cells 
and its catalytic activity be high enough for clinical benefit without toxicity to normal tissue. 
Since expression will not occur in all tumor cells, a significant bystander effect is essential. 
Bystander effects occur when the cytotoxic metabolite is transmitted to cells not originally 
transduced with the enzyme. This may occur via transport through gap junctions or by diffusion 
through the extracellular space. In addition to delivery of the enzyme, delivery of the prodrug 
must be delayed sufficiently to allow expression of the enzyme in target cells. 

A large number of enzyme/prodrug combinations have been discovered and characterized in 
brain tumor treatment. The most well characterized conditionally cytotoxic combinations are 
herpes simplex virus type-1 thymidine kinase (HSV1-TK)/ganciclovir (GCV) and cytosine 
deaminase (CD)/ 5-fluorocytosine (5-FC). In addition to these well characterized pairings, 
cytochrome P450/CPA, E. coli purine nucleoside phosphorylase/6-methyl-purine-2'- 
deoxynucleo-side, carboxypeptidase/methotrexate-α-phenylalanine have all been under 
investigation for use in brain tumor treatment (for review see [Aghi et al., 2000; Greco et al., 
2001]). 

a. Herpes Simplex Virus Type-1 Thymidine Kinase/ Ganciclovir (GCV)—HSV1- 
TK was first developed as a prodrug-activating enzyme by Moolten and has been studied 
intensively in pre-clinical and clinical studies to treat a wide range of solid tumors [Moolten 
1986; Ram et al., 1997]. In addition to wild-type TK, several TK mutants have shown increased 
TK mediated effects in glioma models [Cowsill et al., 2000; Wiewrodt et al., 2003]. The 
prodrug GCV, is an acyclic analog of DNA nucleoside 2-deoxyguanosine which HSV1-TK 
phosphorylates to convert into a toxic DNA analog which triggers tumor cell death. 

HSV1-TK/GCV pairing was the first in which bystander effects were described [Freeman et 
al., 1993]. In murine glioma studies, total tumor regression was observed when at least 10% 
of tumor cells were transduced with HSV1-TK [Caruso et al., 1993; Freeman et al., 1993; Chen 
et al., 1995; Sandmair et al., 2000]. GCV-triphosphate moves between cells via gap junctions 
[Elshami et al., 1996; Mesnil et al., 1996; Dilber et al., 1997; Touraine et al., 1998] and triggers 
cell death through cell:cell contact. 
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Delivery of HSV1-TK into intracranial tumor has been successfully accomplished using 
replication-deficient retroviral vectors [Vincent et al., 1996], retroviral packaging cells 
[Takamiya et al., 1993; Izquierdo et al., 1995; Vincent et al., 1996], HSV vectors [Cobb et al., 
1969; Boviatsis et al., 1994; Boviatsis et al., 1994] replication deficient adenoviral vectors 
[Chen et al., 1994; Perez-Cruet et al., 1994; Vincent et al., 1996], replication competent 
adenovirus [Nanda, 2001 #169; Nanda et al., 2001], and adeno-associated vectors [Mizuno et 
al., 1998; Okada et al., 2001]. Treatment triggered infiltration of CD4+ and CD8+ T cells and 
macrophages as well as increased expression of a host of cytokines [Perez-Cruet et al., 1994; 
Vile et al., 1997]. Induction of the immune system resulted in tumor regression locally at the 
site of HSV1-TK/GCV action and at distant sites in both normal and immuno-compromised 
animals [Dilber et al., 1996; Wilson et al., 1996; Bi et al., 1997] (Fig. 1). CTL mediated 
regression of tumors produced long-term immunity to subcutaneous tumors. Likewise, 
treatment of subcutaneous tumors triggered regression of intracranial tumors even if the 
intracranial tumor was established before CTL response to the subcutaneous tumor was fully 
activated [Okada et al., 2001]. While HSV1-TK efficiently destroys tumor cells in the brain, 
long-term expression of HSV1-TK can result in chronic inflammatory [Dewey et al., 1999; 
Thomas et al., 2001] responses making the use of regulatable vectors a promising approach. 
Transduction of cells with HSV1-TK and treatment with GCV renders cells more sensitive to 
both chemotherapy and radiation suggesting that using multiple treatment modalities will 
produce more effective tumor regression [Kim et al., 1997; Valerie et al., 2000; Rainov et al., 
2001; Nestler et al., 2004]. In addition to combining standard therapies, combining HSV1- TK 
with immune stimulatory strategies is under investigation and shows promise for more efficient 
tumor destruction. HSV1-TK has been combined with TNFα [Moriuchi et al., 1998; Niranjan 
et al., 2000; Niranjan et al., 2003], IL-4 [Benedetti et al., 1997; Okada et al., 2000], Flt3L [Ali 
et al., 2004; Ali et al., 2005], decorin [Biglari et al., 2004] and connexin 43 [Marconi et al., 
2000] to attempt increased efficacy in preclinical GBM models. 

b. Cytosine Deaminase/5-Fluorocytosine—As with HSV-ITK, cytosine deaminase 
(CD) produces a toxic nucleotide analog which triggers cell death. CD is not found in 
mammalian cells but occurs in bacteria and fungi catalyzing the conversion of cytosine to 
uracil. When combined with the prodrug 5-fluorocytosine (5-FC), deamination generates 5- 
fluorouracil (5-FU) which ultimately triggers cell death through inhibition of thymidylate 
synthase. CD/5-FC results in a strong bystander effect that is not cell contact specific [Domin 
et al., 1993]. Transduction of only 2-4% of cells resulted in significant regression of tumor as 
toxic metabolites diffuse freely[Huber et al., 1994; Trinh et al., 1995]. 

Delivery of CD either by replication-deficient adenovirus, oncolytic adenovirus or retrovirus 
caused tumor regression of both C6 and 9L rat models of glioma [Ge et al., 1997; Ichikawa et 
al., 2000; Wang et al., 2003; Conrad et al., 2005]. Areas of necrosis surrounded by apoptotic 
cells were observed [Ichikawa et al., 2000] as was demylenation and gliosis within areas of 
normal brain tissue. Both HSV1-TK and CD therapeutics result in apoptosis of cells that is 
independent of p53 or death receptors [Kurozumi et al., 2004]. Mitochondrial caspase 
activation is required in both modalities to induce apoptosis[Fischer et al., 2005]. To increase 
efficacy combination of CD/5FC with HSV1-TK/GCV results in faster and more complete 
tumor regression than either single therapy alone [Aghi et al., 1998; Chang et al., 2000]. 
Likewise CD cytotoxicity is enhanced by radiation therapy although damage to normal brain 
can also occur requiring strict definition of both therapeutic modalities [Kambara et al., 
2002]. 

c. Cytochrome P450/Cyclophosphamide—Cytochrome P450 converts 
cyclophosphamide (CPA) into a mustard like toxin which triggers DNA crosslinking and 
protein alkylation [Dachs et al., 2005]. CPA can be activated by endogenous Cytochrome P450 
in human liver requiring monitoring of liver function in studies involving this enzyme prodrug 
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combination [Chang et al., 1993]. Cytochrome 450/CPA bystander effects do not require cell 
contact as metabolites released from the cell can trigger cytotoxicity in cells not directly 
transduced with cytochrome P450 [Wei et al., 1995]. Intracranial delivery of cytochrome P450 
by adenovirus or retrovirus into either 9L or C6 glioma models resulted in at least a partial 
regression of tumor and prolonged survival [Wei et al., 1994; Manome et al., 1996]. In addition 
to CPA, cytochrome P450 produces cytotoxic effects in glioma cells when other prodrugs are 
used alone or in combination with CPA [Rainov et al., 1998; Aghi et al., 2000; Huang et al., 
2000; Jounaidi et al., 2000; Frank et al., 2002]. Also, chemotherapy combined with cytochrome 
p450 gene therapy showed greater efficacy than either treatment alone[Chen et al., 1995]. 

d. E. coli Purine Nucleoside Phosphorylase—E. coli purine nucleoside phosphorylase 
(PNP) converts nontoxic purine nucleoside analogs into toxic adenine analogs to block both 
mRNA and protein synthesis. PNP can be combined with multiple prodrugs including 6- 
methylpurine and F-araAMP[Gadi et al., 2003; Parker et al., 2003]. High bystander activity 
which is cell contact independent may allow widespread tumor death from a relatively small 
dose of PNP. Delivery of PNP by adenovirus into subcutaneous glioma cells tumors resulted 
in tumor elimination when only 2-5% of cells were directly transduced [Hong et al., 2004]. 
Subcutaneous tumors generated from glioma cells retrovirally transduced to express PNP 
showed regression upon prodrug administration [Parker et al., 1997; Gadi et al., 2003]. 

e. Carboxypeptidase G2—Carboxypeptidase G2 (CPG2) is found in bacteria but not 
humans and removes glutamic acid moieties from folic acid, inhibiting cell growth. When 
combined with the prodrug [Marais et al., 1996] 4-benzoyl-L-glutamic acid (CMDA), a DNA- 
crosslinking mustard drug is released [Springer et al., 1990]. Unlike HSV1-TK and CD, 
catalysis of the prodrug with CPG2 does not require further enzymatic processing to become 
the final toxic compound. Mustard-alkylating agents are not cell-cycle dependent enabling the 
killing of proliferating and non-proliferating cells [Springer et al., 2000]. As with other enzyme/ 
prodrugs, CPG2/CMDA produces a robust bystander effect. Only 10-12% transduction 
resulted in 50-100% killing in vitro or in vivo [Marais et al., 1996; Stribbling et al., 2000]. 
Replication-deficient adenoviral vector delivery of CPG2 into glioma cells which were 
resistant to chemotherapeutic drugs and not killed by HSVTK/GCV showed 70% cell killing 
[Cowen et al., 2002]. 

2. Suppression of Angiogenesis 

Large tumors consist of poorly vascularized but densely packed cells through which nutrients 
and oxygen do not permeate readily. This environment initially restricts growth of tumors and 
angiogenesis is required to supply sufficient oxygen and nutrients to tumors to sustain further 
growth [Singh et al., 2003]. Angiogenesis involves the rapid proliferation of endothelial 
vascular cells, culminating in the formation of new blood vessels, and is tightly regulated in 
adults. This regulation is coordinated by the expression of both activators and inhibitors of 
angiogenesis. As tumors increase in size, a need arises for vascularization within the tumor 
mass before further growth can occur. Therefore, a selective pressure is placed on the tumor 
cells to alter the expression of promoters and inhibitors of angiogenesis and in doing so to 
stimulate the development of new vasculature. 

Glioblastoma is among the most highly vascularized of all tumors; acquiring the ability to 
promote angiogenesis is a critical step in the progression of a tumor from a benign, microscopic 
lesion to a malignant macroscopic cancer. Consequently, angiogenesis has received much 
attention as a potential therapeutic target. These therapies are expected to have few serious side 
effects because angiogenesis in healthy adult humans usually only occurs in response to 
pathological insults from wounds or hypoxia. Several of these angiogenic inhibitors have been 
shown to reduce tumor growth in vitro and in vivo [Kirsch et al., 2000]. However, a number 
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of disadvantages limit the potential of angiogenic inhibitors in clinical setting. First, production 
of sufficient quantities of angiogenic inhibitors is expensive limiting the availability of these 
drugs in clinical trials. Synthetic small molecule inhibitors of angiogenesis are being developed 
to overcome this problem [Sebti et al., 2000] but the side effects of these drugs are unknown. 
Second, angiogenic inhibitors are believed to be cytostatic, not cytotoxic requiring long-term 
treatment to control and ultimately reduce tumor size [Kirsch et al., 2000]. Third, toxic side 
effects have been observed with systemic delivery of some angiogenic inhibitors [Puduvalli et 
al., 2000]. Gene therapy offers distinct advantages to deliver clinically effective doses of 
angiogenic inhibitors to the tumor and has been successfully employed in the treatment of a 
variety of tumors in preclinical studies [Chen et al., 2001]. 

a. Targets That Promote Angiogenesis—The first growth factor identified as a positive 
regulator of angiogenesis was basic fibroblast growth factor (bFGF) [Montesano et al., 1986] 
and increased expression of bFGF correlates with progression of a wide variety of solid tumors 
[Szabo et al., 1998]. Adenoviral gene transfer of bFGF was found to promote angiogenesis in 
rat brains [Yukawa et al., 2000]. However, a clear correlation between increased bFGF 
expression and glioma progression has not been demonstrated in glioma suggesting that bFGF 
is not the principle mediator of angiogenesis [Markert et al., 2000]. Another promoter of 
angiogenesis called vascular endothelial growth factor (VEGF) was found to be overexpressed 
in high grade gliomas [Plate et al., 1995]. Expression of the receptors for VEGF, Flt-1 
(VEGFR-1) and Flk-1 (VEGFR-2), are also elevated in glioblastoma in comparison with 
surrounding normal tissue and Flk-1 in particular is believed to promote angiogenesis in 
response to VEGF [Stratmann et al., 1997]. Transfection of anti-sense VEGF cDNA into rat 
glioma C6 cells in vitro impaired C6 tumor cells growth in comparison to controls when 
subsequently implanted into nude mice [Saleh et al., 1996]. Recombinant viruses have also 
been used to transfer anti-sense VEGF cDNA sequence and rats with intracranial neoplasms 
showed a statistically significant improvement in survival when treated with this retrovirus 
[Sasaki et al., 1999]. A VEGF receptor that displays dominant negative function when 
overexpressed in cells has also been developed and was expressed by a retrovirus. Survival 
was successfully prolonged in rats with intracranial tumors and these tumors displayed many 
classical signs of impaired angiogenesis including reduced vascular density and elevated 
necrosis [Machein et al., 1999; Heidenreich et al., 2004]. Urokinase Plasminogen activated 
receptor (uPAR) and Cathepsin B are also overexpressed during glioma progression and have 
been implicated in promoting angiogenesis. Adenovirus expressing anti-sense uPAR and 
Cathepsin B and injection of plasmid DNA encoding siRNA sequences targeting uPAR and 
Cathepsin B inhibit glioma growth, invasion and angiogenesis [Gondi et al., 2004; Gondi et 
al., 2004]. 

b. Targeting Inhibitors of Angiogenesis—The relatively low percentage of cells 
transduced by recombinant viral vectors is a limiting factor in inhibiting targets which promote 
angiogenesis. Inhibitors of angiogenesis overcome this problem and have been the subject of 
numerous pre-clinical studies. Many naturally occurring inhibitors of angiogenesis are derived 
from proteolytic degradation of the extracellular matrix. Endostatin and angiostatin are 
generated following the proteolytic cleavage of plasminogen and collagen respectively and are 
potent inhibitors of angiogenesis [O'Reilly et al., 1994; O'Reilly et al., 1997]. These peptides 
are difficult to generate in sufficient quantities in vitro, and thus are ideal candidates as 
transgenes for gene therapy. Recombinant viral vectors that express endostatin [Yamanaka et 
al., 2001; Peroulis et al., 2002] or angiostatin [Tanaka et al., 1998; Ma et al., 2002] have been 
developed and tested in preclinical models of glioma. Improved survival of animals with 
intracranial neoplasms was observed in all cases and tumor growth rates were reduced by as 
much as 90%. Other anti-angiogenic protein fragments have also been studied for effectiveness 
in animal models of glioma and these include soluble human platelet factor 4 and the N-terminal 
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fragment of rat prolactin. It appears that these trans-genes are not as effective as endostatin and 
angiostatin in significantly improving survival [Tanaka et al., 1997; Witte et al., 2002]. A 
number of proteins associated with immune system function also have anti-angiogenic 
properties. IL-4 and interferon gamma have been studied in rat models of glioma [Saleh et al., 
1999; Saleh et al., 2000] with improved survival and reduced angiogenesis and tumor growth 
rates. However, the principal function of these transgenes is in recruiting and modulating 
various cellular and humoral aspects of the immune response and will be dealt with in the 
following section. 

3. Immune Stimulation 

Histological analysis of tumors reveals that an immune response is often elicited against the 
tumor. Inflammation, and even tumor-specific lymphocytes are often evident, and in some rare 
cases, tumor regression spontaneously occurs in response to autoimmune paraneoplastic 
syndromes [Nagel et al., 1971; Darnell et al., 1993]. This is believed to be caused by tumor 
specific antigen expression and underscores a role for the immune system in cancer 
immunosurveillance and control of disease progression. Unfortunately, most tumors develop 
counter measures that hamper an effective immune response developing against the growing 
tumor. As a result, there is significant interest in developing immunotherapies to improve the 
response of the immune system to the tumor. Gene therapy offers numerous different 
mechanisms to stimulate an immune response against tumors. We shall briefly outline progress 
in the four most promising areas. 

a. Tumor Antigens Delivered through Adenoviral Expression—Most if not all 
tumors express proteins that are recognized by the immune system and are called tumor 
antigens. Adenoviral vectors can be engineered to express these antigens as transgenes and 
subsequently used to prime an immune response against that target antigen if injected 
systemically. Promising results from preclinical trials have been reported for renal cell 
carcinoma among others, where adenovirus expresses the tumor antigen carbonic anhydrase 
IX protein [Jongmans et al., 2003]. However, it is unclear whether this approach would be 
effective for mounting an effective immune response against gliomas. 

b. Enhancement of the Immune Response Using Interferons—Interferons secreted 
ligands involved in immunity and inflammation. They are potentially valuable targets in gene 
therapy due to the highly specific immune-stimulatory function of many of these molecules. 
Type I interferons, including IFN-α, IFN-β and IFN-ω are produced primarily by a specialized 
population of dendritic cells in response to viral infection and other immune modulators. IFN- 
α has been shown to elicit numerous anti-tumor effects including inhibition of cell cycle 
progression, induction of apoptosis and stimulation of the immune system to destroy tumor 
cells [Kemp et al., 2003; Tosi et al., 2004]. In addition, treatment of human glioblastoma cell 
lines with IFN-α increased cell surface expression of MHC-1 [Yang et al., 2004]. Intramuscular 
delivery of plasmid DNA encoding IFN-α significantly reduced the tumor volume in a mouse 
model of glioma when compared with control animals [Horton et al., 1999]. IFN-α also 
promoted regression of intracranial gliomas when co-delivered with dendritic cells directly 
into the tumor mass [Tsugawa et al., 2004]. Another type I interferon called IFN-α provides 
systemic anti-tumor immunity against GL261 cells when delivered intracranially. This reduces 
tumor growth and improves survival in C57 BL6 mice through a combination of anti- 
proliferative effects and also the activation of CD8+ but not CD4+ cells [Natsume et al., 
2000]. In another report, combination of IFN-α and dendritic cells was found to suppress tumor 
growth. This was mediated by a highly effective CTL response against the tumor and was far 
more efficient that either therapy alone [Nakahara et al., 2003]. An adeno-associated virus 
designed to deliver this transgene has also been developed and completely inhibits growth of 
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exogenous human tumor xenografts in nude mice, further supporting the potential of IFN-α as 
a novel therapy for treating human glioma [Yoshida et al., 2002]. 

c. Enhancing T Cell Activation—A number of cytokines are believed to activate various 
subclasses of T lymphocytes. For example, IL-12 is required for the anti-tumor TH1 type pattern 
of differentiation in naïve mature T lymphocytes. Adenovirus expressing IL-12 has been 
reported to enhance the immune response to brain tumors and improve survival in mice 
inoculated with GL26 glioma cells intracranially. Increased CD4+ and increased CD8+ T cells 
were identified at the tumor site [Liu et al., 2002]. Recently, allogenic cells genetically 
engineered to secrete IL-2, were found to significantly improve survival in a mouse glioma 
model. The immune response was found to be predominantly mediated by CD8+ and natural 
killer cells (NK) and was highly specific for the glioma cells above nonneoplastic cells [Lichtor 
et al., 2003]. 

d. Mobilizing Dendritic Cells—It is believed that dendritic cells are the principal antigen 
presenting cells of the immune system and are required for the development of an antigen- 
dependent immune response. Dendritic cells differentiate from precursor cells in response to 
Flt3L expression through a STAT3 dependent mechanism [Laouar et al., 2000]. Expression of 
Flt3L has been demonstrated to induce complete tumor regression and significantly improve 
survival [Lynch et al., 1997]. Furthermore, dendritic cells are highly effective inducers of tumor 
specific killer and helper T lymphocyte generation in animal models of tumors [Schuler et al., 
2003]. Therefore, interest has been generated surrounding the use of dendritic cells and Flt3L 
in immunotherapy. 

Dendritic cells are absent from the brain parenchyma except under conditions of inflammation 
and it is believed that this a major reason for immune privilege of the brain [McMenamin 
1999; Fischer et al., 2000; Serafini et al., 2000; Fischer et al., 2001; Santambrogio et al., 
2001; Lowenstein 2002]. This places spatial limits on the ability of dendritic cells to migrate 
to intracranial tumors. One strategy for circumventing this problem is to deliver dendritic cells 
directly into the intracranial tumor mass [Tsugawa et al., 2004]. Another solution is to pulse 
dendritic cells with glioma antigen in vitro, before re-administering these cells in the periphery 
[Heimberger et al., 2000]. Unfortunately, manipulation of dendritic cells in vitro may reduce 
the effectiveness of the therapy by inducing unwanted side effects. Our group has developed 
an alternative strategy, utilizing an adenoviral vector expressing the dendritic cell growth 
factor, Ft3L, and have used this approach to successfully treat both microscopic and 
macroscopic models of glioblastoma in a syngeneic rat model [Ali et al., 2004; Ali et al., 
2005] (Fig. 2). Adenoviral vectors are delivered directly into the tumor mass and cause a potent, 
anti-tumor immune response resulting in the rejection of the tumor in 60-80% of animals where 
all other therapies tested fail [Ali et al., 2005]. Depletion of either CD4+ T cells or macrophages 
caused the therapy to fail completely, suggesting that by presenting antigen to TH cells, DC's 
primed a potent anti-tumor immune response (Fig. 3). This data highlight the promise of 
immuno-therapies in greatly enhancing the efficacy of current therapies and the potential of 
curing the disease. 

4. Targeted Toxins 

Several cellular receptors are exclusively overexpressed on brain tumor cells have been used 
to target anti-cancer therapy. Human gliomas in situ overexpress several membrane molecules, 
including variants of the IL-13 receptor, IL13Rα2 [Debinski et al., 1999; Debinski et al., 
2000; Li et al., 2002; Todhunter et al., 2004], the urokinase-type plasminogen activator (uPA) 
receptor [Mori et al., 2000; Todhunter et al., 2004] and the epidermal growth factor (EGF) 
receptor [Phillips et al., 1994; Liu et al., 2005]. These receptors are virtually absent in the 
normal brain; thus, they have been targeted in preclinical and clinical trials for the treatment 
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of brain tumors, with minimal side effects to normal brain tissue. Natural ligands of 
IL13Rα2, uPA receptor and EGF receptor, i.e., IL-13, uPA and EGF/transforming growth 
factor α (TGF-α), respectively, have been fused to the catalytic and translocation domains of 
highly cytotoxic bacterial products, such as Pseudomonas [Phillips et al., 1994; Debinski et 
al., 1995] and Diphteria exotoxins [Mori et al., 2000; Liu et al., 2002; Todhunter et al., 2004; 
Liu et al., 2005]. These fusion toxins have shown to be selectively internalized by glioma cells. 
Once internalized the toxins inhibit protein synthesis, which induces cell death of the targeted 
cell without affecting normal brain cells. In vitro and in vivo experiments in murine glioma 
models have shown the high efficacy and low toxicity of these approaches [Phillips et al., 
1994; Debinski et al., 1995; Mori et al., 2000; Liu et al., 2002; Todhunter et al., 2004; Liu et 
al., 2005]. 

IL-13 is a cytokine that binds in normal cells to a heterodimeric receptor complex composed 
of IL-13 receptor and IL-4 receptor. Although this receptor is widely expressed in normal 
peripheral tissues, it is virtually absent in normal brain tissue [Abramovitch et al., 1995; Mintz 
et al., 2002]. However, IL-13 binds with high affinity to glioma cells [Debinski et al., 1995; 
Debinski et al., 1996] due to the overexpression of IL-13Rα2, a restricted monomeric receptor 
with affinity for IL-13, but not for IL-4 [Debinski et al., 1999; Debinski et al., 2000; Debinski 
et al., 2000; Mintz et al., 2002; Liu et al., 2003; Mintz et al., 2003]. This feature of IL-13Rα2 
can be used as a therapeutic target for GBM. 

Pseudomonas exotoxin is a cytotoxic bacterial protein which encompasses three functional 
domains. Domain I binds the α2-macroglobulin receptor, which is ubiquitously expressed in 
normal tissues, and the exotoxin-α2-macroglobulin receptor complex undergoes receptor- 
mediated endocytosis [Pastan et al., 1992]. Domain II is a site of proteolytic cleavage that 
activates the resulting exotoxin and is necessary to catalyze the translocation of the toxin into 
the cytosol. Domain III directs the processed fragment of the toxin to the endoplasmic reticulum 
and possesses an ADP ribosylation activity that inactivates elongation factor 2, inhibiting 
protein synthesis and leading to cell death [Pastan et al., 1992] (Fig. 4). The mutant exotoxin, 
PE38QQR (PE), does not bind to the ubiquitous α2-macroglobulin receptor due to the deletion 
of domain I [Debinski et al., 1994], and can be linked to various ligands in order to promote 
its internalization into target tumor cells. In order to target the PE toxin to human glioma cells, 
a fusion protein was developed by linking the mutated form of Pseudomonas exotoxin to 
hIL-13 throughout its N-terminal domain, to generate hIL-13-PE [Debinski et al., 1995]. This 
recombinant protein, also termed IL-13 toxin, is cytotoxic to human glioblastoma cells 
expressing the IL-13α2 receptor in culture [Debinski et al., 1995; Debinski et al., 1995; Liu et 
al., 2003] and in human xenograft glioma cells implanted in the flank of nude mice [Husain et 
al., 2001]. The targeting of IL-13α2 receptor has been improved by the engeneering of the 
human IL-13 gene, leading to a mutated IL-13 toxin with higher cytotoxicity and affinity for 
the IL-13α2 receptor when compared to the wild type IL-13 toxin [Debinski et al., 1998; 
Madhankumar et al., 2004]. The fusion of this muIL-13 to PE resulted in an even more active 
cytotoxin on glioma tumors both in vitro and in vivo with negligible affinity to IL-13 receptor 
of normal cells [Debinski et al., 1998]. Intratumoral administration of IL13-PE toxin into 
intracranial human glioma xenografts in mice showed highly cytotoxic effects without 
undesirable side effects [Kawakami et al., 2004]. 

5. Tumor Suppressors and Oncogenes 

All cancerous cells were originally derived from normal precursors. However, cancerous cells 
harbor harmful mutations in key genes, either tumor suppressors or oncogenes, which regulate 
proliferation and/or apoptosis. It is widely accepted that tumorigenesis is a multi-step process 
that requires mutations in many different genes in the DNA of an individual cell, such as genes 
that promote cell cycle progression, growth factor independence, angiogenesis, increased 
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motility, anchorage independence, decreased levels of apoptosis and reduced sensitivity to 
chemotherapeutic agents. The genetics of gliomagenesis is well characterized in comparison 
with other cancers and this information can be used to develop gene therapy that repairs these 
genetic aberrations. Mutations in four pathways in particular are commonly associated with 
glioma formation in humans; the P53/ARF/human MDM2 pathway, the P16/Rb/cyclinD/ 
CDK4 pathway, the receptor tyrosine kinase (RTK)/Ras pathway and the PI3K/PTEN/Akt 
pathway [Merlo 2003]. Viral vectors have been designed that express transgenes commonly 
mutated in glioma in an attempt to correct the genetic mutations. 

a. Tumor Suppressors : p53—P53 is often referred to as ―the guardian of the genome‖ 
and is mutated or absent in over 50% of all human tumors. Other proteins known to regulate 
P53 expression such as c-Jun and MDM2, and downstream effectors of p53 including P21 and 
E2F1 are also frequently mutated in cancer. In fact, mutations in components of the p53 
pathway are believed to occur in >90% of all human tumors, including human gliomas. The 
principal role of p53 as a tumor suppressor is to detect gross genetic abnormalities during DNA 
synthesis. Expression of p53 is absent in quiescent cells but is expressed in cells during cell 
cycle progression or in response to genotoxic insults. Once a genetic abnormality has been 
detected, p53 arrests cell cycle progression and monitors the tumor repair process. If the DNA 
damage is too great, p53 may induce apoptosis. This altruistic behavior is vital to the collective 
well being of the organism and greatly reduces the frequency of tumor formation. 

Allelic loss of chromosome 17p or mutations in p53 gene are observed with equal frequency 
in low grade gliomas and high grade glioblastomas [Louis 1994] suggesting that inactivation 
of p53 occurs early during gliomagenesis and may be an important target for gene therapy. Re- 
introduction of wild-type p53 into glioma with p53 mutations has been the subject of intense 
scientific research. Early results suggested that the re-introduction of p53 reduced the 
proliferation of glioma cells in vitro and suppressed tumor formation when implanted into nude 
mice [Asai et al., 1994]. Adenovirus expressing p53 was later demonstrated to reduce tumor 
volume by 40% over 14 days in rats, [Badie et al., 1995; Kock et al., 1996]. P53 as a therapeutic 
transgene is not limited to glioma that have lost P53 function. Overexpression of p53 using 
viral vectors improved survival against challenge with wild type p53 expressing glioma cell 
lines, indicating a versatile function for this transgene in treating all forms of glioma [Li et al., 
1999]. P53 overexpression increases the sensitivity of drug and radiation resistant glioma cell 
lines to cisplatin and radiotherapy in vitro [Gjerset et al., 1995] and adenovirus expressing p53 
restored the sensitivity of 9L glioblastoma cells to cisplatin [Dorigo et al., 1998] and 
radiotherapy [Badie et al., 1998] in pre-clinical models of glioma. P53 increases the expression 
of numerous apoptotic proteins in cells, including BAX activators Bim and DP5, and the death 
receptor ligand FasL. In a recent study, adenoviral vectors expressing p53 under the control of 
the CMV promoter were demonstrated to induce significant levels of apoptosis as measured 
by DNA ladder when injected intracranially into the tumor. Furthermore, a 100% survival rate 
was observed in these animals 100 days following viral injection [Cirielli et al., 1999]. A 
number of downstream effectors of p53 such as P21, E2F1 and P16 have also shown promising 
results in pre-clinical glioma models [Chen et al., 1996; Fueyo et al., 1998]. In fact, vectors 
expressing P16 and P21 were more effective than P53 at improving survival [Wang et al., 
2001], although this has yet to be validated in human clinical trials. 

An alternative strategy was originally conceived by Bischoff JR and others and takes advantage 
of the anti-viral properties of p53. The human AdE1B gene is expressed during adenovirus 
infection and codes for the 55 kDa protein that binds with and inactivates p53. E1B is essential 
for a successful viral replication cycle within the host cell and adenoviruses lacking the E1B 
gene are unable to replicate inside cells expressing normal p53. These recombinant viral 
particles have since been named ONYX-015 and were cytopathic against p53-deficient human 
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tumor cell lines implanted in nude mice [Bischoff et al., 1996; Heise et al., 1997]; [Geoerger 
et al., 2003]. 

b. Rb Pathway—The P16/Rb/cyclinD/CDK4 pathway is the most frequently mutated 
pathway in glioma, and mutations generally characterize a transition from low-grade tumors 
with relatively slow rate of proliferation to intermediate-grade gliomas with dramatically 
increased cell proliferation [Maher et al., 2001]. In normal quiescent cells, Rb is present in a 
hypophosphorylated form and is bound by the transcription factor E2F1. This prevents 
transcription of genes important for mitosis and prevents progression of the cell through the 
G1/S phase restriction point [Sherr 1996]. In gliomagenesis, allelic losses on chromosome 9q 
or 13q, or amplification of 12q usually accompany transition of glioma from low grade to 
intermediate grade [Schmidt et al., 1994; Ueki et al., 1996]. This was later found to correspond 
with loss of Rb (13q14), loss of INK4A and ARF (9p21), or amplification of CDK4 (12q13-14). 
Adenovirus mediated Rb gene therapy has been successfully used in pre-clinical models of 
glioma, where it was found to decrease the proliferation of spontaneous pituitary tumors in 
Rb+/− mice and prolonged survival of animals [Riley et al., 1996]. In a similar strategy to 
ONYX-15, a recombinant adenovirus lacking AdE1A (Delta24) can only replicate in cells 
expressing phospho-RB and is preferentially cytotoxic to glioma cells. A single injection of 
Delta24 reduced growth of flank tumors by 66%, and multiple injections reduced tumor growth 
by 84% [Fueyo et al., 2000]. 

More recently, substantial research has also investigated the potential of P16INK4A to reduce 
tumor proliferation and improve survival in rodent models of glioma. P16INK4A inhibits Rb 
phosphorylation and is mutated in more than 50% of glioblastomas [Lee et al., 2000]. 
P16INK4A expressing vectors were demonstrated to improve survival in animal models of 
glioma, even when compared with P53 expressing vectors [Wang et al., 2001]. In spite of these 
promising results, caution is warranted with all therapies designed to repair common genetic 
lesions in glioma. In a recent report, P16INK4A was expressed in glioma cell lines under the 
control of the Tet repressor system. Elevated P16INK4A reduced tumor proliferation in vivo 
initially, supporting work published by others. However, long term transgene expression 
induced a decrease in the expression of Rb suggesting that gene therapy approaches involving 
P16INK4A may ultimately lead to the selection of Rb deficient tumors [Simon et al., 2002]. In 
fact, this is a potential problem of all approaches designed to correct genetic lesions in cancer. 
Tumor cells are genetically unstable and undergo accelerating genetic mutation. Unfortunately, 
this accelerates natural selection and will select for tumor cells that overcome this transgene 
insertion. The possibility of tumor cells compensating for transgene insertion through one or 
more subsequent mutations must be explored in all promising therapies that repair the primary 
genetic lesion in cancer. 

D. CLINICAL TRIALS OF GENE THERAPY FOR GLIOMA 

GBM treatment involves surgical resection combined with chemotherapy and radiotherapy. 
Even with aggressive therapeutic approaches mean patient survival from initial diagnosis has 
remained at nine to twelve months for over 5 decades. Numerous gene therapy approaches 
have moved from preclinical studies to clinical trials with the goal of delivering gene-based 
therapeutics into the tumor mass to trigger tumor elimination and long standing protection 
against recurrence. 

Multiple approaches to specifically target brain tumor cells have been developed and will be 
discussed. Conditional cytotoxicity delivers non-cytotoxic therapies into tumor cells where 
upon administration of a prodrug, cytotoxic metabolites are produced which trigger tumor cell 
death. Targeted toxins specifically deliver toxins like pseudomonas endotoxin or diphtheria 
toxin into tumor cells by targeting receptors upregulated only on tumor cells. Oncolytic viruses 
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cause tumor cell lysis and viral spread after infection by specifically infecting tumor cells with 
genetic/metabolic alterations relative to normal tissue. 

Delivery of therapeutics into the brain poses a significant challenge in the development of novel 
treatments for GBM where in addition to having to target a large tumor mass or resected tumor 
cavity, the neurosugeon encounters the bone structure of the cranium and the blood brain 
barrier. The use of convection enhanced delivery (CED) may presently represent the best option 
to achieve safe widespread distribution of the therapeutic vectors/compounds. By this method 
several catheters are placed within the target brain area and infusion of the therapeutic is 
conducted at a continuous and slow rate. CED has been particularly successful in clinical trials 
utilizing targeted toxins [Qureshi et al., 2000; Saito et al., 2004]. 

1. Conditional Cytotoxicity 

The majority of brain tumor related clinical trials utilize viral vectors delivering a Herpes 
Simplex virus type 1 thymidine kinase (HSV1-TK) gene (mechanism of action described 
above). To date clinical trials using HSV1-TK to transduce brain tumors have been completed 
using liposomes, replication-deficient retrovirus producing cells or replication-deficient 
adenoviruses. 

Retroviruses selectively target actively dividing cells making them an attractive vector in the 
brain where tumor cells are the only rapidly dividing cells. However low titers and unstable 
virus particles have required the use of virus producing cells (VPCs) instead of direct viral 
injection into brain [Short et al., 1990; Ram et al., 1997; Rainov et al., 2003]. VPCs 
continuously produce replication-deficient retrovirus vectors with a very low risk of wild-type 
virus production from recombination events. VPCs are short lived vector producers incapable 
of migration, limiting their usefullness [Rainov et al., 2003]. 

Phase one/two clinical trials to determine maximum tolerable dose (MTD) and toxicity of VPCs 
producing retroviruses expressing HSV1-TK in treatment of brain cancer have been 
extensively performed. Most studies involve implanting VPCs into the cavity of resected 
tumors. After VPCs implantation, virus diffused into surrounding tissue and ganciclovir was 
administered; patients were evaluated for survival and toxicity [Izquierdo et al., 1996; Ram et 
al., 1997; Klatzmann et al., 1998; Shand et al., 1999; Packer et al., 2000; Rainov et al., 2000; 
Prados et al., 2003]. VPCs in small tumors produced anti-tumor effects [Izquierdo et al., 
1996; Ram et al., 1997] and individual case studies showed increased immune response 
following treatment [Izquierdo et al., 1996; Floeth et al., 2001; Kramm et al., 2002]. In general 
however, survival increases were marginal and limited to a small number of the total patients 
treated in a trial. Bystander and tumor transduction rates were considerably lower than that 
observed in preclinical studies [Izquierdo et al., 1997; Ram et al., 1997; Harsh et al., 2000]. 
The MTD was not determined as all doses used were well tolerated. Concerns for safety resulted 
in evaluation of anti-virus antibody titers as a systemic immune response to the virus could 
cause a life threatening situation. While some studies show no change, others showed a small 
number of patients with increased antibody titers [Ram et al., 1997; Shand et al., 1999], 
however, no systemic effects caused by the treatment were observed. Evaluation of peripheral 
blood lymphocytes for wild-type or replication-deficient therapeutic virus showed low or 
transient presence of therapeutic virus and no wild-type virus outside of the brain [Long et al., 
1998; Long et al., 1999]. To evaluate survival, a larger randomized controlled trial was 
conducted once safety and toxicity had been established. A randomized controlled, multicenter 
trial involving 248 patients found that while VPC-expressing therapeutic vectors were safe, no 
significant difference in survival was evident [Rainov 2000] requiring further refinement of 
treatment strategies to reproduce the preclinical effects observed in a clinical setting. 
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To increase clinical efficacy, combinations of HSV1-TK with immune stimulatory factors have 
also reached clinical trial stages. VPCs expressing both Interleukin 2 and HSV1-TK and 
Interleukin 4 and HSV1-TK have been injected into patients [Colombo et al., 1997; Palu et al., 
1999; Okada et al., 2000]. Results combining IL-2 and HSV1-TK indicate that the treatment 
is safe and causes increased infiltration of immune cells and tumor necrosis [Palu et al., 
1999]. 

Adenoviral vectors are non integrating, nonenveloped viruses which express transgenes at high 
levels, are producible at high titers, and infect both dividing and non-dividing cells. Studies 
comparing either retrovirus producing cells and replication deficient adenoviral vectors' 
efficiency in transducing human glioma tumors found higher gene transfer efficiency and 
greater survival times with replication deficient adenoviral vectors [Puumalainen et al., 
1998; Sandmair et al., 2000]. 

Phase one trials using replication deficient adenovirus to deliver HSV1-TK into resected tumor 
beds or intratumorally followed by ganciclovir administration have established that no systemic 
toxicicty occurs when viral vector administration remain below 1012 viral particles [Trask et 
al., 2000; Smitt et al., 2003]. When 2×1012 vp were injected intratu-morally, toxicity with 
confusion hypoatremia and seizures resulted. Post mortem tumors examined following 
treatment show areas of necrosis and infiltration of macrophages and lymphocytes consistent 
with an immune response to the tumor [Trask et al., 2000]. 

The primary concern in the use of adenovirus is a systemic immune response to the virus, since 
the majority of adults have been exposed to and have mounted an immune response to wild- 
type adenovirus. No systemic or local symptoms consistent with overt inflammatory processes 
were observed [Trask et al., 2000; Germano et al., 2003; Smitt et al., 2003]. Likewise, while 
increased anti-adenoviral vector antibodies were reported in some patients, no symptoms 
associated with this increase were reported [Sandmair et al., 2000; Germano et al., 2003; 
Immonen et al., 2004]. 

With promising results from toxicity studies, a randomized controlled study was conducted 
involving 36 patients injecting replication-deficient adenovirus into the tumor bed following 
tumor resection. Mean survival time of adenoviral treated patients was 70.6 weeks compared 
to 39 weeks with controls [Immonen et al., 2004]. While not curative, these results are 
statistically significant and very encouraging. 

With the concerns of immunogenecity and inflammation associated with the use of viral vectors 
for gene therapy, development of non viral vectors to deliver therapeutic genes has also lead 
to clinical trials. In a phase I/II study of the safety and MTD using liposome mediated delivery 
of HSV1-TK in patients with recurrent glioma, no systemic side effects or immune response 
associated with the treatment were observed. HSV1-TK cDNA was detectable in cells up to 
70 days after infusion. While treatment was not curative, tumor regression was observed in a 
majority of patients [Voges et al., 2003]. In addition to HSV1-TK delivery, clinical trials are 
underway to deliver interferon β to brain tumors utilizing liposome technology [Yoshida et al., 
2004]. 

2. Targeted Toxins 

The ability to deliver targeted therapeutics to treat brain tumors is highly desirable to limit the 
toxic side effects of novel therapies. Specificity in gene therapy can be achieved with the use 
of targeted toxins. Utilizing biological features unique to tumor cells, delivery of cytotoxic 
substances can be refined. By, selectively targeting receptors expressed at high levels on tumor 
cells, vectors can then carry a toxin into the cell to trigger tumor specific cell death. 
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a. IL-13 Receptor—The interleukins, a class of cytokines, are produced by T cells and 
mediate immune system activation acting on nearly all immune cell types. To target glioma 
cells while sparing normal brain tissue, chimeric IL-13 with mutated Pseudomonas endotoxin 
(PE) [Pastan et al., 1992] has been utilized in clinical trials. Upon binding to the IL-13α2R, 
receptor-mediated endocytosis occurs and the toxin translocates to the cytosol to ultimately 
trigger cell death [Pastan et al., 1992]. 

Phase I/II studies to determine MTD and toxic effects utilizing IL-13 targeted cytotoxin have 
been reported and are in progress with patients diagnosed with recurrent malignant glioma 
[Weingart et al., 2002; Prados et al., 2003]. Intratumoral infusions by convection-enhanced 
delivery caused steroid responsive edema in 1 out of 3 patients. Dose escalation studies have 
not yet identified a MTD [Kunwar 2003]. The histologically effective concentration defined 
as the concentration required to produce 90% cell necrosis after infusion of the treatment also 
remains to be determined. Decreased tumor burden and prolonged patient survival is reported 
in these ongoing trials [Kunwar 2003; Prados et al., 2003]. 

b. IL-4 Receptor—Interleukin 4 (IL-4) is produced by activated T cells, mast cells and 
basophils and acts synergistically in the early stages of hematopoesis and B cell activation 
[Paul 1991; Puri 1995]. As with IL-13, linkage to the cytotoxin PE by replacing the binding 
domain of PE with IL-4 enables targeted killing of IL-4R expressing cells [Pastan et al., 
1992; Puri et al., 1996]. 

In phase I testing in patients with recurrent malignant glioma, were treated with convection 
enhanced delivery of cpIL4-PE using doses based on preclinically efficient dosages to 
determine toxicity in humans [Rand et al., 2000]. Following infusion increased intracranial 
pressure and edema were observed in most of those treated however it caused no permanent 
neurological deficits and responded to treatment. No other systemic toxicity was noted and 
biopsy of the treated area showed no toxicity to normal brain. Increased survival was observed. 

No systemic effects were observed in phase II studies to determine the MTD and therapeutic 
volume [Weber et al., 2003; Weber et al., 2003]. IL-4 cytotoxin was not detectible outside of 
the CNS however increased IgG antibodies to PE were measured. In ongoing trials, a MTD 
and increased survival have yet to be observed. 

c. TGFα—While expressed at low levels on normal brain, epidermal growth factor receptor 
(EGFR) is often overexpressed in malignant gliomas. Transforming growth factor alpha 
(TGFα) binds to EGFR. As with IL-13 and IL-3, TGFα replacement of the PE binding domain 
may allow destruction of brain tumors by selectively targeting the overexpressed receptor 
present only on tumor cells[Sampson et al., 2003]. 

In phase I trials TP-38 (TGFα-PE) was evaluated for toxicity and MTD[Sampson et al., 
2003]. TP-38 was infused into brain tumors and corticosteroids were administered up to 72 
hours after infusion to prevent edema. While no systemic toxicity was observed, seizure, 
headache, neuropathy, fatigue, and visual and speech problems were observed, all of which 
resolved. MTD was not determined during the study. While overall survival was not different 
between all patients in the study, 3 of 15 patients showed decreased tumor burden. 

d. Transferrin Receptor—Transferrin receptors mediate iron transport into cells and are 
increased on rapidly dividing cells with increased iron requirements [Recht et al., 1990]. Tumor 
cells including glioma have increased levels of transferrin receptor on their cells surface . 

Diphtheria toxin (DT) is a multiple subunit protein composed of binding and catalytic domains 
[Greenfield et al., 1987; Johnson et al., 1989]. The catalytic subunit catalyzes the addition of 
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adenosine diphosphateribose onto elongation factor 2 to inhibit protein synthesis and kill cells. 
Replacement of the binding subunit with transferrin alters the binding specificity and carries 
DT into glioma cells. An additional mutation (CRM107) decreased nonspecific binding. 

Phase I clinical trial of Tf-CRM107 was completed to determine toxicity and MTD [Laske et 
al., 1997]. Patients with recurrent malignant brain glioma were infused with the TF cytotoxin, 
antibiotics and dexamethasone. The MTD was determined to be 0.67ug/ml in a 40ml total 
infusion volume. Transient increased intracerebral pressure was observed and treated. At the 
MTD, no local toxicity was observed. No systemic toxicity was observed although transient 
elevation in serum transaminases and mild hypoalbumnemia were observed. Survival increased 
from 36 weeks in non responders to 74 weeks in responding patients. 

Phase II clinical trial of Tf-CRM107 was undertaken to further study the safety and efficacy 
of treatment [Laske et al., 1997; Weaver et al., 2003]. Forty four patients enrolled in the study. 
Infusion related edema and seizures were reported both of which responded to therapy. While 
all patients entered the study in a progressive disease state, 48% of patients saw disease arrest 
at the time of evaluation and 30% survived beyond one year. 

3. Tumor Suppressors and Oncogenes 

P53 – In addition to delivery of HSV1-TK, adenoviral vectors have been used to deliver p53 
into brain tumors. The p53 gene is critical to normal cell cycle and apoptosis. In human glioma, 
mutation of p53 or its inactivating proteins are the most frequently found genetic mutations. 
Inactivation of p53 allows tumor cells to circumvent normal cellular growth controls. 
Replication-deficient adenoviral viral vectors deliver p53 into glioma cells to inhibit tumor 
growth and trigger apoptosis [Vecil et al., 2003]. 

In phase one trials, patients were implanted with catheters to deliver Ad-p53 into their tumor 
mass. Several days after virus injection, tumors were resected to evaluate the extent of Ad-p53 
biological effects. After resection further Ad-p53 was injected into the tumor cavity to 
determine toxicity [Lang et al., 2003]. 

Resected tumors showed p53 transduction however transduced cells were found no farther than 
5-8mm from the injection site. Evidence of apoptosis was restricted to a small number of cells. 
While no active virus outside of the CNS was detected, there were increased anti-adenoviral 
antibody titers. Some patients developed neurological side effects which responded to 
corticosteroid treatment. Survival to recurrence was a median of seven months [Lang et al., 
2003]. 

4. Oncolytic Viruses 

While concerns about toxicity to normal tissue with the use of replicating viral vectors have 
limited their study in humans, the decrease in therapeutic efficiency seen with replication- 
deficient vectors as studies transition from pre-clinical to clinical has caused a resurgence in 
the study of the use of oncolytic or replicating viral vectors. Since widespread distribution of 
gene therapy products is essential for therapeutic efficacy, development of vectors which 
promote targeted but high level transduction efficiency are desired. Oncolytic virus infection 
results in viral replication and cell lysis such that no therapeutic transgene is need as the virus 
infection itself destroys the tumor mass. Herpes simplex virus, adenovirus, influenza virus, 
vaccinia virus, vesicular stomatitis virus, Newcastle disease virus, poliovirus, and reovirus are 
all being investigated for clinical oncolytic virus therapeutics, meanwhile adenovirus and 
herpes simplex virus have already entered clinical trials[Shah et al., 2003]. 
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a. Adenovirus—While injection of wild-type virus may be detrimental to normal tissue, 
selective targeting by mutation of the virus has allowed for more selective killing of tumor 
cells. Mutated viruses are used to act directly as cytotoxic agents to destroy tumor cells and 
further spread newly replicated viral particles [Vecil et al., 2003]. 

ONYX-15: Among the adenoviruses, ONYX-15 has been used in clinical trials of glioma. The 
E1b region of wild-type adenovirus inactivates host cell p53 preventing apoptosis induction 
and allowing for viral replication. Originally, mutations in the E1b region of ONYX-15 were 
thought to render it unable to replicate in cells with normal p53 function [Shah et al., 2003]. 
While thought to only to kill cells exhibiting p53 mutations which result in deficits in p53 
function, the mechanism by which ONYX-15 induces cell death is under intense investigation 
[Edwards et al., 2002; Petit et al., 2002; Hann et al., 2003; O'Shea et al., 2004]. In phase one 
clinical trials to examine toxicity and MTD in resected glioma patents, a maximum dose was 
not identified with up to 1×1010 pfu being well tolerated [Chiocca et al., 2004]. No systemic 
toxicity was observed even with elevated levels of anti-adenoviral antibodies in several 
patients. While median survival was 6.2 months from recurrence several patients survived over 
a year. Development of other oncolytic adenoviruses in addition to ONYX-15 are underway 
[Fueyo et al., 2003]. 

b. Herpes Simplex Virus—HSV vectors have also been used as replication competent 
vectors to treat brain tumors. HSV is a non integrating, neurotropic virus with oncolytic 
properties that may be exploited in targeting brain tumors. 

G207: HSV-G207 vectors contain two mutations separating them from wild-type HSV. The 
HSV γ134.5 gene blocks activation of anti-viral defenses within a cell allowing viral protein 
synthesis to occur. γ134.5 vectors only infect and replicate in cells without normal protein 
synthesis controls [He et al., 1997]. The second gene mutated in G207 is UL39 which is required 
to synthesize nucleotides in nondividing cells [Mineta et al., 1994; Mineta et al., 1995]. 
Disabling UL39 with a lacZ insertion disables nucleotide synthesis such that viral replication 
can only be carried out in actively dividing cells. While the two mutations within the virus 
confer specificity to G207, intact thymidine kinase gene provides a mechanism to control any 
herpetic infection that may arise from use of these replicating vectors. 

In phase one clinical trials with G207, MTD and toxicity were evaluated [Markert et al., 
2000]. Patents with progressive or recurrent glioma were injected with a single dose of virus. 
MTD was not established as the highest level 3×109pfu was well tolerated. No herpetic, 
encephalic or inflammatory effects were observed. While one patient seroconverted showing 
positive anti-HSV1 antibodies after treatment, no systemic toxicity attributable to G207 
treatment was observed. Excluding four surviving patients, mean survival from diagnosis to 
death was 15.9 months. Phase 1b/2 trials are underway. 

HSV1716: HSV1716 contains a single mutation of the y134.5 gene rendering it unable to 
replicate in neurons while targeting glioma cells. Phase one clinical trials in brain tumor patients 
were unable to determine a MTD as up to 1×105 pfu were tolerated well [Rampling et al., 
2000]. No encephalitis or herpetic complications were observed and all patients remained 
seronegative for HSV-1. In an additional trial, recurrent tumor patient tumors were examined 
after injection of HSV1716 and virus was detectible by semiquantitative PCR [Papanastassiou 
et al., 2002]. Even in inoculated tumors for which virus was not detectible, reinfection in 
vitro triggered low level HSV1716 viral shedding indicating persistent long-term effects may 
be possible [Harland et al., 2002]. Following trials in which HSV1716 was injected 
intratumorally, HSV1716 was injected after resection into the rim of the tumor cavity to 
determine if virus administration could act to eliminate residual tumor cells responsible for 
rapid tumor regrowth after resection [Harrow et al., 2004]. No treatment related toxcicities 
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were observed. Of twelve patients, 3 survived, one died of non related events, and 8 died after 
tumor progression. Further clinical trials are ongoing. 

c. Newcastle Disease Virus—NDV replication-competent viruses have also been used in 
clinical trials to attempt treatment of GBM. Preclinically these viruses showed promising tumor 
regression without recurrence[Lorence et al., 1994; Phuangsab et al., 2001]. In a 
nonrandomized study of glioma patients, tumor cells taken from patients were infected with 
NDV, irradiated and used to vaccinate the patient. Vaccinated patients survived significantly 
longer than non-vaccinated controls and the therapy was well tolerated [Schneider et al., 
2001; Steiner et al., 2004]. 

With promising results from replication competent adeno- and Newcastle disease virus interest 
in replication competent viruses continues to grow. Preclinical studies indicate the replication- 
competent retroviral vectors infect and selectively destroy glioma cells while sparing normal 
brain tissue[Wang et al., 2003]. These vectors could also be translated into phase I clinical 
trials. 

E. CONCLUSION AND FUTURE PROSPECTS 

The treatment of tumors of the central nervous system represents a formidable challenge, 
further magnified by the fact that the brain is isolated by the blood brain barrier which makes 
the delivery of high doses of chemotherapeutic agents or gene delivery vectors to the tumor 
very difficult. This posses the challenge of unacceptable toxic systemic levels of the drugs or 
vectors [Burton et al., 1999; Burton et al., 2000]. The approaches which propose combinations 
of local tumor delivery such as immune-stimulation and cytotoxic gene therapies within the 
tumor mass and/or surrounding tumor cavity are very promising for the effective treatment of 
GBM. Also, with the introduction of new technologies such as the microchip and convection 
enhanced drug delivery, it will be possible to achieve local delivery of high doses of the vectors 
carrying the therapeutic genes, both within the tumor mass and the surrounding area, where 
the infiltrating tumor cells are localized. These technologies should enable a more effective 
and constant delivery of the therapies, such as drugs or gene therapy vectors. 

Taking gene therapies for GBM and other types of brain cancers to the clinic constitutes a very 
exciting prospect. One would envisage that when a patient undergoes surgical resection or 
debulking of the tumor, the neurosurgeon could deliver the gene therapy vectors encoding for 
a combination of therapeutic genes. By delivering genes which will enhance tumor cells' death 
and cytokines/chemokines which will elicit a systemic anti-tumor immune response, it will be 
possible to further eliminate tumor cells which have escaped the neurosurgical resection and 
also mount an effective anti-tumor immune response. The power of this approach is that the 
local antigen presenting cells (APCs) will be exposed to tumor antigens in situ as opposed to 
ex vivo. This will have the added advantage that the APCs will be loaded with the antigens 
released from the tumor in situ and will have more chance to mount an effective immune 
response when compared to loading of APCs with tumor extracts ex vivo. This is due to the 
fact that what kills the patients are the tumor recurrences and the tumor that recurs is very 
different from the primary tumor which was resected and used to load APCs ex vivo. Using 
gene delivery vectors with the capability of expressing therapeutic genes long term [Thomas 
et al., 2000; Thomas et al., 2001] and under the control of regulatable promoter systems 
[Goverdhana et al., 2005], one would eliminate the need of re-delivery of the gene therapies 
and also, by following the progression of the tumor by MRI or PET techniques, the neuro- 
oncologist will be able to make an informed decision as to whether the gene therapies will need 
to be turned on or reactivated for each individual patient. While these exciting prospects for 
GBM treatment will become a reality in the near future, more work is needed to perfect the 
gene delivery techniques and also in the development of powerful therapeutic targets. Results 
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from the approaches described in this review will become available after phase I and II gene 
therapy trials are completed. 
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Fig. (1). 
Diagram outlining the mechanism by which viral vector administration may result in 
tumor regression. Adenoviral vectors delivering substances like HSV-1TK and hsFlt3L 
injected intratumorally cause local cell death (TK) generating tumor antigen and trigger the 
maturation of local and infiltrating antigen presentating cells (Flt3L). APCs then may activate 
various adaptive and innate immune system cell types to trigger a fully activated anti-tumor 
immune response. This immune response also results in memory T cell generation which 
protects against future recurrence of disease. 
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Fig. (2). 
CNS-1 cell tumors treated by adenoviral gene therapy. Brains from rats implanted with 
CNS-1 cell ten days before adenoviral delivery of gene therapy (saline control, RAdhsFlt3L 
or RAdTK) were harvested five days or twelve (RAdTK+hsFlt3L) days after gene therapy. 
The combination of immune stimulation and conditional cytoxicity trigger tumor regression 
[Ali et al., 2005]. Without combined therapy, rats succumb to tumors within 20 days of tumor 
implantation however with TK + Flt3L treatment, animals survive long term and no tumor 
remnant is evident 12 days after viral therapy. 
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Fig. (3). 
Diagram outlining the mechanism through which RAdFlt3L and RAdTK stimulate a 
powerful anti-tumor response. In the absence of treatment, (a), few dendritic cells (DC's) 
present in the cerebrospinal fluid (CSF) or peripheral tissues can gain access to the tumor mass 
growing within the brain parenchyma. This prevents DC's from taking up tumor antigen and 
migrating to peripheral lymph nodes where it can be presented to THelper (TH) cells. Tumors 
that are injected with RAdFlt3L alone, (b), allows dendritic cell infiltration into the tumor mass 
and subsequent maturation. Dendritic cells can proliferate within the tumor, mature, and take 
up endogenous tumor antigen from necrotic areas within the tumor. These DC's subsequently 
migrate to peripheral lymph nodes where they present tumor antigen to TH cells on MHC II 
molecules. This results in an immune response against the tumor and can successfully clear 
small tumors from rodents. Tumors that are injected with both RAdFlt3L and RAdTK, (c), 
cause the infiltration of DC's within the tumor mass just like with RAdFlt3L alone. However, 
cytotoxic effects of RAdTK result in necrosis and apoptosis of large areas of the tumor. This 
creates an inflammatory environment ideal for the uptake of tumor antigen by DC's. These 
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DC's migrate to peripheral lymph nodes and display antigen to T H lymphocytes, resulting in 
a potent anti-tumor response sufficient to clear even large tumors from the rodents. 
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Fig. (4). 
Targeted toxins for glioma therapy. The targeting of IL-13α2 receptor overexpressed in 
glioma cells has been improved by mutating the human IL-13 gene to generate a mutated IL-13 
(muIL-13). MuIL-13 has shown a higher affinity for the glioma-associated IL-13α2 receptor 
and negligible binding to the physiological receptor composed of IL-13 receptor and IL-4 
receptor (1). The mutant Pseudomonas exotoxin (PE) does not bind to its ubiquitous α2- 
macroglobulin receptor due to the deletion of domain I and was fused to muIL-13 to promote 
its internalization into IL-13α2R-expressing glioma cells. PE Domain II (PEII) catalyzes the 
translocation of the toxin into the cytosol (2) and undergoes proteolytic cleavage that activates 
the exotoxin (3). Domain III (PEIII) directs the processed fragment of the toxin to the 
endoplasmic reticulum and ADP ribosylates elongation factor 2, inhibiting protein synthesis 
(4) and leading to glioma cell death (5). 
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